当前位置:文档之家› 人因工程学在飞机驾驶舱空间布局设计中的应用

人因工程学在飞机驾驶舱空间布局设计中的应用

人因工程学在飞机驾驶舱空间布局设计中的应用
人因工程学在飞机驾驶舱空间布局设计中的应用

人因工程学在飞机驾驶舱空间布局设计中

的应用

摘要:本文在回顾现有驾驶舱设计中人因工程学主要研究方法的基础上,着重探讨了飞机驾驶舱空间布局设计中人因工程设计原则的具体应用,并对这些设计方法的优劣进行对比和评价,最后提出设计中需要注意的若干问题。

关键词:人因工程学;研究方法;空间布局设计

The application of Human Factors Engineering in the cockpit space layout design Abstuction: Based on reviewing the existing primary research method of Human Factors Engineering on the cockpit designing, this article discussed the Human Factors Engineering principle and it’s specific using of aircraft cockpit space layout design, and evaluate the superiority of comparison, finally puts forward some problems need to be taken attention.

Keys: Human Factors Engineering; research method; space layout design

1 引言

根据台湾工效学学会的定义,人因工程是指“了解人的能力与限制,以应用于工具、机器、系统、工作方法和环境之设计,使人能在安全舒适及合乎人性的状况下,发挥最大工作效率和使用效能,并提高生产力及使用者的满意度的学科领域。”已有的研究表明,人因工程学在增进系统安全,提高人员满意度,和提高系统绩效等方面能发挥很大的作用[1]。

人因学最初的研究范围比较狭小,只涉及军事、工业领域人—机界面交互的一些问题,目前的研究范围已得以扩大,与人类工效学、工程心理学及认知工程学等学科有着紧密的联系,并在核工业、汽车设计、风险评估、航空领域等都产生了广泛的影响。

2 人因工程学的研究进展及研究方法

2.1 人因工程学的研究进展及方法

人因工程是一门相对年轻、独立和独特的实践性学科 ,其研究与应用重心历经了军事、工业人因工程、消费产品及服务、计算机人因工程等领域阶段 ,到20世纪90年代兴起宏观人因工程和认知人因工程研究后,逐步转移到工业系统。其研究内容现主要涉及到以下四个方面[2]:

1)硬件人因工程:起初称为人-机器接口技术,代表了人因工程学科前30年的主流应用方面 ,最初研究人的生理和知觉特性 ,并将其相关成果应用到操作、显示与工作空间布局的分析、设计和评价等过程中。这仍然是今天人因工程的最大研究应用领域。

2)环境人因工程:该技术主要研究处于各种环境状态(光、热、噪声和振动等)下时人的能力及其极限。近几十年来,随着对人与其自然和人造环境间关系的认识和探讨不断深入,该技术不断得到应用和发展。

3)认知人因工程:该技术是随着20世纪60年代硅芯片的诞生及随后的现代计算机革命的兴起,它最初研究的是人们获取和加工信息的方式,现在该技术主要应用于设计或完善系统软件,从而提高其可使用性。

4)宏观人因工程:这是人因工程的最新分支,兴起仅仅10余年。前述3种类型的研究重心在于单个的操作者和操作小组(子系统) ,可以说是处在“微观”人因工程层次上。此时人因工程开始着重研究组织系统和工作系统的设计及与此相关的人—机器、人—环境和人—软件等多个接口整体的设计问题。

由于人因工程的全面研究涉及到人类工效学、工程心理学及认知工程学等多个学科,所以其研究方法一般采基础研究和应用研究相结合的方式[3],通过对具体人群、产品和系统等的研究,发展出相应理论、原理,再把研究扩展到不同系统和环境下,力求得到若干可以普遍应用的原理。研究通常需要进行数据采集,人因工程学研究中数据采集方法有很多种,主要采用的有实验研究法和描述性研究法。前者通过自然实验或实验室实验来控制自变量和影响自变量变化的环境因素,观察和记录自变量因素引起的因变量的变化;后者直接测量一些变量并评估各个变量间关系的方法,来收集复杂的实际系统的变化数据,并得出实验结论。

2.2 驾驶舱设计中的人因工程学研究现状

在过去几十年里,发动机、系统和结构设计等方面的改进大大降低了事故率并提高了飞行效率,但飞行高度、速度、巡航时间的增加及显示系统、操纵系统的高度自动化,却造成对飞行员生理心理负荷的增大,人的因素成为制约飞行安全的主要因素,驾驶舱作为人机接口最突出和集中的地方,其设计的优劣直接关系到飞机飞行的安全,自然成为人因工程学在航空领域的研究重点[4]。

最早在驾驶舱设计中运用人因工程学理论的是美国和日本,他们研制了许多基于人因工程设计理论和原则的计算机辅助软件,并广泛应用于飞机驾驶舱和汽车驾驶舱的设计总,比较典型的代表有:1973年Dayton大学为美空军开发的COMBIMAN软件,主要用于飞机乘务员工作站设计中的视野分析和手部可达性分

析;宾夕法尼亚大学设计开发的JACK软件,构建了人体模型和一系列可控的分析工具;德国THCMATH开发的RAMSIS工效分析工具,建立了飞行员以及乘客的姿势仿真模型[5]。

我国的人因工程学理论研究开展较晚,飞机驾驶舱设计主要是借鉴苏联的成果,由于各研究机构的驾驶舱设计规范还不统一,基于人因工程学的驾驶舱统一的设计标准还有待形成。现在,北航、南航和一些研究部门都取得了一定的成果和开发了一些软件:北京航空航天大学开发的MMES软件,建立了人机工效模拟系统,和模型评价;南京航空航天大学开发的参数化人体模型生成系统,建立了人体尺寸数据库[6]。

目前国内外的诸多研究主要集中于飞机驾驶舱的操作面板设计,利用三维人体模型和虚拟人技术进行驾驶舱的设计以及飞机驾驶舱的人机适配性评价。为了改善飞行员在复杂情境中对自身状态、飞机状况及周边事态的充分了解和整体把握,增强飞行员的情境意识(situation Awareness)能力,国外目前正在寻求新的信息显示方式和途径,研制开发新型信息显示界面—三维图形数据格式信息显示界面,这种界面可以使飞行员认知反应时间变短,操作错误减少,心理负荷降低,而且情景意识也明显增强。

总之,国内外的研究都在寻求利用CAD技术和计算机图形技术,完善现有参数化三维驾驶舱模型和三维虚拟人体模型和适当的评价模型。同时在驾驶舱的自动化设计中,强调自动化与飞行员能力及需求的相匹配和兼容,避免忽视人的特性而导致的“过度自动化”或“不当自动化”,寻求以人为本的自动化设计。

3 驾驶舱空间布局设计的人因工程学问题

纵观已有的文献资料,我们不难发现,当前的人因工程学研究是把人、机、环境视为相互关联的复杂系统,运用现代科学技术理论和方法进行研究,使系统具有“安全、高效、经济”等综合效能。驾驶舱设计中的人因工程学研究,就是以人因工程的相关理论知识为基础,对飞机驾驶舱设计元件进行合理布局,使飞行员能舒适、高效和安全驾驶,并顺利完成指定的任务。

飞机驾驶舱的主要设计元件有座椅、驾驶杆、脚踏板和仪表板等,它们的设计关联到不同的相关人因工程学设计原理[7],大致如下:

1)座椅设计:此项设计要基于人体坐姿理论的相关知识,包括坐姿舒适角度和人体坐姿体压分布。坐姿舒适角度和人体体压分布都是通过大量实验得到的,它们对座椅设计元素(座高、座深、扶手高和头枕尺寸等)有着重要指导意义;

2)驾驶杆和脚踏板:都属于操作器设计。此项设计涉及到人手和脚可达性分析和受力分析理论。根据人体的多刚体系统模型可将人体模型分为上、下肢运动链,应将驾驶杆和脚踏板布置在人手和脚的舒适域内,而仪表板上的控制面板应布置在人手的活动范围内;

