浙江省中考数学模拟试题及答案
- 格式:doc
- 大小:482.00 KB
- 文档页数:10
最新浙江省中考数学模拟检测试卷(含答案)(考试时间:120分钟分数:150分)一.选择题(共10小题,满分40分,每小题4分)1.﹣1+3的结果是()A.﹣4 B.4 C.﹣2 D.22.如图,王华用橡皮泥做了个圆柱,再用手工刀切去一部分,则其左视图是()A.B.C.D.3.在某个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小4.对于反比例函数y=,下列说法正确的是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大5.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是()A.甲B.乙C.丙D.无法判断6.把不等式组:的解集表示在数轴上,正确的是()A.B.C.D.7.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3的度数等于()A.20°B.30°C.50°D.80°8.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为()A.﹣2 B.2 C.0 D.19.如图,矩形ABCD的边AB=1,BC=2,以点B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是()A.B.2C.D.2﹣10.图1是甲、乙两个圆柱形水槽,一个圆柱形的空玻璃杯放置在乙槽中(空玻璃杯的厚度忽略不计).将甲槽的水匀速注入乙槽的空玻璃杯中,甲水槽内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2线段DE所示,乙水槽(包括空玻璃杯)内最高水位y(厘米)与注水时间t(分钟)之间的函数关系如图2折线O﹣A﹣B﹣C所示.记甲槽底面积为S1,乙槽底面积为S2,乙槽中玻璃杯底面积为S3,则S1:S2:S3的值为()A.8:5:1 B.4:5:2 C.5:8:3 D.8:10:5 二.填空题(共6小题,满分30分,每小题5分)11.因式分解:2x2﹣4x═.12.点A(a,5),B(3,b)关于y轴对称,则a+b=.13.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是.14.如图,△ABC中,点D在BA的延长线上,DE∥BC,如果∠BAC=80°,∠C=33°,那么∠BDE的度数是.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP =1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作▱PCED,当C,D点在圆周上运动时,线段PE长的最大值与最小值的积等于.三.解答题(共8小题,满分80分)17.计算:(1)(﹣0.5)+(﹣)﹣(+1)(2)2+(﹣3)2×(﹣)(3)﹣+|﹣2|﹣(﹣1)201818.先化简,再求值:(x﹣2+)÷,其中x=﹣.19.如图,已知点E在△ABC的边AB上,以AE为直径的⊙O与BC 相切于点D,且AD平分∠BAC.求证:AC⊥BC.20.在2021年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.(1)求甲、乙两种车辆单独完成任务分别需要多少天?(2)已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.21.为了解学生最喜爱的球类运动,某初中在全校2000名学生中抽取部分学生进行调查,要求学生只能从“A(篮球)、B(羽毛球)、C(足球)、D(乒乓球)”中选择一种.(1)小明直接在八年级学生中随机调查了一些同学.他的抽样是否合理?请说明理由.(2)小王从各年级随机抽取了部分同学进行调查,整理数据,绘制出下列两幅不完整的统计图.请根据图中所提供的信息,回答下列问题:①请将条形统计图补充完整;②估计该初中最喜爱乒乓球的学生人数约为人.22.(1)问题发现在等腰三角形ABC中,AB=AC,分别以AB和AC为斜边,向△ABC 的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG ⊥AC于点G,M是BC的中点,连接MD和ME.填空:线段AF,AG,AB之间的数量关系是;线段MD,ME之间的数量关系是.(2)拓展探究在任意三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量关系和位置关系?并说明理由;(3)解决问题在任意三角形ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,若MD=2,请直接写出线段DE的长.23.如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH的面积S有变化吗?如果变化.请求出S与m的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH是等腰三角形的m值.24.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a 的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.答案一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据有理数的加法解答即可.【解答】解:﹣1+3=2,故选:D.【点评】此题考查有理数的加法,关键是根据法则计算.2.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是上下两个矩形,矩形的公共边是虚线,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.【分析】根据概率的意义对各选项分析判断后利用排除法求解.【解答】解:科比罚球投篮的命中率大约是83.3%,科比罚球投篮2次,不一定全部命中,A选项错误、B选项正确;科比罚球投篮1次,命中的可能性较大、不命中的可能性较小,C、D选项说法正确;故选:A.【点评】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.4.【分析】根据反比例函数性质逐项判断即可.【解答】解:∵当x=2时,可得y=1≠﹣1,∴图象不经过点(2,﹣1),故A不正确;∵在y=中,k=2>0,∴图象位于第一、三象限,且在每个象限内y随x的增大而减小,故B、D不正确;又双曲线为中心对称图形,故C正确,故选:C.【点评】本题主要考查反比例函数的性质,掌握反比例函数的图象形状、位置及增减性是解题的关键.5.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:根据统计图波动情况来看,此次射击成绩最稳定的是乙,波动比较小,比较稳定.故选:B.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.【分析】先求出两个不等式的解集,各个不等式的解集的公共部分就是这个不等式组的解集.【解答】解:解不等式组得:.再分别表示在数轴上为.在数轴上表示得:.故选A.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.【分析】根据平行线的性质求出∠4,根据三角形的外角的性质计算即可.【解答】解:∵AB∥CD,∴∠4=∠2=50°,∴∠3=∠4﹣∠1=20°,故选:A.【点评】本题考查的是平行线的性质,三角形的外角的性质,掌握两直线平行,内错角相等是解题的关键.8.【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m =2; 故选:B .【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键. 9.【分析】连接BE .则阴影部分的面积=S 矩形ABCD﹣S △ABE ﹣S扇形BCE,根据题意知BE =BC =2,则AE =、∠AEB =∠EBC =30°,进而求出即可.【解答】解:如图,连接BE ,则BE =BC =2,在Rt △ABE 中,∵AB =1、BE =2, ∴∠AEB =∠EBC =30°,AE ==,则阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形BCE =1×2﹣×1×﹣=2﹣﹣,故选:A .【点评】此题主要考查了扇形面积求法,本题中能够将不规则图形的面积进行转换成规则图形的面积差是解题的关键.10.【分析】根据题意和函数图象中的数据可以列出相应的方程组,求出S 1:S 2:S 3的值,本题得以解决.【解答】解:由题意可得,,解得,S 1:S 2:S 3=4:5:2, 故选:B .【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 二.填空题(共6小题,满分30分,每小题5分)11.【分析】直接提取公因式2x,进而分解因式即可.【解答】解:2x2﹣4x=2x(x﹣2).故答案为:2x(x﹣2).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.【分析】直接利用关于y轴对称点的性质得出a,b的值,进而得出答案.【解答】解:∵点A(a,5),B(3,b)关于y轴对称,∴a=﹣3,b=5,则a+b=﹣3+5=2.故答案为:2.【点评】此题主要考查了关于y轴对称点的性质,正确记忆关于y轴对称点的横纵坐标关系是解题关键.13.【分析】列表得出所有等可能结果,从中找到积为大于﹣4小于2的结果数,根据概率公式计算可得.【解答】解:列表如下:﹣2 ﹣1 1 2 ﹣2 2 ﹣2 ﹣4﹣1 2 ﹣1 ﹣21 ﹣2 ﹣1 22 ﹣4 ﹣2 2由表可知,共有12种等可能结果,其中积为大于﹣4小于2的有6种结果,∴积为大于﹣4小于2的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】先根据三角形内角和定理,得出∠B,再根据平行线的性质,即可得到∠BDE 的度数.【解答】解:∵∠BAC=80°,∠C=33°,∴△ABC中,∠B=67°,∵DE∥BC,∴∠BDE=180°﹣∠B=180°﹣67°=113°,故答案为:113°.【点评】本题主要考查了三角形内角和定理以及平行线的性质,解题时注意:两直线平行,同旁内角互补.15.【分析】由题意得:当顶点在M处,点A横坐标为﹣3,可以求出抛物线的a值;当顶点在N处时,y=a﹣b+c取得最小值,即可求解.【解答】解:由题意得:当顶点在M处,点A横坐标为﹣3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(﹣3,0)代入上式得:0=a(﹣3+1)2+4,解得:a=﹣1,当x=﹣1时,y=a﹣b+c,顶点在N处时,y=a﹣b+c取得最小值,顶点在N处,抛物线的表达式为:y=﹣(x﹣3)2+1,当x=﹣1时,y=a﹣b+c=﹣(﹣1﹣3)2+1=﹣15,故答案为﹣15.【点评】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.16.【分析】连接OC.设CD交PE于点K,连接OK.求出OK,OP的值,利用三角形的三边关系即可解决问题.【解答】解:连接OC.设CD交PE于点K,连接OK.∵四边形PCED是平行四边形,∴EK=PK,CK=DK,∴OK⊥CD,在Rt△COK中,∵OC=5,CK=3,∴OK==4,∵OP=OB+PB=6,∴6﹣4≤PK≤6+4,∴2≤PK≤10,∴PK的最小值为2,最大值为10,∵PE=2PK,∴PE的最小值为4,最大值为20,∴线段PE长的最大值与最小值的积等于80.故答案为80.【点评】本题考查垂径定理,勾股定理,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三.解答题(共8小题,满分80分)17.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用有理数混合运算法则计算得出答案;(3)直接利用立方根以及绝对值的性质化简各数进而得出答案.【解答】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣)=2﹣=;(3)原式=﹣2﹣5+2﹣1=﹣6.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【分析】连接OD,则OA=OD,∠1=∠3,OD⊥BC,由AD平分∠BAC,∠1=∠2=∠3,可知AC∥OD,故∠ACD=90°.【解答】证明:连接OD,(1分)∵OA=OD,∴∠1=∠3;(3分)∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,(6分)∴OD∥AC;(7分)∵BC是⊙O的切线,∴OD⊥BC.∴AC⊥BC.【点评】本题考查的是圆切线及角平分线的性质,比较简单.20.【分析】(1)根据题意可以得到相应的分式方程,从而可以解答本题;(2)根据题意和第(1)问中的结果可以分别求得三种方式的费用,从而可以解答本题.【解答】解:(1)设甲车单独完成任务需要x天,则乙车单独完成任务需要2x天,()×10=1解得,x=15∴2x=30即甲、乙两车单独完成任务分别需要15天,30天;(2)设甲车的租金每天a元,则乙车的租金每天(a﹣1500)元,[a+(a﹣1500)]×10=65000解得,a=4000∴a﹣1500=2500当单独租甲车时,租金为:15×4000=60000,当单独租乙车时,租金为:30×2500=75000,∵60000<65000<75000,∴单独租甲车租金最少.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件.21.【分析】(1)根据抽样调查的可靠性解答可得;(2)①先根据A种类人数及其所占百分比求得总人数,再用总人数乘以C的百分比求得其人数,用总人数减去其他种类人数求得D的人数即可补全图形;②用总人数乘以样本中D种类人数所占比例可得.【解答】解:(1)不合理.全校每个同学被抽到的机会不相同,抽样缺乏代表性;(2)①∵被调查的学生人数为24÷15%=160,∴C种类人数为160×30%=48人,D种类人数为160﹣(24+72+48)=16,补全图形如下:②估计该初中最喜爱乒乓球的学生人数约为2000×=200人,故答案为:200.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【分析】(1)由条件可以通过三角形全等和轴对称的性质,直角三角形的性质得出结论;(2)取AB、AC的中点F、G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质就可以得出结论;(3)取AB、AC的中点F、G,连接DF,MF,EG,MG,DF和MG相交于H,根据三角形的中位线的性质K可以得出△DFM≌△MGE,由全等三角形的性质和勾股定理就可以得出答案.【解答】解:(1)AF=AG=AB,理由如下:∵△ADB和△AEC是等腰直角三角形,∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°∵在△ADB和△AEC中,,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,∵DF⊥AB于点F,EG⊥AC于点G,∴AF=BF=DF=AB,AG=GC=GE=AC.∵AB=AC,∴AF=AG=AB;MD=ME,理由如下:∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,,∴△DBM≌△ECM(SAS),∴MD=ME;故答案为:AF=AG=AB;MD=ME;(2)MD=ME,MD⊥ME.理由如下:取AB,AC的中点F,G,连接DF,FM,MG,EG,设AB与DM交于点H,如图2,∵△ADB和△AEC都是等腰直角三角形,∴∠DFA=∠EGA=90°,DF=AF=AB,EG=AG=AC.∵点M是BC的中点,∴FM和MG都是△ABC的中位线,∴AF∥MG,AF=DF=MG,∴四边形AFMG是平行四边形,∴FM=AG=GE,∠AFM=∠AGM,∴∠DFM=∠MGE.在△DFM和△MGE中,FM=GE,∠DFM=∠MGE,DF=MG,∴△DFM≌MGE(SAS),∴MD=ME,∠FDM=∠GME.∴∠BHM=90°+∠FDM=90°+∠GME,∠BHM=∠HMG=∠DME+∠GME,∴∠DME=90°,即MD⊥ME;(3)线段DE的长为2,理由如下:分别取AB,AC的中点F,G,连接MF,DF,MG,EG,设DF和MG交于点H,如图3,∵△ADB和△AEC都是等腰直角三角形,∴∠DFA=∠EGA=90°,DF=AF=AB,EG=AG=AC.∵点M是BC的中点,∴FM和MG都是△ABC的中位线,∴AF∥MG,AF=DF=MG,∴四边形AFMG是平行四边形,∴FM=AG=GE,∠AFM=∠AGM,∴∠DFM=∠MGE.在△DFM和△MGE中,FM=GE,∠DFM=∠MGE,DF=MG,∴△DFM≌MGE(SAS).∴MD=ME,∠FDM=∠GME.∵DF⊥AB即∠FHM=90°.又∵∠FHM=∠HMD+∠FDM,∴∠FHM=∠HMD+∠GME=∠DME=90°,∴△DME是等腰直角三角形,在Rt△DME中,MD=ME=2,由勾股定理,得DE=2.【点评】本题考查了三角形综合题,等腰直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的中位线的性质的运用,直角三角形的斜边上的中线的性质的运用,平行四边形的判定及性质的运用,解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.23.【分析】(1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题;【解答】解:(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°,∴AC==4,∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°,∴△AHC∽△ACG,=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S=•AH•AG=AC2=×(4)2=16.△AGH∴△AGH的面积为16.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴==,∴AE=AB=.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5°.在BC上取一点M,使得BM=BE,∴∠BME=∠BEM=45°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.5°,∴CM=EM,设BM=BE=x,则CM=EM=x,∴x+x=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,综上所述,满足条件的m的值为或2或8﹣4.【点评】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y =ax 2+ax +b =ax 2+ax ﹣2a =a (x +)2﹣,∴抛物线顶点D 的坐标为(﹣,﹣); (2)∵直线y =2x +m 经过点M (1,0),∴0=2×1+m ,解得m =﹣2,∴y =2x ﹣2,则,得ax 2+(a ﹣2)x ﹣2a +2=0,∴(x ﹣1)(ax +2a ﹣2)=0,解得x =1或x =﹣2, ∴N 点坐标为(﹣2,﹣6),∵a <b ,即a <﹣2a ,∴a <0,如图1,设抛物线对称轴交直线于点E ,∵抛物线对称轴为x =﹣=﹣, ∴E (﹣,﹣3),∵M (1,0),N (﹣2,﹣6), 设△DMN 的面积为S ,∴S =S △DEN +S △DEM =|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a =﹣1时,抛物线的解析式为:y =﹣x 2﹣x +2=﹣(x +)2+, 有,﹣x 2﹣x +2=﹣2x ,解得:x 1=2,x 2=﹣1,∴G (﹣1,2),∵点G 、H 关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.。
2024年浙江省宁波市中考数学模拟试题(六)一、单选题1.下列算式的结果等于6-的是( )A .()122--B .()122÷-C .()42+-D .()42⨯- 2.下列运算正确的是( )AB -C5±D 347=+ 3.下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 4.设a b c ,,均为实数,( )A .若a b >,则ac bc >B .若a b =,则ac bc =C .若ac bc >,则a b >D .若ac bc =,则a b =5.某中老年合唱团成员的平均年龄为52岁,方差为210岁,在人员没有变动的情况下,两年后这批成员的( )A .平均年龄为52岁,方差为210岁B .平均年龄为54岁,方差为210岁C .平均年龄为52岁,方差为212岁D .平均年龄为54岁,方差为212岁 6.如图,设O 为ABC V 的边AB 上一点,O e 经过点B 且恰好与边AC 相切于点C .若30,3B AC ∠=︒=,则阴影部分的面积为( )A 2πB 2πC πD π- 7.在面积等于3的所有矩形卡片中,周长不可能是( )A .12B .10C .8D .68.如图,锐角三角形ABC 中,AB AC =,D ,E 分别在边AB ,AC 上,连接BE ,CD ,下列命题中,假命题是( )A .若CD BE =,则DCB EBC ∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE =9.四名同学在研究函数22y x bx c =++(b c ,为已知数)时,甲发现该函数的图象经过点()1,0;乙发现当2x =时,该函数有最小值;丙发现3x =是方程222x bx c ++=的一个根;丁发现该函数图象与y 轴交点的坐标为()0,6.已知这四名同学中只有一人发现的结论是错误的( )A .甲B .乙C .丙D .丁10.如图,ABC V 的两条高线AD BE ,交于点F ,过B ,C ,E 三点作O e ,延长AD 交O e 于点G ,连接GO GC ,.设53AF DF ==,,则下列线段中可求长度的是( )A .GB B .GDC .GOD .GC二、填空题11.分解因式:224x y -+=.12.在一个不透明的纸箱中装有4个白球和n 个黄球,它们只有颜色不同.为了估计黄球的个数,杨老师进行了如下试验:每次从中随机摸出1个球,杨老师发现摸到白球的频率稳定在13附近,则纸箱中大约有黄球个. 13.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.8元,设每箱中有凉茶x 罐,则可列方程:.14.如图,在Rt ABC V 中,已知90C ∠=︒,3CD BD =,cos ABC ∠sin BAD ∠=.15.第二十四届国际数学家大会会徽的设计基础是1700多年前中国古代数学家赵爽的“弦图”.如图,在由四个全等的直角三角形(Rt DAE V ,Rt ABF V ,Rt BCG V ,Rt CDH △)和中间一个小正方形EFGH 拼成的大正方形ABCD 中,连接BE .设BAF α∠=,BEF β∠=,正方形EFGH 和正方形ABCD 的面积分别为1S 和2S ,若90αβ+=︒,则21S S =:.16.已知关于x 的一元二次方程20x ax b ++=有两个根1x ,2x ,且满足1212x x <<<.记=+t a b ,则t 的取值范围是 .三、解答题17.(1)计算:212tan 6012-⎛⎫︒+ ⎪⎝⎭; (2)已知2410x x --=,求代数式()()()22311x x x --+-的值. 18.圆圆和方方在做一道练习题:已知0a b <<,试比较a b 与11a b ++的大小. 圆圆说:“当12a b ==,时,有12a b =,1213a b +=+;因为1223<,所以11a ab b +<+”. 方方说:“圆圆的做法不正确,因为12a b ==,只是一个特例,不具一般性.可以……”请你将方方的做法补充完整.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析,部分信息如下:a .七年级成绩频数分布直方图;b .七年级成绩在7080x ≤<这一组的是:70,72,74,75,76,76,77,77,77,77,78;c .七、八年级成绩的平均数、中位数如表:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有 人,表中m 的值为 ;(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级50名测试学生中的排名谁更靠前;(3)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.8分的人数. 20.某同学尝试在已知的ABCD Y 中利用尺规作出一个菱形,如图所示.(1)根据作图痕迹,能确定四边形AECF 是菱形吗?请说明理由.(2)若=60B ∠︒,2BA =,4BC =,求四边形AECF 的面积.21.小丽家饮水机中水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温()y ℃与开机时间()min x 满足一次函数关系,随后水温开始下降,此过程中水温()y ℃与开机时间()min x 成反比例关系,当水温降至20℃时,根据图中提供的信息,解答问题.(1)当010x ≤≤时,求水温()y ℃关于开机时间()min x(2)求图中t 的值.(3)若小丽在将饮水机通电开机后外出散步,请你预测小丽散步70min 回到家时,饮水机中水的温度.22.在等边三角形ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接CD ,交AP 于点E ,连接BE .(1)依题意补全如图;(2)若20PAB ∠=︒,求ACE ∠;(3)若060PAB ︒<∠<︒,用等式表示线段DE ,EC ,CA 之间的数量关系并证明.23.已知二次函数214y x bx c =-++的图象经过原点O 和点()8,0A t +,其中0t ≥. (1)当0t =时.①求y 关于x 的函数解析式,求出当x 为何值时,y 有最大值?最大值为多少? ②当x a =和x b =时()a b ≠,函数值相等,求a 的值.(2)当0t >时,在08x ≤≤范围内,y 有最大值18,求相应的t 和x 的值.24.如图,作半径为3的O e 的内接矩形ABCD ,设E 是弦BC 的中点,连接AE 并延长,交O e 于点F ,G 是»AB 的中点,CG 分别交AB AF ,于点H ,P ,若4BC =.(1)求BH ;(2)求:AP PE .(3)求tan APH .。
镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。
