当前位置:文档之家› 补偿器的选用

补偿器的选用

补偿器的选用
补偿器的选用

补偿器的选用

首先应利用改变管道走向获得必要的柔性,但由于布置空间的限制或其他原因也可采用补偿器获得柔性。

1. 补偿器的形式

压力管道设计中常用的补偿器有三种:

Π型补偿器、波形补偿器、套管式或球形补偿器

2. Π型补偿器

Π型补偿器结构简单、运行可*、投资少,在石油化工管道设计中广泛采用。采用Π形管段补偿时,宜将其设置在两固定点中部,为防止管道横向位移过大,应在Π型补偿器两侧设置导向架。

3. 波形补偿器

波形补偿器,补偿能力大、占地小,但制造较为复杂,价格高,适用于低压大直径管道。

1) 波形补偿器条件

(1)比用弯管形式补偿器更为经济时或安装位置不够时。

(2)连接两个间距小的设备的管道。其补偿能力不够时。

(3)为了减少压降,推力或振动,在工艺过程上可行而且在经济上合理时。

(4)为了保护有严格受力要求的设备嘴子。

2) 波形补偿器的形式及适用条件

(1)直管段使用轴向位移型;

(2)两个方向位移的L形,Z形管段使用角型;

(3)三个方向位移的Z形管段使用万向角型;

(4)吸收平行位移的使用横向型。

3) 选用无约束金属波纹管膨胀节时应注意的问题

(1) 两个固定支座之间的管道中仅能布置一个波纹管膨胀节;

(2) 固定支座必须具有足够的强度,以承受内压推力的作用;

(3) 对管道必须进行严格地保护,尤其是*近波纹管膨胀节的部位应设置导向架,第一个导向支架与膨胀节的距离应小于或等于4DN,第二个导向支架与第一个导向支架的距离应小于或等于14DN,以防止管道有弯曲和径向偏移造成膨胀节的破坏;

4) 带约束的金属波纹管膨胀节的类型

带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点处,而是由约束波纹管膨胀节用的金属部件承受。

(1) 单式铰链型膨胀节,由一个波纹管及销轴和铰链板组成,用于吸收

单平面角位移;

(2) 单式万向铰链型膨胀节,由一个波纹管及万向环、销铀和铰链组

成,能吸收多平面角位移;

(3) 复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能

吸收多平面横向位移和拉杆问膨胀节本身的轴向位移;

(4) 复式铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板

组成,能吸收单平面横向位移和膨胀节本身的轴向位移;

(5) 复式万向铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收互相垂直的两个平面横向位移和膨胀节本身的轴向位移;

(6) 弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连接的两个工作波纹管及一个平衡波纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道内压,工作波纹付和平衡波纹管外端间装有拉杆。此种膨胀节能吸收轴向位移和/或横向位移。拉杆能约束波纹管压力推力. 常用于管道方向改变处;

(7) 直管压力平衡型膨胀节,一般位于两端的两个工作波纹管及有效面积等于二倍工作波纹管有效面积、位中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹管相互连拔起来。此种膨胀节能吸收轴向位移。拉杆能约束波纹管压力推力。

5) 波纹管膨胀节在施工安装中应注意的问题

(1) 膨胀节的施工和安装应与设计要求相一致;

(2) 膨胀节的安装使用应严格按照产品安装说明书进行;

(3) 禁止采用使膨胀节变形的方法来调整管道的安装偏差;

(4) 固定支架和导向支架等应严格按照设计图纸进行施工,需要改动时应经原分析设计人员认可;

(5) 膨胀节上的箭头表示介质流向,应与实际介质流向相一致,不能装反;

(6) 安装铰链型膨胀节时,应按照施工图进行,铰链板方向不能装错;

(7) 在管道系统(包括管道、膨胀节和支架等)安装完毕,系统试压之前,应将膨胀节的运输保护装置拆除或松开。按照国标GB/T 12777的规定,运输保护装置涂有黄色油漆,应注意不能将其他部件随意拆除;

(8) 对于复式大拉杆膨胀节,不能随意松动大拉杆上的螺母,更不能将大拉杆拆除;

(9) 装有膨胀节的管道,做水压试验时,应考虑设置适当的临时支架以承受额外加到管道和膨胀节上的荷载。试验后应将临时支架拆除。

3. 套管式或球形补偿器

套管式或球形补偿器因填料容易松弛,发生泄漏,在石化企业中很少采用。在有毒及可燃介质管道中严禁采用填料函式补偿器。

4. 冷紧

1) 冷紧

冷紧可降低操作时管道对连接设备或固定点的推力和力矩,防止法兰连接处弯矩过大而发生泄漏。冷紧是将管道的热应变一部分集中在冷态,在安装时(冷态)使管道产生一个初位移和初应力的一种方法。

当管道沿坐标轴X、y、Z方向的冷紧比不同时,每个方向的冷紧值应根据该方向的冷紧进行计算。当管道上有几个冷紧口时,沿坐标轴X、y、Z方向的冷紧值分别为各冷紧口在相应坐标轴方向冷紧值的代数和。

管道采用冷紧时,热态冷紧有效系数取2/3,冷态取1。

2) 连接转动设备的管道不应采用冷紧

由于施工误差使得冷紧量难于控制,另一方面,在管道安装完成后要将与敏感设备管口相连的管法兰卸开,以检查该法兰与设备法兰的同轴度和平行度,如果采用冷紧将无法进行这一检查。

3) 自冷紧

如果热胀产生的初应力较大时,在运行初期,初始应力超过材料的屈服强度而发生塑性变形,或在高温持续作用下,管道上产生应力松弛或发生蠕变现象,在管道重新回到冷态时,则产生反方向的应力,这种现象称为自冷紧。但冷紧不改变热胀应力范围。