3)仪表显示设计:属于显示器设计。此项设计要考虑人体的视域分析理论。飞机的主要仪表和显示器应设计在飞行员的舒适视野内,且仪表和显示器的指针方式、显示方式等都应参照人因工程学相关标准来设计,便于飞行员观察及识别。

3.1 座椅的人因工程学设计

3.1.1 人体坐姿的舒适角度[8]

舒适的坐姿,应保证腰曲弧形处于正常状态,腰背肌肉处于松弛状态,从上体通向大腿的血管不受压迫,保持血液正常循环。因此,最舒适的坐姿是臀部稍离靠背向前移,使上体略向上后倾斜,保持上体与大腿夹角在90°~115°,同时,小腿向前伸,大腿与小腿、小腿与脚掌之间也应达到一定角度,如图1所示:

图1 舒适的坐姿关节角度

在坐姿状态下,支持人体的主要结构是脊柱、盆骨、腿和脚等。脊柱位于人体背部中线处,由33块短圆柱状椎骨组成,包括7块颈椎、12块胸椎、5块腰椎和下方的5块骸骨及4块尾骨,相互间由肌腿和软骨连接。腰椎、骸骨和椎间盘及软组织承受坐姿时上身大部分负荷,还要实现弯腰扭转等动作。正常的姿势下,脊柱的腰椎部分前凸,而至骸骨时则后凹。在良好的坐姿状下,压力适当地分布于各椎间盘上,肌肉组织上分布均匀的静负荷。当处于非自然姿势时,椎间盘内压力分布不正常,产生腰部酸疼万疲劳等不适感。图2为不同姿势下的腰椎曲线:

图2 各种不同坐姿下产生的腰椎曲线

可见,当人侧卧、躯干与大腿成适度弯曲状时,脊椎形状最接近自然状态。欲使坐姿能形成几乎正常的脊柱形态,躯干与大腿之间必须有约135°的角度,且在腰椎部有所支承。

3.1.2 人体坐姿的体压分布[9]

坐姿的体压分布指人体的质量在靠背和坐垫上的压力分布。根据人因工程学的研究,最舒适的坐姿应保证:人体的大部分质量应以较大的支承面积、较小的单位压力合理地分布到坐垫和靠背上;压力分布应从小到大平滑地过渡,避免突然变化。见图3:

图3 座椅各部位的受力分布

由图3可知,人体重量作用在座椅上的压力并非均布,前面已经分析出,舒

适的坐姿是肩部和臀部同时支撑身体重量,应根据各部位所承受压力的大小进行合理布局。坐垫上的体压分布应使坐骨部分承压最高,由坐骨向周围扩散到臀部外围,压力逐渐降低。靠背上的体压分布则应以肩胛骨和腰椎骨两个部分承压最高,实现“两点支撑”。

3.1.3 座椅设计的一般人因工程学原则[10]

1)座椅的形式、尺度应与坐的目的或动机有关。正确的座高应使坐者大腿保持水平,小腿垂直,双腿能平放在地面上,以避免大腿底部肌肉承力过多,引起疲劳。推荐值:35~50CM;

2)座椅的尺寸应与相对的人体数据配合。坐宽的设定应适合于身材高大者,依臀宽的人体测量值设计。推荐值:430~450CM;

3)座椅的设计必须能够提供坐者右足够的支撑与稳定作用。坐深应按第5个百分位的人体尺寸设计,这使身材矮小者坐姿舒服,身材高大者可以小腿做稳定支持,也不会引起大腿部位的疲劳。推荐值:350~400CM;

4)座椅的设计必须能使坐者改变其姿势,并提供防滑。飞机操纵位于飞行员前方,故座面倾角不可过分后倾,脊椎因身体的前倾拉伸会破坏正常的腰椎曲线,造成背部肌肉疲劳。推荐值:4°~ 6°;

5)座椅的靠背设计。特别是在腰部的支撑,可降低脊椎所产生的紧张压力。靠背倾角是指坐面与靠背的夹角。从保持正常自然形态的脊柱,增加舒适感角度看,靠背倾角度取为115°较为合适。

6)坐垫必须有充分的衬垫和适当的硬度,使之有助于将人体的压力分布于坐骨结节附近。坐垫应该软硬适度,可使臀部压力值大为降低。

3.2 飞机操纵器的人因工程学设计

3.2.1 手臂的操纵力

已有的实验实测数据显示,坐姿下手臂的操纵力如下,见图4:

图4 手臂的操作力测定方向图

具体的手臂操作角度和力度,见表1:

表1 手臂在不同角度和方向的操作力单位:N

3.2.2 操纵器设计的人因工程学原则[11]

飞机驾驶舱内的操纵器分为两类:一类是尺寸较大的操纵器,另一类是尺寸较小的操纵器。尺寸较大的操纵器有操操作盘、操纵杆、舵蹬、襟翼和起落架手柄、油门杆或手柄等。运动方向主要有前、后、左、右运动或旋转,通常以手或脚操纵。尺寸较小的操纵器主要有气压调定旋钮、无线电旋钮、仪表板灯光调节钮等。需要遵循的一般原则有:

1)驾驶杆的设计原则:控制杆的运动形式有前后推拉,左右推拉和圆锥运动。控制杆的长度应根据设定的位移量和操纵力决定。当操纵角度较大时,控制杆端部应设置球状手把。控制杆的操纵角以30°—60°为宜,一般不超过90°。控制杆的位移量随控制杆的运动方不同而不同,当控制杆前后运动时,最大为350mm;控制杆左右运动时,最大为950mm。一用手操纵操纵器时,控制杆的阻力一般为9N。

2)操纵器应设置在飞行员肢体能够达到的范围内,并能毫无阻力地完成整个移动范围,不必使用过大的力量。根据Barnes关于手的最大和最优活动范围的研究,驾驶舱内各种操纵器在配置上应注意将使用频率高的、重要的操纵器放在前方正常范围的作业区内,将使用频率低的或在特定情况下使用的,放在靠近

最大活动范围的作业区内。见图5:

图5 身体各部分的最大和最优活动范围

3)操纵器的设计应当尽可能标准化,以便于飞行员在改装机型后能在相同的位置找到该操纵器,操纵器的功能也应一致。

4)功能不同的操纵器在颜色、形状上应有足够大的区别,以免飞行员误用。如襟翼手柄、与起落架手柄的大小、形状和颜色编码等应有所区分。例如符号式操纵器的采用,将人类触觉容易辨认和视觉容易再认的优势结合起来,减少了飞行员误用操纵器的机率。

5)操纵器的排列应注意逻辑性和顺序,在使用顺序上有前后关系的操纵器应排放在相邻位置,功能上有联系的操纵器也应成组排列,还要注意操纵器和显示器的一致性。

6)操纵器应具有可靠性防护性或者错误操作保护,为飞行员的错误操作提供挽回的余地。

3.3 飞机仪表显示的人因工程学设计

3.2.1视域分析[12]

1)视野

由人因工程学相关理论可知,视野是当人的头部和眼球不动时,人眼能观察到的空间范围,通常以角度表示。在水平面内最大固定双眼视野为180°,扩大的视野为190°,在标准线视线左右各10°—20°视野内可以辨别字,在标准视线左右各5°—30°视野内可以辨别字母,在标准视线左右各30°—60°范围时颜色视野,人最敏锐的视力是在标准视线两侧各1°的视野内。在垂直面内,标准视线为水平视线,最大固定视野为115°,标准视线上方55°,下方60°,扩大的视野为150°,站立时的自然视线低于水平线10°,坐着时自然视线低于水平线15°。人在松弛的状态中,站着和坐着时的自然视线偏离标准视线分别是30°和38°。

2)视距

视距是人在工作过程中正常的观察距离。观察各种显示装置时,视距过远或

过近都会影响认读速度和准确性。一般应根据观察目标的大小和形状以及工作要求确定视距,一般操作的视距范围在380mm—760mm之间,在 560mm处最为宜适宜。观察时头部转动角度,左右均不宜超过45°,上下均不宜超过30°。

3)视区分布[13]