2024年浙江中考数学模拟试卷临考安心试题一、单选题1. 3-, 0, 3,1-这四个数中, 最小的数是( )A . 3-B .0C .3D . 1-2.下列运算正确的是( )A .224a a a +=B .3332a a a ⋅=C .()232524ab a b -=D .()()2111a a a -++=- 3.下列几何体中,俯视图是圆,左视图是长方形的几何体是( )A .B .C .D . 4.如图,在O e 中,AB 是O e 的弦,O e 的半径为3.C 为O e 上一点,连接AC 、BC ,若45ACB ∠=︒,则AB 的长为( )A .2B .3C .D .65.某中学积极推进学生综合素质评价改革,该中学学生小明本学期德、智、体、美、劳五项的评价得分如图所示,则小明同学五项评价得分的众数、中位数、平均数分别为( )A .9,9,8.4B .9,9,8.6C .8,8,8.6D .9,8,8.46.如图,DE 是ABC V 的中位线,点F 在DB 上,2DF BF =.连接EF 并延长,与CB 的延长线相交于点M .若6BC =,则线段CM 的长为( )A .132B .7C .152D .87.某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成;如果乙工程队单独做,则多用3天,现在甲、乙两队合做2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定日期为x 天,下面所列方程中正确的是( )A .113x x x +=+B .113x x x +=-C .213x x x +=+D .213x x x +=- 8.如图,有三种规格的卡片,其中边长为a 的正方形卡片1张,边长为b 的正方形卡片4张,长、宽分别为a ,b 的长方形卡片m 张.若使用这些卡片刚好可以拼成一个边长为2+a b 的正方形,则m 的值为( )A .1B .2C .3D .49.如图,在ABC V 中,90ACB ∠=︒,AC BC =,BAC ∠的平分线交BC 于点D ,3CD =.以点D 为圆心,DB 的长为半径作弧,交AB 于点B ,M ,分别以点B ,M 为圆心,大于12BM 的长为半径作弧,两弧相交于点N ,作直线DN 交AB 于点E ,保留作图痕迹,则BD 的长为( )A .B .3C .D .610.若一个点的坐标满足(),2k k ,我们将这样的点定义为“倍值点”.若关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,则s 的取值范围是( )A .1s <-B .0s <C .01s <<D .10s -<<二、填空题11.因式分解:2xy x -=.12.如图,ABC V 与DEF V 是以点O 为位似中心的位似图形,且12OA OD =,若ABC V 的面积为5,则DEF V 的面积为.13.如图,抛物线2y x bx c =++﹣交y 轴于点()0,5,对称轴为直线2x =-,若5y ≥,则x 的取值范围是.14.《九章算术》是中国古代第一部数学专著,第一章“方田”中已讲述了平面图形面积的计算方法,比如扇形的计算,“今有宛田,下周三十步,径十六步,问为田几何?”大意为:现有一块扇形的田,弧长30步,其所在圆的直径是16步,则这块田的面积为平方步.15.如图,在Rt PQG △中,90PQG ∠=︒,()0,2G -,点P 在反比例函数k y x=图象上,2FG PF =,且y 轴平分PGQ ∠,则k =.16.如图1,AB 是O e 的直径,E 是OA 的中点,2OA =,过点E 作CD AB ⊥交O e 于C 、D 两点.(1)»BC的度数为; (2)如图2,P 点为劣弧BC n上一个动点(不与B 、C 重合),连接AP CP 、,点Q 在AP 上,若AQ x =时,CQ 平分PCD ∠,则x 的值为.三、解答题17)1011sin454-⎫⎛-⨯︒ ⎪⎝⎭ 18.党的二十大报告再次将劳动教育同“德育、智育、体育、美育”放在同等重要的战略地位,明确了全面加强新时代大中小学劳动教育的重要性;为落实劳动教育,并设置了四个劳动项目:A .为家人做早饭,B .洗碗,C .打扫卫生,D .洗衣服.要求每个学生必须选择一个自己最擅长的劳动项目,并要坚持整个暑假,为了解全校参加各项目的学生人数,根据调查结果,绘制了两幅不完整的统计图,解答下列问题:(1)本次接受抽样调查的总人数是_______人;(2)请将上述两个统计图中缺失的部分补充完整;(3)该校参加活动的学生共2600人,请估计该校参加A 项目的学生有_______人;(4)小雯同学在暑假中养成了很好的劳动习惯,妈妈决定奖励带她去看两场电影,已知新上映的四部电影《志愿军》《汪汪队》《孤注一掷》《我是哪吒2》(依次记为a ,b ,c ,d ),很难做出决定,于是将写有这四个编号的卡片(除序号和内容外,其余完全相同),洗匀放好,从中随机抽取两张卡片,请用列表或画树状图的方法求出抽到的两张卡片恰好是《志愿军》和《孤注一掷》的概率.19.渔湾是国家“AAAA ”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A 处出发,沿着坡角为48︒的山坡向上走了92m 到达B 处的三龙潭瀑布,再沿坡角为37︒的山坡向上走了30m 到达C 处的二龙潭瀑布.求小卓从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 为多少米?(结果精确到0.1m )(参考数据:sin480.74cos480.67sin370.60cos370.80︒≈︒≈︒≈︒≈,,,)20.如图,已知一次函数1122y x =-与反比例函数2m y x =的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求反比例函数的解析式;(2)求AOB V 的面积;(3)直接写出12y y >时,x 的取值范围.21.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,,DE AC CE BD P P .(1)求证:四边形OCED 是菱形;(2)若3BC =,=OA ,求四边形OCED 的面积. 22.图1是即将建造的“碗形”景观池的模拟图,设计师将它的外轮廓设计成如图2所示的图形.它是由线段AC ,线段BD ,曲线AB ,曲线CD 围成的封闭图形,且AC BD ∥,BD 在x 轴上,曲线AB 与曲线CD 关于y 轴对称.已知曲线CD 是以C 为顶点的抛物线的一部分,其函数解析式为:21()5020y x p p =--+-(p 为常数,840p ≤≤).(1)当10p =时,求曲线AB 的函数解析式.(2)如图3,用三段塑料管EF ,FG ,EH 围成一个一边靠岸的矩形荷花种植区,E ,F 分别在曲线CD ,曲线AB 上,G ,H 在x 轴上.①记70EF =米时所需的塑料管总长度为1L ,60EF =米时所需的塑料管总长度为2L .若12L L <,求p 的取值范围.②当EF 与AC 的差为多少时,三段塑料管总长度最大?请你求出三段塑料管总长度的最大值.23.如图,BCD △和GCE V 中,,,,2BC DC GC EC BCD GCE BD CE α==∠=∠=>,直线BG 与DE 交于点H .(1)如图1,当90180α︒<<︒时,延长BG 交直线DE 于点H ,交CD 于点F ,求BHE ∠的度数(用含a 的式子表示);(2)当90α=︒时,将GCE V绕点C 旋转一周. ①如图2,当点E 在直线CD 右侧时,求证:BH DH -;②当45DEC ∠=︒时,若3,1BC CE ==,请直接写出线段DH 的长.24.如图1,AB 是O e 的直径,点D 在AB 的延长线上,点C ,E 是O e 上的两点,,CE CB BCD CAE =∠=∠,延长AE 交BC 的延长线于点F .(1)求证:CD 是O e 的切线;(2)若2,4BD CD ==,求直径AB 的长;(3)如图2,在(2)的条件下,连接OF ,求tan BOF ∠的值.。
浙江省中考数学模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A地沿北偏西60方向走100m到B地,再从B地向正南方向走200m到C 地,这时王英同学离A地的距离是()A.150m B.503m C.100m D.1003m2.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()A.5桶 B.6桶 C.9桶D.12桶3.圆锥的轴截面一定是()A.扇形B.矩形C.等腰三角形D.直角三角形4.二次函数y=ax2+bx+c的图象的对称轴位置()A.只与a有关B.只与b有关 C.只与a, b有关D.与 a , b,c都有关5.下列图形中,中心对称图形是()A.B.C.D.6.如图,在梯形ABCD中,AD∥BC,AB=AD=DC,∠C=60°.若这个梯形的周长为50,则AB的长为()A.8 B.9 C.10 D.127.在频率分布直方图中,下列结论成立的是()A.各小组频率之和等于nB.各小组频数之和等于1C.各小组频数之和等于nD.各小组长方形高的和等于l8.一元二次方程x2=c有解的条件是()A.c<O B.c>O C.c≤0 D.c≥09.如图,点E在BC上,ED丄AC于F,交BA的延长线于D,已知∠D=30°,∠C=20°,则∠B的度数是()A.20°B.30°C.40°D.50°二、填空题10.A、B两地一天有4班车,甲、乙两人同一天从A地去B 地,各自选一班车,则他们同车的概率是.11.若α是锐角,则α的余弦记作,α正切记作.12.如图,在△ABC中,EF∥BC,AE=2BE,则△AEF与梯形BCFE的面积比为___________. 13.关于x的一元二次方程x2+x+k=0有两个实数根,则k的取值范围是 .14.如图,正方形ABCD的边长为3cm,∠ABE=15°,且AB=AE,则DE= cm.15.如图,折叠直角梯形纸片的上底AD,点D落在底边BC上点F处,已知DC=8㎝,FC = 4㎝,则EC长㎝.16.等腰三角形△ABC 中,AB=AC,∠BAC=70°,D是BC的中点,则∠ADC= ,∠BAD= .17.在如图方格纸中,△ABC向右平移_______格后得到△A1B1C1.18.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干个图案:(1)第4个图案中有白色地面砖块;(2)第 n个图案中有白色地面砖块.19.(1)自行车用脚架撑放比较稳定的原因是.(2)若AABC的三边长都为整数,周长为11,有一边长为4,且任何两边都不相等,则这个三角形的最大边长为.三、解答题20.如图,在半径为27m的图形广场中央点 0上空安装了一个照明光源S,S 射向地面的光束为圆锥形,其轴截面SAB 的顶角为 120°,求光源离地面的垂直高度. (精确到0.1 m)21.如图,点D、E分别在 AB、AC 上,且AD AE,AD = 15,AB = 40,AC = 28,求 AEDB EC的长.22.如图,已知线段 PQ,用直尺和圆规求作以PQ 为直径的⊙O.23.填空,如图,BD平分∠ABC,∠1=∠2,则AD∥BC,证明过程如下:证明:∵BD平分∠ABC( )∴∠1=∠3( )∵∠1=∠2( )∴∠2=∠3∴AD∥BC ( )24.如图,△ABC中,∠C=90°,∠B=60°,AO=x,⊙O的半径为1.问:当x在什么范围内取值时,直线AC与⊙O相离、相切、相交?25.作为一项惠农强农应对前国际金触危机、拉动国内消费需求重要措施,“家电下乡”工作已经国务院批准从2008年12月1日起在某市实施. 某市某家电公司营销点自2008 年 12 月份至2009年 5 月份销售两种不同品牌冰箱的数量如下图:(1)完成下表:平均数/台 方差甲品牌销售量/台 1O乙品牌销售量/台 43(2)请你依据折线图的变化趋势,对营销点今后的进货情况提出建议.26.如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示. 已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中BAC ∠与平面展开图中B A C '''∠的大小关系?27.已知等式(2A-7B)x+(3A-8B)=8x+10对一切数x都成立,求A、B的值.28.解方程组:(1)35366x yx y+=⎧⎨-=⎩;(2)4423216x yx y⎧+=⎪⎨⎪-=⎩29.如图是某设计师设计图案的一部分,请你运用旋转变换的方法,在方格纸中将图形绕点0顺时针依次旋转90°,l80°,270°,依次画出旋转后所得到的图形,你会得到一个美丽的图案,但涂阴影时不要涂错了位置,否则不会出现理想的效果,你来试一试吧!(方格纸中的小正方形的边长为1个单位长度)30.在如图所示的数轴上表示数-3、0、52-、1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.C5.B6.C7.D8.D9.C二、填空题10.111.4cos α,tan α12.4:513.41≤k 14. 315.316.90°,35°17.418.(1)18;(2)42n +19.(1)三角形的稳定性;(2)5三、解答题20.如图所示,∠ASB= 120°,SO ⊥AB ,SA=SB ,∴∠ASO=60°.∵AO= 27 , ∠AOS= 90°,∴0015.6tan 60AO S ===≈(m) ∴光源离地面的垂直高度是 15.6.m21.设 AE 为x ,则 EC 为 28 一x .由题意得15401528x x=--,x=10.5. ∴AE 的长为10. 5. 22.画图略.作 PQ 的垂直平分线,交 PQ 于点O 即可.23.略24.解:作OD ⊥AC 于D ,在Rt △ABC ,∠C =90°∠B =60°,∴∠A =30°∴OD =12AO =12x(1)当12x >1,即x >2时,AC 与⊙O 相离; (2)当12x =1,即x =2时,AC 与⊙O 相切; (3)0≤12x <1,即0≤x <2时,AC 与⊙O 相交. 25. (1)表中从左到右依次填10,133; (2)建议如下:从折线图来看,甲品牌冰箱的月销售量呈上升趋势,因此进货时可多进甲品牌冰箱.26.解:(1如图(1)中的A C '',在A C D '''Rt △中,13C D A D ''''==,,由勾股定理得:A C ''∴=答:这样的线段可画4条(另三条用虚线标出).(2)立体图中BAC ∠为平面等腰直角三角形的一锐角,45BAC ∴∠=. 在平面展开图中,连接线段B C '',由勾股定理可得:A B B C ''''== 又222A B B C A C ''''''+=,由勾股定理的逆定理可得A B C '''△为直角三角形.又A B B C ''''=,A B C '''∴△为等腰直角三角形.45B A C '''∴∠=,所以BAC ∠与B A C '''∠相等.A=1.2,B=-0.8.28.(1)16535x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)84x y =⎧⎨=⎩ 29.略 30.在数轴上表示如图 所示. 第26题图(2) A 'C 'B '第26题图(1) A 'C ' B 'D '各数的大小关系为53012-<-<<。
2024-2025学年浙教版中考数学模拟试卷一、单选题(每题3分)1. 题目: 解方程组:1.(2x +3y =12)2.(x −y =1)答案:(x =3,y =2)2. 题目: 解二次方程:(x 2−5x +6=0)答案:(x =2)或(x =3)3. 题目: 解方程组:1.(3x −4y =16)2.(2x +y =10)答案:(x =5611),(y =−211)4. 题目: 解二次方程:(4x 2−9=0)答案:(x =−32)或(x =32)5. 题目: 解三次方程:(x 3−2x 2−x +2=0)答案:(x =−1),(x =1), 或(x =2)二、多选题(每题4分)题目1 (4分):下列哪些选项是代数式的正确表述?(A)3x + 4y - z (B) 5 * 6 + 2 / x (C) 2x^2 - 3x + 4 (D) a / b + c答案: (A), (C)题目2 (4分):下面哪一组线性方程有唯一解?(A)x + y = 3; x - y = 1 (B) 2x + 3y = 5; 4x + 6y = 10 (C) x + y = 2; 2x + 2y = 4 (D) 3x - 2y = 1;6x - 4y = 2答案: (A)题目3 (4分):在等腰三角形ABC中,AB=AC,角B和角C的度数可能是什么?(A)50°和 50° (B) 45°和 45° (C) 60°和 60° (D) 70°和 70°答案: (A), (B), (C), (D)题目4 (4分):抛掷一枚公平的骰子两次,得到两个点数之和为7的概率是多少?(A)1/6 (B) 1/9 (C) 1/12 (D) 1/18答案: (A)题目5 (4分):下列哪些变换可以保持图形的形状和大小不变?(A) 平移 (B) 旋转 (C) 缩放 (D) 反射答案: (A), (B), (D)请仔细审题并作答,祝你考试顺利!三、填空题(每题3分)1. 计算:((23)2−4×6),答案:402. 解方程:(2x +3=7),求 x 的值,答案:23. 若 a:b = 3:4,且 b = 12,求 a 的值,答案:94. 一个正方形的周长是 20 厘米,求它的面积,答案:25 平方厘米5. 在直角三角形中,一条直角边长为 3 厘米,另一条直角边长为 4 厘米,求斜边长,答案:5 厘米四、解答题(每题8分)题目1已知函数(f (x )=2x 2−3x +4),求函数的最小值及对应的(x )值。
2024年浙江省宁波市部分学校中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. )A.B. C. D. 【答案】A【解析】 【分析】直接利用相反数的定义:两数只有符号不同,即可得出答案.的相反数是故选:A .【点睛】此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2. 下列计算正确的是( )A. -3+2=-5B. (-3)×(-5)=-15C. -(-22)=-4D. -(-3)2=-9【答案】D【解析】【分析】根据有理数的加减运算与乘方运算及乘法的运算法则逐一计算可得.【详解】A. -3+2=-1,故错误;B. (-3)×(-5)=15,故错误;C. -(-22)=4,故错误;D. -(-3)2=-9,正确,故选D.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的加减运算与乘方运算及乘法的运算法则.3. 第19届亚运会将于2023年9月23日在杭州举行,其体育场及田径比赛场地——杭州奥体中心体育场,俗称“大莲花”,总建筑面积约216000平方米,将数据216000用科学记数法表示为( )A. 321610×B. 421.610×C. 52.1610×D. 60.21610× 【答案】C【分析】根据科学记数法定义处理:把一个绝对值大于1的数表示成10n a ×,其中110a ≤<,n 等于原数整数位数减1.【详解】解:根据科学记数法定义,5216000 2.1610=×;故选:C .【点睛】本题考查科学记数法,掌握科学记数法的定义是解题的关键.4. 如图,矩形ABCD 中,对角线AC BD 、交于点O ,若608AOB BD ∠=°=,,则AB =( )A. B. 4 C. 3 D. 5【答案】B【解析】 【分析】本题考查了矩形对角线相等且互相平分的性质及等边三角形的判定方法,先由矩形的性质得出OA OB =,结合题意证明AO B 是等边三角形即可.【详解】解:由矩形对角线相等且互相平分可得132AOBO BD ===, 即OAB 为等腰三角形,又60AOB ∠=°,∴OAB 为等边三角形.故4AB BO ==, ∴4DC AB ==.故选:B .5. 为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 每天使用零花钱(单位:元)510 15 20 25人数 2 5 8 9 6 则这30名同学每天使用的零花钱的众数和中位数分别是( )A. 20、15B. 20、17.5C. 20、20D. 15、15【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【详解】20出现了9次,出现的次数最多,所以这30名同学每天使用的零花钱的众数为20元;30个数据中,第15个和第16个数分别为15、20,它们的平均数为17.5,所以这30名同学每天使用的零花钱的中位数为17.5元.故选B.【点睛】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错6. 如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A. 3B. 4C. D.【答案】C【解析】 【分析】连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长.【详解】解:连接OB ,OD ,OP ,过O 作OM AB ⊥,交AB 于点M ,过O 作ON CD ⊥,交CD 于点N .∵AB =CD =8,∴BM =DN =4,由垂径定理,勾股定理得:OM =ON =3,∵AB ,CD 是互相垂直的两条弦,∴∠DPB =90°∵OM AB ⊥,ON CD ⊥,∴∠OMP =∠ONP =90°∴四边形MONP 是正方形,∴OP =故选C .【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.7. 已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作 PQ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交 PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A. ∠COM=∠CODB. 若OM=MN ,则∠AOB=20°C. MN ∥CDD. MN=3CD【答案】D【解析】 【分析】由作图知CM=CD=DN ,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN ,∴∠COM=∠COD ,故A 选项正确;∵OM=ON=MN ,∴△OMN 是等边三角形,∴∠MON=60°,∵CM=CD=DN ,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B 选项正确; ∵∠MOA=∠AOB=∠BON ,∴∠OCD=∠OCM=180-COD 2°∠ , ∴∠MCD=180-COD °∠,又∠CMN=12∠AON=∠COD , ∴∠MCD+∠CMN=180°,∴MN ∥CD ,故C 选项正确;∵MC+CD+DN >MN ,且CM=CD=DN ,∴3CD >MN ,故D 选项错误;故选D .【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.8. 设a ,b ,m 均为实数,( )A. 若a b >,则a m b m +>−B. 若a b =,则ma mb =C. 若a m b m +>−,则a b >D. 若ma mb =,则a b =【答案】B【解析】【分析】根据等式的性质和不等式的性质可直接进行排除选项.【详解】解:A 、若a b >,则a m +不一定大于b m −,故错误;B 、若a b =,则ma mb =,故正确;C 、若a m b m +>−,则a 不一定大于b ,故错误;D 、若ma mb =,0m ≠,则a b =;若ma mb =,0m =,则a b 或a b =,故错误;故选:B .【点睛】本题考查了等式的性质和不等式的性质.解题的关键是掌握等式的性质和不等式的性质,注意等式两边乘同一个数或除以一个不为零的数,结果仍得等式.9. 已知(),2024A m ,(),2024B m n +是抛物线()22040y x h =−−+上的两点,则正数n =( ) A. 2B. 4C. 8D. 16【答案】C【解析】 【分析】本题考查二次函数的性质,根据函数图像上的点满足函数解析式列式求解即可得到答案;【详解】解:∵(),2024A m ,(),2024B m n +是抛物线()22040y x h =−−+上的两点, ∴2()20402024m h −−+=,2()20402024m n h −+−+=,∴2()16m h −=,2()16m n h +−=,∴4m h −=±,4m n h +−=±,即:44m h m n h −= +−=− 或44m h m n h −=− +−=, 解得:8n =或8n =−,∵n 取正数,故:8n =,故选:C .10. 如图,已知ABC ,O 为AC 上一点,以OB 为半径的圆经过点A ,且与BC 、OC 交于点E 、D ,设C α∠=,A β∠=,则(( )A. 若70αβ+=°,则弧DE 的度数为20°B. 若70αβ+=°,则弧DE 的度数为40°C. 若70αβ−=°,则弧DE 的度数为20°D. 若70αβ−=°,则弧DE 的度数为40°【答案】B【解析】【分析】本题考查了圆周角定理和三角形的外角性质,能灵活运用定理进行推理和计算是解此题的关键.连接BD ,根据圆周角定理求出90ABD ,求出90ADBβ∠=°−,再根据三角形外角性质得出1902x βα°−=+,求出 DE 的度数是1802()αβ°−+,再逐个判断即可. 详解】解:连接BD ,设 DE的度数是x , 则12DBC x ∠=, AC 过O ,90ABD ∴∠=°,A β∠= ,90ADB β∴∠=°−,C α∠= ,ADB C DBC ∠=∠+∠,1902x βα∴°−=+, 解得:1802()x αβ=°−+, 即 DE的度数是1802()αβ°−+, A .当70αβ+=°时, DE 度数是18014040°−°=°,故本选项不符合题意;B .当70αβ+=°时, DE 的度数是18014040°−°=°,故本选项符合题意;C .当70αβ−=°,即70αβ=°+时, DE的度数是1802(70)404βββ°−°++=°−或【的180(70)2502ααα°−+−°=°−,故本选项不符合题意;D .当70αβ−=°时, DE的度数是404β°−或2502α°−,故本选项不符合题意; 故选:B二、填空题:本大题有6个小题,每小题3分,共18分.11. 不等式30x −>的解集是______.【答案】3x >##3x <【解析】【分析】本题考查了一元一次不等式得解法,熟练掌握一元一次不等式的解法是解题的关键;根据一元一次不等式的解法直接解答即可.【详解】移项,得: 3x >.所以,不等式30x −>的解集是:3x >.故答案为:3x >.12. 在平面直角坐标系中,将点()23A −,向右平移3个单位长度后,那么平移后对应的点A ′的坐标是__________.【答案】()13,【解析】【分析】此题考查了点的坐标变化和平移之间的联系,根据平移时,点的坐标变化规律“左减右加”进行计算即可.【详解】根据题意,从点A 平移到点A ′,横坐标是231−+=,故点A ′的坐标是()13, 故答案为:()13,. 13. 为了弘扬中华传统文化,营造书香校园文化氛围,某学校举行中华传统文化知识大赛活动,该学校从三名女生和两名男生中选出两名同学担任本次活动的主持人,则选出的恰为一男一女的概率是_________. 【答案】35【解析】【分析】画出树状图,再根据概率公式列式进行计算即可得解.【详解】解:画树状图如下,统计可得,共有20种机会均等的结果,其中一男一女占12种,则恰好抽中一男一女的概率是:123205= ;故答案为35. 【点睛】本题考查了应用列表法与树状图法求概率,准确分析是解题的关键.14. 如图,直线y x m =−+与()40y nx n n =+≠的交点的横坐标为2−,则关于x 的不等式4x m nx n −+>+的解集是_________.