当前位置:文档之家› 基于纹理信息提取与神经网络分类方法的遥感影像分类

基于纹理信息提取与神经网络分类方法的遥感影像分类

基于纹理信息提取与神经网络分类方法的遥感影像分类
基于纹理信息提取与神经网络分类方法的遥感影像分类

基于纹理信息提取与神经网络分类方法的遥感影像分类

一、实验目的

(一)通过深入研究遥感影像纹理信息的提取原理与方法,针对研究区影像特征,掌握纹理信息对提高影像分类精度的重要作用。

(二)了解ENVI中基于神经网络的影像监督分类方法原理,采用纹理信息与神经网络分类相结合的方式,对研究区影像进行分类,与无纹理信息的分类结果进行对比与评价。

(三)进一步熟悉影像监督分类的原理和方法、训练区选取、分类后处理方法等操作,并根据研究区实际情况进行分类后评价。

二、实验原理

人工神经网络分类方法:

BP 网络是前馈多层网络结构,含有输入层、输出层以及处于输入输出层之间的隐含层,隐含层一般为单层。隐含层虽然和外界不连接,但它们的状态影响输入输出之间的关系,也就是说,改变隐含层的权系数,可以改变整个多层神经网络的性能。相邻层次的神经元之间用连接权系数相互连接,而各层内的神经元之间没有连接。

神经网络为完成某一特定的任务, 通常采用“训练”的办法。这种“训练”实质上是网络的学习过程, 一般根据事先定义好的学习规则按照提供的特定作业的学习实例,不断调整各节点的连接权重,进而得到样本的输入输出的非线性关系。在BP 神经网络中,引入误差函数(也称能量函数)的概念,公式表示为:

其中是期望输出。BP 神经网络通过误差函数的最小化过程来完成输入到输

出的映射。BP 反向传播算法分两步进行,即正向传播和反向传播。

(1)正向传播

输入的样本从输入层经过隐单元一层一层进行处理, 通过所有的隐含层之后, 则传向输出层; 在逐层处理的过程中, 每一层神经元的状态只对下一层神经元的状态产生影响。在输出层把现行输出和期望输出进行比较, 如果现行输出不等于期望输出, 则进入反向传播过程。

(2)反向传播

反向传播时, 把误差信号按原来正向传播的通路反向传回, 反复修改( 迭

代) 各节点的权重和阈值,逐渐减小误差, 直到达到预先设定的要求。当误差小于某一相当小的正数或迭代误差不再减少时, 完成BP 网络的训练、输入与输出映射的确定。

在遥感数字图像分类处理中,人工神经网络的输入层神经元表征遥感数据的输入模式。每一个输入层神经元对应于一个光谱波段。每一个输出层神经元则对应于一种土地覆盖类型。神经网络的拓扑结构决定着各神经元与网络层之间的信息传递途径。训练规则利用转移函数实施处理数据的加权和求和,进而训练网络实施模式识别。处理所得的加权和,通过转移函数转换为输出值。作为分类结果,获得最大权重的类别即被认定为输入向量的类别。依据所选择的训练区。

三、实验方法与数据说明

(一)数据说明:

本实验主要运用的数据为经过处理后的研究区影像。

实验原始数据:2003年夏天下载的印第安纳波利斯洲和Marion郡的Landsat7的ETM+影像。

数据处理:

1、将研究区Landsat7的ETM+影像1-5,7波段在ENVI中进行影像镶嵌

(镶嵌后影像分辨率为30m);

2、将镶嵌后的研究区影像与其第8波段在ENVI中进行HSV影像融合

(融合后影像分辨率为15m)。

(二)实验方法:

实验方案:

1、在经HSV方案融合后的研究区影像上进行监督分类训练样区选择,通

过参考Google地图与判别经验,按照土地利用/覆盖类型,选择11类

训练样本,包括商业区、交通运输、工业区、水体、住宅区、草地、

作物地、休耕地和森林;

2、对所选11类训练样区进行精度评估(分离度分析与N维散度可视分

析);

3、根据样本精度评估结果,进行训练样本类别合并;

4、基于所选训练样本进行影像分类:

4.1 基于光谱信息的神经网络分类;

①基于经验值参数设置的神经网络分类

②基于缺省参数设置的神经网络分类

4.2 基于纹理与光谱信息的神经网络分类;

①纹理信息提取;

②纹理信息与影像集成;

③基于纹理信息与光谱信息的分类。

4.4 对比分类结果。

5、分类后处理。

6、制作土地利用类型专题图

技术流程:

四、实验过程

(一)训练区选择

监督分类关于类别的数字特性都是从训练样本获得的,所以训练样本的选择要注意准确性、代表性和统计性三个问题。准确性就是要确保选择的样本与实际地物的一致性;代表性一方面指所选择区为某一地物的代表,另一方面还要考虑到地物本身的复杂性,所以必须在一定程度上反映同类地物光谱特性的波动情况;统计性是指选择的训练样本内必须有足够多的像元,以保证由此计算出的类别参数符合统计规律。

1、为了建立分类函数,需要对每一类别选取一定数目的样本,在ENVI中

是通过感兴趣区(ROIs)来确定,也可以将矢量文件转化为ROIs文件

来获得。本例中使用ROIs方法,打开分类图像,在

Display->Overlay->Region of Interest,默认ROIs为多边形,按照

默认设置在影像上定义训练样本。

2、在ROIs面板中,选择Option->Compute ROI Separability,计算样本的

可分离性。如图所示,表示各个样本类型之间的可分离性,用Jeffries-Matusita, Transformed Divergence参数表示,这两个参数的值在0~2.0之间,大于1.9说明样本之间可分离性好;小于1.8大于