人眼的视区分为水平方向视区和垂直方向视区两部分。

对于水平方向视区,10°以内为最佳视区,此区域内人们辨别物体最清晰;30°以内为良好视区,人们需要集中注意力才能正确辨认物体;120°以内为最大视区(飞行员头部不转动,只以眼睛扫视),对处于120°边缘的物体,人们需要高度集中注意力才能识别。

对于垂直方向视区,视水平线以下10°以内为最佳视区;视水平线向上10°和向下30°的范围内为良好视区;视水平线向上60°和向下70°的范围内为最大视区。

因而,采取坐姿时,仪表板的高度一般不高于视水平线10°,不低于视水平线45°,最好与驾驶员眼高相平。见图6:

图6 坐姿操作时面板与地面的倾角

3.2.2 显示器设计的十三条原则

依据以上人体视域分析的特点,在进行显示器设计时,我们需要结合显示器的物体特性、所支持的任务来实现显示器和显示任务的最佳匹配。以下是设计时需要遵循的十三条基本人因工程学原则:

1)知觉原则:增强显示器的易读性或易听性;避免绝对判断的局限性;注意自上而下加工(心理定势);冗余增益;可辨别性。

2)心理模型:形如其表;运动一致。

3)注意原则:将访问信息的消耗降到最低;接近相容原则;多资源利用原则。

4)记忆原则:利用视觉信息降低记忆负荷;预测辅助原则;显示方式一致性原则。

3.2.3 仪表板显示设计[14]

飞机上装载的主要仪表包括了—高度表、姿态仪、空速表、航向表、坡度位标器和垂直速度指示器,在这些仪表设计中主要采用的人因工程学原理如下:1)一致性原则:现在飞机上装载的驾驶舱仪表都是按照“基本T分布“的形式来排列的,即:姿态仪位于最中心的位置,空速表位于姿态仪左侧,高度表

在右侧,姿态仪下方为航向仪,坡度指示器和垂直速度指示器分别位于姿态仪的左下方和右下方。这种固定的仪表显示方式避免了飞行员在换机型飞行时因仪表排列不同而引起的思维混乱,减少了其查找信息的时间和工作量,方便飞行员迅速做出判断。

2)使用频率准则和重要性原则:驾驶舱仪表的T形分布将使用频率最高,也是最重要的仪表—姿态仪放在最中间,从而在各种情境下都能为飞行员迅速而形象地提供飞机的俯仰和坡度信息。

3)显示相关性或使用顺序准则:驾驶舱仪表的T形分布在姿态仪的四周分列了和它关联最紧密的5个仪表—空速表、高度表、航向仪、坡度指示器和垂直速度指示器,这使使飞行员在进行飞行时能迅速获取所需的全部关键飞行信息,将注意力、心理加工的负荷降到最低,集中在舱内外情境监察和飞机操控上,保证了安全飞行。

3)功能准则:驾驶舱仪表将功能相近或相关的显示器结合在一起,最大限度的减少了飞行员信息加工的负荷量。如:自动定向仪、甚高频全向无线电指向标、水平位置指示器等,它们将航向、气压、飞机高度等信息以刻度、数值等方式结合在一起,确保了飞行员在短时间内一次性收集齐当前飞行任务所需的所有关键信息,节约了时间,也减少了其工作负荷。

4)结构分组原则:仪表板上分布较多仪表时,应将仪表按其功能或操作顺序分为若干个组,分片区布置在仪表板上。各区段间可用不同的线条、不同颜色、不同图案以及较大的间隔空间加以分隔,以方便飞行员的辨认和操作。见图7:

图7 民机仪表板显示器布置框架图

5)指针刻度的显示原则:根据人因工程学设计原则的易读性原则、冗余增益原则、心理定势原则、形如其表原则和利用视觉信息降低记忆负荷原则,指针刻度的设计应有利于飞行员的辨认和判断。首先,刻度的最小值一般应按视角为10°左右来确定,当视距为750Inln时,刻度大约在1~2.5mm来选定,当观察时间很短(0.25~0.5秒)时,刻度可取为2.3~3.8mm间距;其次,仪表刻度代表的相应数值应用数字标在刻度线上,便于识别,对圆形仪表,不论仪表刻度盘运动还是指针运动刻度表述的顺序应按照顺时针方向依次增大,刻度盘上的标数应尽量取整数,避免采用小数和分数;再次,为方便认读和简化显示,仪表指示的形式应符合飞行员的预期心理定势。

4 总结和展望

综上分析,我们可以看到,飞机驾驶舱空间布局的人因工程设计主要是考虑人的生理、心理特点对飞行员操作产生的影响,并在狭小的驾驶舱空间内对各种

显示器、控制器和操纵器进行合理的设计和排列,以方便飞行员及时、准确地获取飞行信息和完成飞行操作,保证飞行安全。驾驶舱空间布局人因工程学设计的宗旨是帮助机组对飞机的安全操作 ,采用直观、高效的系统装置能提高显示器、操纵器设备对飞行员操纵的适应性,帮助机组人员完全意识到整个操纵过程中飞机的状态和飞行路径所发生的改变 ,便于机组即时判断、决策。

从人的因素的角度对驾驶舱内元件的设计和功能分配进行分析,能使系统设计更符合飞行员的躯体结构、生理和心理特征,以便以飞行员为中心,实现人-机界面的最佳匹配,对保证更加高效、安全、舒适的飞行是很有必要的。

当前民用飞机驾驶舱人机接口设计的新动向[15]主要体现在:需要更为直观的图像综合显示;引入平视显示器;对“玻璃驾驶舱”进行改进;采用新技术和先进工具改善人机接口方式。这些新的发展成果表明人因工程学在驾驶舱布局空间设计中正发挥越来越重要的作用,我国进一步的发展趋势是把人因工程学理论融合系统工程学和虚拟现实的技术对驾驶舱仪表设备等进行进一步的改善。

参考文献

[1] 盛菊芳, 人因工程学的命名和定义, 电子安全技术,2006.1: P57.

[2] 刘春荣、齐元胜、杨明忠, 现代制造系统中的人因工程学, 机械设计与制造工程,2002.1(1):P45—47.

[3]C.D 威肯斯,人因工程学导论,华东师范大学出版社(第二版),2007.

[4] 谢正文、吴超, 近十年我国人机工程学研究进展, 工业安全与环保,2003.31(3):P52—54.

[5] 刘伟, 人机工程技术研究的现状与发展趋势, 海淀走读大学学报,2003.4:P77—81.

[6] 袁修干,庄达民,张兴娟,人机工程计算机仿真,北京:北京航空航天大学出版社,2005.4.

[7] 鞠峰,飞机驾驶舱人机工程设计研究,西北工业大学硕士论文,2007.3.

[8] 袁士杰,吕哲勤,多刚体系统动力学,北京:北京理工大学出版社,1992.3.

[9] 陆剑雄,张福昌,申利民,坐姿理论与座椅设计原则及其应用,无锡:江南大学学报(自然科学版),2005.4(6):620一625.

[10] 苏建民,飞机座舱设计的人机交互技术研究,西安:西北工业大学硕士学位论文,2002.3.

[11] 罗晓利,驾驶舱资源管理,西南交通大学出版社,2002.7.

[12] 吴文灿,姜国华,寥国锋等,驾驶舱显示与照明系统人机工效的可靠性设计与分析,北京:航天医学与医学工程,1998.2.

[13] 王丽等,显示器布局对人的视觉识别能力影响的研究,北京航空航天大学,航天工程研究所,2003.

[14] 杜鹃,面向民机驾驶舱人机工程的人体建模关键技术研究,西安:西北工业大学硕士学位论文,2006.3.

[15] 崔为民、薛红军、宋笔锋,飞机驾驶舱设计中的人因工程问题,南华大学学报(理工版),2002.3.