【答案】<2x −【解析】【分析】本题考查了一次函数的图象和性质以及与一元一次不等式的关系.满足关于x 的不等式4x m nx n −+>+就是直线4y nx n =+位于直线y x m =−+的下方的图象,据此求得自变量的取值范围,进而求解即可.【详解】解:∵直线y x m =−+与4y nx n =+的交点的横坐标为2−, ∴关于x 的不等式4x m nx n −+>+的解集为<2x −,故答案为:<2x −.15. 若关于x 的方程2230x kx k −+−=的一个实数根13x ≥,另一个实数根20x ≤,则关于x 的二次函数223y x kx k =−+−图象的顶点到x 轴距离h 的取值范围是______. 【答案】81925h ≤≤ 【解析】【分析】本题考查的是二次函数的图象与性质,由题意得:3x =时,0y ≤,0x =时,0y ≤,可以确定k 的取值范围;二次函数顶点的纵坐标为23k k −+−,在k 的取值范围内计算出23k k −+−的取值范围,即可得到顶点到x 轴距离h 的取值范围.【详解】解:由题意得:3x =时,0y ≤,0x =时,0y ≤,即:963030k k k −+−≤ −≤ , 解得:635k ≤≤, 二次函数()222233y x kx k x k k k =−+−=−−+−,顶点的纵坐标为:23k k −+−, 22111324k k k −+−=−−− , 又10−<, 当635k ≤≤时,在65k =时,23k k −+−取得最大值,即:当65k =时,2668135525 −+−=− , 在3k =时,取得最小值,即:当3k =时,23339−+−=−,即:图象的顶点到x 轴的距离h 的最小值是81812525−=,图象的顶点到x 轴的距离h 的最大值是99−=,∴h 的取值范围是81925h ≤≤, 故答案:81925h ≤≤. 16. 如图,在正方形ABCD 中,4AB =,32EC =,以点E 为直角顶点作等腰直角三角形DEF (D E F ,,为顺时针排列),连接AF ,则BF 的长为 ____________________,AF 的最大值为 ____________________.【答案】 ①.②. 4+##4+ 【解析】 【分析】本题主要考查了一点到圆上一点的最值问题,相似三角形的性质与判定,勾股定理,等腰直角三角形的性质,正方形的性质等等,正确作出辅助线构造相似三角形从而确定点F 的运动轨迹是解题的关键.为如图所示,连接BD ,先证明BDF CDE =∠∠,DFBD DE CD ==,进而证明BDF CDE ∽得到BF =,则点F 在以点B 故当A B F 、、三等共线,AF 最大,据此可得答案.【详解】解:如图所示,连接BD ,∵四边形ABCD 是正方形,∴45CDB ∠=°,BD =,∵DEF 是以点E 为直角顶点的等腰直角三角形,∴45EDF CDB ∠∠°==,DF =,∴45BDF CDE BDE ∠=∠=°−∠,∴DFBD DE CD ==,∴BDF CDE ∽,∴BFBD CE CD==∴BF =,∴点F 在以点B 为半径的圆上运动, ∴当A B F 、、三等共线时,AF 最大,∴AF 的最大值为4+;4+三、解答题:本大题有8个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17. 先化简,再求值: 21424a a ++−,其中2a =+.小明解答过程如下,请指出其中错误步骤的序号,并写出正确的解答过程.原式=()()222114424a a a a ⋅−+⋅−+−……① 24a =−+……②2a =+……③当2a =+时,原式=【答案】小明的解答中步骤①开始出现错误,正确解答见解析【解析】【分析】此题考查了分式的化简求值,先利用分式的加法法则计算,得到化简结果,再把字母的值代入计算即可.【详解】小明的解答中步骤①开始出现错误,正确解答如下:21424a a ++− ()()()()242222a a a a a −++−+− ()()222a a a +=+− 12a =−当2a =+时,原式==18. 已知二次函数2y ax c =+,当0x =时,3y =,=1x −时,5y =.(1)求a ,c 的值.(2)当3x =−时,求函数y 的值.【答案】(1)2,3a c == (2)21【解析】分析】本题考查求二次函数解析式,求函数值;(1)待定系数法求函数解析式即可;(2)将3x =−代入解析式,求出函数y 的值即可.【小问1详解】解:由题意,得:35c a c = += ,解得:32c a = =, ∴2,3a c ==; 【小问2详解】由(1)知:2,3a c ==, ∴223y x =+, ∴当3x =−时,()223329321y =×−+=×+=.19. 某学校计划组织学生开展课外活动,活动备选地点分别为美术馆A 、纪念馆B 、科技馆C 、博物馆D .为了解全校学生最喜欢的活动地点,随机调查了部分学生(每人仅选一个)请根据以上信息,解答下列问题:(1)在本次抽样调查中,共调查了多少名学生?(2)求出m 的值,并将条形统计图补充完整.(3)若该校有1200名学生,估计该校学生最喜欢的活动地点为B 的人数.【答案】(1)50 (2)108°;图见解析(3)240名【解析】【分析】本题考查了条形统计图、扇形统计图以及利用样本估计总体等知识,属于常考题型,从统计图中得出解题所需要的信息是解题的关键.(1)用选择A 的人数除以其所占比例即可求出调查的人数;(2)用360°乘以选择D 的占比即可求出m 的值;先求出选择C 的人数,进而可补全统计图;【(3)利用样本估计总体的思想求解.【小问1详解】解:本次共调查的学生有2040%50÷=(名); 故答案为:50;【小问2详解】解:D 类活动对应扇形的圆心角为1536010850°×=°, 故108m =.C 对应人数为()502010155−++=(名),补全条形图如下:【小问3详解】 解:10120024050×=(名), 答:估计该校最喜欢的活动地点为“B ”的学生人数大约为240名.20. 如图,在ABC 中,90BAC ∠=°,点D 是BC 中点,,AE BC CE AD ∥∥.(1)求证:四边形ADCE 是菱形;(2)若606B AB ∠=°=,,求四边形ADCE 的面积.【答案】(1)见解析 (2)【解析】【分析】(1)先证四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得12AD BC CD ==,即可得出结论; (2)由已知得212BC AB ==,再由勾股定理得AC 的长,然后由菱形的性质和三角形面积关系得2ACD ABC ADCES S S == 菱形,即可求解.【小问1详解】证明:∵,AE BC CE AD ∥∥,∴四边形ADCE 是平行四边形,∵90BAC ∠=°,点D 是BC 的中点, ∴12AD BC CD ==, ∴平行四边形ADCE 是菱形;【小问2详解】解:∵9060BAC B ∠=°∠=°,,∴30BCA ∠=°,∴212BC AB ==,∴AC =,∵四边形ADCE 是菱形,点D 是BC 的中点,∴112622ACD ABC ADCE S S S AB AC ===×=××= 菱形 【点睛】本题考查了菱形的判定与性质、含30度直角三角形的性质、直角三角形斜边上的中线性质、勾股定理等知识,熟练掌握含30度直角三角形的性质、直角三角形斜边上的中线性质,证明四边形ADCE 为菱形是解题的关键.21. 设函数11k y x=,函数22y k x b =+(12,k k ,b 是常数,1200k k ≠≠,). (1)若函数1y 和函数2y 的图像交于点()2,6A ,点()4,2B n −,①求b ,n 的值.②当12y y >时,直接写出x 的取值范围.(2)若点()8,C m 在函数1y 的图像上,点C 先向下平移1个单位,再向左平移3个单位,得点D ,点D 恰好落在函数1y 的图像上,求m 的值.【答案】(1)①9,5b n == ②02x <<或>4x (2)53m =−【解析】 【分析】(1)①采用待定系数法即可求出.②采用数形结合的方法,求出两个解析式的交点,结合图像即可求出.(2)结合题意,表示出点D 的坐标,然后将C ,D 两点代入到1y 中即可求出.【小问1详解】①把点()2,6A 代入到11k y x=中,得 162k = 112k =112y x∴= 把()4,2B n −代入到112y x=中,得 1224n −=5n ∴= ()4,3B ∴再把()2,6A 和()4,3B 代入到22y k x b =+中,得 222643k b k b += += 解得:2329k b =− =2392y x ∴=−+ 综上:9,5b n ==.②如图所示:12392y x y x = =−+解得:121224,63x x y y == == (2,6),(4,3)A B ∴结合图像,当12y y >时,x 的取值范围是:02x <<或>4x .【小问2详解】根据题意,()8, C m(5,1)D m ∴−把点C ,D 代入到1y 中,得11815k m k m = =− 解得:140353k m =− =−综上:53m =−. 【点睛】本题主要考查了待定系数法,坐标的平移,反比例函数和一次函数的图像和性质,巧妙的运用数形结合的方法是解题的关键.22. 某河流的一段如图1所示,现要估算河的宽度(即河两岸相对的两点A ,B 间的距离),可以按如下步骤操作:①先在河的对岸选定一个目标作为点A ,使AB BC ⊥;②再在河的这一边选定点B 和点C ,使AB BC ⊥;③再选定点E ,然后用视线确定BC 和AE 的交点D .(1)用皮尺测得174m BC =,60m DC =,50m EC =,求河的宽度AB ;(精确到0.1米) (2)请用所学过的知识设计一种测量旗杆高度AB 的方案.要求:①画出示意图,所测长度用a ,b ,c 等表示;②不要求写操作步骤;③结合所测数据直接用含a ,b , c 等字母的式子表示出旗杆高度AB .【答案】(1)95m (2)方案见解析,ac AB b =【解析】【分析】本题主要考查了相似三角形的应用——测量河宽和旗杆高.熟练掌握相似三角形的判断和性质,是解决问题的关键.(1)证明AB CE ,得到ABD ECD ∽△△,得到=AB BD CE CD,即得95AB =; (2)将标杆竖立在地面适当的位置,使点C 、D 、A 三点共线,测出CE b =,CB c =.根据AB ,DE 都垂直BC ,得到DE AB ∥,得到CDE CAB △≌△,得到AB CB DE CE =,旗杆的高ac AB b =. 小问1详解】∵AB BC ⊥,CE BC ⊥,∴AB CE ,∴ABD ECD ∽△△, ∴=AB BD CE CD, 即17460=5060AB −, ∴95AB =,答:河宽AB 为95m ;【小问2详解】(方法不唯一)如图.①将标杆DE a =竖立在一个适当的位置,使点C 和标杆的顶点D ,旗杆的顶点A 三点在一条直线上; ②测出CE b =,CB c =;【③计算旗杆的高度:∵DE BC ⊥,AB BC ⊥,∴DE AB ∥,∴CDE CAB △≌△, ∴AB CB DE CE=, 即ac AB b =, 故旗杆的高ac AB b=.23. 已知二次函数2y x bx c =++的图象经过点()2,c . (1)若该二次函数图象与x 轴的一个交点是()10−,. ①求二次函数的表达式:②当2t x t ≤≤−时,函数最大值为M ,最小值为N .若3M N −=,求t 的值; (2)对于该二次函数图象上的两点()()1123A x y B y ,,,,当11m x m +≤≤时,始终有12y y ≥.求m 的取值范围.【答案】(1)①2=23y x x −−;②t 的值为1− (2)2m ≤−或3m ≥.【解析】【分析】(1)①利用待定系数法求二次函数解析式;②利用配方法得到()214y x =−−,则抛物线的对称轴为直线1x =,顶点坐标为()14−,,再利用2t x t ≤≤−得1t ≤,所以21t −≥,根据二次函数的性质,当2t x t ≤≤−时,1x =时,函数有最小值4−,当x t =或2t t =−时,函数有最大值,即223M t t =−−,则()22343t t −−−−=,然后解方程即可; (2)先利用二次函数2y x bx c =++的图象经过点()2c ,得到2b =−,则可求出抛物线的对称轴为直线1x =,根据二次函数的性质,点A 到对称轴的距离大于或等于B 点到对称轴的距离,即1131x −≥−,解得11x ≤−或13x ≥,然后利用11m x m +≤≤得到11m +≤−或3m ≥,从而得到m 的范围.【小问1详解】解:①把()()210c −,,,分别代入2y x bx c =++ 得4210b c c b c ++= −+=, 解得23b c =− =− , ∴抛物线解析式为2=23y x x −−; ②∵()222314y x x x =−−=−−,∴抛物线的对称轴为直线1x =,顶点坐标为()14−,, ∵2t x t ≤≤−, ∴2t t ≤−, 解得1t ≤,∴21t −≥, ∴当2t x t ≤≤−时,1x =时,函数有最小值-4,即N =-4, 当x t =或2t t =−时,函数有最大值,即223M t t =−−, ∵3M N −=,∴()22343t t −−−−= t 2-2t -3-(-4)=3,解得11t =+,21t =−∴t 的值为1【小问2详解】 ∵二次函数2y x bx c =++的图象经过点(()2c ,, ∴42b c c ++=, 解得2b =−, ∴22y x x c =−+,抛物线的对称轴为直线1x =, ∵()()1123A x y B y ,,,在抛物线上,且12y y ≥, ∴点A 到对称轴的距离大于或等于B 点到对称轴的距离,∴1131x −≥−,∴11x ≤−或13x ≥,∵11m x m +≤≤,∴11m +≤−或3m ≥,解得2m ≤−或3m ≥.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数的最值,一元二次方程和不等式组解法,熟练掌握二次函数的图象及性质是解题的关键.24. 如图,△ABC 是圆O 的内接三角形,连结BO 并延长交AC 于点D ,设∠ACB =α,∠BAC =m α.(1)若α=30°,求∠ABD 的度数;(2)若∠ADB =n α+90°,求证m +n =1;(3)若弧AB 长是⊙O 周长的14,2∠ADB =5∠CBD ,求ABD BCDS S . 【答案】(1)60° (2)见解析(3【解析】【分析】(1)连接OA ,由∠ACB =α=30°,得∠AOB =2∠ACB =60°,根据OA =OB ,即得△AOB 是等边三角形,故∠ABD =60°;(2)延长BD 交⊙O 于E ,连接CE ,用两种方法表示∠ACE ,列方程变形即可得证明;(3)过D 作DM ⊥BC 于M ,作DN ⊥AB 于N ,由弧AB 长是⊙O 周长的14,可得∠AOB =90°,从而可证△AOB 、△DCM 、△BDN2∠ADB =5∠CBD ,可得∠CBD =30°,∠BAC =60°,设MD =MC =t ,在Rt △DCM中,CD = ,在Rt △BDM 中,BD =2DM =2t ,在Rt △BDN 中,DN =,在Rt △ADN中,AD =,即可得ABDBCDS AD S CD == . 【小问1详解】连接OA ,如图:∵∠ACB =α=30°,∴∠AOB =2∠ACB =60°,∵OA =OB ,∴△AOB 是等边三角形,∴∠ABD =60°;【小问2详解】延长BD 交⊙O 于E ,连接CE ,如图:∵BE 为⊙O 直径,∴∠BCE =90°,即∠ACE =90°﹣α,△CDE 中,∠E =∠A =m α,∠EDC =∠ADB =n α+90°,∴∠DCE =180°﹣∠E ﹣∠EDC =90°﹣m α﹣n α,即∠ACE =90°﹣m α﹣n α,∴90°﹣α=90°﹣m α﹣n α,∴m +n =1;【小问3详解】过D 作DM ⊥BC 于M ,作DN ⊥AB 于N ,如图:∵弧AB 长是⊙O 周长的14, ∴∠AOB =90°, ∴△AOB 是等腰直角三角形,∠ABO =45°,∠ACB =12∠AOB =45°,∴△DCM 、△BDN 是等腰直角三角形,∵2∠ADB =5∠CBD ,∴2(∠CBD +∠ACB )=5∠CBD ,∴2∠ACB =3∠CBD ,∴∠CBD =30°,∴∠BAC =180°﹣∠ACB ﹣∠CBD ﹣∠ABO =60°,设MD =MC =t ,在Rt △DCM 中,CDMD=t ,在Rt △BDM 中,BD =2DM =2t ,在Rt △BDN 中,DNt , 在Rt △ADN 中,AD =sin DN BAC ∠=sin 60DN °t , ∴ABD BCD S S =AD CD. 【点睛】本题考查圆的性质及综合应用,涉及等边三角形的判定及性质、等腰直角三角形的判定与性质、解直角三角形、勾股定理等知识,解题的关键是用含t 的代数式表示CD 和AD 的长度.。
浙江省中考数学模拟测试卷-带参考答案与解析一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中选出符合题目的一项)1. −2023的相反数是( )A. 2023B. −12023C. 12023D. −20232. 计算−a2⋅a的正确结果是( )A. −a2B. aC. −a3D. a33. 2022年宁波舟山港完成货物吞吐量超12.5亿吨,连续14年位居全球第一.其中12.5亿用科学记数法表示为( )A. 12.5×108B. 1.25×109C. 0.125×109D. 1.25×1084. 如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.5. 学校开展航天知识竞赛活动.经过几轮筛选,本班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分 2)如表所示:如果要选一名成绩好且状态稳定的同学参赛,那么应该选择( )甲乙丙丁平均数96989598方差20.40.4 1.6A. 甲B. 乙C. 丙D. 丁6. 已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是( )A. 96πcm2B. 48πcm2C. 33πcm2D. 24πcm27. 如图,点D、E是△ABC边BC上的三等分点,且AD⊥BC,F为AD的中点,连接BF、EF若BF=3则AC的长为( )A. 4.5B. 6C. 7.5D. 98. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x,y的二元一次方程组正确的是( )A. {7x−7=y9(x−1)=y B. {7x+7=y9(x−1)=y C. {7x+7=y9x−1=y D. {7x−7=y9x−1=y9. 已知点A(x1,y1),B(x2,y2)是二次函数y=(x−3)2+3上的两点,若x1<3<x2x1+x2>6则下列关系正确的是( )A. y1<3<y2B. 3<y1<y2C. 3<y2<y1D. y2<y1<310. 将Rt△ABC的直角边BC、斜边AB按如图方式构造正方形BCED和正方形ABFG,在正方形ABFG内部构造矩形ABHI使得边H刚好过点D,则已知哪条线段的长度就可以求出图中阴影部分的面积( )A. ABB. ACC. BCD. FH二、填空题(本大题共6小题,共30.0分)11. 若√ x−1在实数范围内有意义,则x的取值范围是.12. 分解因式:2x2−8=______ .13. 如果在五张完全相同的卡片背后分别写上平行四边形、矩形、菱形、等边三角形、圆,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于______ .14. 某超市按照一种定价法则来制定商品的售价:商品的成本价a元,工商局限价b元(b>a),以及定价系数k(0≤k≤1)来确定定价c,a、b、c满足关系式c=a+k(b−a),经验表明,最佳定价系数k恰好使得c−ab−a =b−ac−a−1,据此可得,最佳定价系数k的值等于______ .15. 如图,等腰△ABC中∠ACB=120° BC=AC=8,半径为2的⊙O在射线AC上运动,当⊙O与△ABC的一边相切时,则线段CO的长度为______ .16. 如图,将矩形OABC的顶点O与原点重合,边AO、CO分别与x、y轴重合.将矩形沿DE折叠,使得点O落在边AB上的点F处,反比例函数y=kx(k>0)上恰好经过E、F两点,若B点的坐标为(2,1),则k的值为______ .三、解答题(本大题共8小题,共64.0分。
2024届浙江省金华市兰溪市中考数学全真模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC2.将抛物线绕着点(0,3)旋转180°以后,所得图象的解析式是().A.B.C.D.x的取值范围是()32xA.x>0 B.x≥0C.x≠0D.任意实数4.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为()A.1 B.﹣1 C.±1 D.05.若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为()A.﹣1 B.0 C.1或﹣1 D.2或06.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣77.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定8.如图,在△ABC 中,AB=AC=5,BC=8,D 是线段BC 上的动点(不含端点B ,C).若线段AD 长为正整数,则点D 的个数共有( )A .5个B .4个C .3个D .2个9.如图,矩形OABC 有两边在坐标轴上,点D 、E 分别为AB 、BC 的中点,反比例函数y =kx(x <0)的图象经过点D 、E .若△BDE 的面积为1,则k 的值是( )A .﹣8B .﹣4C .4D .810.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( ) A .28×109B .2.8×108C .2.8×109D .2.8×1010二、填空题(共7小题,每小题3分,满分21分)11.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.12.如图,利用标杆BE 测量建筑物的高度,已知标杆BE 高1.2m ,测得 1.6,12.4AB m BC m ==,则建筑物CD 的高是__________m .13.小亮同学在搜索引擎中输入“叙利亚局势最新消息”,能搜到与之相关的结果的个数约为 3550000,这个数用科学记数法表示为 .14.若一个等腰三角形的周长为26,一边长为6,则它的腰长为____. 15.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.16.如图,某商店营业大厅自动扶梯AB 的倾斜角为31°,AB 的长为12米,则大厅两层之间的高度为____米.(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)17.如图,在每个小正方形边长为1的网格中,ABC △的顶点A ,B ,C 均在格点上,D 为AC 边上的一点.线段AC 的值为______________;在如图所示的网格中,AM 是ABC △的角平分线,在AM 上求一点P ,使CP DP +的值最小,请用无刻度的直尺,画出AM 和点P ,并简要说明AM 和点P 的位置是如何找到的(不要求证明)___________. 三、解答题(共7小题,满分69分)18.(10分)计算:01113(π3)3tan30()2----+-.19.(5分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B :46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg 至53kg 的学生大约有多少名.20.(8分)如图,半圆O 的直径AB =5cm ,点M 在AB 上且AM =1cm ,点P 是半圆O 上的动点,过点B 作BQ ⊥PM 交PM (或PM 的延长线)于点Q .设PM =xcm ,BQ =ycm .(当点P 与点A 或点B 重合时,y 的值为0)小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: x /cm 1 1.5 2 2.5 3 3.5 4 y /cm3.7______3.83.32.5______(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当BQ 与直径AB 所夹的锐角为60°时,PM 的长度约为______cm .21.(10分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A 种型号的文具进价为10元/只,售价为12元,B 种型号的文具进价为15元1只,售价为23元/只. (1)小张如何进货,使进货款恰好为1300元? (2)如果购进A 型文具的数量不少于B 型文具数量的910倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?22.(10分)如图,⊙O 的半径为4,B 为⊙O 外一点,连结OB ,且OB =6.过点B 作⊙O 的切线BD ,切点为点D ,延长BO 交⊙O 于点A ,过点A 作切线BD 的垂线,垂足为点C . (1)求证:AD 平分∠BAC ; (2)求AC 的长.23.(12分)小马虎做一道数学题,“已知两个多项式24A x x =-,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.24.(14分)如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【题目点拨】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.2、D【解题分析】将抛物线绕着点(0,3)旋转180°以后,a的值变为原来的相反数,根据中心对称的性质求出旋转后的顶点坐标即可得到旋转180°以后所得图象的解析式.【题目详解】由题意得,a=-.设旋转180°以后的顶点为(x′,y′),则x′=2×0-(-2)=2,y′=2×3-5=1,∴旋转180°以后的顶点为(2,1),∴旋转180°以后所得图象的解析式为:.故选D.【题目点拨】本题考查了二次函数图象的旋转变换,在绕抛物线某点旋转180°以后,二次函数的开口大小没有变化,方向相反;设旋转前的的顶点为(x,y),旋转中心为(a,b),由中心对称的性质可知新顶点坐标为(2a-x,2b-y),从而可求出旋转后的函数解析式.3、C【解题分析】根据分式和二次根式有意义的条件进行解答.【题目详解】解:依题意得:x2≥1且x≠1.解得x≠1.故选C.【题目点拨】考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.4、B【解题分析】根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.【题目详解】解:把x=0代入方程得:a2﹣1=0,解得:a=±1,∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,∴a﹣1≠0,即a≠1,∴a的值是﹣1.故选:B.本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.5、A【解题分析】把x=﹣1代入方程计算即可求出k的值.