4) 冷紧比

冷紧比是冷紧值与全补偿量的比值。

对于材料在阳变温度下工作的管道,冷紧比宜取0.7。对于材料在非蠕变温度下工作的管道,冷紧比宜取0.5。

波纹管补偿器的作用和选用技巧

波纹管补偿器的作用和选用技巧 波纹补偿器的作用 1.补偿吸收管道轴向、横向、角向冷热变形。 2.波纹补偿器伸缩量,方便阀门管道的安装与拆卸。 3.吸收设备振动,减少设备振动对管道的影响。 4.吸收地震、地陷对管道的变形量。 波纹管补偿器的选用技巧 补偿器采用矩形截面,圆角波形,管道中单个膨胀节承受二维方向位移。由2个膨胀节组成的肘接管道可承受三维方向位移。矩形圆角金属波纹膨胀节有全高、半高型、按照烟道尺寸,应力应变要求用户可多波节选用。 1、用户根据管系热位移情况选定了合适的补偿器以后,至少还得提供管内的流通介质,烟风道的设计压力,运行时的最高温度,烟风道横截面的外形尺寸(长、宽)所选用的波形(全高216mm、半高108mm)和波数(单个波纹单波数不超过6波),以便进行补偿器的结构设计和制造。 2、每波最大允许膨胀量:全高型△α=±24mm半高型△α=±12mm。 3、挡灰板:对风道或少尘的管道可以不采用,对多尘的烟道应采用档灰板。 4、为减少波纹管的波节数,应考虑冷拉50%。 5、补偿器适用于截面面积小于4.6平方米以及烟风道外形尺寸中有一边小于1.5m但大于0.6mm的场合。标准全高型波纹补偿器适用于所有的烟风道。 恒宇波纹管膨胀节的选型 由于受到各方面的制约是相当复杂的,但是任何复杂的管系都可以选用若干个固定支架在不同的部位选择不同的设置,将其分成若干形状相对简单的单独管段,“Z”型管段和“∏”型管段等,并分别确定各管段的变形及补偿量,由于补偿器的种类很多,正确地选型是非常重要的,因此在管系的总体设计时,应充分地考虑到管线的走向和支撑体系(包括固定管架、导向滑动管架等)的设计和综合考虑补偿器的造型和配置,以示达到安全、合理、适用、经济的最佳组合。波纹管补偿器它是以波纹管为核心的挠性元件,在管线上再作轴向、横向和角向三个方向的补偿。轴向型补偿器为了减少介质的自激现象。在产品内部没有内套管,在很大程度上限制了径向补偿能力,故一般仅用以吸收或补偿管道的轴向位移(如果管系中确需少量的径向位移,可以订货时予以说明其径最大位移量):横向位移补偿器(大拉杆)主要吸收垂直于补偿器轴线的横向位移,小拉杆横向位移补偿器适合于吸收横向位移,也可以吸收轴向、角向和任意三个方向位移的组合:铰链补偿器(也称角向补偿器)。它以两上或三个补偿器配套使用(单个使用铰链补偿器没有补偿能力),用以吸收单向平面内的横向变形,万向铰链(角向)补偿器,由两个或三个配套使用,可吸收三维方向的变形量。 更多资讯请百度搜索:“滕州恒宇波纹管”或登陆我司官网

热力管线补偿器的计算

采暖补偿器的经验计算2010-12-06 16:40 1 、固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。 2 、设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 、计算管道热伸长量 △X=0.012(t1-t2)L (1) 其中:△ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得: △X=1.2L ……(2 ) 2.2 、确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 2.3 、确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应用广泛。设计时可以根据工程具体情况选用。 3 、例题[已知] 如图1所示,某民用建筑95/70℃热媒供热管道a-b段长度为32m,b-c 段长度为24m,c-d段长度为63m,d-e段长度为48m,管径如图所示。 [求] 计算管道热伸长量,设置补偿器和固定支架。 [解] 首先按照公式(2)计算可得 a-b段管道热伸长量=38.4mm

热力管道补偿器用途

在供暖供热管网敷设聚氨酯保温管道中经常会使用到各种不同的补偿器,那么补偿器对保温管道有什么作用?我们就以城市小区管的聚氨酯保温管铺设管道为例,来说一下管道补偿器的作用: 补偿器主要就是为了补偿热能,减少热损耗,根据管道铺设的图纸标准来规定段或者接口处安装,补偿器主要分为直波纹补偿器和外压波纹补偿器两种,城市小区的聚氨酯保温管主要是二次网热水管道,一般都是在接口处安装补偿器,主要使用的波纹器是直波纹补偿器。 直波纹补偿器具有良好的抗压能力,能够自导向,并且可以达到与直埋管同寿命,不需要经常维修和更换,并且具有很好的抗弯性能,可以直接做为刚性管道中的一部分直接安装在管道上。 在热水管道铺设中,直波纹补偿器可以代替支架,并且直波纹补偿器价格比外

压波纹补偿器便宜很多。所以总体来说更加节省成本。 安装完毕后的补偿器一定要对管道进行吹扫和系统测压,但在进行系统测压的时候,必须保护好波纹补偿器,当补偿器没有预拉杆结构时,必须在波纹补偿器上做些附件来保护波纹补偿器,以免管道测压是拉坏补偿器。 总体来说聚氨酯保温管道补偿器就是为了防止在管道热升温时热伸长或温度应力而引起管道变形或者损坏,来补偿管道的热伸长,减少管壁的应力作用的阀件或支架结构上的作用力。使用补偿器可以大大延长聚氨酯保温管的使用寿命。制作方形补偿器必须选用质量好的无缝钢管揻制而成,整个补偿器最好用一根管子揻成,如果制作大规格的补偿器也可用两根弯管或三根弯管焊制,方形补偿器不宜用冲压弯头焊制而成。焊制方形补偿器的焊接点应放在外伸臂的中点处,因为此处的弯矩最小,严禁在补偿器的水平臂上焊接。焊制方形补偿器时,当DN ≤200mm时,焊缝与外伸臂垂直,当DN>200mm时,焊缝与轴线成45°角。