飞行器总体设计试题

一、填空题(25分,每空1分) 1. 飞机设计可分为3个阶段,分别是 (1) 、 (2) 、 (3) 。 2. 最重要的三个飞机总体设计参数是 (4) 、 (5) 、 (6) 。 3. 飞机空机重量可分为3部分,分别是 (7) 、 (8) 、 (9) ,飞机空机重量系数随起飞重量的增加而 (10) 。 4. 在飞机重心的第一次近似计算中,如果飞机重心不在规定的范围内,则须对飞机重心进行调整。调整飞机重心最常用的2种方法是 (11) 、 (12) 。 5. 超音速进气道的压缩方式有3种,分别是: (13) 、 (14) 和 (15) 。 6. 喷气式飞机在 (16) 状态下达到最远航程,此时其翼载荷为 (17) ;螺旋桨飞机在 (18) 状态下达到最远航程,此时其翼载荷为 (19) (假设飞机的极曲线为)。 7. 要缩短飞机起飞/着陆滑跑距离,可以采用 (20) 翼载荷 的方法。 8. 亚音速飞机的最大升阻比取决于 (21) 。 9. 进气道总压恢复系数是 (22) 与 (23) 之比。 10. 从飞机设计的角度来看,对发动机的主要设计要求可归结为2个方面,即要求发动机的 (24) 大和 (25) 大。 二、选择题(20分,每题1分,正确的选择“+”,错误的选择“-”) 1. 减小翼载荷对飞机的巡航性能有利。 2 0y x x C A C C ?+=

(+) (-) 2. 将喷气式发动机安装到飞机上,需要考虑装机修正和推进装置阻力。(+) (-) 3. 进气道的功用是将流入进气道的空气减速增压。(+) (-) 4. 机身结构重量大致与机身浸湿面积成正比。(+) (-) 5. 现代战斗机上常使用高涵道比的涡扇发动机。(+) (-) 6. 飞机起飞重量一定时,增加飞机的航程和航时会降低飞机的机动性。(+) (-) 7. 飞机的寿命周期成本包括研制成本和使用维护成本两部分。(+) (-) 8. 如技术水平一定,则飞机设计要求都要以一定的重量代价来实现。(+) (-) 9. 飞机的载油量是根据飞机所执行任务的任务剖面要求确定的。(+) (-) 10. 超音速飞行时,涡轮风扇发动机的耗油率小于涡轮喷气发动机。(+) (-) 11. 前三点式起落架几何参数选择时,应考虑的主要因素之一是防止飞机翻倒和防止飞机倒立。(+) (-) 12. 飞机起落架的重量一般占该机起飞重量的15%左右。(+) (-) 13. 雷达隐身飞机要求减小镜面反射和角反射器反射。(+) (-) 14. 按面积律设计的飞机能减小跨音速波阻。(+) (-) 15. 满足设计要求的起飞重量最小的飞机是设计先进的。(+) (-) 16. 设计要求不变时,结构重量增加1千克使飞机起飞重量也增加1千克。(+) (-)

飞机起落架设计(中英文对照)

Aircraft Landing Gear Layouts 飞机起落架设计(中英文对照图) 发布人:圣才学习网发布日期:2010-06-25 14:36 共292人浏览[大] [中] [小] Most aircraft today have three landing gear. 许多现代飞机使用三点式起落架。 Two main landing gear struts located near the middle of the aircraft usually support about 90% of the plane’s we ight while a smaller nose strut supports the rest. 重心附近的两个大的主轮,承担约90% 的重量,小轮子承担余下部分。 This layout is most often referred to as the "tricycle" landing gear arrangement.However,there are numerous other designs that have also been used over the years,and each has its own advantages and disadvantages.Let’s take a closer look at the various undercarriage options available to engineers. 目前的飞机以前三点起落架为主,让我们来回顾一下后三点起落架及其优缺点。(意译) Tail wheel or Tail dragger Gear 后三点尾轮式与后三点尾橇式起落架 Though the tricycle arrangement may be most popular today,that was not always the case.The tail wheel undercarriage dominated aircraft design for the first four decades of flight and is still widely used on many small piston-engine planes. 虽然前三点起落架比较普遍,但是在几十年前的飞机,及当今的许多小型飞机是使用后三点起落架的。 The taildragger arrangement consists of two main gear units located near the center of gravity (CG)that support the majority of the plane’s weight. 后三点起落架,由两个在重心靠前位置的主轮支持大部分的飞机重量。 A much smaller support is also located at the rear of the fuselage such that the plane appears to drag its tail,hence the name. 一个非常小的尾轮装置在机身,看上去这个小轮子是被拖着走,所以,英文Taildragger 也因此而得名。 This tail unit is usually a very small wheel but could even be a skid on a very simple design.它即可以是一个小尾轮,也可以是一个尾橇。

航天器总体设计答案总结(新)

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题) 1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。 4)新技术(关键技术):尚未在卫星上使用过的技术。 6、航天器总体方案设计阶段的主要工作。 1)用户使用要求及技术指标要求的确定。 2)总体方案的确定。 3)总体技术指标的分析、分配及预算。 4)分系统方案及技术指标的确定。

飞机起落架结构及其系统设计

本科毕业论文题目:飞机起落架结构及其故障分析 专业:航空机电工程 姓名: 指导教师:职称: 完成日期: 2013 年 3 月 5 日

飞机起落架结构及其故障分析 摘要:起落架作为飞机在地面停放、滑行、起降滑跑时用于支持飞机重量、吸收撞击能量的飞机部件。为适应飞机起飞、着陆滑跑和地面滑行的需要, 起落架的最下端装有带充气轮胎的机轮。为了缩短着陆滑跑距离,机 轮上装有刹车或自动刹车装置。同时起落架又具有空气动力学原理和 功能,因此人们便设计出了可收放的起落架,当飞机在空中飞行时就 将起落架收到机翼或机身之内,以获得良好的气动性能,飞机着陆时 再将起落架放下来。本文重点介绍了飞机的起落架结构及其系统。对起落 架进行了系统的概述,对起落架的组成、起落架的布置形式、起落架的收 放形式、起落架的收放系统、以及起落架的前轮转弯机构进行了系统的论 述。并且给出了可以借鉴的起落架结构及其相关结构的图片。 关键词:起落架工作系统凸轮机构前轮转弯收放形式

目录 1. 引言 (1) 2. 起落架简述 (1) 2.1 减震器 (1) 2.2 收放系统 (1) 2.3 机轮和刹车系统 (2) 2.4 前三点式起落架 (2) 2.5 后三点式起落架 (3) 2.6 自行车式起落架 (5) 2.7 多支柱式起落架 (5) 2.8 构架式起落架 (6) 2.9 支柱式起落架 (6) 2.10 摇臂式起落架 (7) 3 起落架系统 (7) 3.1 概述 (7) 3.2 主起落架及其舱门 (7) 3.2.1 结构 (8) 3.2.2 保险接头 (8) 3.2.3 维护 (8) 3.2.4 主起落架减震支柱 (8) 3.2.5 主起落架阻力杆 (9) 3.2.6 主起落架耳轴连杆 (10) 3.3 前起落架和舱门 (10) 3.4 起落架的收放系统 (10) 3.4.1起落架收放工作原理 (10) 3.4.2 起落架收放过程中的的液压系统 (11) 3.4.3 主起落架收起时的液压系统工作过程 (12) 3.4.4 主起落架放下时的液压系统工作原理 (13) 3.4.5 在液压系统发生故障时应急放起 (14) 3.4.6 起落架收放的工作电路 (15) 3.5 前轮转弯系统 (17) 3.5.1 功用 (17) 3.5.2 组成 (17) 3.5.3 工作原理 (17) 3.6 机轮和刹车系统 (17) 4 歼8飞机主起落架机轮半轴裂纹故障分析 (17) 4.1 主起落架机轮半轴故障概况 (17) 4.2 主起落架机轮半轴失效分析 (18) 4.3 机轮半轴裂纹检测及断口分析 (20) 4.3.1 外场机轮半轴断裂检查 (20) 4.3.2 大修厂机轮半轴裂纹检查 (21) 4.4 主起落架机轮半轴疲劳试验结果 (22) 4.4.1 机轮半轴疲劳试验破坏部位 (22)