【题目详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【题目点拨】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6、B【解题分析】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3,故选B.7、B【解题分析】试题分析:先求出△=42﹣4×3×(﹣5)=76>0,即可判定方程有两个不相等的实数根.故答案选B.考点:一元二次方程根的判别式.8、C【解题分析】试题分析:过A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是线段BC上的动点(不含端点B,C),∴AE≤AD<AB,即3≤AD<5,∵AD为正整数,∴AD=3或AD=4,当AD=4时,E的左右两边各有一个点D满足条件,∴点D的个数共有3个.故选C.考点:等腰三角形的性质;勾股定理.9、B根据反比例函数的图象和性质结合矩形和三角形面积解答. 【题目详解】解:作EH OA H 于⊥,连接AE .22ABE BDEBD AD S S=∴==∵四边形AHEB ,四边形ECOH 都是矩形,BE =EC , ∴ABEH ECOH S S 矩形矩形==24ABE S ∆=||4,04k k k ∴=<∴=- 故选B . 【题目点拨】此题重点考查学生对反比例函数图象和性质的理解,熟练掌握反比例函数图象和性质是解题的关键. 10、D 【解题分析】根据科学计数法的定义来表示数字,选出正确答案. 【题目详解】解:把一个数表示成a (1≤a<10,n 为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D. 【题目点拨】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.二、填空题(共7小题,每小题3分,满分21分) 11、85或245作PH ⊥CD ,垂足为H ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解. 【题目详解】设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm , 作PH ⊥CD ,垂足为H , 则PH =AD =6,PQ =10, ∵DH =PA =3t ,CQ =2t , ∴HQ =CD −DH −CQ =|16−5t |, 由勾股定理,得222(165)610t -+=, 解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm . 故答案为85或245. 【题目点拨】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ =CD −DH −CQ =|16−5t |是解题的关键. 12、10.5 【解题分析】先证△AEB ∽△ABC ,再利用相似的性质即可求出答案. 【题目详解】解:由题可知,BE ⊥AC ,DC ⊥AC ∵BE //DC , ∴△AEB ∽△ADC , ∴BE AB CD AC=, 即:1.2 1.61.612.4CD =+, ∴CD =10.5(m ).故答案为10.5.【题目点拨】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.13、3.55×1.【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.【题目详解】3550000=3.55×1,故答案是:3.55×1.【题目点拨】考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定 a 的值以及n 的值.14、1【解题分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【题目详解】①当6为腰长时,则腰长为6,底边=26-6-6=14,因为14>6+6,所以不能构成三角形;②当6为底边时,则腰长=(26-6)÷2=1,因为6-6<1<6+6,所以能构成三角形;故腰长为1.故答案为:1.【题目点拨】此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.15、(﹣1,﹣1)【解题分析】利用顶点的公式首先求得横坐标,然后把横坐标的值代入解析式即可求得纵坐标.【题目详解】x=-422=-1,把x=-1代入得:y=2-1-2=-1.则顶点的坐标是(-1,-1).故答案是:(-1,-1).【题目点拨】本题考查了二次函数的顶点坐标的求解方法,可以利用配方法求解,也可以利用公式法求解.16、6.2【解题分析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【题目详解】解:在Rt△ABC中,∵∠ACB=90°,∴BC=AB•sin∠BAC=12×0.515≈6.2(米),答:大厅两层之间的距离BC的长约为6.2米.故答案为:6.2.【题目点拨】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.17、(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P.【解题分析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM 是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于+的值最小.点P,此时CP DP【题目详解】(Ⅰ)根据勾股定理得5=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【题目点拨】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(共7小题,满分69分)18、234.【解题分析】利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【题目详解】解:原式3 31132 -+=234.故答案为234.【题目点拨】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.19、576名【解题分析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×64200=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.20、(1)4,1;(2)见解析;(3)1.1或3.2【解题分析】(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.(2)利用描点法画出函数图象即可;(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;【题目详解】(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.故答案为4,1.(2)函数图象如图所示:(3)如图,在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,∴∠BMQ =31°,∴BQ =12BM =2, 观察图象可知y =2时,对应的x 的值为1.1或3.2.故答案为1.1或3.2.【题目点拨】本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.21、(1)A 种文具进货40只,B 种文具进货60只;(2)一共有三种购货方案,购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【解题分析】(1)设可以购进A 种型号的文具x 只,则可以购进B 种型号的文具(100)x -只,根据总价=单价×数量结合A 、B 两种文具的进价及总价,即可得出关于x 的一元一次方程,解之即可得出结论;(2)根据题意列不等式,解之即可得出x 的取值范围,再根据一次函数的性质,即可解决最值问题.【题目详解】(1)设A 种文具进货x 只,B 种文具进货(100)x -只,由题意得:1015(100)1300x x +-=,解得:x =40,10060x -=,答:A 种文具进货40只,B 种文具进货60只;(2)设购进A 型文具a 只,则有9(100)10a a ≥-,且28(100)500a a +-≥; 解得:9005019a ≤≤, ∵a 为整数,∴a =48、49、50,一共有三种购货方案;利润28(100)6800wa a a +--+==, ∵60k -<=,w 随a 增大而减小,当a =48时W 最大,即购买A 型文具48只,购买B 型文具52只使销售文具所获利润最大.【题目点拨】本题主要考查了一次函数的实际问题,熟练掌握一次函数表达式的确定以及自变量取值范围的确定,最值的求解方法是解决本题的关键.22、(1)证明见解析;(2)AC=. 【解题分析】(1)证明:连接OD .∵BD 是⊙O 的切线,∴OD ⊥BD .∵AC ⊥BD ,∴OD ∥AC ,∴∠2=∠1.∵OA =OD .∴∠1=∠1,∴∠1=∠2,即AD 平分∠BAC .(2)解:∵OD ∥AC ,∴△BOD ∽△BAC , ∴OD BO AC BA =,即4610AC =. 解得203AC =.23、(1)-3; (2)“A -C”的正确答案为-7x 2-2x+2.【解题分析】(1)根据整式加减法则可求出二次项系数;(2)表示出多项式A ,然后根据A C +的结果求出多项式C ,计算A C -即可求出答案.【题目详解】(1)由题意得2:4A x x =-,2234B x x =+-, ∴A+2B=(4+)2x +2x -8, 2228A B x x +=+-, ∴4+=1,=-3,即系数为-3. (2)A+C=262x x --,且A=234x x --,∴C=4222x x --,∴A -C=2722x x --+ 【题目点拨】本题主要考查了多项式加减运算,熟练掌握运算法则是解题关键.24、(1)详见解析;(2)OF =254. 【解题分析】(1)连接OC ,如图,根据切线的性质得∠1+∠3=90°,则可证明∠3=∠4,再根据圆周角定理得到∠ACB=90°,然后根据等角的余角相等得到∠BDC=∠5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明△ABC ∽△ABD ,利用相似比得到AD=252,然后证明OF 为△ABD 的中位线,从而根据三角形中位线性质求出OF 的长.【题目详解】(1)证明:连接OC ,如图,∵CF 为切线,∴OC ⊥CF ,∴∠1+∠3=90°,∵BM ⊥AB ,∴∠2+∠4=90°,∵OC =OB ,∴∠1=∠2,∴∠3=∠4,∵AB 为直径,∴∠ACB =90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)在Rt△ABC中,AC8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴AB ACAD AB=,即10810AD=,∴AD=252,∵∠3=∠4,∴FC=FB,而FC=FD,∴FD=FB,而BO=AO,∴OF为△ABD的中位线,∴OF=12AD=254.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.。
2023年浙江省杭州市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .平行四边形C .正五边形D .菱形2.下面运算正确的是( ) A .234a a a += B .541a a -=C .325x y xy +=D .()222581016xy x xy x --=-+3.如图所示的几何体是由6个大小相同的小正方体组成,它的主视图为( )A .B .C .D .4x 的取值范围是( ). A .2x >B .2x ≥C .2x <D .2x ≤5.点P 的坐标为()6,2,A 是x 轴正半轴上一点,O 为原点,则tan AOP ∠的值为( )A .3B C D .136.如图,在△ABC 中,∠C =90°,∠B =15°,AC =l ,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则AD 的长为( )A .l.5 BC .2D 7.多顶式x 2+kx +25是一个完全平方式,则k 的值为( ) A 10B 10C ±10D ±58.一次函数y 1=x +4的图象与一次函数y 2=-x +b 的图象的交点不可能...在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.小明、小亮参加学校运动会800米赛跑;小明前半程的速度为2x 米/秒,后半程的速度为x 米/秒,小亮则用一米32x/秒的速度跑完全程,结果是( ) A .小明先到终点B .小亮先到终点C .同时到达D .不能确定10.如图,已知正方形ABCD 的边长为a ,延长BA ,BC ,使AF =CE =b ,以BE 为边长在正方形ABCD 外围作正方形BFGE ,以点E 为圆心,EG 为半径画弧交BE 的延长线于点H ,连接DH ,交GE 于点M ,延长AD 交GE 于点K ,交圆弧于点J ,连接GJ ,记∠GKJ 的面积为S 1,阴影部分的面积为S 2. 当F ,D ,H 三点共线时,12S S 的值为( )AB .12CD二、填空题11.因式分解:24x -=__________.12.已知一个圆锥的底面半径为3cm ,母线长为10cm,则这个圆锥的侧面积为____________.13.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需_______分钟. 14.已知点()1,A m y ,()22,B m y +且0m >,在反比例函数22k y x+=的图像上,则1y _______2y (填><、).15.如图,在四边形ABCD 中,∠A =80°,∠B =120°,∠B 与∠ADC 互为补角,点E 在直线BC 上,将∠DCE 沿DE 翻折,得到△DC E ',若AB ∥C E ',则∠CDE 的度数为_______°.16.如图,是一个“摩天轮”蛋糕架,圆周上均匀分布了8个蛋糕篮悬挂点,圆O 半径为20cm ,O 到MN 的距离为32cm ,A ,B 两个悬挂点之间间隔了一个悬挂点. (1)A 、B 两个悬挂点之间的高度差最大可达到__________cm .(2)当A 在B 的上方且两个悬挂点的高度差为4cm 时,A 到MN 的距离为________________cm .三、解答题17.计算:1013920222sin603-⎛⎫-⨯+++︒ ⎪⎝⎭.18.解不等式组50,31212x x x +≤⎧⎪⎨-≥+⎪⎩.19.如图,已知四边形ABCD 是平行四边形,BE ∠AC , DF ∠A C ,求证:AE =CF .20.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有 名,在扇形统计图中,表示“D 等级”的扇形的圆心角为 度,图中m 的值为 ; (2)补全条形统计图;(3)组委会决定从本次比赛中获得A 等级的学生中,选出2名去参加市中学生演讲比赛,已知A 等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.21.北京冬奥会的召开燃起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线21144:1233C y x x =-++近似表示滑雪场地上的一座小山坡,小雅从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线223:2C y ax x c =++运动.(1)当小雅滑到离A 处的水平距离为6米时,其滑行达到最高位置为172米.求出a ,c 的值;(2)小雅若想滑行到坡顶正上方时,与坡顶距离不低于103米,请求出a 的取值范围. 22.如图,AB 是∠O 的直径,AC 是弦,P 为AB 延长线上一点,∠BCP =∠BAC ,∠ACB 的平分线交∠O 于点D ,交AB 于点E ,(1)求证:PC 是∠O 的切线; (2)若AC +BC =2时,求CD 的长. 23.我们定义:当m ,n 是正实数...,且满足1mm n =-时,就称P ,m m n ⎛⎫ ⎪⎝⎭为“完美点”. (1)m =3时,则n = ,P 点的坐标为 .(2)已知点A (0,5)与点B 都在直线y =-x +b 上,且B 是“完美点”,若C 也是“完美点”且BC ,求点C 的坐标.(3)正方形A 1B 1C 1D 1一边在y 轴上,其他三边都在y 轴的右侧,且点E (1,t )是此正方形对角线的交点,若正方形A 1B 1C 1D 1边上存在“完美点”,求t 的取值范围. 24.如图,在矩形ABCD 中,已知AD =6,CD =8,点H 是直线AB 上一点,连接CH ,过顶点A 作AG ⊥CH 于G ,AG 交直线CB 于点E .(1)如图,当点E 在CB 边上时, ∠求证:∠CGE ~∠ABE ; ∠连接BG ,求tan∠AGB ;(2)作点B 关于直线CH 的对称点F ,连接FG .当直线FG 截∠ADC 所得的三角形是等腰三角形时,求BH 的长.参考答案:1.D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意; B 、不是轴对称图形,是中心对称图形.故不符合题意; C 、是轴对称图形,不是中心对称图形.故不符合题意; D 、是轴对称图形,也是中心对称图形.故符合题意. 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.D 【解析】 【分析】根据同类项的定义及合并同类项的方法逐项分析即可. 【详解】解:A.34a a a +=,故原式不正确; B.54a a a -=,故原式不正确;C.3x 与2y 不是同类项,不能合并,故原式不正确;D.()222581016xy x xy x --=-+,正确;故选D . 【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变. 3.B【解析】【分析】首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.【详解】解:根据主视图可知有上下两行,上面一行有1个正方形且在最后边,下面一行有3个正方形,故选B.【点睛】本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键. 4.B【解析】【分析】根据被开方数大于等于0列不等式求解即可.【详解】解:由题意得,x-2≥0,解得x≥2.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.5.D【解析】【分析】过点P作PB∠x轴于点B,根据点P的坐标可得PB=2,OB=6,利用勾股定理求出OP,然后根据三角函数的概念进行计算.【详解】解:过点P作PB∠x轴于点B,如图所示:∠点P的坐标为(6,2),∠PB=2,OB=6,∠1tan3BPAOPOB∠==,故D正确.故选:D.【点睛】题主要考查了求一个角的正切值,根据正切的定义,将∠AOP放在相应的直角三角形中是解题的关键.6.C【解析】【分析】利用基本作图可判断MN垂直平分AB,则利用线段垂直平分线的性质得到DA=DB,所以∠DAB=∠B=15°,再利用三角形外角性质得∠ADC=30°,然后根据含30度的直角三角形三边的关系可得到AD的长.【详解】解:由作法得MN垂直平分AB,则DA=DB,∠∠DAB=∠B=15°,∠∠ADC=∠DAB+∠B=30°,在Rt△ACD中,AD=2AC=2.故选C.【点睛】本题考查作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.7.C【分析】根据完全平方公式的特点求解即可. 【详解】解:多顶式x 2+kx +25是一个完全平方式, 则2510kx x x =±⨯=±, ∠10k =±, 故选:C 【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点. 8.D 【解析】 【分析】由图象可知一次函数y 1=x+4的图象在第一,二,三象限上;根据一次函数的图象和性质,可知与一次函数y 2=-x+b 的图象的交点不可能在第几象限上. 【详解】因为一次函数y 1=x+4的图象在第一,二,三象限上, 所以与一次函数y 2=-x+b 的图象的交点不可能在第四象限. 故选D. 【点睛】本题主要考查了一次函数的图象和性质的应用,解题的关键是熟练掌握一次函数的图象和性质. 9.B 【解析】根据题意分别求解出两人跑完全程所用的时间,然后利用作差法比较大小即可. 【详解】由题意,小明的总用时为:14004002004006002t x x x x x=+=+=秒, 小亮的总用时为:23160080023x t x=÷=秒, 则126001600180016002003333t t x x x x x-=-=-=, ∠由题意可知,0x >,∠120t t ->,12t t >,即:小亮用时更少,先到达终点, 故选:B . 【点睛】本题考查列分式表示实际问题,并比较大小,理解题意,准确列出分式,掌握比较分式大小的方法是解题关键. 10.D 【解析】 【分析】利用F ,D ,H 三点共线,即有tan∠FDA =tan∠DHC ,即可求得a =2b ,连接EJ ,在Rt ∠KJE 中求出KJ ,则S 1可求,再证∠DKM ∠∠HEM ,即有ME HEMK DK=,进而求出ME ,则S 2可求,则问题得解. 【详解】根据题意可知AB =CD =AD =a ,AF =GK =DK =CE =b , 即EH =a +b ,CH =CE +EH =b +a +b ,∠F ,D ,H 三点共线,在正方形ABCD 中,AD BC ∥, ∠∠FDA =∠DHC , ∠tan∠FDA =tan∠DHC , ∠AF DC AD CH=,即b aa b a b =++,∠2220a ab b --=,即()(2)0a b a b +-=, 显然0a b +≠, ∠20a b -=,如图,连接EJ ,则有EJ =EH =EG =a +b ,∠在Rt ∠KJE 中,KJ,∠S 1=12b ⨯2, ∠AD BC ∥,∠∠DKM ∠∠HEM , ∠ME HE MK DK =,即ME HE EK ME DK =-, ∠ME a b a ME b+=-, ∠ME =2a b a a b +⨯+=2222b b b b b +⨯+=32b , ∠S 2=13(2)322b b b b b ⨯+⨯+⨯=2194b , ∠12S S2÷(2194b故选:D .【点睛】本题考查了解直角三角形、勾股定理、平行的性质、相似三角形的判定与性质等知识,利用F ,D ,H 三点共线可求得a =2b ,是解答本题的关键.11.(x+2)(x-2)【解析】【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-12.30πcm 2.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【详解】这个圆锥的侧面积=π×3×10=30πcm 2.故答案为30πcm 2.【点睛】考点: 圆锥的计算.13.40.【解析】【详解】设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟,依题意得:3555{4985x y x y +=+=①②, 由∠+∠,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为40.考点:二元一次方程组的应用.14.>【解析】【分析】先根据反比例函数中22k +>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∠22k +>0∠反比例函数22k y x+=的图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∠()1,A m y ,()22,B m y +且0m >,∠12y y >故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.20【解析】【分析】根据补角性质即可求得ADC ∠,利用四边形内角和可求得C ∠,再根据翻折及平行线的性质即可求得答案.【详解】∠B =120°,∠B 与∠ADC 互为补角,18012060ADC ∴∠=︒-︒=︒,又80A ∠=︒,360100C A B ADC ∴∠=︒-∠-∠-∠=︒,又//'AB C E ,'120CEC B ∴∠=∠=︒,将△DCE 沿DE 翻折,得到△DC E ',1''602CED C ED CEC ∴∠=∠=∠=︒, 18020CDE C CED ∴∠=︒-∠-∠=︒,故答案为:20.【点睛】本题考查了翻折变换的性质、平行线的性质、多边形内角和定理及补角性质,熟练掌握翻折变换的性质及平行线的性质是解题的关键.16. 44或48或20或16【解析】【分析】(1)90AOB ∠=︒,勾股定理求得AB =A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠),如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E ,证明BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,勾股定理建立方程,解方程求解,根据O 到MN 的距离为32cm ,结合图形分情况即可求解.【详解】(1)圆周上均匀分布了8个蛋糕篮悬挂点,A ,B 两个悬挂点之间间隔了一个悬挂点. ∴90AOB ∠=︒,如图,连接AB ,圆O 半径为20cm ,∴AB =,当A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值故答案为:(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠).如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E , 则9090BOE B AOF OAF ∠=︒-∠=︒-∠=∠,在BOE ∆与AOF ∆中,BOE OAF E FOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,在Rt AOF ∆中,由勾股定理可得:()222420x x ++=,解得1212,16x x ==-(舍去). 情形∠、∠中,AF =12cm ,情形∠、∠中,AF =16cm .O 到MN 的距离为32cm ,四个情形中,A 到MN 的距离分别为32+12=44,32+16=48,32-12=20,32-16=16. 故答案为:44或48或20或16∠ ∠∠【点睛】本题考查了圆的性质,勾股定理,全等三角形的性质与判定,旋转的性质,掌握以上知识是解题的关键.17.1【解析】【分析】先化简再计算即可.【详解】原式=339121-⨯++= 【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、实数绝对值、0指数幂、特殊角度三角函数值进行化简.18.5x ≤-【解析】【分析】根据解一元一次不等式组的方法求解即可.【详解】解:解不等式50x +≤得5x ≤-. 解不等式31212x x -≥+得3x ≤-. ∠不等式组的解集为5x ≤-.【点睛】本题考查解一元一次不等式组,熟练掌握该知识点是解题关键.19.见解析【解析】【分析】 可证明ABE ≌CDF ,即可得到结论.