波纹补偿器相关计算公式

波纹补偿器相关计算公式 波纹补偿器习惯上也被称为称为膨胀节、伸缩节,其补偿能力源于波纹管的弹性变形,包括拉伸、压缩、弯曲及组合变形这几种状态。安装环境不同,波纹管补偿器发生的变化也不同。因此在选择波纹补偿器时,是需要依据相关公式进行计算的。 波纹管补偿器的相关计算公式: 1.热力管道的热伸长量通常按下式计算: Δx=α(t1-t2)L 其中:Δx ——管道的热伸长量,mm; α——钢管的线膨胀系数,mm/(m ℃); t1 ——管内介质温度,℃,管内介质指蒸汽、热水、过热水等; t2 ——管道安装时的温度,℃; L ——管道计算长度,m。 2.安装轴向型补偿器的管道轴向推力F,按下式计算: Fx=Fp+Fm+Fs 式中:Fp——内压力产生的推力; FS——波纹管补偿的弹性反力; Fm——管道活动支架的摩擦力。 计算固定支架推力时,应按管道的具体敷设方式,参考上述公式按支架两侧管道推力的合力计算。 3.管道应力验算 补偿器在内压作用下的失稳包括两种情况,即平面失稳和轴向柱状失稳。 (1)平面失稳:表现为一个或几个波纹的平面相对于波纹管轴线发生转动而倾斜,但其波平面的圆心基本在波纹管的轴线上。这是由于内压产生的子午向弯曲应力和周向薄膜应力的合力超过材料屈服强度,局部出现塑性变形所致。 (2)柱失稳:波纹管的波纹连续地横向偏移,使波纹管偏移后的实际轴线成弧形或S 形(在多波情况下呈S形)。这种情况多数是因为波纹数太多,波纹管有效长度L跟内径d 之比(L/d)太大造成的。为避免失稳情况发生,对管道应进行应力验算。 客户在购买波纹补偿器时,需要详细说明补偿器的安装地点及管道的相关信息,协助技术人员进行计算,以挑选出最合适的设备。亚太拥有具备充足经验的生产队伍,专业的技术人员,相信定能为客户提供最合适的产品。

波纹补偿器型号大全-参数选用及公式计算

轴向型内压式波纹补偿器(HZN) 补偿器由一个波纹管和两个端接管构成,端接管或直接与管道焊接,或焊上法兰再与管道法兰连接。补偿器上的拉杆主要是运输过程中的刚性支承或作为产品预变形调整用,它不是承力件。该类补偿器结构简单,价格低,因而优先选用。 用途:轴向型内压式波纹补偿器(轴向型波纹补偿器)主要用于补偿轴向位移,也可以补偿横向位移或轴向与横向合成位移,具有补偿角位移的能力,但一般不应用它补偿角位移。 型号:DN32-DN8000,压力级别0.1Mpa-2.5Mpa 连接方式:1、法兰连接2、接管连接 产品轴向补偿量:18mm-400mm 一、型号示例 举例:0.6TNY500TF 表示:公称通径为Φ500,工作压力为0.6MPa,(6kg/cm2)波数为4个,带导流筒,碳钢法兰连接的内压式波纹补偿器。 二、使用说明: 轴向型波纹补偿器主要用于补偿轴向位移,也可以补偿横向位移或轴向与横向的合成位移,具有补偿角位移的能力,但一般不应用它来补偿角位移。 三、内压式波纹补偿器对支座作用力的计算:

内压推力:F=100·P·A轴向弹力:Fx=Kx·(f·X) 横向弹力:Fy=Ky·Y 弯矩:My=Fy·L 弯矩:Mθ=Kθ·θ 合成弯矩:M=My+Mθ 式中:Kx:轴向刚度N/mm X:轴向实际位移量mm Ky:横向刚度N/mm Y:横向实际位移量mm Kθ:角向刚度N·m/度θ :角向实际位移量度 P:工作压力MPa A:波纹管有效面积cm2(查样本) L:补偿器中点至支座的距离m 四、应用举例: 某碳钢管道,公称通径500mm,工作压力0.6MPa,介质温度300°C,环境最低温度-10°C,补偿器安装温度20°C,根据管道布局(如图),需安装一内压式波纹补偿器,用以补偿轴向位移X=32mm,横向位移Y=2.8mm,角向位移θ=1.8度,已知L=4m,补偿器疲劳破坏次数按15000次考虑,试计算支座A的受力。 解:(1)根据管道轴向位移X=32mm。 Y=2.8mm。 θ=1.8度。 由样本查得0.6TNY500×6F的轴向位移量X0=84mm, 横向位移量:Y0=14.4mm。角位移量:θ0=±8度。 轴向刚度:Kx=282N/mm。横向刚度:Ky=1528N/mm 。 角向刚度:Kθ=197N·m/度。用下面关系式来判断此补偿器是否满足题示要求: 将上述参数代入上式: (2)对补偿器进行预变形量△X为:

补偿器的作用以及管道的计算

补偿器的作用以及管道的计算 一、补偿器作用 补偿器也称伸缩器、膨胀节、波纹补偿器。补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用: 1.补偿吸收管道轴向、横向、角向热变形。 2. 波纹补偿器伸缩量,方便阀门管道的安装与拆卸。 3.吸收设备振动,减少设备振动对管道的影响。 4.吸收地震、地陷对管道的变形量。 方形自然补偿器有两个作用: 1.在管道穿越基础梁或地下室墙的时候,为了避免基础的沉降对管道的压力,需要安装方形补偿器。 2.在热力管道过长的情况下,需要安装方形补偿器来减小‘热胀冷缩’对管道的拉伸。 二、管道的热变形计算 计算公式:X=a*L*△T x 管道膨胀量 a为线膨胀系数,取0.0133mm/m L补偿管线(所需补偿管道固定支座间的距离)长度 △T为温差(介质温度-安装时环境温度) (1) 轴向型补偿器

1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。主固定管架要考虑波纹管静压推力及变形弹性力的作用。推力计算公式如下: Fp=100*P*A Fp-补偿器轴向压力推(N), A-对应于波纹平均直径的有效面积(cm2), P-此管段管道最高压力(MPa)。 轴向弹性力的计算公式如下: Fx=f*Kx*X FX-补偿器轴向弹性力(N), KX-补偿器轴向刚度(N/mm); f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。 管道除上述部位外,可设置中间固定管架。中间固定管架可不考虑压力推力的作用。 2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。 3、固定管架和导向管架的分布推荐按下图配置。 补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算: LGmax-最大导向间距(m); E-管道材料弹性模量(N/cm2);

管道热补偿量计算

采暖补偿器计算 该帖被浏览了4176次 | 回复了27次1引言固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之处,望各位指正。 2设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 计算管道热伸长量 (1) △ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; ——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г 型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 3 4 5 6 6 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,

补偿器选择与计算

补偿器分析 本文讨论降压式Buck DC‐DC 补偿器的选择和参数计算。 1. Type II 补偿器 Type II 补偿器如图 1所示: U i (s) U o (s) 图 1 Type II 补偿器 其传递函数为: ()() () ()+= =- ? ?++ ?+?? 21 122121121.1o c i sR C U s G s C C U s sR C C sR C C (1) 在设计的时候,一般>>12C C ,公式(1)可以简化为: ()() +≈- +21 22111.1c sR C G s sR C sR C (2) 传递函数的零点为ω= 211z R C ;极点为原点和ω=22 1 p R C 。Type II 补偿器的波特如图 2所示,当频率在ωz – ωp 之间,幅度增益近似于常数2120log R R ?? ??? ,最大角度提升(Phase Boost)为90o 。

图 2 Type II 补偿器波特图 如果将穿越频率ωc 设定为对数坐标中的中点,即ωωω+=log log log 2 z p c ,可得: ω=c (3) 定义K 因子(K‐Factor)为: = K (4) 由(3)和(4),零极点ωz 、ωc 可写成: ωωωω?= ?? ?=? .c z p c K K (5) 当ωω=c 时,补偿器有的相位为: ()?ω--=--11 1 tan tan 90.o c c j K K (6) Type II 补偿器的最小相位为‐90o 。定义相位提升(phase boost)θBoost 为:

()θ?ω--=--=-11 190tan tan .o Boost c c j K K (7) 由于存在着这样的反三角函数关系: --+=11 1 tan tan 90.o K K (8) 由(7)和(8),可得: tan .452o Boost K θ?? =+ ??? (9) 相位裕量为?m ,开环传递函数的相位为()vd c j ?ω,那么Boost θ为: ()90.o Boost vd c m j θ?ω?=--+ (10) 2. Type III 补偿器 Type III 补偿器如图 3所示: U i U o (s) 图 3 Type III 补偿器 其传递函数为: ()() () ()()() ()()2 1 1 23122121331211.11o c i sR C s R R C U s G s C C U s sR C C sR sR C C C +++==- ? ?+++ ?+? ? (11) 在设计的时候,一般>>12C C 。公式(1)可以简化为:

采暖补偿器的计算

采暖补偿器的经验计算 1 固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结 合示例详述如下,望能起到抛砖引玉的作用。 2 设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完 成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 2.2 确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道; 最大允许距离与管径关系见表1。“Z” 型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 2.5 3 3.5 4 5 5.5 6 6 2.3 确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器

管道热补偿量计算

采暖补偿器计算 该帖被浏览了4176次| 回复了27次 1引言固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,本文根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。由于成文比较仓促,文中定有许多不足之处,望各位指正。 2设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 2.1 计算管道热伸长量 (1) △X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; 0.012——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得 (2 ) 2.2确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 补偿器形式敷设方式 管径DN(mm) 25 32 40 50 70 80 100 125 150 г型 长边最大间距L2(m)15 18 20 24 24 30 30 30 30 短边最小间距L1(m)2 2.5 3 3.5 4 5 5.5 6 6 2.3确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,