北航飞行器设计与应用力学系.doc

航空科学与工程学院 2016年研究生入学考试复试大纲 一、复试方式:笔试+面试 二、复试组织: 1、笔试:由航空学院统一组织,考试科目及复试大纲另见《航空科学与工程学院2013年考研复试安排》。 2、口试:以学科专业组为单位,由3-5位硕士生导师组成面试小组(组长为教授),每位考生的面试时间为20分钟。 三、复试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;考生可以提供有助于证明自己背景和能力的相关材料,证件和材料完备是面试的必要条件。 2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生用英文回答问题。 3)考生朗读一段考场指定的专业外语短文,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生用中文回答问题。 5)面试小组老师就专业知识提问,学生用中文回答问题。 面试结束后考生退场,在3-5个工作日后见航空学院网站“招生就业”栏目的“研究生招生”,会通知出学院的拟录取名单,在7层的研究生教学橱窗也会公布。 四、考场纪律 考生准时到达指定的复试考场,遵守考场秩序,尊重考试教师。 五、各学科专业组具体复试内容及参考书: 1、飞行力学与飞行安全系2016年硕士研究生入学复试程序 方式: 由3~6位硕士生导师组成面试小组,每位考生的面试时间为20分钟。 范围: 面试范围包括英语口语能力、专业英语阅读理解能力、专业基础理论知识和专业知识。具体环节如下: 1)对考生学习背景、心理、爱好和志愿等基本情况的了解。 2)考察考生的英语阅读和口头表达能力。

3)基础理论和专业知识面试。基础理论包括自动控制原理、理论力学和材料力学。专业知识包括飞行力学、飞行安全、飞行器总体设计、空气动力学等。 参考书: 基础理论可以选用任何一本考生熟悉的《自动控制原理》、《理论力学》、《材料力学》教材。专业课可以参考《飞机飞行动力学》(熊海泉编)或《飞机飞行性能》、《飞机的稳定与控制》等方面的参考书。 面试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;证件和材料完备是面试的必要条件。2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生回答问题。 3)读一段指定的专业外语,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生回答问题。 5)面试小组老师就专业知识提问,学生回答问题。 6)问答结束后,考生退场,面试老师根据考核要求和面试情况,对考生进行评分。 7)所有考生面试结束后,面试老师根据总体情况,对所有考生进行综合评估和比较,给出面试成绩。 2、人机与环境工程/制冷及低温工程2016年硕士研究生入学复试程序 方式: 由3~5位硕士生导师组成面试小组,每位考生的面试时间为20分钟。 范围: 1)英语阅读和口头表达能力。 2)对考生心理、基本情况的了解。 3)基础理论和专业知识面试。基础理论包括:自动控制原理,理论力学,流体力学;专业知识包括工程热力学,传热学,人机工程,低温制冷。考生可以选择其中1门基础理论和1门专业课作为面试内容,或者是综合知识。 参考书: 可以选用任何一本考生熟悉的《自动控制原理》、《理论力学》、《流体力学》教材。专业课可以选用考生熟悉的《工程热力学》,《传热学》,《人机工程》,低温制冷等方面的参考书。 面试流程和评分标准: 1)检查并核实考生面试所必备的个人证件和材料;证件和材料完备是面试的必要条件. 2)考生用英语口述个人基本情况、兴趣等,面试小组老师就考生基本情况提问,考生回答问题。 3)读一段指定的专业外语,并口头翻译成中文。 4)面试小组老师就基础理论知识提问,学生回答问题。 5)面试小组老师就专业知识提问,学生回答问题。 6) 问答结束后,考生退场,面试老师根据考核要求和面试情况,对考生进行评分。

飞机起落架的设计分析

[键入公司名称] [键入文档标题] [键入文档副标题] [键入作者姓名] 姓名:龙玉 起落架的结构,布置型式,疲劳强度研究,动力学研究,设计与分析

目录 一.引言……………………………………………………………………………………………………………………………..2二.起落架结构概述…………………………………………………………………………. .2 1.结构 (2) ①.承力支柱、减震器 (2) ②.收放系统 (2) { ③.机轮和刹车系统 (2) ④.转弯系统 (2) 2.布置型式 (3) ①.前三点式起落架 (3) ②.后三点式起落架 (3) ③.自行车式起落架 (3) ④.多支柱式起落架 (3) '

3.结构分类 (4) 三.起落架研究现状与发展趋势 (4) (一). 疲劳破坏的相似规律…………………………………………………………………………………………. 5 1.疲劳强度的统计估算 法………………………………………………………………………………………………………… (5) 2.起落架结构材料疲劳破坏相似规律的研 究 (5) (二). 起落架动力学的分析方法 (6) & (三). 起落架设 计………………………………………………………………………………………… (6) 1.主起落架长度与防翻角的关 系 (6) 2.主起落架长度与尾座角的关 系 (6) 3.主起落架长度与侧翻角的关 系 (6) (四). 发展趋 势………………………………………………………………………………………… (8) ^ 四.总结 (8) 五.参考文

献 (8) / 飞机起落架的设计分析 一.引言 起落架是航空器下部用于起飞降落以及滑行时支撑航空器并用于移动的附件装置。起落架是唯一一种支撑整架飞机的部件,因此它是飞机不可分缺的一部份;随着飞行器设计和制造技术的发展,起落架也在不断的改进和创新之中。 在二战以前,由于飞机的飞行速度较低,所以当时的起落架在飞机飞行的时候也可以暴露在外面,这样对飞行性能的影响不太大,所用的技术要求不高。但二战后随着科技的井喷式的发展,飞机的飞行速度大幅度提高。速度的不断提升引起以致到超音速的阶段,由此伴随着的空气阻力也随之增大。为减小空气阻力,人们便设计出了可收放的起落架。尽管起可以收放的起落架加大了飞机的重量,但从整体来说这大大促进了飞机的飞行的进步。 二.起落架结构概述 1.结构 为了缩短着陆滑跑距离,机轮上装有刹车或自动刹车装置。此外还包括 ①.承力支柱、减震器(常用承力支柱作为减震器外筒):减震器即为飞行器在着陆或在不平坦的跑到上运动时用来消减飞机摇摆震动的结构以防止飞机颠簸。当减震器受撞击压缩时,空气的作用相当于弹簧,贮存能量。 、

北航-飞行器总体设计期末整理

1.飞机设计的三个主要阶段是什么?各有些什么主要任务? ?概念设计:飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能、方案评估、参数选择与权衡研究、方案优化 ?初步设计:冻结布局,完善飞机的几何外形设计,完整的三面图和理论外形(三维CAD模型),详细绘出飞机的总体布置图(机载设备、分系统、载荷和结构承力系统),较精确的计算(重量重心、气动、性能和操稳等),模型吹风试验 ?详细设计:飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产 2.飞机总体设计的重要性和特点主要体现在哪些方面? ?重要性:①总体设计阶段所占时间相对较短,但需要作出大量的关键决策②设计前期的失误,将造成后期工作的巨大浪费③投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本?特点(简要阐述) ①科学性与创造性:飞机设计要应用航空科学技术相关的众多领域(如空气动力学、材料学、自动控制、动力技术、隐身技术)的成果;为满足某一设计要求,可以由多种可行的设计方案。 ②反复循环迭代的过程 ③高度的综合性:需要综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调 3.B oeing的团队协作戒律 ①每个成员都为团队的进展与成功负责 ②参加所有的团队会议并且准时达到 ③按计划分配任务 ④倾听并尊重其他成员的观点 ⑤对想法进行批评,而不是对人⑥利用并且期待建设性的反馈意见 ⑦建设性地解决争端 ⑧永远致力于争取双赢的局面(win-win situations) ⑨集中注意力—避免导致分裂的行为 ⑩在你不明白的时候提问 4.高效的团队和低效的团队 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常、坦诚的和建设性的,不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题1. 氛围-互不关心/无聊或紧张/对抗 2. 少数团队成员居于支配地位 3. 旁观者难以理解团队的目标 4. 团队成员不互相倾听,讨论时各执一词 5. 分歧没有被有效地加以处理 6. 在真正需要关注的事情解决之前就贸然行动 7. 行动:不清晰-该做什么?谁来做? 8. 领导者明显表现出太软弱或太强硬 9. 提出批评的时候令人尴尬,甚至导致对抗 10. 个人感受都隐藏起来了 11. 集团对团队的成绩和进展不进行检查 5.飞机的设计要求有哪些基本内容? ①飞机的用途和任务 ②任务剖面 ③飞行性能 ④有效载荷⑤功能系统 ⑥隐身性能要求 ⑦使用维护要求 ⑦机体结构方面的要求 ⑦研制周期和费用 ⑦经济性指标 11环保性指标 6.飞机的主要总体设计参数有哪些? ①设计起飞重量W0 (kg)②动力装置海平面静推力T (kg)③机翼面积S (m2) 组合参数④推重比T/W0⑤翼载荷W0 /S (kg/m2) 7.毯式图的 步骤 ①保持推重比不变,改变翼载(x轴变量),获得总重曲线(y轴变量) ②推重比更改为另一个值后确定不变,改变翼载(x轴变量),获得总重(y轴变量)。同时需将y轴向左移动一任意距离。