【详解】证明:∠四边形ABCD 是平行四边形∠AB =CD ,AB ∥CD∠∠BAC =∠DCA∠BE ⊥AC 于E ,DF ⊥AC 于F∠∠AEB =∠DFC =90°在ABE 和CDF 中 ,BAE DCF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ABE ≌CDF (AAS )∠AE =CF【点睛】此题考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定是解决问题的关键.20.(1)20,72,40;(2)作图见试题解析;(3)23.【解析】【分析】(1)根据等级为A 的人数除以所占的百分比求出总人数,根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(2)求出等级B 的人数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【详解】(1)根据题意得:3÷15%=20(人),表示“D 等级”的扇形的圆心角为420×360°=72°; C 级所占的百分比为820×100%=40%,故m=40, 故答案为20,72,40.(2)故等级B 的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P (恰好是一名男生和一名女生)=46=23. 考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.21.(1)18a =-,4c = (2)3032a -≤< 【解析】【分析】(1)根据题意,抛物线2C 的顶点坐标为(6,172),设C 2的解析式为:()21762y a x =-+,代入0,4x y ==,即可求解; (2)求出山坡的顶点坐标为(8,203),根据题意列出不等式,解不等式即可求得a 的取值范围.(1)解:根据题意,抛物线2C 的顶点坐标为(6,172), 设C 2:()21762y a x =-+,代入0,4x y ==,得173642a +=, 解得18a =-, ∴()2117682y x =--+213482x x =-++, 18a ∴=-,4c =; (2)解:抛物线C 1:()2214412081233123y x x x =-++=--+, 因此抛物线C 1的顶点坐标为(8,203), 即当x =8时,运动员到达坡顶, 此时238842a ⨯+⨯+≥103+203, 解得332a ≥-, 根据实际情况,0a <,3032a ∴-≤<. 【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.22.(1)见解析【解析】【分析】(1)连接OC ,根据AB 为直径,得出∠ACB =90°,则∠ACO +∠OCB =90°,从而得出∠BCP +∠OCB =90°,即∠OCP =90°,即可得出结论;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,根据CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,得出DM DN AD BD ==,,推出AD BD =,再利用HL 证明AMD BND ≌,得出四边形CMDN 为矩形,再推出矩形CMDN 为正方形,则CN =,即可得出答案 (1)连接OC ,∠AB 为直径,∠∠ACB =90°,∠∠ACO +∠OCB =90°,∠OA =OC ,∠∠BAC =∠ACO ,∠∠BCP =∠BAC ,∠∠BCP =∠ACO∠∠BCP +∠OCB =90°,即∠OCP =90°,∠PC 是∠O 的切线;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,∠CD 平分ACB ∠,DM AC ⊥,DN CB ⊥, ∠DM DN AD BD ==,,∠AD BD =,∠90AMD BND ∠∠==︒,∠AMD BND HL ≌(), ∠90DMC MCN CND ∠∠∠===︒,∠四边形CMDN 为矩形,∠DM DN =,∠矩形CMDN 为正方形,∠CN =, ∠2AC BC CM AM CB CN +=++=,∠AC BC +=,∠2AC BC +=,∠CD =【点睛】本题是圆的综合题,主要考查了圆周角定理,圆的切线的判定与性质,正方形的判定与性质,全等三角形的判定与性质等知识,熟练掌握切线的判定是解题的关键.23.(1)32,(3,2) (2)点C 的坐标(2,1)或(4,3)(3)-1<t ≤2【解析】【分析】(1)根据“完美点”的定义即可求解;(2)先根据A 点坐标求出直线解析式,根据B 点在直线5y x -=+上,设B 点坐标为(,5)-+a a ,再根据B 点是“完美点”,即可求出B 点坐标,设“完美点”C 点坐标为00(,)x y ,即有001y x =-,再利用勾股定理有:22200(3)(2)BC x y =-+-,即可求解出C 点坐标;(3)设正方形1111D C B A 的四个顶点的坐标为1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,再根据正方形1111D C B A 对角线交点E 的坐标为(1,)t ,利用中点坐标公式可得到112q t p t w =+⎧⎪=-⎨⎪=⎩,则可用t 表示出1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n ,即有1m m n =-,再根据m 、n 时正实数,可知m n也为正实数,即1m >,再分当“完美点”P 点在边长11A D 上时、当“完美点”P 点在边长11A B 上时、当“完美点”P 点在边长11B C 上时、当“完美点”P 点在边长11C D 上时四种情况讨论,即可求出t 的取值范围.(1)∠m =3, ∠1312m m n =-=-=,即P 点坐标为(3,2), ∠32n=, ∠32n =, 故答案为:32,(3,2); (2)∠A (0,5)在直线5y x -=+上,∠5b =,即直线的解析式为:5y x -=+,∠B 点在直线5y x -=+上,∠设B 点坐标为(,5)-+a a ,∠B 点是“完美点”,∠51a a -+=-,解得a =3,∠B 点坐标为(3,2),设C 点坐标为00(,)x y∠C 点是“完美点”,∠001y x =-,∠BC ,∠利用勾股定理有:22200(3)(2)BC x y =-+-,∠代入001y x =-有:2200(3)(12)2x x -+--=,解得02x =或者04x =,∠01y =或者03y =,∠C 点坐标为:(2,1)或(4,3);(3)按题意作图如下,∠四边形1111D C B A 是正方形,则设1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,∠正方形1111D C B A 对角线交点E 的坐标为(1,)t ,∠根据中点坐标公式有:0122w p q t +⎧=⎪⎪⎨+⎪=⎪⎩, ∠22w p q t =⎧⎨+=⎩, ∠q p w -=,∠2q p -=,∠联立22q p p q t -=⎧⎨+=⎩,即得:11q t p t =+⎧⎨=-⎩, ∠1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n, ∠1m m n =-, ∠m 、n 时正实数, ∠m n也为正实数,∠10m m n=->,即1m >, 当“完美点”P 点在边长11A D 上时,即有m =0,此时不满足1m >,故“完美点”P 点不可能在边长11A D 上;当“完美点”P 点在边长11A B 上时即有02m ≤≤,11m m t n =-=-, 即有m =t ,∠1m >,∠此时2m ≤1<,∠12t <≤;当“完美点”P 点在边长11B C 上时,即有2m =,11m t t n -≤≤+, ∠1m m n =-, ∠1211m m n=-=-=, ∠111t t -≤≤+,即有:02t ≤≤;当“完美点”P 点在边长11C D 上时即有02m ≤≤,11m m t n=-=+, 即有m =t +2,∠1m >,∠此时2m ≤1<,∠22t +≤1<;∠0t ≤-1<,综上所述:t 的取值范围:2t ≤-1<.【点睛】本题考查了一次函数图像上点的坐标特征、勾股定理、正方形的性质、中点坐标公式等知识,利用E 点坐标表示出正方形1111D C B A 四个顶点的坐标是解答本题的关键.24.(1)∠见解析;∠43(2)74,2,8,42 【解析】【分析】(1)∠根据对顶角相等可得CEG AEB ∠=∠,根据,90AG CH ABC ⊥∠=︒,可得BAE GCE ∠=∠,即可得证;∠由90ABC AGC ∠=∠=︒得,,,A B G C 四点共圆,则AGB ACB ∠=∠,即可求解.(2)根据题意画出图形建立平面直角坐标系,分4种情况讨论求解即可.(1)∠证明:,90AG CH ABC ⊥∠=︒,CEG AEB ∠=∠,∠BAE AEB GCE CEG ∠+∠=∠+,即BAE GCE ∠=∠∠∠CGE ~∠ABE ;∠∠90ABC AGC ∠=∠=︒,∠,,,A B G C 四点共圆,∠AGB ACB ∠=∠在矩形ABCD 中,已知AD =6,CD =8,6,8BC AD AB CD ∴====,∴tan tan AGB ACB ∠=∠8463AB BC ===; (2)解:如图1所示,以B 为原点,以BC 所在的直线为y 轴,以AB 所在的直线为x 轴建立平面直角坐标系,设点H 的坐标为(m ,0),由(1)∠可知∠ABE =∠CBH =90°,∠BAE =∠BCH ,∠∠BAE ∠∠BCH , ∠AB BC BE BH =,即86BE m=, ∠43BE m =,∠点E 的坐标为(0,43m ), 设直线AE 的解析式为y kx b =+, ∠8043k b b m -+=⎧⎪⎨=⎪⎩, ∠66m k b ⎧=⎪⎨⎪=⎩,∠直线AE 的解析式为463m y x m =+, 同理可以求出直线CH 的解析式为66y x m =-+, 联立46366m y x m y x m ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得22223683664836m m x m m m y m ⎧-=⎪⎪+⎨+⎪=⎪+⎩, ∠点G 的坐标为22223686483636m m m m m m ⎛⎫-+ ⎪++⎝⎭,; 过点F 作FT ∠x 轴于T ,设BL FL n ==(轴对称的性质),∠AG ∠CH ,BF ∠CH ,∠AG BF ∥,∠∠BAE =∠LBH ,∠ABE ∠∠BTF , ∠8643BT AB FT BE mm ===, ∠∠ABE =∠BLH =90°(轴对称的性质∠BLH =90°),∠∠ABE ∠∠BLH , ∠BE HL AB BL =,即438m HL n=, ∠6mn HL =, 又∠1122BHF S BH FT OF HL =⋅=⋅△,∠112226mn m FT n ⋅=⋅⋅, ∠213FT n =, ∠222BH BL HL =+, ∠222236m n m n =+, ∠2223636m n m =+, ∠221236m FT m =+, ∠267236m BT FT m m ==+, ∠点F 的坐标为(27236m m +,221236m m +), 设直线FG 的解析式为11y k x b =+, ∠22112221122368648363672123636m m m m k b m m m m k b m m ⎧-++=⎪⎪++⎨⎪+=⎪++⎩, 解得113244182429m k m m b m -⎧=⎪⎪+⎨⎪=⎪+⎩, ∠直线FG 的解析式为3242441829m m y x m m -=+++, 设直线FG 与y 轴交于K ,与AC 交于点M ,与BC 交于点N ,∠点K 的坐标为24029m m ⎛⎫ ⎪+⎝⎭,, ∠24629m CK m =-+, 当6y =时,32424641829m m x m m -=+++, ∠24418629324m m x m m +⎛⎫=-⋅ ⎪+-⎝⎭, ∠24418629243m m CN m m +⎛⎫=-⋅ ⎪+-⎝⎭, 当MN =MC ,即∠MNC =∠MCN 时,如图1所示,∠∠NCK =∠ADC =90°,∠∠ADC ∠∠KCN ,∠43 CN CDCK AD==,∠244186429243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠12549612m m+=-,解得74m=,∠74 BH=;当CN=CM时,如图2所示,过点M作MQ∠CD于Q,则MQ AD∥,∠CQM CDA△∽△,∠10AC==,∠CM QM CQAC AD CD==,即1068CM QM CQ==,∠4355CQ CM QM CM ==,,∠15NQ CM=,∠13 NQQM=,同理可证NMQ NKC△∽△,∠13 NC NQNK CK==,∠244186129243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠1254243m m+=-,解得2m=-,即此时的情形如图3所示,∠2BH=;如图4所示,当H运动到与点A重合时,此时,G、H、M三点都与点A重合,由轴对称的性质可知∠F AC=∠BAC,又∠AB CD∥,∠∠ACD=∠BAC,∠∠NAC=∠BCA,∠NA=NC,即∠NAC为等腰三角形,∠当H为点A重合时满足题意,∠此时BH=8;如图5所示,当点H 在A 点左侧时,设直线FG 与x 轴交于J ,与y 轴交于Z , 同理可以求出直线FG 的解析式为3242441829m m y x m m -=+++, ∠∠DMN 是等腰三角形,且∠D =90°,∠∠DMN 是等腰直角三角形,∠∠DNM =45°,∠==45ZJB DNM ︒∠∠,∠∠BZJ =∠BJZ =45°,∠BJ =BZ ,设直线JZ 的解析式为22y k x b =+,∠点Z 的坐标为(0,2b ),点J 的坐标为(22b k -,0), ∠222b BJ BZ b k ===, ∠21k =, ∠3241418m m -=+, ∠324418m m -=+,∠42m =-,∠42BH =,综上所述,当直线FG 截∠ADC 所得的三角形是等腰三角形时,74BH =或2或8或42.【点睛】本题考查了求正切值,相似三角形的性质与判定,圆周角定理,等腰三角形的性质与判定,一次函数与综合等等,利用分类讨论和属性结合的思想求解是解题的关键.答案第26页,共26页。
最新浙江省中考数学模拟检测试卷(含答案)时间:120分钟 满分:100分一、选择题(本大题共18小题,每小题3分,共54分)1.已知集合A ={x |x <-2或x >1},B ={x |x >2或x <0},则(∁R A )∩B 等于() A .(-2,0) B .[-2,0) C .∅ D .(-2,1)答案B解析∵∁R A ={x |-2≤x ≤1}, ∴(∁R A )∩B ={x |-2≤x <0}. 2.函数f (x )=lg (x -1)x -2的定义域是()A .[1,+∞)B .(1,+∞)C .[1,2)∪(2,+∞)D .(1,2)∪(2,+∞) 答案D解析由⎩⎪⎨⎪⎧x -1>0,x -2≠0,解得x >1且x ≠2,即函数的定义域为(1,2)∪(2,+∞).故选D.3.已知向量a ,b 满足|a |=3,|b |=23,且a ⊥(a +b ),则a 与b 的夹角为()A.π2B.2π3C.3π4D.5π6答案D解析由a ⊥(a +b ),得a ·(a +b )=|a |2+|a |·|b |·cos 〈a ,b 〉=9+63cos 〈a ,b 〉=0,解得cos 〈a ,b 〉=-32,因为〈a ,b 〉∈[0,π],所以向量a 与b 的夹角为5π6,故选D.4.已知直线l :ax +y -2=0在x 轴和y 轴上的截距相等,则a 的值是()A .1B .-1C .-2D .2 答案A解析∵ax +y -2=0在y 轴上的截距为2, ∴ax +y -2=0在x 轴上的截距也为2, ∴2a -2=0,∴a =1.5.已知角α的终边过点P (1,2),则sin(π-α)-sin ⎝ ⎛⎭⎪⎫π2+α+cos(-α)等于()A.55B.255C.455 D. 5 答案B解析根据三角函数的定义知,sin α=255,cos α=55.∴sin(π-α)-sin ⎝ ⎛⎭⎪⎫π2+α+cos(-α) =sin α-cos α+cos α=sin α=255.6.某几何体的三视图如图所示,那么这个几何体是()A .三棱锥B .四棱锥C .四棱台D .三棱台答案B解析∵正视图和侧视图为三角形, ∴该几何体为锥体. 又∵俯视图是四边形, ∴该几何体为四棱锥.7.若直线l :y =x +b 是圆C :x 2+y 2-2x +6y +8=0的切线,则实数b 的值是() A .-2或-6 B .2或-6 C .2或-4 D .-2或6 答案A解析圆C :(x -1)2+(y +3)2=2的圆心为C (1,-3),半径为2,圆心到直线l 的距离d =|1+3+b |2=2,可得b =-2或b =-6.8.若a ,b 为实数,则“a >b ”是“log 3a >log 3b ”成立的() A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案B解析因为log3a>log3b,即a>b>0,所以“a>b”是“log3a>log3b”成立的必要不充分条件,故选B.9.如图,已知正方体ABCD-A1B1C1D1的棱长为4,点E,F分别是段线AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是()A.5B.4C.42D.2 5答案D解析以D为原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图所示.设F(0,y F,4),P(x P,y P,4),E(4,y E,0),其中y F,x P,y P,y E∈[0,4],根据题意|PF|=|4-x P|,即x2P+(y P-y F)2=|4-x P|,所以(y P-y F)2=16-8x P≥0,得0≤x P≤2,|PE |=(4-x P )2+(y P -y E )2+16≥(4-2)2+16=25, 当且仅当x P =2,y P =y E =y F 时等号成立.10.已知函数f (x )=⎩⎨⎧|3x -4|,x ≤2,2x -1,x >2,则满足f (x )≥1的x 的取值范围为( ) A.⎣⎢⎡⎦⎥⎤1,53 B.⎣⎢⎡⎦⎥⎤53,3 C .(-∞,1)∪⎣⎢⎡⎭⎪⎫53,+∞ D .(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3 答案D解析不等式f (x )≥1等价于⎩⎨⎧x >2,2x -1≥1或⎩⎪⎨⎪⎧x ≤2,|3x -4|≥1,解得x ≤1或53≤x ≤3,所以不等式的解集为(-∞,1]∪⎣⎢⎡⎦⎥⎤53,3,故选D. 11.若两个正实数x ,y 满足2x +1y =1,且x +2y >m 2+2m 恒成立,则实数m 的取值范围是() A .(-4,2) B .(-4,8) C .(2,8) D .(1,2)答案 A解析 因为2x +1y =1,所以x +2y =(x +2y )·⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y ≥4+24y x ·xy =8,当且仅当x=4,y =2时等号成立.因为x +2y >m 2+2m 恒成立,所以m 2+2m <8,解得-4<m <2,故选A.12.在数列{}a n 中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 210等于()A .(310-1)2 B.910-12 C .910-1 D.310-14答案 B解析 由S n =3n -1,当n =1时,a 1=2.① 当n ≥2时,S n -1=3n -1-1, ∴a n =S n -S n -1=2·3n -1(n ≥2),② 将n =1代入②得a 1=2,与①一致, ∴{}a n 是等比数列,公比为3,则a 21+a 22+…+a 210=4(1-910)1-9=910-12.13.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -a ≤0,x -y ≥0,2x +y ≥0,若目标函数z =x +y 的最大值为2,则实数a 的值为() A .2 B .1 C .-1 D .-2答案A解析先作出不等式组⎩⎪⎨⎪⎧3x -y -a ≤0,x -y ≥0,2x +y ≥0表示的可行域如图(阴影部分,含边界)所示,因为目标函数z =x +y 的最大值为2,所以z =x +y =2,作出直线x+y =2,由图象知x +y =2与平面区域相交于点A ,由⎩⎪⎨⎪⎧x -y =0,x +y =2,得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1),同时A (1,1)也在直线3x -y -a =0上,所以3-1-a =0,则a =2.故选A.14.已知△ABC 的面积S =a 2-(b 2+c 2),则cos A 等于() A .-4 B.1717 C .±1717 D .-1717答案D解析根据余弦定理和三角形面积公式知S =a 2-(b 2+c 2)=-2bc cos A =12bc sin A ,所以tan A =-4,所以π2<A <π,且cos A =-117=-1717.15.若不等式|2x -1|≤3的解集恰为不等式ax 2+bx +1≥0的解集,则a +b 等于() A .4 B .2 C .-2 D .0 答案 D解析 由|2x -1|≤3,得-3≤2x -1≤3,所以-1≤x ≤2,所不等式ax 2+bx +1≥0的解集是-1≤x ≤2, 根据根与系数的关系知,-1+2=-b a ,-1×2=1a , 解得a =-12,b =12,所以a +b =0.16.已知双曲线C :x 24-y 2b 2=1(b >0)的一条渐近线方程为y =62x ,F 1,F 2分别为双曲线C 的左、右焦点,P 为双曲线C 上的一点,且满足|PF 1|∶|PF 2|=3∶1,则|PF 1—→+PF 2—→|的值是( ) A .4 B .2 6 C .210 D.6105答案 C解析 由双曲线的一条渐近线方程为y =62x , 得b 2=62,所以b =6,c =10.又|PF 1|=3|PF 2|,且|PF 1|-|PF 2|=2a =4, 所以|PF 1|=6,|PF 2|=2, 又|PF 1|2+|PF 2|2=|F 1F 2|2, 所以PF 1⊥PF 2,则|PF 1—→+PF 2—→|=|PF 1—→|2+|PF 2—→|2 =210,故选C. 17.已知点F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足|F 1F 2|=2|OP |,|PF 1|≥3|PF 2|,则双曲线C 的离心率的取值范围为( )A .(1,+∞)B.⎣⎢⎡⎭⎪⎫102,+∞ C.⎝⎛⎦⎥⎤1,102 D.⎝ ⎛⎦⎥⎤1,52 答案 C解析 由|F 1F 2|=2|OP |,可得|OP |=c , 即△PF 1F 2为直角三角形,且PF 1⊥PF 2, 可得|PF 1|2+|PF 2|2=|F 1F 2|2.由双曲线定义可得|PF 1|-|PF 2|=2a , 又|PF 1|≥3|PF 2|,可得|PF 2|≤a , 即有(|PF 2|+2a )2+|PF 2|2=4c 2, 化为(|PF 2|+a )2=2c 2-a 2,即有2c 2-a 2≤4a 2,可得c ≤102a , 由e =c a 可得1<e ≤102.18.已知函数f (x )=x |x |,若对任意的x ≤1,f (x +m )+f (x )<0恒成立,则实数m 的取值范围是( ) A .(-∞,-1) B .(-∞,-1] C .(-∞,-2) D .(-∞,-2]答案 C解析 由题意得f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,则易得函数f (x )为R 上的单调递增的奇函数,则不等式f (x +m )+f (x )<0等价于f (x +m )<-f (x )=f (-x ), 所以x +m <-x ,又因为不等式f (x +m )+f (x )<0在(-∞,1]上恒成立,所以x +m <-x 在(-∞,1]上恒成立, 所以m <(-2x )min ,x ∈(-∞,1], 因为当x =1时,-2x 取得最小值-2,所以m <-2,即实数m 的取值范围为(-∞,-2), 故选C.二、填空题(本大题共4小题,每空3分,共15分)19.已知抛物线C :y 2=ax (a >0)的焦点为F ,过焦点F 和点P (0,1)的射线FP 与抛物线C 相交于点M ,与其准线相交于点N ,O 为坐标原点.若|FM |∶|MN |=1∶3,则a =________,S △FON =________. 答案2 24解析 设点M 的坐标为(x M ,y M ),N 点纵坐标为y N , 因为|FM |∶|MN |=1∶3,所以x M +a 4a 2=34,所以x M =a 8,所以M ⎝ ⎛⎭⎪⎫a 8,2a 4. 由k MF =k PM 可知24a -a 8=1-24a-a 8,解得a = 2.所以y M y N =24ay N =14,解得y N =2.所以S △FON =12×2×24=24.20.已知a >0,b >0,且a +b =1,则⎝ ⎛⎭⎪⎫1a +2⎝ ⎛⎭⎪⎫1b +2的最小值为________.答案 16解析 由题意得⎝ ⎛⎭⎪⎫1a +2⎝ ⎛⎭⎪⎫1b +2=⎝ ⎛⎭⎪⎫a +ba +2·⎝ ⎛⎭⎪⎫a +b b +2 =⎝ ⎛⎭⎪⎫b a +3⎝ ⎛⎭⎪⎫a b +3=10+3⎝ ⎛⎭⎪⎫b a +a b ≥10+3×2=16,当且仅当b a =a b ,即a =b =12时取等号.21.等比数列{a n }中,前n 项和为S n ,a 1a 9=2a 3a 6,S 5=-62,则a 1的值为________. 答案 -2解析 设等比数列{a n }的公比为q ,则由a 1a 9=2a 3a 6得a 21q 8=2a 21q 7,解得q =2,则S 5=a 1(1-25)1-2=-62,解得a 1=-2. 22.已知函数f (x )=⎩⎨⎧|log 3x |,0<x ≤3,13x 2-103x +8,x >3,a ,b ,c ,d 是互不相同的正数,且f (a )=f (b )=f (c )=f (d ),则abcd 的取值范围是________. 答案 (21,24)解析 设a <b <c <d ,作出函数f (x )的图象,如图,由图可知,ab =1,c +d =10,所以abcd =cd ,3<c <4,所以cd =c (10-c )=-(c -5)2+25,显然21<cd <24,所以abcd 的取值范围是(21,24). 三、解答题(本大题共3小题,共31分)23.(10分)已知函数f (x )=a -b cos2x (b >0)的最大值为32,最小值为-12. (1)求a ,b 的值;(2)求g (x )=-4sin ⎝ ⎛⎭⎪⎫ax -π3+b 的图象的对称中心和对称轴方程.解 (1)因为b >0,易得f (x )max =a +b =32, f (x )min =a -b =-12,解得a =12,b =1. (2)由(1)得,g (x )=-4sin ⎝ ⎛⎭⎪⎫12x -π3+1, 由sin ⎝ ⎛⎭⎪⎫12x -π3=0,可得12x -π3=k π,k ∈Z , 即x =2k π+2π3,k ∈Z ,所以函数g (x )图象的对称中心是⎝⎛⎭⎪⎫2k π+2π3,1,k ∈Z .