波纹补偿器的定义

波纹补偿器:也称伸缩节、膨胀节、主要为保障管道安全运行。波纹补偿器工作原理:波纹补偿器的主要弹性元件为不锈钢波纹管,依靠波纹管伸缩、弯曲来对管道进行轴向、横向、角向补偿。其作用可以起到: 1.补偿吸收管道轴向、横向、角向热变形。 2.吸收设备振动,减少设备振动对管道的影响。 3.3.吸收地震、地陷对管道的变形量。 换热器壳程物料温差超过50度都要设膨胀节 主要是为了消除热应力 简单说就是热胀冷缩时有一个可以伸缩的空间 在固定管板式换热器中,由于管程流体和壳程流体之间存在温差,而管子和壳体都与管板固定在一起,这样管子和壳体之间有热膨胀差,而管子和壳体都受到轴向应力,为了避免壳体被拉裂,管子失稳和管子与管板拉脱,在壳体需要设置一变形补偿装置来消除温差应力,这个装置就是膨胀节 由于管程和壳程的温差较大时,管程的受压元件和壳程的受压元件会在该温差下,产生很大的温差应力,厉害时会使得管板和换热管的接头全部破坏,使设备损坏,安装膨胀节的目的就是使得壳程筒体可以伸缩,增加壳体变形量来适应换热管的大伸缩量,减小壳体和换热的巨大热应力,减轻破坏 最根本的作用就是增强结构的柔性,降低设备的温差应力。缓冲设备的膨胀,保证管壳程能同步变形。 膨胀节是做什么用的?原理是什么? 波纹管也叫膨胀节。自 80年代初在国内市场应用以来,至今已有二十多年历史,它在石油、化工、供热、电力、水泥、冶金等工业领域得到广泛的应用。波纹管膨胀节是用波纹管直接与两个法兰相连而成,是一种新型的连接管件。波纹管是一种外表面呈波纹状的薄壁管件,一般由不锈钢加工制成,具有较高的轴向弹性。这种产品具有位移补偿量大、隔离振动、承压能力高、刚度小、寿命长等优点,而且结构型式和补偿方式有很大的灵活性。在应用中波纹管膨胀节可以被看作一个弹性元件。于释放热胀冷缩的热应力,在设备换热器上一般叫膨胀节,在管道上也叫波纹管 1、波纹膨胀节按位移形式分类,基本可分为轴向型、横向型、角向型及压力平衡型波纹膨胀节。 2、按是否能吸收管道内介质压力所产生的压力推力(盲板力)分类,可分为无约束型波纹膨胀节和有约束型波纹膨胀节。 3、按波纹管的波形结构参数分类,可分为U形、Ω形、S形、V形波纹膨胀节每一类都有各自的优点和缺点,所以必须根据不同的使用条件,恰当地选用才能使波纹膨胀节正常工作,做到波纹膨胀节设计选型的经济合理。

补偿器的计算

补偿器的计算 解释:补偿管线因温度变化而伸长或缩短的配件,热力管线上所利用的主要有波形补偿器和波纹管两种。 一. 补偿器简介: 补偿器习惯上也叫膨胀节,或伸缩节。由构成其工作主体的波纹管(一种弹性元件)和端管、支架、法兰、导管等附件组成。 属于一种补偿元件。利用其工作主体波纹管的有效伸缩变形,以吸收管线、导管、容器等由热胀冷缩等原因而产生的尺寸变化,或补偿管线、导管、容器等的轴向、横向和角向位移。也可用于降噪减振。在现代工业中用途广泛。 二.补偿器作用: 补偿器也称伸缩器、膨胀节、波纹补偿器。补偿器分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下作用: 1.补偿吸收管道轴向、横向、角向热变形。 2. 波纹补偿器伸缩量,方便阀门管道的安装与拆卸。 3.吸收设备振动,减少设备振动对管道的影响。 4.吸收地震、地陷对管道的变形量。 三.关于轴向型、横向型和角向型补偿器对管系及管架设计的要求 (一)轴向型补偿器 1、安装轴向型补偿器的管段,在管道的盲端、弯头、变截面处,装有截止阀或减压阀的部们及侧支管线进入主管线入口处,都要设置主固定管架。主固定管架要考虑波纹管静压推力及变形弹性力的作用。推力计算公式如下: Fp=100*P*A Fp-补偿器轴向压力推(N), A-对应于波纹平均直径的有效面积(cm2), P-此管段管道最高压力(MPa)。 轴向弹性力的计算公式如下: Fx=f*Kx*X FX-补偿器轴向弹性力(N), KX-补偿器轴向刚度(N/mm); f-系数,当“预变形”(包括预变形量△X=0)时,f=1/2,否则f=1。 管道除上述部位外,可设置中间固定管架。中间固定管架可不考虑压力推力的作用。 2、在管段的两个固定管架之间,仅能设置一个轴向型补偿器。 3、固定管架和导向管架的分布推荐按下图配置。 补偿器一端应靠近固定管架,若过长则要按第一导向架的设置要求设置导向架,其它导向架的最大间距可按下计算: LGmax-最大导向间距(m); E-管道材料弹性模量(N/cm2); i-tp 管道断面惯性矩(cm4); KX-补偿器轴向刚度(N/mm), X0-补偿额定位移量(mm)。 当补偿器压缩变形时,符号“+”,拉伸变形时,符合为“-”。当管道壁厚按标准壁厚设计时,LGmax 可按有关标准选取。