飞机前起落架驱动系统设计与性能分析

飞机前起落架驱动系统设计与性能分析 陈炎 南京航空航天大学,南京 210000 摘要:本文以大型民机起落架液压系统为研究对象,结合具体设计要求,采用电力传动技术,设计了一套起落架收放系统的新型驱动系统。本系统还利用一套双余度电控应急方案取代了传统的钢索滑轮应急放机构,并针对其蜗轮蜗杆传动机构进行了初步设计。最后在https://www.doczj.com/doc/6a3848075.html,b和https://www.doczj.com/doc/6a3848075.html,b软件平台上分别建立起落架收放机构及其控制系统的联合仿真模型,并分别对系统在正常收放和应急放模式下的性能进行仿真分析,初步实现了飞机收放系统的机电液一体化仿真。通过本文的研究工作,可以为飞机起落架液压系统的改进提供了一些有价值的经验和结论,为进一步的优化设计和试验工作奠定了的基础,对我国飞机起落架相关设计工作提供了技术支持。 关键词:民机起落架、系统设计、Virtual Lab Motion、Amesim、联合仿真 0前言 起落架系统在飞机滑跑起飞、着陆时支撑飞行器重量、承受着当飞机与地面接触时产生的静、动载荷、吸收和消耗飞机在着陆撞击、跑道滑行等地面运动时所产生的能量,在减缓飞机发生振动,降低飞机地面载荷,提高乘员舒适性,保证飞机飞行安全等方面发挥着极其重要的作用,是飞机设计过程中的重要环节。传统的飞机起落架设计中一般采用液压驱动装置。液压系统具有技术成熟、输出功率大、动态响应好、定位精度高的优点,但是由于液压系统采用了集中式液压源,飞机全身布满液压管路、造成其易泄露、易污染、易燃、结构复杂、重量大等问题,同时为了维持输出,液压系统需要工作在连续模式下,这使得其利用率很低,由此可见液压系统的可靠性问题成为了整个飞机系统中的薄弱环节之一,致使飞机不得不采用多余度作动系统,这又带来了重量、体积增加等新的问题。 近些年来,随着“功率电传”系统的不断发展,国外提出了“多电或者全电”驱动的设计思路。利用多电/全电技术,广泛采用电力作动器和功率电传技术,可以取代飞机上机械传动、气压、液压和润滑系统,从而大大减少飞机的重量和复杂性,可使飞机的可靠性、维修性、效率、生存能力和灵活性大为改善,同时由于燃油消耗量的减少、飞机出勤率的提高,可明显节省飞行成本。 目前,用于飞行控制、环境控制、刹车、燃油和发动机启动系统的电力作动系统已得到验证,国外也已经开始对飞机起落架驱动系统进行研究,他们预测用新型电力作动系统取代原来的液压系统将显着提高起落架系统的可靠性。可以说起落架驱动系统全电化的实现,无论对我国民用还是军用飞机性能的提高都具有重要的意义,是未来飞机起落架系统发展的新趋势。 本文以我国大型民机为设计背景,以多电/全电飞机为设计思想,针对飞机起落架驱动系统开展分析、设计和仿真工作,初步形成一套集机电一体化设计、仿真、分析流程。 1驱动系统方案设计 1.1起落架驱动系统设计要求 飞机前起落架驱动系统的主要作用是实现起落架的收放和转弯功能。传统的前起落架驱动系统是通过集中液压源进行驱动的,但随着目前飞机向全电/多电化方向发展的趋势,飞机内不再设有集中液压源,所以原有的液压系统就需要重新设计。以起落架收放系统为例,其设计要求如下: 飞机起落架收放系统的主要作用是在飞机起飞离地后,将起落架及起落架舱门收起并上锁,在飞机着陆前,打开舱门控制起落架放下并上锁,是飞机中的关键系统之一。同时,收放系统在起落架收起过程中,能控制起落架及相关部件(如舱门)按顺序开、关。 飞机前起落架收放系统的具体设计要求是:

飞机驾驶舱操纵装置布局优化

飞机驾驶舱操纵装置布局优化 白 穆 庄达民 (上海飞机设计研究所,北京航空航天大学大型飞机高级人才培训班) 摘要:针对我国即将开展的大飞机开发与研制,对飞机驾驶舱内操纵装置优化布局开展了研究探讨。首先,确定研究对象为具备中国运输机飞行员关键尺寸特点的人体模型,并采用5中国男性飞行员人体尺寸GJ B4856-20036作为该人体模型尺寸数据依据。从工效角度评测人体可操纵部件的布置最大可达范围及手的舒适操纵范围;依据上述操纵范围原则,采用计算机图形学软件和人机工效软件J ACK 对驾驶舱布局中操纵装置布局进行相关性配置及工效分析验证,分别从不同百分位驾驶员的手的操纵可达域和第50百分位驾驶员当操纵部件处于中立位置时的腰椎受力分析探讨了操纵装置布局的合理性;利用人体简易力学模型对驾驶员处于操纵中立位置时的腰椎受力进行了计算,得到操纵布置布局仍具备合理性的结果。 关键词:驾驶舱;操纵装置;布局;J ACK;腰椎受力 0 引言 飞机驾驶舱是飞机驾驶员工作的地方,同时也是整架飞机的核心。如何在满足工作要求的前提下减轻驾驶员的疲劳度和提高工效是人机工程重点关注的内容。 在设计经验匮乏的条件下,座舱布局等的计算仿真将成为一种实用和有效的手段,以达到使操纵作业满足高效、安全和舒适等要求的目的。应用计算机辅助设计进行作业域的设计与评价,可以在设计初期进行工效学分析,提高设计的效率,及时发现并纠正错误,缩短设计周期和降低研制费用等。 1 基于J ACK 的操纵部件布局分析 /中国男性飞行员人体尺寸0 [1] 规定了中国男 性飞行员人体尺寸数据,适用于与中国男性飞行员人体尺寸数据有关的飞机座舱、座椅、舱室布局等空间和尺寸的设计。参照5中国男性飞行员人体尺寸GJB4856)20036中运输机飞行员第5、50、95百分位人体尺寸数据建立了我国民用客机飞行员人体模型。创建人体模型如图1所示,并在今后的研究中以此人体尺寸模型为驾驶舱操纵装置布局工效评价研究对象。 操纵装置一般指飞机的操纵杆、油门杆和脚踏。驾驶员通过操纵装置来控制和操纵飞机,将操纵杆、油门杆处于手可触及的范围和脚踏处于足运动范围内是先决条件,因此明确手、足的可达域对布置操纵 装置显得尤为重要。 图1 Jack 中国人体模型 手可达域是以肩关节为转心、手为端点的半椭球面,旋转部件为包括上臂、前臂和手的连接结构,受到人体自身条件的限制,各部件相对转动角度处 于特定范围内,形成的可达域是近似、不规则的。X 向最大距离为800mm;Y 向最大距离为1140mm;Z 向最大距离为1300mm 。以座椅底面与靠背相交线中心点作为座椅中立位置参考点(0,0,0),绘制不同高度各水平面可达域,如图2所示。各个不同高度的操作部件布置应满足处于该高度可达域曲线范围内,例如距离座椅参考点30c m 的可达域曲线近似轨迹公式为: x =-0.0169y 2 +0.6616y +52.3401 =-0.0169(y -19.57)2+58.8152 (1) 152 民用飞机设计与研究 C ivil A ircraft Design and R esearch