由sin ⎝⎛⎭⎪⎫12x -π3=±1,可得12x -π3=k π+π2,k ∈Z , 即x =2k π+5π3,k ∈Z ,所以函数g (x )图象的对称轴方程为x =2k π+5π3,k ∈Z .24.(10分)已知点A (x 1,y 1),B (x 2,y 2)是抛物线y 2=8x 上相异两点,且满足x 1+x 2=4.(1)若直线AB 经过点F (2,0),求|AB |的值;(2)是否存在直线AB ,使得线段AB 的中垂线交x 轴于点M ,且|MA |=42?若存在,求直线AB 的方程;若不存在,请说明理由. 解 (1)因为直线AB 过抛物线y 2=8x 的焦点F (2,0),根据抛物线的定义得|AF |=x 1+2,|BF |=x 2+2, 所以|AB |=|AF |+|BF |=x 1+x 2+4=8.(2)假设存在直线AB 符合题意,由题知当直线AB 斜率不存在时,不符合题意,设直线AB 的方程为y =kx +b ,联立方程组⎩⎪⎨⎪⎧y 2=8x ,y =kx +b ,消去y 得k 2x 2+(2kb -8)x +b 2=0,(*) 故x 1+x 2=-2kb -8k 2=4, 所以b =4k -2k .所以x 1x 2=b 2k 2=⎝ ⎛⎭⎪⎫4k 2-22.所以|AB |=1+k 2·(x 1+x 2)2-4x 1x 2 =(1+k 2)⎣⎢⎡⎦⎥⎤42-4⎝ ⎛⎭⎪⎫4k 2-22 =8k 4-1k 2.因为y 1+y 2=k (x 1+x 2)+2b =4k +2b =8k . 设AB 的中点为C ,则点C 的坐标为⎝ ⎛⎭⎪⎫2,4k . 所以AB 的中垂线方程为y -4k =-1k (x -2), 即x +ky -6=0. 令y =0,得x =6. 所以点M 的坐标为(6,0). 所以点M 到直线AB 的距离d =|CM |=(6-2)2+16k 2=4k 2+1|k |.因为|MA |2=⎝ ⎛⎭⎪⎫|AB |22+|CM |2,所以(42)2=⎝ ⎛⎭⎪⎫4k 4-1k 22+⎝⎛⎭⎪⎫4k 2+1|k |2. 解得k =±1.当k =1时,b =2;当k =-1时,b =-2.把⎩⎪⎨⎪⎧ k =1,b =2和⎩⎪⎨⎪⎧k =-1,b =-2,分别代入(*)式检验, 得Δ=0,不符合题意. 所以直线AB 不存在.25.(11分)已知函数f (x )=x 2+(a -4)x +3-a . (1)若f (x )在[0,1]上不单调,求a 的取值范围;(2)若对于任意的a ∈(0,4),存在x 0∈[0,2],使得|f (x 0)|≥t ,求t 的取值范围.解 (1)由0<-a -42<1,解得2<a <4. (2)①当0<4-a2≤1时,即2≤a <4时,f ⎝ ⎛⎭⎪⎫4-a 2≤f (x )≤f (2), |f (2)|=|a -1|=a -1,⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫4-a 2=⎪⎪⎪⎪⎪⎪-a 2+4a -44=(a -2)24, |f (2)|-⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫4-a 2=-a 2+8a -84=-(a -4)2+84>0,所以|f (x )|max =a -1.②当1<4-a2<2时,即0<a <2时,f ⎝ ⎛⎭⎪⎫4-a 2≤f (x )≤f (0),|f (0)|=|3-a |=3-a , ⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫4-a 2=⎪⎪⎪⎪⎪⎪-a 2+4a -44=(a -2)24, |f (0)|-⎪⎪⎪⎪⎪⎪f ⎝⎛⎭⎪⎫4-a 2=8-a 24>0,|f (x )|max =3-a , 综上,|f (x )|max =⎩⎪⎨⎪⎧a -1,2≤a <4,3-a ,0<a <2,故|f (x )|max ≥1,所以t ≤1.最新浙江省中考数学模拟检测试卷(含答案)一、选择题(本大题共18小题,每小题3分,共54分) 1.若集合A ={x |-2<x <1},B ={x |0<x <2},则A ∩B 等于() A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}答案D解析利用数轴可求得A ∩B ={x |0<x <1},故选D. 2.函数y =2-x +ln(x -1)的定义域为() A .(1,2] B .[1,2]C .(-∞,1) D .[2,+∞) 答案A解析由⎩⎪⎨⎪⎧2-x ≥0,x -1>0,得1<x ≤2,即函数的定义域为(1,2].故选A.3.不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x表示的平面区域是()答案C解析 由不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x可知不等式组表示的平面区域为x +y=2的下方,直线y =x 的上方,故选C.4.设向量a =(1,-1),b =(0,1),则下列结论中正确的是() A .|a |=|b | B .a ·b =1 C .(a +b )⊥b D .a ∥b答案C解析因为|a |=2,|b |=1,故A 错误; a ·b =-1,故B 错误;(a +b )·b =(1,0)·(0,1)=0,故C 正确; a ,b 不平行,故D 错误.故选C.5.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,下列结论正确的是()A .若m ∥α,n ∥α,则m ∥nB .若α∥γ,β∥γ,则α∥βC .若α⊥β,m ∥α,则m ⊥βD .若α⊥β,m ⊂α,n ⊂β,则m ⊥n 答案B解析对于选项A ,若m ,n ⊂β,m ∩n =P ,α∥β,则m ∥α,n ∥α,此时m 与n 不平行,故A 错;对于选项B ,由平面平行的传递性可知B 正确;对于选项C ,当α⊥β,α∩β=l ,m ∥l ,m ⊄α时,有m ∥α, 此时m ∥β或m ⊂β,故C 错;对于选项D ,位于两个互相垂直的平面内的两条直线位置关系不确定,故D 错.故选B.6.不等式x +3>|2x -1|的解集为() A.⎝ ⎛⎭⎪⎫-4,23 B.⎝ ⎛⎭⎪⎫-23,4 C .(-∞,4) D.⎝ ⎛⎭⎪⎫-23,+∞ 答案B解析不等式x +3>|2x -1|等价于-(x +3)<2x -1<x +3, 由此解得-23<x <4,故选B.7.命题p :x ∈R 且满足sin2x =1.命题q :x ∈R 且满足tan x =1,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C解析由sin2x =1,得2x =π2+2k π,k ∈Z , 即x =π4+k π,k ∈Z ;由tan x =1,得x =π4+k π,k ∈Z , 所以p 是q 的充要条件,故选C.8.在△ABC 中,cos A =35,cos B =45,则sin(A -B )等于() A .-725B.725C .-925D.925 答案B解析∵A ,B ∈(0,π),∴sin A =45,sin B =35, ∴sin(A -B )=sin A cos B -cos A sin B =725.9.已知圆C经过A(5,2),B(-1,4)两点,圆心在x轴上,则圆C的方程是()A.(x-2)2+y2=13 B.(x+2)2+y2=17C.(x+1)2+y2=40 D.(x-1)2+y2=20答案D解析设圆C的圆心坐标为(m,0),则由|CA|=|CB|,得(m-5)2+4=(m+1)2+16,解得m=1,圆的半径为25,所以其方程为(x-1)2+y2=20,故选D.10.已知a<0,-1<b<0,则下列结论正确的是()A.a>ab>ab2B.ab>a>ab2C.ab>ab2>a D.ab2>ab>a答案 C解析由题意得ab-ab2=ab(1-b)>0,所以ab>ab2,ab2-a=a(b+1)(b-1)>0,所以ab2>a,故选C.11.已知一个几何体的三视图如图所示(单位:cm),则这个几何体的侧面积是()A.(1+2)cm2B.(3+2)cm2C.(4+2)cm2D.(5+2)cm2答案C解析由三视图可知该几何体的直观图如图所示,所以侧面积为(4+2)cm 2.故选C.12.已知关于x 的不等式x 2-4ax +3a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是()A.63B.233C.433D.263 答案C解析由题意得x 1+x 2=4a ,x 1x 2=3a 2, 则x 1+x 2+a x 1x 2=4a +13a ,因为a >0,所以4a +13a ≥433, 当且仅当a =36时等号成立.所以x 1+x 2+a x 1x 2的最小值是433,故选C.13.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -4,x >0,若函数y =f ()f (x )+a 有四个零点,则实数a 的取值范围为() A .[-2,2) B .[1,5) C .[1,2) D .[-2,5)答案C解析函数y =f ()f (x )+a 有四个零点, 则f ()f (x )+a =0有四个解,则方程f (x )+a =-1与f (x )+a =2各有两个解,作出函数f (x )的图象(图略)可得⎩⎪⎨⎪⎧-3<-a -1≤1,-3<2-a ≤1,解得⎩⎪⎨⎪⎧-2≤a <2,1≤a <5,所以1≤a <2.故选C.14.已知等比数列{a n }的公比q =2,前n 项和为S n ,若S 3=72,则S 6等于() A.312 B.632 C .63 D.1272答案B解析由题意得S 6=S 3(1+q 3)=72×(1+23)=632,故选B.15.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为()A .10B .20C .100D .200 答案 C解析 a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100,故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是() A .[-1,1) B .[0,2] C .[-2,2) D .[-1,2)答案 D解析 由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解,由x =2得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2),故选D.17.已知F 1(-c,0),F 2(c,0)分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点且满足PF 1—→·PF 2—→=-12c 2,则此双曲线的离心率的取值范围是() A .[2,+∞) B .[3,+∞)C .[2,+∞) D.⎣⎢⎡⎭⎪⎫5+12,+∞ 答案 C解析 设P (x 0,y 0),则PF 1—→·PF 2—→=(-c -x 0)(c -x 0)+y 20=x 20+y 20-c 2, 所以x 20+y 20-c 2=-12c 2.又x 20a 2-y 20b 2=1,所以x 20=a 2⎝ ⎛⎭⎪⎫1+y 20b 2, 所以a 2⎝⎛⎭⎪⎫1+y 20b 2+y 20-c 2=-12c 2,整理得c 2y 20b 2=c 22-a 2,所以c 22-a 2≥0,所以c ≥2a ,e ≥2,故选C.18.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则B 1P +PQ 的最小值为() A.32B.2C.3D .2 答案 A解析 P 在对角线AC 1上,Q 在底面ABCD 上,PQ 取最小值时P 在平面ABCD 上的射影落在AC 上,将△AB 1C 1沿AC 1翻折到△AB 1′C 1,使平面AB 1′C 1与平面ACC 1在同一平面内,B 1P =B 1′P ,所以(B 1′P +PQ )min 为B 1′到AC 的距离B 1′Q .由题意知,△ACC 1和△AB 1′C 1为有一个角为30°的直角三角形,∠B 1′AC =60°,AB 1′=3, 所以B 1′Q =3·sin60°=32.二、填空题(本大题共4小题,每空3分,共15分)19.若坐标原点到抛物线x =-m 2y 2的准线的距离为2,则m =________;焦点坐标为________. 答案 ±24 (-2,0)解析 由y 2=-1m 2x ,得准线方程为x =14m 2, ∴14m 2=2,∴m 2=18, 即m =±24,∴y 2=-8x ,∴焦点坐标为(-2,0).20.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2017=________. 答案 -1007解析 由a 1=1,a n +1=(-1)n (a n +1), 可得a 2=-2,a 3=-1,a 4=0,a 5=1, 该数列是周期为4的循环数列,所以S 2017=504(a 1+a 2+a 3+a 4)+a 1=504×(-2)+1=-1007. 21.已知向量a =(-5,5),b =(-3,4),则a -b 在b 方向上的投影为________. 答案 2解析 由a =(-5,5),b =(-3,4),则a -b =(-2,1),(a -b )·b =(-2)×(-3)+1×4=10,|b |=9+16=5,则a -b 在b 方向上的投影为(a -b )·b |b |=105=2. 22.已知函数f (x )=x 2+px -q (p ,q ∈R )的值域为[-1,+∞),若关于x 的不等式f (x )<s 的解集为(t ,t +4),则实数s =________. 答案 3解析 因为函数f (x )=x 2+px -q =⎝ ⎛⎭⎪⎫x +p 22-p24-q 的值域为[-1,+∞),所以-p 24-q =-1,即p 2+4q =4.因为不等式f (x )<s 的解集为(t ,t +4),所以方程x 2+px -q -s =0的两根为x 1=t ,x 2=t +4,则x 2-x 1=(x 1+x 2)2-4x 1x 2=(-p )2-4(-q -s ) =p 2+4q +4s =4+4s =4,解得s =3. 三、解答题(本大题共3小题,共31分)23.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2. 所以a n =2·2n -1=2n (n ∈N *). (2)由(1)得a 3=8,a 5=32, 则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8,b 1+4d =32.解得⎩⎪⎨⎪⎧b 1=-16,d =12.所以b n =-16+12(n -1)=12n -28.所以数列{b n }的前n 项和S n =n (-16+12n -28)2 =6n 2-22n (n ∈N *).24.(10分)如图,已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值. 解 (1)当P 点在x 轴上时, P (2,0),P A :y =±22(x -2).联立⎩⎨⎧y =±22(x -2),x2a 2+y 2=1,化简得⎝ ⎛⎭⎪⎫1a 2+12x 2-2x +1=0,由Δ=0,解得a 2=2, 所以椭圆的方程为x 22+y 2=1.(2)设切线方程为y =kx +m ,P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2-2=0, 化简得(1+2k 2)x 2+4kmx +2m 2-2=0, 由Δ=0,解得m 2=2k 2+1,且x 1=-2km 1+2k 2,y 1=m 1+2k 2,y 0=2k +m ,则|PO |=y 20+4,直线PO 的方程为y =y 02x ,则点A 到直线PO 的距离d =|y 0x 1-2y 1|y 20+4, 设△POA 的面积为S , 则S =12|PO |·d =12|y 0x 1-2y 1| =12⎪⎪⎪⎪⎪⎪(2k +m )-2km 1+2k 2-2m 1+2k 2 =⎪⎪⎪⎪⎪⎪1+2k 2+km 1+2k 2m =|k +m |. 当m =2k 2+1时,S =|k +1+2k 2|. (S -k )2=1+2k 2,则k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0,解得S ≥22,当S =22时k =-22.同理当m =-2k 2+1时,可得S ≥22, 当S =22时k =22.所以△POA 面积的最小值为22.25.(11分)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数. 解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,0≤1,显然成立; 当a >0时,则有|a |+a =2a ≤1, 所以a ≤12,所以0<a ≤12.综上所述,a 的取值范围是⎝⎛⎦⎥⎤-∞,12.(2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减.综上所述,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减. (3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.①当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x =0,即f (x )=-4x (x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2, 而g (x )=-4x 在(0,2)上单调递增,所以g (x )<g (2)=-2, 所以y =f (x )与g (x )=-4x 在(0,2)上无交点; 当x ≥2时,f (x )=x 2-3x =-4x ,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0, 因为x ≥2,所以x =2,综上当a =2时,f (x )+4x 有一个零点x =2. ②当a >2时,f (x )min =f (a )=a -a 2, 当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2, 而g (x )=-4x 在(0,a )上单调递增,当x =a 时,g (x )=-4a ,下面比较f (a )=a -a 2与-4a 的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a<0,所以f (a )=a -a 2<-4a .结合图象不难得到当a >2时,y =f (x )与g (x )=-4x 有两个交点.综上所述,当a =2时,f (x )+4x 在区间(0,+∞)内有一个零点x =2; 当a >2时,f (x )+4x 在区间(0,+∞)内有两个零点.。
2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。
2023年浙江省嘉兴市上外秀洲第二次校级中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________A ....4.下列计算正确的是()A .3252a a a +=.326a a a ⋅=32a a a÷=32()a a =5.不等式组x x +⎧⎨-⎩的解是()A .1x >-.3x >13x -<<3x <6.若关于x 的一元二次方程2410ax x -+=的值是()A .1-.147.某学习小组9名学生参加“生活中的数学知识竞赛,他们的得分情况如下表人数(人)11A.29.如图,在△ABC中,∠弧,两弧交于点M、N则AB的长是()A.3B.二、填空题15.如图,△ABC的顶点在正方形网格的格点上,则16.如图,在平面直角坐标系中,段AP绕点A逆时针旋转90︒为______,AM BM+的最小值为三、解答题17.(1)计算:(2023)-(2)化简:(21)(21)4(1)m m m m +---.18.如图(1),在方格纸中,每个小正方形边长都是1,ABCD Y 的四个顶点都在小方格的顶点上,按下列要求画一个面积与ABCD Y 面积相等的四边形,使他的顶点均在方格的顶点上.(四边形的边用实线表示,顶点写上规定的字母)(1)在图(2)中画一个矩形EFGH .(2)在图(3)中画一个菱形MNPQ .19.如图,AD 、BC 相交于点O ,AD BC =,90C D ∠=∠=︒.(1)求证:ACB BDA △≌△.(2)若35ABC ∠=︒,求CAO ∠的度数.20.为了解学生每周课外体育活动时间的情况,某学校随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x (单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在68x ≤<小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)请补全条形统计图;(2)求这50名学生每周课外体育活动时间的平均数;24.婆罗摩芨多是公元7世纪古印度伟大的数学家,他在三角形、四边形、零和负数的参考答案:1.C【分析】直接利用有理数的加法运算法则计算得出答案.【详解】解:(2)31-+=.故选:C .【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.2.C【分析】根据折线统计图的特点结合图形即可求解.【详解】解:由统计图可知,小方家这6个月的月用水量最大是15吨,对应月份是4月.故选:C .【点睛】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,掌握统计图的特点是解决问题的关键.3.B【分析】根据主视图是从正面看得到的视图,可得答案.【详解】解:从正面看下面是一个比较长的矩形,上面是一个比较窄的矩形.故选:B .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是正视图,注意圆柱的主视图是矩形.4.C【详解】试题分析:选项A ,不是同类项,不能够合并,选项A 错误;选项B ,根据同底数幂的乘法法则可得325a a a ⋅=,选项B 错误;选项C ,根据同底数幂的除法法则可得32a a a ÷=,选项C 正确;选项D ,根据幂的乘方运算法则可得326()a a =,选项D 错误;故选C.考点:整式的运算.5.B【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【详解】解:1030x x +>⎧⎨->⎩①②,由①式得x >-1;由②式得x >3,所以不等式组的解集为x >3.故选:B .【点睛】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.D【分析】根据关于x 的一元二次方程2410ax x -+=有两个相等的实数根可知b 2﹣4ac =0,求出a 的取值即可.【详解】解: 关于x 的一元二次方程2410ax x -+=有两个相等实数根,∴20(4)40a a ≠⎧⎨=--=⎩ ,解得:4a =.故选:D .【点睛】本题考查的是根的判别式,即一元二次方程ax 2+bx +c =0(a ≠0)的根与b 2﹣4ac 有如下关系:①当b 2﹣4ac >0时,方程有两个不相等的两个实数根;②当b 2﹣4ac =0时,方程有两个相等的两个实数根;③当b 2﹣4ac <0时,方程无实数根.7.A【分析】众数是一组数据中出现次数最多的数据;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;可得答案.【详解】解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数是90,那么由中位数的定义可知,这组数据的中位数是90.故选:A .【点睛】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.D【分析】根据已知易得6BC =,从而可得4CP =,再利用等腰三角形的性质可得B C ∠=∠,从而利用三角形内角和定理可得180BAP APB B ∠+∠=︒-∠,然后利用平角定义可得180APB DPC B ∠+∠=︒-∠,从而可得DPC BAP ∠=∠,进而可得ABP PCD ∽△△,最后利用相似三角形的性质进行计算即可解答.∵60BCA ∠=︒即60MCN ∠=∴当CF 为O 的直径时,此时连接OM ,ON ,则MON =∠过O 作OE MN ⊥于E ,则∠∵45A ∠=︒,CF AB ⊥,AC ∴454cos CF AC =︒=⨯∵∠ABC=140°,【点睛】本题考查了旋转的性质,全等三角形的判定和性质,直角三角形斜边中线定理,勾股定理,最值问题,找到17.(1)23;(2)4m 【分析】(1)直接利用二次根式的性质、零指数幂的性质分别化简,进而得出答案;(2)根据平方差公式和单项式乘多项式法则展开,再合并同类项即可.【详解】解:(1)原式=23=;(2)原式22414m m =--+41m =-.【点睛】此题主要考查了实数的运算以及平方差公式和单项式乘多项式法则等,数和掌握运算法则是解题关键.18.(1)见解析(2)见解析【分析】=,根据面积相等这个条件,可以设计矩形(1)根据题意可知这个平行四边形面积15的长和宽.(2)根据菱形面积为15,可以确定菱形边长为5,高为3,画出图形即可.【详解】(1)=,解: 矩形EFGH的面积=平行四边形ABCD面积15∴矩形的长、宽可以分别为5,3.如图所示,矩形EFGH即为所求:(2)菱形MNPQ的面积=平行四边形ABCD的面积15=,∴菱形的边长为5,高为3即可.如图所示,菱形MNPQ即为所求.【点睛】本题考查作图-应用与设计作图,掌握平行四边形、矩形、菱形的面积的求法是解题的关键,利用面积设计矩形边长、菱形的边长,是一个数形结合的好题目.19.(1)见解析(2)20︒【分析】(1)由HL 证明Rt Rt ACB BDA ≌即可;(2)由全等三角形的性质求出35BAD ∠=︒,由直角三角形的性质求出55BAC ∠=︒,即可得出所求.【详解】(1)解:证明:90C D ∠=∠=︒Q .ACB ∴ 和BDA △是直角三角形,在Rt ACB △和Rt BDA 中,AB BA BC AD =⎧⎨=⎩,()Rt Rt HL ACB BDA ∴△≌△;(2)Rt Rt ACB BDA △≌△,35BAD ABC ∴∠=∠=︒,9055BAC ABC ∠=︒-∠=︒ ,20CAO BAC BAD ∴∠=∠-∠=︒.【点睛】此题主要考查了全等三角形的判定与性质等知识,根据已知得出ABC BAD ≅ 是解题关键.20.(1)见解析(2)5(3)360人【分析】(1)根据每周课外体育活动时间在68x ≤<小时的学生人数占24%,可以求得每周课外体育活动时间在68x ≤<小时的学生人数,从而可以求得24x ≤<的学生数,从而可以将条形统计图补充完整,(2)根据条形统计图的数据计算可以得到这50名学生每周课外体育活动时间的平均数;(3)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【详解】(1)解:5024%12⨯=,505221238----=,补全统计图如下:(2)由题意可得,153852250⨯+⨯+⨯即这50名学生每周课外体育活动时间的平均数是【详解】C作CG AB⊥于G,CFEG是矩形,设y=kx+b由图像可知,公司要求净得利润不能低于此时4060x ≤≤,再根据1810y x =-+中,1010-<∴y 随x 的增大而减小∵平行四边形ABCD 为⊙∴∠ABC =∠ADC ,∠ABC∵12DCA AOD ∠=∠,BDC ∠∴(12DCA BDC AOD ∠+∠=∠∴∠CED =90°,即AC ⊥BD ,又∵四边形ABCD 是⊙O ∴四边形ABCD 是“婆氏四边形②如下图,作OM ,ON【点睛】本题考查圆周角定理、垂径定理、圆内接四边形的性质、勾股定理、正方形的判定定理、二次函数的性质等.能正确表示出Rt△EDC②正确作出辅助线构造全等三角形是解题关键.。