如何计算波纹补偿器的补偿量

如何计算波纹补偿器的补偿量? 计算公式:X=a·L·△T x 管道膨胀量a为线膨胀系数,取 0.0133mm/m L补偿管线(所需补偿管道固定支座间的距离)长度△T为温差(介质温度-安装时环境温度) 补偿器安装和使用要求: 1、补偿器在安装前应先检查其型号、规格及管道配置情况,必须符合设计要求。 2、对带内套筒的补偿器应注意使内套筒子的方向与介质流动方向一致,铰链型补偿器的铰链转动平面应与位移转动平面一致。 3、需要进行“冷紧”的补偿器, 预变形所用的辅助构件应在管路安装完毕后方可拆除。 4、严禁用波纹补偿器变形的方法来调整管道的安装超差,以免影响补偿器的正常功能、降低使用寿命及增加管系、设备、支承构件的载荷。 5、安装过程中,不允许焊渣飞溅到波壳表面,不允许波壳受到其它机械损伤。 6、管系安装完毕后,应尽快拆除波纹补偿器上用作安装运输的黄色辅助定位构件及紧固件,并按设计要求将限位装置调到规定位置, 使管系在环境条件下有充分的补偿能力。 7、补偿器所有活动元件不得被外部构件卡死或限制其活动范围,应保证各活动部位的正常动作。 8、水压试验时,应对装有补偿器管路端部的次固定管架进行加固,使管路不发生移动或转动。对用于气体介质的补偿器及其连接管路, 要注意充水时是否需要增设临时支架。水压试验用水清洗液的96氯离子含量不超过25PPM。 9、水压试验结束后,应尽快排波壳中的积水,并迅速将波壳内表面吹干。10、然弯补偿热伸缩,直线段过长则应设置补偿器。补偿器型式、规格、位置应符合设计要求,并按有、与补偿器波纹管接触的保温材料应不含氯。11、补偿器设置距离:热水供应管道应尽量利用自关规定进行预拉伸。不锈钢波纹补偿器采用的国家标准不锈钢波纹管采用GB/T12777-91, 并参照美国"EJMA"标准,优化设计,结构合理,性能稳定,强度大,弹性好,抗疲劳度高等优点。不锈钢波纹管连接方式分为法兰连接、焊接、丝扣连接、快速接头连接,小口径金属软管一般采用丝扣和快速接头连接,较大口径一般采用法兰连接和焊接接;材料采用OCr19Ni9奥氏体不锈钢,两端接管或法兰采用低碳钢或低合金钢。 不锈钢波纹补偿器一般选用U形波,由单波或按客户要求由多波制成,有较大的补偿量,耐压可高达4Mpa,使用温度:1960C一≤450度,结构紧凑,使用成本低,耐腐蚀,弹性好,钢度值低,允许疲劳度寿命1000次,解决了管道热胀冷缩,位移和机械高频振动与管道之间的柔性联接,广泛用于石油、热力、电力、煤气、化工等管路上安装。此标准中,不锈钢波纹补偿器又可按不同用途归类为:轴向型(ZP)、角向型、

热力管线补偿器的计算

热力管线补偿器的计算 Final approval draft on November 22, 2020

2010-12-0616:40 1 、固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般 由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨 胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱 对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热 水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。 2 、设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成, 系统每一段的管径已经计算确定,固定支架可以开始布置。 、计算管道热伸长量 △X=(t1-t2)L (1) 其中:△ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; ——钢铁的线膨胀系数,mm/m·℃ 按t1=95℃简化得: △X= ……(2 ) 、确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑 为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。 在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 、确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器 能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量, 如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应用广泛。设计时可以根据工程具体情况选用。 3 、例题[已知] 如图1所示,某民用建筑95/70℃热媒供热管道a-b段长度为32m,b-c段长 度为24m,c-d段长度为63m,d-e段长度为48m,管径如图所示。 [求] 计算管道热伸长量,设置补偿器和固定支架。 [解] 首先按照公式(2)计算可得

最新40B001-1997派行补偿器计算图表汇总

40B001-1997派行补偿器计算图表

公司标准 标准编号:40B001-1997 π型补偿器反力计算图表 1997-06-30发布1997-07-15实施 中国石化集团洛阳石油化工工程公司发布

目次 1 范围 (1) 2 引用标准 (1) 3 使用标准 (1) 4 使用条件 (1) 5 非标准图形的换算 (1) 6 合金钢、奥氏体、不锈钢π型补偿器 (3) 7 π型补偿器冷紧后的反力换算 (4) 8 不同壁厚的反力换算 (4) 9 π型补偿器类型说明 (5) 附图表1 π型补偿器(DN100-30-1)反力计算图表 (6) 附图表2 π型补偿器(DN100-30-2)反力计算图表 (7) 附图表3 π型补偿器(DN100-40-1)反力计算图表 (8) 附图表4 π型补偿器(DN100-30-1)反力计算图表 (9) 附图表5 π型补偿器(DN150-30-1)反力计算图表 (10) 附图表6 π型补偿器(DN150-30-2)反力计算图表 (11) 附图表7 π型补偿器(DN150-40-1)反力计算图表 (12)

附图表8 π型补偿器(DN150-40-2)反力计算图表 (13) 附图表9 π型补偿器(DN200-30-1)反力计算图表 (14) 附图表10 π型补偿器(DN200-30-2)反力计算图表 (15) 附图表11 π型补偿器(DN200-40-1)反力计算图表 (16) 附图表12 π型补偿器(DN200-40-2)反力计算图表 (17) 附图表13 π型补偿器(DN250-30-1)反力计算图表 (18) 附图表14 π型补偿器(DN250-30-2)反力计算图表 (19) 附图表15 π型补偿器(DN250-40-1)反力计算图表 (20) 附图表16 π型补偿器(DN250-40-2)反力计算图表 (21) 附图表17 π型补偿器(DN300-30-1)反力计算图表 (22) 附图表18 π型补偿器(DN300-30-2)反力计算图表 (23) 附图表19 π型补偿器(DN300-40-1)反力计算图表 (24) 附图表20 π型补偿器(DN300-40-2)反力计算图表 (25) 附图表21 π型补偿器(DN350-30-1)反力计算图表 (26)