飞机总体设计课程设计报告

国内使用的喷气式公务机设计 班级: 0111107 学号: 011110728 姓名:于茂林

一、公务机设计要求 类型 国内使用的喷气式公务机。 有效载重 旅客6-12名,行李20kg/人。 飞行性能: 巡航速度: 0.6 - 0.8 M 最大航程: 3500-4500km 起飞场长:小于1400-1600m 着陆场长:小于1200-1500m 进场速度:小于230km/h 据世界知名的公务机杂志B&CA发布的《2011 Purchase Planning Handbook》,可以将公务机按照价格、航程、客舱容积等数据分为超轻型、轻型、中型、大型、超大型。 根据设计要求,可以确定我们设计的公务机属于轻型公务机:价格在700-1800万美元、航程在3148-5741公里、客舱容积在8.5-19.8立方米的公务机。与其他公务机相比,轻型公务机主要靠较低的价格、低廉的运营成本、在较短航程内的高效率来取得竞争优势。 由此,从中选出一些较主流机型作为参考 二、确定飞机总体布局 1、参考机型 庞巴迪航空:里尔45xr、里尔60xr 巴西航空:飞鸿300、 塞斯纳航空:奖状cj3 机型座位数巡航速度M 起飞场长m 着陆场长m 航程km 最大起飞重量kg 里尔45XR 9 0.79 1536 811 3647 9752 里尔60XR 9 0.79 1661 1042 4454 10659 飞鸿300 9 0.77 1100 890 3346 8207 奖状CJ3 9 0.72 969 741 3121 6300

2、可能的方案选择: 正常式 前三点起落架 T型平尾 / 高置平尾 + 单垂尾 尾吊双发涡轮喷气发动机 / 翼吊双发喷气发动机 / 尾吊双发喷气发动机 小后掠角梯形翼+下单翼 / 小后掠角T型翼+中单翼 / 直机翼+上单翼 3、最终定型及改进 1)正常式、T型平尾、单垂尾 ①避免机翼下洗气流和螺旋浆滑流的影响:1、减小尾翼振动;2、减小尾翼结构疲劳;3、避免发动机功率突然增加或减小引起的驾驶杆力变化 ②“失速”警告(安全因素) ③外形美观(市场因素) ④由于飞机较小,平尾不需要太大,对垂尾的结构重量影响不大 2)小后掠角梯形翼(带翼梢小翼)、下单翼 ①本次公务机设计续航速度0.6-0.8M,处于跨音速范围,故采用小展弦比后掠翼,后掠角大约30左右,能有效地提高临界M数,延缓激波的产生,避免过早出现波阻。 ②翼梢小翼的功能是抵御飞机高速巡航飞行时翼尖空气涡流对飞机形成的阻力作用,提高机翼的高速巡航效率,同时达到节油的效果。 ③采用下单翼,起落架短、易收放、结构重量轻;发动机和襟翼易于检查和维修;从安全考虑,强迫着陆时,机翼可起缓冲作用;更重要的是,因为公务机下部无货物仓,减轻机翼结构重量。 3)尾吊双发涡轮喷气发动机,稍微偏上 ①主要考虑对飞机的驾驶比较容易,座舱内噪音较小,符合易操纵性和舒适性的要求。 ②机翼升力系数大 ③单发停车时,由于发动机离机身近,配平操纵较容易; ④起落架较短,可以减轻起落架重量。 ⑤由于机翼与客舱地板平齐有点偏高,为了使发动机的进气不受影响,故将发动机安排的稍稍偏上。 4)前三点起落架,主起落架安装在机翼上 ①适用于着陆速度较大的飞机,在着陆过程中操纵驾驶比较容易。 ②具有起飞着陆时滑跑的稳定性。 ③飞行员座舱视界的要求较容易满足。 ④可使用较强烈的刹车,缩短滑跑距离。

歼七起落架故障分析

长沙航空职业技术学院毕业设计(论文) 歼七飞机起落架收放系统故障分析 系别航空装备维修工程系 专业飞机附件维修 姓名 班级 指导老师 及职称李向新 二〇一一年××月×××日 长沙航空职业技术学院

毕业设计(论文)任务书

毕业设计(论文)任务书 (2) 摘要................................. 错误!未定义书签。第1章歼七飞机前起落架自动收起的故障研究错误!未定义书签。 1.1起落架收放控制原理分析 ....................... 错误!未定义书签。 1.2起落架自动收起原因分析 ......................... 错误!未定义书签。 1.2.1电液换向阀性能不良 .............................. 错误!未定义书签。 1.2.2系统不完整,回油路堵死 ...................... 错误!未定义书签。 1.3 故障验证 .................................................... 错误!未定义书签。 1.4 维修对策 .................................................... 错误!未定义书签。第2章数据符合规定前起落架为何放不下错误!未定义书签。 2.1地面检查和模拟试验情况 ......................... 错误!未定义书签。 2.2原因分析 ..................................................... 错误!未定义书签。 2.3 结论............................................................. 错误!未定义书签。 第3章总结 (3) 参考文献............................... 错误!未定义书签。致谢错误!未定义书签。

人因工程学在飞机驾驶舱空间布局设计中的应用

人因工程学在飞机驾驶舱空间布局设计中 的应用 摘要:本文在回顾现有驾驶舱设计中人因工程学主要研究方法的基础上,着重探讨了飞机驾驶舱空间布局设计中人因工程设计原则的具体应用,并对这些设计方法的优劣进行对比和评价,最后提出设计中需要注意的若干问题。 关键词:人因工程学;研究方法;空间布局设计 The application of Human Factors Engineering in the cockpit space layout design Abstuction: Based on reviewing the existing primary research method of Human Factors Engineering on the cockpit designing, this article discussed the Human Factors Engineering principle and it’s specific using of aircraft cockpit space layout design, and evaluate the superiority of comparison, finally puts forward some problems need to be taken attention. Keys: Human Factors Engineering; research method; space layout design 1 引言 根据台湾工效学学会的定义,人因工程是指“了解人的能力与限制,以应用于工具、机器、系统、工作方法和环境之设计,使人能在安全舒适及合乎人性的状况下,发挥最大工作效率和使用效能,并提高生产力及使用者的满意度的学科领域。”已有的研究表明,人因工程学在增进系统安全,提高人员满意度,和提高系统绩效等方面能发挥很大的作用[1]。 人因学最初的研究范围比较狭小,只涉及军事、工业领域人—机界面交互的一些问题,目前的研究范围已得以扩大,与人类工效学、工程心理学及认知工程学等学科有着紧密的联系,并在核工业、汽车设计、风险评估、航空领域等都产生了广泛的影响。