浙江省中考数学模拟检测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在样本12,8,14,6,10,13,15,9,11,16,8,12,14,9,13,5,8,11,7,10中,频率是0.3的组的范围是( )A .4.5~7.5B .7.5~10.5C .10.5~13.5D .13.5~16.52.某校对1200名女生的身高进行了测量,身高在1.58~1.63(单位:m )这一小组的频率为0.25,则该组的人数为( )A .150人B .300人C .600人D .900人3.鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x 小时后鲁老师距省城y 千米,则y 与x 之间的函数关系式为( )A .80200y x =-B .80200y x =--C .80200y x =+D .80200y x =-+ 4.将三角形ABC 的各顶点的横坐标不变,纵坐标分别减去3,连结所得三点组成的三角形 是由三角形ABC ( )A .向左平移3个单位得到B .向右平移3个单位得到C .向上平移3个单位得到D .向下平移3个单位得到 5.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是( )A .1B . 2C . 3D . 4 6.顶角为20°的等腰三角形放大2倍后得到的三角形是( ) A .其顶角为40°B .其底角为80°C .周长不变D .面积为原来的2倍7.有理数a 、b 在数轴上的位置如图所示,则下列结论中,不正确的是( )A .a+bOB .a-b>OC .0a b <D .a b > 8.将方程2x 472312x ---=-去分母,得( ) A .22(2x 4)(7)x --=--B .24(2x 4)7x --=--C .244(2x 4)(7)x --=--D .24447x x -+=-+9.多项式6(2)3(2)x x x -+-的公因式是3(2)x -,则另一个因式是( )A .2x +B .2x -C .2x -+D .2x -- 10.下列各组代数式中,属于同类项的是( ) A .4ab 与4abc B .mn -与32mn C .223a b 与223ab D .2x y 与2x二、填空题11.在掷一枚硬币的试验中,着地时反面向上的概率为21. 如果掷一枚硬币150次,则着地时正面向上约 次.7512.如图,△ABC 中,AB=AC ,∠A=45°,AC 的垂直平分线分别交AB ,AC 于D ,E 两点,连接CD .如果AD=1,那么tan ∠BCD=________.13.从 1、2、3、4、5 中任选两个数,这两个数的和恰好等于 7 的概率是 .14.如图所示,AD ∥BC ,△ABC 的面积为25cm 2,则△BDC 的面积为 .15. 已知代数式251x x --的值为 5,则代数式23155x x -+的值为 .16.从甲、乙两块棉花新品种对比试验地中,各随机抽取8株棉苗,量得高度的数据如下(单位:cm):甲:l0.2,9.5,10,10.5,10.3,9.8,9.6,10.1;乙:l0.3,9.9,10.1,9.8,10,10.4,9.7,9.8.经统计计算得2S 甲= ,2S 乙= .这说明甲块试验地的棉苗比乙块试验地的棉苗长得 .解答题17.如图所示,数学课中,老师让两个同学在黑板上做游戏,老师发给两个同学每人一个一模一样的圆形纸片,让他们想办法在黑板上的甲,乙两个长方形外部画一个圆 ( 即圆形纸上覆盖整个长方形),请问谁获胜的可能性要大?理由: .18.已知小明家五月份总支出共计1200元,各项支出如图所示,那么其中用于教育上的支出是元.19.如图,在△ABC中,已知AD=ED,AB=EB,∠A=75°,那么∠1+∠C的度数是.20.根据“二十四点”游戏规则,3,4,—6,10每个数用且只能用一次,用有理数的混合运算方法(加、减、乖、除、乘方)写出一个算式:_______ ______________,使其结果等于24.21.①为了解班级同学完成作业所需的时间,老师对全班每位学生完成作业所需的时间作了调查;②为了解班级同学的视力情况,老师对全班每位学生的视力作了检查;③为了解班级同学的睡眠情况,老师对第一组全体学生的睡眠情况作了调查;④为了解班级同学的营养情况,老师对学号为1~10号的全体学生作了调查.以上调查中,是普查,是抽样调查(填序号).22.方程x2-2x-4=0的根是.三、解答题23.小明站在窗口观察室外的一棵树. 如图所示,小明站在什么位置才能看到这棵树的全部?请在图中用线段表示出来.24.如图,已知⊙O1与⊙O2相交于A、B,若两圆半径分别为 17 和 10,O1O2 = 21,试求 AB 的长.25.如图所示的两个矩形是否相似?并说明理由.26.为了防止“传染性”病毒入侵校园,根据上级疾病控制中心的要求:每m2的教室地面,需用质量分数为0.2%的过氧乙酸溶液200g进行喷洒消毒.(1)请估算:你所在班级的教室地面面积约为 m2(精确到1m2);(2)请计算:需要用质量分数为20%的过氧乙酸溶液多少g加水稀释,才能按疾病控制中心的要求,对你所在班级的教室地面消毒一次?27.某市市政府为了解决市民看病难的问题,决定下调药品的价格,某种药品经过连续两次降价后,由每盒200元下调至l28元,求这种药品平均每次降价的百分率是多少?28.已知点A(4-2a,a-5).(1)如果点A在x 轴上,求a的值;(2)如果点A在y轴上,求a的值;(3)如果点A在第二象限,求a的取值范围;29.如图.(1)指出DC、AB被AC所截的内错角;(2)指出AD、BC被AE所截的同位角;(3)∠4与∠7,∠2与∠6,∠ADC与∠DAB是什么关系?是哪两条直线被哪条直线所截而成的?30.已如图,在玩“24 点”的游戏中,小明抽到的是以下四张牌,你能算出 24 吗?你有几种不同的方法?请你把你的方法都写下来. (K当作13)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.D5.B6.B7.B8.C9.B10.B二、填空题11.7512.2-113.0.2.14.25 cm215.2316.0.105,0.055,不整齐17.乙;从大小看,甲大于乙,所以覆盖的机会小18.21619.75°20.3×(4-6+10)(答案不惟一)21.①②,③④22.15三、解答题23.见上图虚线,小明应该站在 AB 的位置.24.连结AO 1、AO 2,设 O 1C=x ,则O 2C= 21 –x ,∵O 1O 2⊥AB ,∴AC=BC ,∵22221710(21)x x -=--,∴x=15,∴2217158AC =-=,即 AB 的长为 16.25.相似,因为小矩形与大钜形的对应角相等,对应边成比例,相似比为35. 26.根据教室面积估算27.20%28.(1)5;(2)2;(3)2<a<529.(1)∠1与∠5; (2)∠DAB 与∠9 ;(3)∠4与∠7是DC 、AB 被DB 所截而成的内错角;∠2与∠6是AD 、BC 被AC 所截而成的内错角;∠ADC 与∠DAB 是D ℃、AB 被AD 所截而成的同旁内角30.答案不唯一. [13—(10—9)]×2 =24;10×2-9+13=24;(13-9)+ 10×2=24。
2023年浙江省温州市永嘉实验中学中考数学模拟试卷一、选择题(本题有10题,每题4分,共计40分,每小题只有一个选项是正确的,选择正确才给分)1.(4分)若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e的值为()A.1B.2C.﹣1D.﹣22.(4分)在直角坐标系中,已知两点A(﹣8,3)、B(﹣4,5)以及动点C(0,n)、D(m,0),则当四边形ABCD的周长最小时,比值为()A.B.﹣2C.D.﹣33.(4分)有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为()A.25B.30C.35D.404.(4分)甲乙丙丁四人互相给其他的三人之一写信,选择对象的方式是等可能的.问存在两个人收到对方的信的概率()A.B.C.D.5.(4分)关于x的一元二次方程ax2﹣2ax+b+1=0(ab≠0)有两个相等的实数根k,则下列选项成立的是()A.若﹣1<a<0,则B.若,则0<a<1C.若0<a<1,则D.若,则﹣1<a<06.(4分)如图,在△ABC中,∠A=45°,∠F=∠ABC,EF⊥BC,其中BF=AD,DF=2,,则DE的值为()A.B.C.D.7.(4分)如图,AB是半圆O的直径,四边形CDMN和DEFG都是正方形,其中点C,D,E在AB上,点F,N在半圆上.若半圆O的半径为10,则正方形CDMN的面积与正方形DEFG的面积之和是()A.50B.75C.100D.1258.(4分)如图,在△ABC中,AC=BC=4,∠C=90°,D是BC边上一点,且CD=3BD,连接AD,把△ACD沿AD翻折,得到△ADC',DC′与AB交于点E,连接BC′,则△BDC'的面积为()A.B.C.D.9.(4分)对于二次函数y=ax2+bx+c,规定函数y=是它的相关函数.已知点M,N的坐标分别为(﹣,1),(,1),连接MN,若线段MN与二次函数y=﹣x2+4x+n的相关函数的图象有两个公共点,则n的取值范围为()A.﹣3<n≤﹣1或1<n≤B.﹣3<n<﹣1或1≤n≤C.n≤﹣1或1<n≤D.﹣3<n<﹣1或n≥110.(4分)“化积为方”是一个古老的几何学问题,即给定一个长方形,作一个和它面积相等的正方形,这也是证明勾股定理的一种思想方法,如图所示,在矩形ABCD中,以AD 为边做正方形AHMD,以CD为斜边,作Rt△DCG使得点G在HM的延长线上,过点D 作DE⊥DG交AB于E,再过E点作EF⊥CG于F,连接CE交MH于N,记四边形DENM,四边形BCNH的面积分别为S1,S2,若S1﹣S2=15,DM=7,则DG为()A.8B.2C.6D.5二、填空题(本题共6题,每题5分,其中16(1)2分,16(2)3分,共计30分)11.(5分)分解因式:a3﹣a2b﹣a+b=.12.(5分)已知整数m满足0<m<13,如果关于x的一元二次方程x2﹣(2m﹣1)x+m2﹣2m=0的根为有理数,则m的值为.13.(5分)2022年2月,北京冬奥会举行期间,某官方特许商品零售店有冬奥会吉祥物冰墩墩和雪容融两种商品(冰墩墩的价格高于雪容融的价格)深受广大市民的喜爱,导致“一墩难求”.该零售店试销第一天购进两种商品共10个,第二天购进两种商品共16个,第三天购进两种商品共26个,并且每天都能全部售完,结算后发现这三天的营业额均为3500元,两种商品的售价不变且均为整数,则冰墩墩的售价是元.14.(5分)如图,反比例函数y=﹣的图象与直线y=x+b(b>0)交于A,B两点(点A在点B右侧),过点A作x轴的垂线,垂足为点C,连接AO,BO,图中阴影部分的面积为12,则b的值为.15.(5分)如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长.16.(5分)图(1)是一种便携式手推车,点O是竖直拉杆OB与挡板OA的连接点,竖直拉杆OB中CD部分可伸缩,当C,D重合时,拉杆缩至最短,运输货物时,拉杆伸至最长.拉杆OB的长70~120cm(含70cm,120cm),挡板OA长为50cm,OA可绕点O旋转,折叠后点A,D重合.现有两箱货物如图(2)方式放置,两个箱子的侧面均为正方形,为了避免货物掉落,在货物四周用绳子加固,四边形ODFM为菱形,则OE=_____cm;小聪在运输货物时,发现货物仍有掉落的危险,重新加固如图(3),若FK=HJ,KI=60cm,∠GKJ=60°,则绳子最低点I到挡板OA的距离IE=cm.三、解答题(本题共8题,共计80分,无特定要求的解答时需写出必要的文字说明,演算步骤或证明过程)17.(8分)三选二,解方程:(1);(2);(3).18.(6分)如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.19.(12分)旋转的图形带来结论的奥秘.已知△ABC ,将△ABC 绕点A 逆时针旋转得到△AB 'C '.初步探索素材1:如图①,连接对应点BB ',CC ',则.素材2:如图②,以A 为圆心,BC 边上的高AD 为半径作⊙A ,则B 'C '与⊙A 相切.问题解决(1)(ⅰ)请证明素材1所发现的结论.(ⅱ)如图2,过点A 作AD '⊥B 'C ',垂足为D '.证明途径可以用下面的框图表示,请填写其中的空格.深入研究(2)在Rt △ABC 满足∠A =90°,,,M 是AC 的中点,△ABC 绕点M 逆时针旋转得△A 'B 'C '.(ⅰ)如图③,当边B 'C '恰好经过点C 时,连接BB ',则BB '的长为.(ⅱ)若边B 'C '所在直线l 恰好经过点B ,于图④中利用无刻度的直尺和圆规作出直线l .(只保留作图痕迹)(3)在(2)的条件下,如图⑤,在旋转过程中,直线BB ',CC '交于点P ,求BP 的最大值为.20.(8分)某班40名学生的某次数学成绩如表:成绩(分)5060708090100人数(人)2m10n42(1)若这班的数学平均成绩为69分,求m和n的值.(2)在(1)的条件下,若该班40名学生成绩的众数为x,中位数为y.求(x﹣y)2的值.21.(11分)在平面直角坐标系中,点A是抛物线y=﹣x2+mx+2m+2与y轴的交点,点B 在该抛物线上,将该抛物线A,B两点之间(包括A,B两点)的部分记为图象G,设点B的横坐标为2m﹣1.(1)当m=1时,①图象G对应的函数y的值随x的增大而(填“增大”或“减小”),自变量x的取值范围为;②图象G最高点的坐标为.(2)当m<0时,若图象G与x轴只有一个交点,求m的取值范围.(3)当m>0时,设图象G的最高点与最低点的纵坐标之差为h,直接写出h与m之间的函数关系式.22.(11分)如图,在锐角△ABC中,∠ABC=45°,过点A作AD⊥BC于点D,过点B 作BE⊥AC于点E,AD与BE相交于点H,连接DE.∠AEB的平分线EF交AB于点F,连接DF交BE于点G.(1)求证:∠DBG=∠DAE;(2)试探究线段AE,BE,DE之间的数量关系;(3)若CD=AF,BE=6,求GH的长.23.(10分)某科研单位准备将院内一块长30m,宽20m的矩形ABCD空地,建成一个矩形花园,要求在花园内修两条纵向平行和一条横向弯折的小道(小道进出口的宽度相等,且每段小道均为平行四边形),剩余的地方种植花草.(1)如图1,要使种植花草的面积为532m2,求小道进出口的宽度为多少米;(2)现将矩形花园的四个角建成休闲活动区,如图2所示,△AEQ、△BGF、△CMH、△DPN均为全等的直角三角形,其中AE=BF=CM=DN,设EF=HG=MN=PQ=a米,竖向道路出口和横向弯折道路出口的宽度都为2m,且竖向道路出口位于MN和EF之间,横向弯折道路出口位于PQ和HG之间.①求剩余的种植花草区域的面积(用含有a的代数式表示);②如果种植花草区域的建造成本是100元/米2、建造花草区域的总成本为42000元,求a的值.24.(14分)如图1,△ABC中,AC=5,BC=12,以AB为直径的⊙O恰好经过点C,延长BC至D,使得CD=BC,连结AD.(1)求⊙O的半径;(2)求证:∠B=∠D;(3)如图2,在AD上取点P,连结PC并延长交⊙O于点Q,连结AQ交BC于点E.①当PQ∥AB时,求AE×AQ的值;②设AP=x,CE=y,求y关于x的函数表达式.2023年浙江省温州市永嘉实验中学中考数学模拟试卷参考答案与试题解析一、选择题(本题有10题,每题4分,共计40分,每小题只有一个选项是正确的,选择正确才给分)1.【分析】先由题目条件分别得到a、b、c、d、e的值,然后计算a+b+c+d+e的值.【解答】解:∵a是最小的正整数,∴a=1,∵b是绝对值最小的数,∴b=0,∵c是相反数等于它本身的数,∴c=0,∵d是到原点的距离等于2的负数,∴d=﹣2,∵e是最大的负整数,∴e=﹣1,∴a+b+c+d+e=1+0+0+(﹣2)+(﹣1)=﹣2.故选:D.【点评】本题考查了绝对值的性质、负数的意义、数轴有关的知识,解题的关键是熟知相关的知识点.2.【分析】作B点关于y轴的对称点B1(4,5),作A点关于x轴的对称点A1(﹣8,﹣3),连接B1A1,与y轴x轴的交点为C,D,连接各点这时周长最小,【解答】解:作B点关于y轴的对称点B1(4,5),作A点关于x轴的对称点A1(﹣8,﹣3),连接B1A1,与y轴x轴的交点为C,D,连接各点这时周长最小,设直线B1A1解析式为y=kx+b,则∴,∴直线B1A1解析式为y=x+,∴n=,m=﹣,∴=﹣故选:C.【点评】本题考查平面内坐标的特点和两点之间线段最短的性质.3.【分析】根据11个正整数,平均数是10,中位数是9,众数只有一个8,即可得到11个正整数为1,1,8,8,8,9,9,10,10,11,35.【解答】解:∵11个正整数,平均数是10,∴和为110,∵中位数是9,众数只有一个8,∴当11个正整数为1,1,8,8,8,9,9,10,10,11,35时,最大的正整数最大为35.故选:C.【点评】本题主要考查了众数、平均数以及中位数的运用,解题时注意:一组数据中出现次数最多的数据叫做众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.4.【分析】分只存在两个人收到对方的信和有两组两个人收到对方的信两种情况分别计算出概率然后加起来即可.【解答】解:分两种情况,①当只存在两个人收到对方的信的情况有:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁共计六种,以其中甲乙情况为例:甲写给乙的概率为,乙写给甲的概率为,在这种情况下,又分两种情形,一种是丙写给丁的概率为,那么丁不写给丙概率为,另一种是丙不写给丁的概率为,那么甲乙的概率为,所以当只存在两个人收到对方的信的情况概率为:;②当存在两组两个人收到对方的信的情况有:甲乙和丙丁、甲丙和乙丁、甲丁和乙丙共计三种,以甲乙和丙丁情况为例,甲写给乙的概率为,乙写给甲的概率为,丙写给丁的概率为,丁写给丙的概率为,那么甲乙和丙丁的概率为,所以存在两组两个人收到对方的信的情况概率为;则存在两个人收到对方的信的概率为,故选:C.【点评】本题考查了概率的计算,分情况讨论计算概率是解题关键.5.【分析】根据一元二次方程的根的情况利用判别式求得a与b的数量关系,然后代入方程求k的值,然后结合a的取值范围和分式加减法运算法则计算求解.【解答】解:∵关于x的一元二次方程ax2﹣2ax+b+1=0(ab≠0)有两个相等的实数根k,∴Δ=(﹣2a)2﹣4a(b+1)=0,4a2﹣4ab﹣4a=0,又∵ab≠0,∴a﹣b﹣1=0,即a=b+1,∴ax2﹣2ax+a=0,解得:x1=x2=1,∴k=1,=﹣=﹣,当>时,即﹣>0,即﹣>0,∴a(a﹣1)<0,即或,解得:0<a<1,当<时,即﹣<0,﹣<0,∴a(a﹣1)>0,即或,解得:a>1或a<0,故选:B.【点评】本题考查一元二次方程的根的判别式,根据一元二次方程根的情况求得a与b 之间的等量关系是解题关键.6.【分析】延长DE至H,使得EH=DE,连接HB,过点C作CG⊥AB于点G,延长FB 使得BT=BD,连接HT,证明△ABC≌△TFH(ASA),即可求解.【解答】解:如图,延长DE至H,使得EH=DE,连接HB,过点C作CG⊥AB于点G,延长FB使得BT=BD,连接HT,∵∠A=45°,∴△ACG是等腰直角三角形,∴AG=CG,∵∠F=∠ABC,EF⊥BC,设∠F=α,∴∠EDB=∠FBE=90°﹣α,∴∠FBD=∠FBE﹣∠ABC=90°﹣α﹣α=90°﹣2α,∵BE⊥DH,EH=DE,∴∠EBH=∠DBE=α,BH=BD,∴∠FBH=∠FBE+∠EBH=90°﹣α+α=90°,∴∠HBT=90°,∵BT=BD=BH,∴△HBT是等腰直角三角形,∴∠T=45°,设DB=HB=BT=a,AD=FB=b,∴TF=a+b,AB=AD+DB=a+b,∴FT=AB,∵∠A=45°,∴∠A=∠T,又∠F=∠ABC=α,在△ABC与△TFH中,∠A=∠T,AB=FT,∠ABC=∠F,∴△ABC≌△TFH(ASA),∴BC=FH,设DE=x,则FH=DE+EH+DF=x+x+2=2x+2,∵,∴,解得:,即,故选:C.【点评】本题考查了等腰直角三角形的性质,全等三角形的性质,掌握全等三角形的性质与判定是解题的关键.7.【分析】连接ON,OF,设正方形CDMN的边长为a,正方形DEFG边长为b,OD=c,根据正方形的性质CN=CD=a,DE=EF=b,根据勾股定理得出a2+(a+c)2=102①,b2+(b﹣c)2=102②,得出a2+(a+c)2﹣b2﹣(b﹣c)2=0,把等式的左边分解因式后得出2(a+b)(a﹣b+c)=0,求出b=a+c,再代入①,即可求出答案.【解答】解:连接ON,OF,设正方形CDMN的边长为a,正方形DEFG边长为b,OD =c,则CN=CD=a,DE=EF=b,∵四边形CDMN和DEFG都是正方形,∴∠NCD=90°=∠FED,∵半圆O的半径为10,∴ON=OF=10,由勾股定理得:NC2+CO2=ON2,OE2+EF2=OF2,∴a2+(a+c)2=102①,b2+(b﹣c)2=102②,①﹣②,得:a2+(a+c)2﹣b2﹣(b﹣c)2=0,∴(a2﹣b2)+[(a+c)2﹣(b﹣c)2)]=0,∴(a+b)(a﹣b)+(a+c+b﹣c)(a+c﹣b+c)=0,∴(a+b)(a﹣b)+(a+b)(a﹣b+2c)=0,∴2(a+b)(a﹣b+c)=0,∵a+b≠0,∴a﹣b+c=0,即b=a+c,把b=a+c代入①,得a2+b2=102=100,即正方形CDMN的面积与正方形DEFG的面积之和是100,故选:C.【点评】本题考查了正方形的性质,勾股定理等知识点,能求出b=a+c是解此题的关键,题目比较好,难度偏大.8.【分析】先求出BD,CD,进而求出AD,再构造直角三角形,判断出△BDG∽△ADC,=,AG=,再判断出△AHG∽△ADC,求出DG=,BG=,进而求出S△BDE求出AH=7,HG=,再判断出△BFH∽△ACD,求出BF=,最后用三角形的面积的差,即可得出结论.【解答】解:∵CD=3BD,BC=4,∴BD=1,CD=3,=AC•CD=6,∴S△ACD在Rt△ACD中,根据勾股定理得,AD==5,过点B作BG⊥AD交AD的延长线于G,∴∠BGD=90°=∠C,∵∠BDG=∠ADC,∴△BDG∽△ADC,∴,∴=,∴DG=,BG=,=DG•BG=,AG=AD+DG=,∴S△BDG延长GB交AC的延长线于H,=S△ACD=6,AC'=AC=4,∠C'AD=∠CAD,由折叠知,S△AC'D∵∠C=∠AGH=90°,∴△AHG∽△ADC,∴∴,∴AH=7,HG=,=AG•HG=,∴C'H=AH﹣AC'=3,BH=HG﹣BG=,S△AHG过点B作BF⊥C'H于F,∴∠BFH=90°=∠C,∴∠H+∠FBH=90°,∵∠C'AD+∠H=90°,∴∠FBH=∠C'AD=∠CAD,∴△BFH∽△ACD,∴,∴,∴BF=,=C'H•BF=,∴S△BC'H=S△AGH﹣S△BDE﹣S△BC'H﹣S△AC'D=﹣﹣﹣6=,∴S△BC'D故选:B.【点评】此题主要考查了等腰直角三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,构造出相似三角形是解本题的关键.9.【分析】首先确定出二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值,然后结合函数图象可确定出n的取值范围.【解答】解:如图1所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有1个公共点.所以当x=2时,y=1,即﹣4+8+n=1,解得n=﹣3.如图2所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2﹣4x﹣n与y轴交点纵坐标为1,∴﹣n=1,解得:n=﹣1.∴当﹣3<n≤﹣1时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=﹣x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2﹣4x﹣n经过点M(﹣,1),∴+2﹣n=1,解得:n=.∴1<n≤时,线段MN与二次函数y=﹣x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是﹣3<n≤﹣1或1<n≤,故选:A.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=﹣x2+4x+n的相关函数与线段MN恰好有1个交点、2个交点、3个交点时n的值是解题的关键.10.【分析】通过说明△ADE≌△MDG,得出AE=GM,DE=DG.利用△DMG∽△GMC 得出比例式,求得CM;利用S1﹣S2=15,得到S△EDC﹣S矩形CMHB=15,列出方程,解方程,结论可得.【解答】解:∵四边形AHMD为正方形,∴DM=DA=7,∠ADM=90°.∵DG⊥DE,∴∠GDE=90°.∴∠ADE+∠EDM=90°,∠GDM+∠CDM=90°.∴∠ADE=∠GDM.∵∠A=90°,∠DMG=90°,∴∠A=∠DMG.∴△ADE≌△MDG(ASA).∴DE=DG,AE=GM.∴四边形DEFG为正方形.设AE=x,则GM=x.在Rt△ADE中,DE=.∵∠DGC=90°,∴∠DGM+∠CGM=90°.∵GM⊥CD,∴∠DMG=∠GMC=90°.∴∠CGM+∠GCM=90°.∴∠DGM=∠GCM.∴△DMG∽△GMC.∴.∴CM=.∵S1﹣S2=15,∴(S1+S△CMN)﹣(S2+S△CMN)=15.﹣S矩形CMHB=15.即S△EDC∴×CD×AD﹣CM×MH=15.∴×AD×(CM+DM)﹣CM×AD=15.∴×7×(7+)﹣7×=15.解得:x=±(负数不合题意,舍去).∴x=.∴DG=AE=.故选:B.【点评】本题主要考查了矩形,正方形的性质,全等三角形的判定和性质,勾股定理的应用,相似三角形的判定和性质.利用相似三角形的性质得出比例式是表示线段长度的重要方法.二、填空题(本题共6题,每题5分,其中16(1)2分,16(2)3分,共计30分)11.【分析】前两项作为一组,提取公因式a2,后两项作为一组,提取“﹣”号,然后再进一步分解即可.【解答】解:原式=a2(a﹣b)﹣(a﹣b)=(a﹣b)(a2﹣1)=(a﹣b)(a﹣1)(a+1).故答案为:(a﹣b)(a﹣1)(a+1).【点评】本题考查了分组分解法,正确分组是解答本题的关键,因式分解中,一定要分解到各个因式不能再分解为止.12.【分析】根据一元二次方程的求根公式,求出方程的根的表达式,再根据方程的根为有理数且m为整数,即可进行解答.【解答】解:∵a=1,b=﹣(2m﹣1),c=m2﹣2m,∴Δ=b2﹣4ac=[﹣(2m﹣1)]2﹣4×1×(m2﹣2m)=4m2﹣4m+1﹣4m2+8m=4m+1,∴,∵0<m<13,∴1<4m+1<53,∵一元二次方程的根为有理数,∴为有理数,∴4m+1=4,9,16,25,36,49,∵m为整数,∴4m+1=9,25,49时,m=2或6或12.故答案为:2或6或12.【点评】本题主要考查了一元二次方程的求根公式,解题的关键是熟练掌握一元二次方程的求根公式以及有理数和整数的定义.13.