补偿器在管网布置中的要点

补偿器在管网布置中的要点 江苏永力管道有限公司潘海山 简介:近年来,随着我国城市集中供热的不断发展,补偿器作为关键组件在热力管网中的应用也越来越广泛,但假如补偿器在管网中应用布置不当,会引起整个管系的破坏,甚至酿成恶性事故。本文正是力从于补偿器在热力管网中的设计布置问题并结合多年的实践经验总结出的几点体会,供相关人员参考。关键字:补偿器应用问题合理布置 前言: 补偿器以其结构紧凑、补偿量大、流动阻力小、零泄漏、不用维修等诸多优点在热网中的应用也越来越广泛。但它也有不易解决的缺点:例如轴向型补偿器对固定支架产生压力推力,造成固定支架推力大,从而造价高;另外补偿器管壁较薄不能承受扭力、振动,安全性差;设备投资高、设计要求严、施工安装精度高、往往达不到预期寿命等一系列缺点。鉴于补偿器存在的这些缺点,又由于许多设计、施工人员对补偿器的熟悉还不够全面,因此导致施工与运行期间轻易发生事故。分析事故原因,有的事故属于补偿器自身的制造质量或选材不当的问题,有的属于施工问题,更有相当大的一部分属于设计布置问题。在设计方面发生问题,多数属于不明白波纹补偿器管道设计特点造成计算失误和补偿管系选定不合理。 补偿器主要性能包括:补偿量、弹性刚度,耐压强度、稳定性、疲惫强度等,一般设计热力管网要求是在满足强度、稳定性、和疲惫寿命前提下,补偿量越大越好刚度值越小越好。补偿器通过附加的拉杆、铰链等附件与波纹管元件相互组合即可以组成各种功能的补偿器,通过不同的补偿器组合方式又可以构成各种形式的补偿管系以完成热力管网补偿需要。补偿器组合分为轴向补偿器、角向补偿器,复式拉杆补偿器管系,采用角向与复式拉杆补偿器更接近自然补偿管系受力形式,不用考虑内压推力,采用轴向补偿器因承受较大内压力,补偿量大。同心精度要求高,发生问题也较多。 下面重点对采用轴向补偿器管系谈一些体会和改进意见。 补偿器支架受力基本原则: 轴向补偿器受力支架分为主固定支架、次固定支架、导向支架。 固定支架推力计算: 主固定支架水平推力由三种力的合力组成: 由于工作压力引起的内压推力F=PA: 其中P为工作压力,A有效截面积。内压推力由有效截面积及工作压力所决定,内压推力与工作压力、有效截面积成正比,一般来说,补偿器的内压推力都较大。 补偿器刚度产生的弹性力PA=KfL 其中为K补偿器刚度,L为管道实际伸长量,f为系数,预拉伸时为0.5,否则为1。 固定支架间滑动摩擦反力qμl 其中q为管道重量,μ为摩擦系数,l为管道自由端至固定端的距离。 主固定支架水平推力=内压推力+摩擦反力+弹性力 假如不同心还将计入因偏心造成对固定支架的弯距和侧向推力。主固定支架水平推力巨大,大管径可达上百吨,土建布置困难,需进行全面结构核算,属于重载支架。 次固定支架,受力与主固定支架相同,但内压推力平衡抵销,总推力较小,与主固定支架不是一个数量级,属于中间减载支架。

热力管线补偿器的计算

热力管线补偿器的计算 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

2010-12-0616:40 1 、固定支架是暖通空调中经常用到的一种支架,它在系统中起固定和支撑管道的作用,一般由设计人员根据需要设定具体位置,各种规范中规定较少,补偿器用于吸收管道因温度增高引起膨胀造成的长度增大。有“г”型、“Z”型的自然补偿器和方形、套筒、波纹管补偿器等多种形式,设计人设计时依据伸缩量、管径等条件选用。可是现在许多设计人员对此不重视,或漏画,或胡乱对付,位置和数量都没有经过仔细推敲,不甚合理,根据笔者经验,总结了一套在室内95/70℃热水采暖系统设计中快速设置固定支架和补偿器的方法,结合示例详述如下,望能起到抛砖引玉的作用。 2 、设计计算系统中固定支架的设置应在管径计算完毕之后,此时系统管道的布置已经完成,系统每一段的管径已经计算确定,固定支架可以开始布置。 、计算管道热伸长量 △X=(t1-t2)L (1) 其中:△ X——管道的热伸长量,mm; t1——热媒温度,℃, t2——管道安装时的温度, ℃,一般按-5℃计算. L——计算管道长度m; ——钢铁的线膨胀系数,mm/m·℃

按t1=95℃简化得: △X= ……(2 ) 、确定可以不装补偿器和应用“г”型、“Z”型管段自然补偿的管段 对于本文所述系统由固定点起,允许不装补偿器的直管段最大长度民用建筑为33m,工业建筑为42m。(管道伸长量分别为40mm和50mm)。实际设计时一般每段臂长不大于20~30m,不小于2m。在自然补偿两臂顶端设置固定支架。“г”型补偿器一般用于DN150以下管道;最大允许距离与管径关系见表1。“Z”型补偿器可以看做两个“г”型补偿器。 表1 г”型补偿器最大允许距离 、确定不能进行自然补偿部分管道的热伸长量,并根据计算结果设置补偿器能进行自然补偿部分管道确定了,其余部分就是应该设置补偿器的部分。计算这部分伸长量,如果较长要设置多个补偿器,应注意均匀设置;并在两个补偿器中间设置固定支架。选择时注意套筒补偿器容易漏水漏气,适合安装在地沟内,不适宜安装在建筑物上部;波纹管补偿器能力大耐腐蚀,但造价高并且需要设置导向支架;方形补偿器需要的安装空间较大,但运行可靠应用广泛。设计时可以根据工程具体情况选用。

金属补偿器计算大全

补偿器按约束型式分类表 波纹管型式及代号 - 1 - / 117

单式轴向型(DZ )补偿器 代号标记示例 波数 公称通径 设计压力,1.6MPa (16kgf/2 cm ) 接管焊接连接 无加强U 型波纹管 单式轴向型 波纹管型式及代号 补偿器端部连接型式及代号 一、 补偿量(x 、y 、ɑ)及刚度(Kx 、Ky 、K ɑ)的修正计算