飞行器总体设计教学大纲

《飞行器总体设计》教学大纲 学时数:64学时讲授 授课对象:飞行器设计工程专业大学本科 前期课程:理论力学、材料力学、结构力学、自动控制原理、空气动力学与 飞行性能计算 一、课程地位:本课程是飞行器设计工程专业必修的专业主干课,是一门综 合性、实践性很强的课程。它要求学生在学习本课程中总体设计知识的同时,紧 密结合前期课程中的基础理论,学习和掌握飞机总体设计的一般思路、原理和方法。促进学生把理论和知识、技能转化为飞机总体设计能力的结合点,是培养学 生分析工程实际问题和工程设计能力的重要环节。 二、课程任务:教授现代飞机总体的现代设计原理、综合设计思想理念和设 计技术;培养学生在综合运用广泛理论的基础上对工程实际问题的分析能力、分 析评价方法和设计能力,以及接受和适应深层次设计技术发展的能力;锻炼、培 养学生辩证逻辑思维、创造性思维和系统工程思维。 课程要求:在设计原理、概念、方法等基础方面强调系统全面、深刻精炼、 科学逻辑的有机结合,要使学生能真正掌握和运用;强调理论与实际的有机结合; 强调理论知识综合运用能力的培养,加强主动式教学,启发学生主观能动性,利 用现代技术的高信息含量使学生更多了解国内外飞机总体设计技术和前沿学科 的发展;最终使学生基本掌握现代飞机总体设计的先进设计思想、设计理论和设 计技术,着力于工程设计能力的培养。 三、课程内容: 第一章绪言(2) 1、理解“飞机总体设计”的基本含义,本课程的特点,以及学习本课程的 目的与任务。 2、初步建立如飞机设计阶段、特点等基本概念。 第二章设计的依据与参数选择(8) 1、了解飞机的设计要求 2、了解飞机的设计规范 3、熟悉飞机的总体技术指标 4、掌握飞机总体设计的参数选择

北航飞机总体设计第2次作业

1、飞机设计的三个主要阶段是什么?各有些什么主要任务? 答:飞机设计分为概念设计、初步设计、详细设计三个阶段;在概念设计阶段主要解决飞机的布局与构型,主要参数,发动机、装载的布置,三面图,初步估算性能,方案评估,参数选择与权衡研究,方案优化等问题;初步设计阶段进行飞机冻结布局,完善飞机的几何外形设计、完整的三面图和理论外形(三维CAD 模型),详细绘出飞机的总体布置图,机载设备,分系统,载荷和结构承力系统,较精确的计算,(重量重心、气动、性能和操稳等),模型吹风试验;详细设计阶段包括飞机结构的设计和各系统的设计,绘出能够指导生产的图纸,详细的重量计算和强度计算报告,大量的实验,准备原型机的生产。 2、飞机总体设计的重要性和特点主要体现在哪些方面? 答:飞机总体设计的重要性主要体现在:概念设计阶段就已经确定了整架飞机的布置;总体设计阶段所占时间相对较短,但需要作出大量的关键决策;设计前期的失误,将造成后期工作的巨大浪费;投入的人员和花费相对较少,但却决定了一架飞机大约80%的全寿命周期成本。 其特点表现为:科学性与创造性(应用航空科学技术相关的众多领域(如空气动力学、结构力学、材料学、自动控制、动力技术、隐身技术)的成果);是一个反复循环迭代的过程;高度的综合性(综合考虑设计要求的各个方面,进行不同学科专业间的权衡与协调); 3、 Boeing的团队协作戒律有哪些? 答:1. 每个成员都为团队的进展与成功负责; 2. 参加所有的团队会议并且准时达到; 3. 按计划分配任务; 4. 倾听并尊重其他成员的观点; 5. 对想法进行批评,而不是对人; 6. 利用并且期待建设性的反馈意见; 7. 建设性地解决争端; 8. 永远致力于争取双赢的局面; 9. 集中注意力—避免导致分裂的行为; 10. 在你不明白的时候提问。 4、高效的团队和低效的团队各有什么表现? 答:高效的团队表现为 1. 氛围-非正式、放松的和舒适的 2. 所有的成员都参加讨论 3. 团队的目标能被充分的理解/接受 4. 成员们能倾听彼此的意见 5. 存在不同意见,但团队允许它的存在 6. 绝大多数的决定能取得某种共识 7. 批评是经常的、坦诚的和建设性的;不是针对个人的 8. 成员们能自由地表达感受和想法 9. 行动:分配明确,得到接受 10. 领导者并不独裁 11. 集团对行动进行评估并解决问题。 低效的团队 1. 氛围-互不关心/无聊或紧张/对抗

飞机起落架结构优化设计及制造加工

2011 年春季学期研究生课程考核 起落架结构优化设计及制造加工 关键词:起落架设计改进制造技术 为满足某型飞机的研制需要,采用现代起落架的设计理念,在保持原起落架结构以及起落架与飞机的协调关系(连接形式、接口尺寸、电液和操作习惯)等方面基本不变的情况下,从设计、T艺方面进行改进,达到了增强承载能力、减轻重量和提高寿命的目的。试验验证和装机使用表明,改型后的飞机起落架性能优于原型机的性能,实现了减重、增寿,以及增强飞机使用安全性的目标。 1 设计改进 根据飞机起落架改进技术方案要求,在保证飞机安全性的前提下,尽量减轻起落架的重量,并达到增寿的目的。经设计分析和计算,对不满足强度要求的零部件进行加强改进,对强度较富裕的零部件进行减重改进。 1.1 缓冲支柱优化设计 飞机着陆蕈量的增加,相应引起起落架吸收动量增加,导致起落架着陆冲击载荷的增加。为了尽可能地降低着陆冲击过载,须对起落架的缓冲系统进行优化设计。为此,在充分利用原结构的前提下,进行缓冲器充填参数、阻尼油针的优化设计,选取多组缓冲结构并通过落震试验验证。通过一系列比较和验证,阻尼油针选用圆角方形截面结构,如图1所示。该油针的选用,使飞机起落架阻尼特性稳定、磨损小,同时提高了缓冲器系统承载能力。 1.2部分零(组)件结构重新设计 对起落架的部分零(组)件结构重新进行设计,改善了零件的受力状态,从而提高了起落架的承载能力。如将主起落架斜撑杆由刚性结构改为弹性结构,以改善起落架斜撑杆的协调承载能力,减少结构不 圈1圆角方形截面油针 Fig.1 Square section pin with round comer 协调引起的结构超载损伤,降低中部接头的应力水平,提高主起落架外筒中部接头的寿命。改进前后的结 构如图2、图3所示。 图2刚性斜撑杆(原结构) Fig.2 Rigid batter brace(original structure)

人因工程学在飞机设计中的应用

人因工程学在飞机驾驶舱空间布局设计中的应用摘要:本文在回顾现有驾驶舱设计中人因工程学主要研究方法的基础上,着重探讨了飞机驾驶舱空间布局设计中人因工程设计原则的具体应用,并对这些设计方法的优劣进行对比和评价,最后提出设计中需要注意的若干问题。 关键词:人因工程学;研究方法;空间布局设计 The application of Human Factors Engineering in the cockpit space layout design Abstuction: Based on reviewing the existing primary research method of Human Factors Engineering on the cockpit designing, this article discussed the Human Factors Engineering principle and it’s specific using of aircraft cockpit space layout design, and evaluate the superiority of comparison, finally puts forward some problems need to be taken attention. Keys: Human Factors Engineering; research method; space layout design

1 引言 根据台湾工效学学会的定义,人因工程是指“了解人的能力与限制,以应用于工具、机器、系统、工作方法和环境之设计,使人能在安全舒适及合乎人性的状况下,发挥最大工作效率和使用效能,并提高生产力及使用者的满意度的学科领域。”已有的研究表明,人因工程学在增进系统安全,提高人员满意度,和提高系统绩效等方面能发挥很大的作用[1]。 人因学最初的研究范围比较狭小,只涉及军事、工业领域人—机界面交互的一些问题,目前的研究范围已得以扩大,与人类工效学、工程心理学及认知工程学等学科有着紧密的联系,并在核工业、汽车设计、风险评估、航空领域等都产生了广泛的影响。 2 人因工程学的研究进展及研究方法 2.1 人因工程学的研究进展及方法 人因工程是一门相对年轻、独立和独特的实践性学科 ,其研究与应用重心历经了军事、工业人因工程、消费产品及服务、计算机人因工程等领域阶段 ,到20世纪90年代兴起宏观人因工程和认知人因工程研究后,逐步转移到工业系统。其研究内容现主要涉及到以下四个方面[2]: 1)硬件人因工程:起初称为人-机器接口技术,代表了人因

相关主题
文本预览
相关文档 最新文档