【分析】设冰墩墩的售价为x元,雪容融的售价为y元,第一天购进冰墩墩a个,第二天购进冰墩墩b个,第三天购进冰墩墩c个,利用总价=单价×数量,即可得出关于a,b,c,x,y的方程组,①﹣②,①﹣③整理后可得出方程④⑤,二者相除后结合1≤c<b<a≤9,即可得出a,b,c的值,将其代入原方程组,解之即可求出冰墩墩及雪容融的单价.【解答】解:设冰墩墩的售价为x元,雪容融的售价为y元,第一天购进冰墩墩a个,第二天购进冰墩墩b个,第三天购进冰墩墩c个,依题意得:,①﹣②整理得:(a﹣b)(x﹣y)=6y④,①﹣③整理得:(a﹣c)(x﹣y)=16y⑤.④÷⑤得:=.又∵1≤c<b<a≤9,∴a=9,b=6,c=1,∴原方程组为,解得:,∴冰墩墩的售价是375元.故答案为:375.【点评】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.14.【分析】首先由已知得到S△BDE=2S△GCO从而可得A、B横坐标的关系,再设A、B坐标代入y=x+b即可得答案.【解答】解:过B作BD⊥OE于D,过A作AH⊥y轴于H,设AC交OB于G,如图:设M为AB的中点,A(x1,y1),B(x2,y2),由得x2+2bx+24=0,∴x1+x2=﹣2b,y1+y2=(x1+b)+(x2+b)=(x1+x2)+2b=b,∴M(﹣b,),而直线y=x+b(b>0)交于坐标轴于E、F,∴E(﹣2b,0),F(0,b),∴EF的中点为(﹣b,),即EF的中点也为M,∴EM=FM,BM=AM,∴EB=FA,又∠FAH=∠BED,∠AHF=∠EDB,∴△EDB≌△AHF(AAS),∴AH=ED=OC,+S△GCO)+(S△GCO+S四边形GCDB)=|k|+|k|=12,∵(S△AGO且图中阴影部分的面积为12,=2S△GCO∴S△BDE∴ED•BD=2×OC•GC,∴BD=2GC,∴OD=2OC,即x2=2x1设x1=m,则x2=2m,∴A(m,﹣),B(2m,﹣),将A(m,﹣),B(2m,﹣)代入y=x+b得:,解得m=2(舍去)或m=﹣2,∴b=﹣﹣×(﹣2)=3.故答案为:3.【点评】本题考查反比例函数及面积问题,题目较难,解题的关键是得出A、B横坐标的关系.15.【分析】如图,将△ACD绕点C逆时针旋转90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一点H,使得NH=NE,连接HE,PG,由△GCD≌△GCP,推出DG=PG,再证明△CDM≌△DEN,只要证明DF是△AHE中位线,求出HE即可解决问题.【解答】解:如图,将△ACD绕点C逆时针旋转90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一点H,使得NH=NE,连接HE,PG.∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∵DC=DE,∠CDE=90°,∴∠DCE=45°,∴∠ACD+∠BCG=45°,∵∠ACD=∠BCP,∴∠GCP=∠GCD=45°,在△GCD和△GCP中,,∴△GCD≌△GCP,∴DG=PG,∵∠PBG=∠PBC+∠CBG=90°,BG=6,PB=AD=8,∴PG=DG==10,∴AB=AD+DG+BG=24,CM=AM=MB=12,DM=AM﹣AD=4,∵∠DCM+∠CDM=90°,∠CDM+∠EDN=90°,∴∠DCM=∠EDN,在△CDM和△DEN中,,∴△CDM≌△DEN,∴DM=NE=HN=4,CM=DN=AM,∴AD=NM,DH=AD,∵AF=FE,∴DF=HE==2.故答案为:.【点评】本题考查旋转变换、全等三角形判定和性质、勾股定理、三角形中位线定理等知识,解题的关键是学会利用旋转添加辅助线,构造全等三角形解决问题,学会利用三角形中位线定理解决线段问题,属于中考压轴题.16.【分析】根据旋转与菱形的性质、利用勾股定理可以求出OE的长度;过J作JM⊥CK 于M,连接HF,然后证明四边形HJKF是平行四边形,得JK长度,求出JM,再利用三角形面积公式得出一元二次方程,即可得IE的长度.【解答】解:如图(2),设OE=xcm,则OG=2xcm,GF=xcm,∵挡板OA长为50cm,OA可绕点O旋转,折叠后点A,D重合,∴OD=OA=50cm,∴GD=(2x﹣50)cm,∵四边形ODFM为菱形,∴DF=OD=50cm,在Rt△DGF中,DG2+GF2=DF2,即:(2x﹣50)2+x2=502,解得x=40或x=0(舍去),∴OE=40cm;如图(3),过J作JM⊥CK于M,连接HF,∵∠GKJ=60°,∴∠MJK=30°,∴,∵FK=HJ且FK∥HJ,∴四边形HJKF是平行四边形,∴,∴,∴,设IE=tcm,KI=60cm,则KF=HJ=(20﹣t)cm,GJ=(60﹣t)cm,∴,∵,∴,化简,得t2+120t﹣1200=0,∴,∵t>0,∴;∴IE=(40﹣60)cm;故答案为:40;.【点评】此题考查了旋转的性质、菱形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质、利用三角形面积公式得出一元二次方程等知识,熟练掌握并运用这些性质和添加适当的辅助线是解此题的关键.三、解答题(本题共8题,共计80分,无特定要求的解答时需写出必要的文字说明,演算步骤或证明过程)17.【分析】(1)移项后两边平方得出,求出,再方程两边平方得出x2﹣10x+25=4(8﹣x),求出x,再进行检验即可;(2)观察可得最简公分母是(x﹣3)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解;(3)令,则,代入原方程,得t2﹣3t+2=0,所以t1=2,t2=1,然后分两种情况分别解方程即可.【解答】解:(1),移项得,,两边平方得,,合并同类项得,,∴,两边平方得,x2﹣10x+25=4(8﹣x),整理得,x2﹣6x﹣7=0,∴(x+1)(x﹣7)=0,解得:x1=﹣1,x2=7,经检验,x1=﹣1,不是原方程的解,∴原方程的解为:x=7.(2),方程两边同时乘以(x﹣3)(x+1)得,2x﹣(x+1)=x2﹣2x﹣3,整理得,x2﹣3x﹣2=0,解得,,∴,,经检验,,时,(x﹣3)(x+1)≠0,∴原方程的根为:,.(3),,令,代入原方程得,t2﹣3t+2=0,∴(t﹣2)(t﹣1)=0,解得:t1=2,t2=1,当t1=2时,,即:2x2﹣1=4,∴,解得:,,当t2=1时,,即:2x2﹣1=1,∴x2=1,解得:x3=﹣1,x4=1,经检验x1,x2,x3,x4都为原方程的解∴原方程的解为:,,x3=﹣1,x4=1.【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.18.【分析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.【解答】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求【点评】本题考查作图﹣应用与设计作图,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.【分析】(1)(i)证明△ABB'∽△ACC',进而得出结论;(ii)连接BM,MB′,作BN⊥CC′于N,作MD⊥CC′于D,根据三角形全等的性质得出∠B=∠B′,进而得出全等,进而得出AD′=AD;(2)(i)可先证得∠BB′C=45°,进而得出结果;(3)作MD⊥BB′于D,先计算出∠P=45°,进而得出结果.【解答】(1)(i)证明:∵AB=AB',AC=AC',∴,∵∠CAB=∠C′AB′,∴∠BAB'=∠CAC',∴△ABB'∽△ACC',∴;(ii)解:依次是:∠B=∠B′,AD=AD′;(2)(i)解:如图1,∵AB=AM=CM=CM′=,∠A=90°,∴∠AMB=∠ABM=45°,∠C=∠C′=,CD=C′D=2,同理可得:∠A′MB′=45°,∴∠A′MB′+∠A′MB=∠AMB+∠A′MB,∴∠BMB′=∠AMA′,∵∠CMC′=∠AMA′,∴∠CMC′=∠BMB′,∵BM=BM′,∴∠MBB,∴∠MCC′=∠MBB′,∴点M、B、B′、C共圆,∴∠BB′C′=45°,∴BN=B′N,∵B′C′=BC=5,∴CB′=B′C′﹣CC′=1,设CN=a,则BN=B′N=a+1,在Rt△BCN中,由勾股定理得,(a+1)2+a2=52,∴a=3,∴BN=4,∴BB,故答案为:4;(ii)解:如图2,作MD⊥BB′于D,∵C′M=CM=,C′D=2,∴DM=1,∵BM=AB=,∴BD==3,∴BB′=2BD=6,∴以点B为圆心,6为半径画弧,交大圆M于B′,则B′C′过点B;(3)解:如图,以BC为斜边在BC的下方作等腰直角三角形BOC,设∠ABM=α,∵∠AMB=∠A′B′M=45°,∴∠AMA′=∠BMB′=45°+α,∵∠AMC′=∠AMA′=45°+α,∴∠BMB′=∠CMC′,∵BM=B′M,CM=C′M,∴∠BMB′=∠BB′M=∠MCC′=∠CC′M,∴点M、B、P、C共圆,∴∠P=∠AMB=45°,∵BC=5,∴点P在O为圆心,半径为的圆上运动,∴当BP为⊙O的直径时,BP最大,最大值为:5,故答案为:5.【点评】本题考查了相似三角形的判定和性质,旋转的性质,确定圆的条件,解直角三角形等知识,解决问题的关键是作辅助线,找出点P的运动路线.20.【分析】(1)由题意知,这个班的平均分是69分,总人数是40人,据此可列出关于x、y的二元一次方程组,进而求出m和n的值;(2)可根据(1)的结果,找出哪组成绩对应的人数最多,那个成绩就是众数为x;由于全班共有40名学生,因此可看全班的成绩从小到大排列后第20个和第21个学生的成绩是多少,它们的平均数就是中位数y,进而可得出(x﹣y)2的值.【解答】解:(1)由题意得,即,解得.答:x的值是18,y的值是4.(2)根据(1)的结果可看出,60分对应的人数最多,因此众数是60(分),即x=60,而第20个和第21个同学的分数分别是60分,70分,因此中位数y==65(分),所以(x﹣y)2=(60﹣65)2=25.【点评】本题结合实际情况考查了平均数、众数和中位数,掌握它们各自的概念是关键.21.【分析】(1)①当m=1时,抛物线的表达式为y=﹣x2+x+2,当函数y的值随x的增大而增大时,则图象在对称轴的左侧,即可求解;②函数的对称轴为x=1,当x=1时,y=,即点G的坐标为(1,);(2)求出点A、B的坐标,确定点A在点B的上方,进而求解;(3)分m≤0,0<m≤,<m≤1,m>1四种情况,分别确定点A、B、H的位置,进而求解.【解答】解:(1)①当m=1时,抛物线的表达式为y=﹣x2+x+4,∵<0,故抛物线开口向下,当函数y的值随x的增大而增大时,图象在对称轴的左侧,即x≤1,故答案为:增大,x≤1;②函数的对称轴为x=1,当x=1时,y=﹣x2+x+4=,即点G的坐标为(1,),故答案为:(1,);(2)当x=2m﹣1时,y=﹣x2+mx+2m+2=3m+,则点B的坐标为(2m﹣1,3m+),所以,点A的坐标为(0,2m+2),∵m<0,则y B﹣y A=3m+﹣2m﹣2=m﹣<0,即点A在点B的上方,故当y A>0且y B≤0时,符合题意,即2m+2>0且3m+≤0,解得﹣1<m≤﹣,当抛物线顶点落在x轴上时,此时m2﹣4×(﹣)×(2m+2)=0,解得:m=﹣2,此时抛物线对称轴为直线x=﹣2,B点横坐标为﹣5,符合题意,综上,﹣1<m≤﹣或m=﹣2;(3)设抛物线的顶点为H,则点H(m,m2+2m+2),由抛物线的表达式知,点A、B的坐标分别为(0,2m+2),(2m﹣1,3m+),①当0<m≤时,此时点A、B分别是G的最高和最低点,则h=y A﹣y B=(2m+2)﹣(3m+)=﹣m+;②当<m≤1时,此时点B、A分别是G的最高和最低点,则h=y B﹣y A=m﹣;③当m>1时,此时点H、A分别是G的最高和最低点,则h=y H﹣y A=m2;∴h=.【点评】本题考查二次函数的综合应用,掌握一次和二次函数的性质、二次函数图象上点的坐标特征,确定图象上点的位置关系和分类求解是解题的关键.22.【分析】(1)先判断出∠DAE+∠C=90°,再判断出∠DBG+∠C=90°,即可得出结论;(2)过点D作DM⊥DE交BE于M,判断出△DBM≌△DAE(ASA),得出BM=AE,DM=DE,再判断出ME=DE,即可得出结论;(3)先判断出∠AFE=∠C,进而判断出△AEF∽△DEC,得出DE=AE,进而求出AE=2,DE=2,过点D作DN⊥AC于N,判断出△AEH∽△AND,得出比例式求出EH=1,根据勾股定理求出AH=,再判断出△DNC∽△BEC,求出CN=1,根据勾股定理求出CD=,再求出AD=2,再判断出△AFK∽△ABH,进而求出FK=,AK=,KH=,进而根据勾股定理求出DH=,最后判断出△DHG∽△DKF,得出比例式,即可求出答案.【解答】(1)证明:∵AD⊥BC,∴∠ADC=90°,∴∠DAE+∠C=90°,∵BE⊥AC,∴∠BEC=90°,∴∠DBG+∠C=90°,∴∠DBG=∠DAE;(2)解:线段AE,BE,DE之间的数量关系为:BE﹣AE=DE;理由:如图1,过点D作DM⊥DE交BE于M,∴∠EDM=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠EDM=90°,∴∠BDM=∠ADE,在Rt△ABD中,∠ABC=45°,∴∠BAD=45°=∠ABC,∴BD=AD,由(1)知,∠DBG=∠DAE,∴△DBM≌△DAE(ASA),∴BM=AE,DM=DE,∴ME=DE,∴ME=BE﹣BM=BE﹣AE=DE;(3)解:如图1,∵BE⊥AC,∴∠AEB=∠BEC=90°,∵EF是∠AEB的角平分线,∴∠AEF=∠AEB=45°,在△AEF中,∠AFE=180°﹣∠AEF﹣∠BAC=180°﹣45°﹣∠BAC=135°﹣∠BAC,在△ABC中,∠ABC=45°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣45°﹣∠BAC=135°﹣∠BAC,∴∠AFE=∠C,由(2)知,DM=DE,∵∠EDM=90°,∴∠DEM=45°,∴∠CED=∠BEC﹣∠DEM=45°,∴∠AEF=∠DEC,∴△AEF∽△DEC,∴,∵CD=AF,∴DE=AE,设AE=x,则DE=x,由(2)知,BE﹣AE=DE,∵BE=6,∴6﹣x=×x,∴x=2,∴AE=2,DE=2,如图2,过点D作DN⊥AC于N,在Rt△DNE中,∠DEC=45°,∴DN=EN=DE=2,∴AN=AE+EN=4,∵DN⊥AC,BE⊥AC,∴DN∥BE,∴△AEH∽△AND,∴,∴,∴EH=1,∴BH=BE﹣EH=5,在Rt△AEH中,根据勾股定理得,AH==,∵DN∥BE,∴△DNC∽△BEC,∴,∴,∴CN=1,在Rt△DNC中,根据勾股定理得,CD==,在Rt△ADC中,AC=AE+EN+CN=5,根据勾股定理得,AD==2,在Rt△ADB中,AD=BD,∴AB=AD=2,∵CD=AF,∴AF=CD=,过点F作FK∥BE交AD于K,∴△AFK∽△ABH,∴=,∴=.∴FK=,AK=,∴KH=AH﹣AK=,在Rt△BDH中,DH===,∴DK=DH+KH=.∵BE∥FK,∴△DHG∽△DKF,∴,∴,∴GH=.【点评】此题是三角形综合题,主要考查了同角的余角相等,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确作出辅助线是解本题的关键.23.【分析】(1)设小道进出口的宽度为x米,可将图中的空白部分平移在一起,变成一个长为(30﹣2x)m,宽为(20﹣x)m的长方形空地;接着根据其种植花草的面积为532平方米列出方程求解即可;(2)①根据题意列出代数式即可;②根据题意解方程即可得到结论.【解答】解:(1)设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532.整理,得x2﹣35x+34=0.解得x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.即小道进出口的宽度应为1米;(2)①剩余的种植花草区域的面积=(30﹣2×2)(20﹣2)﹣4×(30﹣a)××(20﹣a)=(﹣a2+25a+168)m2;②根据题意得(﹣a2+25a+168)×100=42000,解得a=14或a=36(不合题意舍去),答:a的值为14.【点评】本题考查了一元二次方程的应用,正确的理解题意列出方程是解题的关键.24.【分析】(1)由AB是⊙O的直径,得∠ACB=90°,用勾股定理可得⊙O的半径是;(2)证明直线AC是BD的垂直平分线,有AD=AB,故∠B=∠D;(3)①由PQ∥AB,得∠EAB=∠Q,∠B=∠ECQ,可得∠EAB=∠B,∠ECQ=∠Q,AE=BE,CE=EQ,设AE=BE=m,在Rt△ACE中,52+(12﹣m)2=x2,得m=,即得AE=BE=,CE=12﹣m==EQ,AQ=AE+EQ=12,从而得AE×AQ=;②过A作AK⊥PQ于K;连接BQ,由CE=y,AC=5,得AE==,而△ACE∽△BQE,即可得QE==,AQ=AE+QE=,又△ACB∽△AKQ,有=,AK=AQ=,再证△APK∽△AEC,得=,故=,即得y=x﹣.【解答】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB===13,∴⊙O的半径是;(2)证明:由(1)知∠ACB=90°,∴AC⊥BD,∵CD=BC,∴直线AC是BD的垂直平分线,。
2008年中考数学模拟试卷(1)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷10小题,共30分,第Ⅱ卷90分,共120分.考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(每小题3分,共30分)1、下列各式中正确的是 ( )A 、242-=-B 、()33325= C 、1)1-21)(2(=+D 、x x x 842÷=2、如果圆柱的母线长为5cm ,底面半径为2cm ,那么这个圆柱的侧面积是 ( ) A 、102cm B 、102πcm C 、202cm D 、202πcm3、10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是( ) A 、284+x B 、542010+x C 、158410+x D 、1542010+ 4、为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的( )A 、平均数B 、方差C 、众数D 、频率分布5、某游客为爬上3千米高的山顶看日出,先用1小时爬了2千米,休息0.5小时后,用1小时爬上山顶。
游客爬山所用时间t 与山高h 间的函数关系用图形表示是 ( )A B C D6、如图,已知四边形ABCD 是⊙O 的内接四边形,且AB=CD=5,AC=7,BE=3,下列命题错误的是( ) A 、△AED ∽△BEC B 、∠AEB=90ºC 、∠BDA=45ºD 、图中全等的三角形共有2对 7、一个等腰梯形的高恰好等于这个梯形的中位线,若分别以这个 梯形的上底和下底为直径作圆,则这两个圆的位置关系是 ( ) A 、相离 B 、相交 C 、外切 D 、内切8、已知一元二次方程2x 2-3x -6=0有两个实数根x 1、x 2,直线l 经过点A (x 1+x 2,0)、B (0,x 1·x 2),则直线l 的解析式为 ( ) A 、y=2x -3 B 、y= 2x +3C 、y= -2x -3D 、y= -2x +39、将图形(1)按顺时针方向旋转900后的图形是 ( )图形(1) A C D10、在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是 ( ) A 、182 B 、189 C 、192 D 、194A DO E B C第Ⅱ卷(非选择题 共90分)二、填空题(每小题3分,共18分)11.随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2005年海外学 习汉语的学生人数已达38 200 000人),用科学记数法表示为 人(保留3个有效数字).12.从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是 . 13.要在一个矩形纸片上画出半径分别是4cm 和1cm 的两个外切圆,该矩形纸片面积的最小值... 是 .14.右图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形 的边长是a ,则六边形的周长是 .15.党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。
在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为 ; 16.如图,沿倾斜角为30º的山坡植树,要求相邻两棵树间的水平 距离AC 为m 2,那么相邻两棵树的斜坡距离AB 约为_________m ; (结果精确到0.1m ,) (可能用到的数据:3≈1.732, 2≈1.414);三、解答题(72分)17、(6分)计算20)31()14.3(31331----+⨯÷-π;18、(7分)化简求值:a a a a a a a ÷--++--22121222,其中12+=a ;19、(8分)解不等式组33213(1)8xxx x-⎧+≥⎪⎨⎪--<-⎩,并把其解集在数轴上表示出来:20、(8分)某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?21、(8分)如图,已知△ABC,∠ACB=90º,AC=BC,点E、F在AB上,∠ECF=45º,(1)求证:△ACF∽△BEC(5分)(2)设△ABC的面积为S,求证:AF·BE=2S(3)22、(8分)如图所示:一次函数b kx y +=的图象与反比例函数xmy =的图象交于A 、B 两点, ⑴ 利用图中的条件,求一次函数与反比例函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围;23、(9分)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。
问风景区是怎样计算的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。
问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?x24、(9分)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如上图所示,每得一票记作1分.(l)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?25、(9分)在平面直角坐标系中,已知矩形ABCD 中,边2AB =,边1AD =,且AB 、AD 分别在x 轴、y 轴的正半轴上,点A 与坐标原点重合.将矩形折叠,使点A 落在边DC 上,设点A '是点A 落在边DC 上的对应点.(1)当矩形ABCD 沿直线12y x b =-+折叠时(如图1),求点A '的坐标和b 的值;(2)当矩形ABCD 沿直线y kx b =+折叠时,①求点A '的坐标(用k 表示);求出k 和b 之间的关系式; ②如果我们把折痕所在的直线与矩形的位置分为如图2、3、4所示的三种情形,请你分别写出每种情形时k 的取值范围.(将答案直接填在每种情形下的横线上)k 的取值范围是; k 的取值范围是 ;k 的取值范围是 ;参考答案(图1)一、 1、C ;提示:1)1-21)(2(=+正确2、D ;提示:圆柱侧面展开图图是矩形,面积为2π×2×5=20π3、B ;提示:(10名学生的总分+5与学生总分)÷5=542010+x 4、B ;提示:方差是刻划数据波动大小的特征的量 5、D ;提示:观察图象知D 正确6、B ;提示:根据已知条件 无法推出∠AEB=90º7、C ;提示:高等于上下底和的一半,等于两圆半径之和 8、A ;提示:x 1+x 2=3/2,x 1x 2=-39、D ;提示:注意到按顺时针旋转90010、C ;提示:根据计数法知194个二、11、3.82×10712、提示:52135213+=11613、72cm 2;提示:矩形的长为9,宽为8,9×8=7214、3oa ;提示:设比边长为a 的小三角形的边长为x,则2x=x+2a ,∴x=2a ,于是可依次求出各三角形的边长 15、4)1(2=+x 16、约为3.2;提示:AB =︒30cos 2三、17、原式271891271)3(131313121-=-+-=--+⨯⨯-=-- 6分 18、原式 4分当12+=a 时,原式7分19、解:解不等式33,2x x -+≥得x ≥3; 2分 解不等式 1-3 (x-1) < 8-x ,得x >-2. 4分 所以,原不等式组的解集是-2 < x ≤3. 5分 在数轴上表示为20、解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452x x -+= 2分 解这个方程,得 x =92484928360x -=⨯-= 3分答:该同学看中的随身听单价为360元,书包单价为92元。
4分解法二:设书包的单价为x 元,随身听的单价为y 元根据题意,得x y y x +==-⎧⎨⎩45248……1分 ;解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。
(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 6分 因为3616400.<,所以可以选择超市A 购买。
在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元) 7分 因为362400<,所以也可以选择在超市B 购买。
因为3623616>.,所以在超市A 购买更省钱。
8分 21、证明:(1) ∵ AC=BC , ∴ ∠A = ∠B 1分 ∵ ∠ACB=90º, ∴ ∠A = ∠B = 45 0, ∵ ∠ECF= 45º, ∴ ∠ECF = ∠B = 45º, 2分 ∴ ∠ECF +∠1 = ∠B +∠1∵ ∠BCE = ∠ECF +∠1,∠2 = ∠B +∠1;∴ ∠BCE = ∠2, 3分 ∵ ∠A = ∠B ,AC=BC ,∴ △ACF ∽△BEC 。
4分 (2)∵△ACF ∽△BEC∴ AC = BE ,BC = AF , 5分 ∴△ABC 的面积:S =21AC ·BC = 21BE ·AF 7分 ∴AF ·BE=2S. 8分 22、解:(1)∵反比例函数xmy =过A (2-,1)点, ∴21-=m ,∴2-=m 2分∵反比例函数xy 2-=过B(1,n )∴212-=-=n 3分∵一次函数b kx y +=过A (2-,1)、B (1,2-)∴⎩⎨⎧+=-+-=b k b k 221 ⎩⎨⎧-=-=⇒11b k 5分∴所求一次函数与反比例函数的解析式为:1--=x y xy 2-= 6分 (2)2-<x 或10<<x . 8分 23、(1)风景区是这样计算的:调整前的平均价格:()元1652520151010=++++ 1分设整后的平均价格:()元16530251555=++++ 2分∵调整前后的平均价格不变,平均日人数不变A( - 2, 1)B( 1 , n )xyO∴平均日总收入持平 3分(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元) 4分现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元) 6分∴平均日总收入增加了:%.49160160175≈- 7分(3)游客的说法较能反映整体实际。