1、样本上所列的补偿量x0、y O、ɑ0,系疲劳寿命N=1000次(寿命安全系数为15),工作温度为20℃时,单独进行轴向、横向及角向补偿时的相应补偿量。当疲劳寿命N≠1000次时,可查图1曲线,修正得到轴向、横向及角向补偿量x、y、ɑ (当修正得到的ɑ>ɑ0时,取ɑ=ɑ0) 例1:求N=3000次时,DZJH25-600×8,补偿器的x=?、y=?、ɑ=? 解:查样本得x0=46、y0=11.2 、ɑ0=±4 查图1,因产品代号中有J,故查带加强环的波纹管曲线,得f N=0.71, 那么,x=f N×x0=0.71×46=32. 7 y=f N×y0=0.71×11.=8 ɑ=f N×ɑ0=0.71×4=±2.8 2、样本上所列的Kx0、Ky0、Kɑ0,系工作温度t=20℃时的轴向刚度、横向刚度及角向刚度。当t≠20℃时,可查图2曲线,修正得到温度变更情况下的相应刚度 例2:求t=350℃时,DZJH25-600×8补偿器的Kx、Ky、Kɑ? 解:查样本得Kx0=2557、Ky0=7361、Kɑ0=2467,查图2曲线得f k=0.88 那么Kx=f k×Kx0=0.88×2557=2250 Ky=f k×Ky0=0.88×7361=6478 Kɑ=f k×Kɑx0=0.88×2467=2171 二、补偿量的选用范围 通用补偿器可以单独用作轴向补偿或横向补偿,这两种情况应分别满足X1≤X, Y1≤Y 通用补偿器不宜单独用作角向补偿,但可兼作角向补偿,即在轴向、横向、角向三种补偿中,允许同时存在任意两种或三种补偿。三种补偿量(X1Y1ɑ1) 的选取应符合下列关系式: 上列各式中X、Y、ɑ分别为某一疲劳寿命下单独进行轴向、横向及角向补偿时的相应补偿量 X1、Y1、ɑ1为该疲劳寿命下同时存在的轴向、横向及角向补偿量的实际值。 例3:求代号为DZJH25-600×8的补偿器在t=350℃,N=3000次时,几种补偿方式下的补偿量 - 3 - / 117

补偿器的选用

补偿器的选用 首先应利用改变管道走向获得必要的柔性,但由于布置空间的限制或其他原因也可采用补偿器获得柔性。 1. 补偿器的形式 压力管道设计中常用的补偿器有三种: Π型补偿器、波形补偿器、套管式或球形补偿器 2. Π型补偿器 Π型补偿器结构简单、运行可*、投资少,在石油化工管道设计中广泛采用。采用Π形管段补偿时,宜将其设置在两固定点中部,为防止管道横向位移过大,应在Π型补偿器两侧设置导向架。 3. 波形补偿器 波形补偿器,补偿能力大、占地小,但制造较为复杂,价格高,适用于低压大直径管道。 1) 波形补偿器条件 (1)比用弯管形式补偿器更为经济时或安装位置不够时。 (2)连接两个间距小的设备的管道。其补偿能力不够时。 (3)为了减少压降,推力或振动,在工艺过程上可行而且在经济上合理时。 (4)为了保护有严格受力要求的设备嘴子。 2) 波形补偿器的形式及适用条件 (1)直管段使用轴向位移型; (2)两个方向位移的L形,Z形管段使用角型; (3)三个方向位移的Z形管段使用万向角型; (4)吸收平行位移的使用横向型。 3) 选用无约束金属波纹管膨胀节时应注意的问题 (1) 两个固定支座之间的管道中仅能布置一个波纹管膨胀节; (2) 固定支座必须具有足够的强度,以承受内压推力的作用;

(3) 对管道必须进行严格地保护,尤其是*近波纹管膨胀节的部位应设置导向架,第一个导向支架与膨胀节的距离应小于或等于4DN,第二个导向支架与第一个导向支架的距离应小于或等于14DN,以防止管道有弯曲和径向偏移造成膨胀节的破坏; 4) 带约束的金属波纹管膨胀节的类型 带约束的金属波纹管膨胀节的共同特点是管道的内压推力(俗称盲板力)没有作用于固定点或限位点处,而是由约束波纹管膨胀节用的金属部件承受。 (1) 单式铰链型膨胀节,由一个波纹管及销轴和铰链板组成,用于吸收 单平面角位移; (2) 单式万向铰链型膨胀节,由一个波纹管及万向环、销铀和铰链组 成,能吸收多平面角位移; (3) 复式拉杆型膨胀节,由用中间管连接的两个波纹管及拉杆组成,能 吸收多平面横向位移和拉杆问膨胀节本身的轴向位移; (4) 复式铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板 组成,能吸收单平面横向位移和膨胀节本身的轴向位移; (5) 复式万向铰链型膨胀节,由用中间管连接的两个波纹管及销轴和铰链板组成,能吸收互相垂直的两个平面横向位移和膨胀节本身的轴向位移; (6) 弯管压力平衡型膨胀节,由一个工作波纹管或用中间管连接的两个工作波纹管及一个平衡波纹管构成,工作波纹管与平衡波纹管间装有弯头或三通,平衡波纹管一端有封头并承受管道内压,工作波纹付和平衡波纹管外端间装有拉杆。此种膨胀节能吸收轴向位移和/或横向位移。拉杆能约束波纹管压力推力. 常用于管道方向改变处; (7) 直管压力平衡型膨胀节,一般位于两端的两个工作波纹管及有效面积等于二倍工作波纹管有效面积、位中间的一个平衡波纹管组成,两套拉杆分别将每一个工作波纹管与平衡波纹管相互连拔起来。此种膨胀节能吸收轴向位移。拉杆能约束波纹管压力推力。 5) 波纹管膨胀节在施工安装中应注意的问题 (1) 膨胀节的施工和安装应与设计要求相一致; (2) 膨胀节的安装使用应严格按照产品安装说明书进行; (3) 禁止采用使膨胀节变形的方法来调整管道的安装偏差; (4) 固定支架和导向支架等应严格按照设计图纸进行施工,需要改动时应经原分析设计人员认可;

相关主题
文本预览
相关文档 最新文档