1.4属于合格样本;小于1.4需要重新选择样本;小于1,考虑将两类

样本合成一类样本。

由下述分离度结果评定可得:

不同密度住宅区之间,城镇用地与高密度住宅区之间,森林与低密度住宅区之间分离度都在0与1.4之间,分离效果很低。分析可能由于该分类方法没有加入房屋数据进行辅助分类,因此不同密度住宅间,住宅与城镇用地间很难区分。经过多次训练样本的选择,分离度都很难提高。

但选择其中效果较好的训练样本进行分类,探究分类结果。

(二)神经网络分类方法

1、BP 神经网络模型构造

BP 神经网络模型的构造主要包括3方面内容:

(1)网络拓扑结构的设计, 包括隐含层数目的确定、隐含层神经元的数

目和激励函数的选择。网络结构不但影响分类精度, 而且对网络训练时间有直接影响。对用于遥感数据分类的神经网络来说,由于输入层和输出层

的神经元数目分别由遥感数据的特征维数和总的类别数决定的, 因此网

络结构的设计主要解决隐含层的数目和隐含层的节点(神经元) 数目。根

据Kolmogorov 定理, 对于任何在闭区间内的一个连续函数都可以用一个

隐含层的BP网络来逼近, 即一个3 层BP 神经网络可实现任意的n维到m

维的映射。

(2)网络主要参数的确定, 包括初始权值、学习次数、学习速度等的确定。

初始权值的确定。由于BP 神经网络系统是非线性的, 所以初始权值对学习是否能够收敛, 是否收敛到局部极小值以及训练时间的长短的关系很大。如果初始权值太大, 就会导致其S 激活函数导数非常小,从而使整个过程几乎停顿下来; 如果初始权值选的较小, 则会使加权的调节量较大, 容易引起震荡而不收敛。所以我们总是希望初始权值在输入累加时使每个后神经元的输出接近于零, 这样可以保证每个神经元的权值都能在S型激活函数变化最大之处进行调节。一般初始权值取( 0, 1) 之间的随机数。

学习速度的确定。神经网络结构参数中学习速度决定每一次循环中所产生的权值变化量。大的学习速率可以减少训练次数, 但可能导致系统的不稳定;小的学习速率在同等训练误差条件下可能导致较长的学习时间, 且收敛速度较慢, 不过能保证网络的误差值跳出误差表面的低谷而最终趋于最小误差值。在一般情况下, 倾向于选取较小的学习速度以保证系统的稳定性。为了保证网络训练的稳定性和精度, 建议学习速率一般的选取范围为

0.01-0.1 之间。

学习次数。遥感影像分类中, 一般指定一个最大训练次数, 当神经网络学习达到该次数时即停止训练, 这种方法无法保证达到指定的训练精度, 但可以防止网络训练时间过长。

2、本实验运用不同的参数设置与分类方法进行实验:

Ⅰ基于光谱信息的神经网络分类:

(1)利用上述原理与经验得出的分类参数设置经验值进行分类

①神经网络参数设置对话框各个参数说明:

本文中试验采用3 层BP 神经网络。输入层为ETM+ 5, 4, 3 波段,输入层节点数设为3,输出层节点数目和分类后的地物数目相同, 这里为8。在试验中隐含层与输出层的传递函数采用logsitic,根据上述参数设置经验,网络的其他各参数设置如下:

期望误差最小值为0. 001;

学习次数为10000;

隐藏层为1层;

修正权值的学习速率为0. 05;

训练初始权重为0. 075。

在主菜单中,选择Classification->Supervised-> Neural Net Classification,在文件输入对话框中选择TM分类影像。单击OK按钮打开Neural Net Classification参数设置面板。如下图:

在ENVI中参数设置

Activation:选择活化函数。对数(Logistic)和双曲线(Hyperbolic)。

(本研究选择Logistic,因为对数函数的效果更优)

Training Threshold Contribution:输入训练贡献阈值(0-1)。该参数决定了与活化节点级别相关的内部权重的贡献量。它用于调节节点内部权重的变化。训练算法交互式地调整节点间的权重和节点阈值,从而使输出层和响应误差达到最小。将该参数设置为0不会调整节点的内部权重。适当调整节点的内部权重可以生成一幅较好的分类图像,但是如果设置的权重太大,对分类结果也会产生不良影响。

Training Rate:设置权重调节速度(0~1)。参数值越大则使训练速度越快,但也增加摆动或者使训练结果不收敛。

Training Momentum:输入一个0~1的值。该值大于0时,在“Training Rate”文本框中键入较大值不会引起摆动。该值越大,训练的步幅越大。

该参数的作用是促使权重沿当前方向改变。

Training RMS Exit Criteria:指定RMS误差为何值时,训练应该停止。

RMS误差值在训练过程中将显示在图表中,当该值小于输入值时,即使还没有达到迭代次数,训练也会停止,然后开始进行分类。

Number of Hidden Layers:键入所用隐藏层的数量。要进行线性分类,键入值为0。没有隐藏层,不同的输入区域必须与一个单独的超平面线性分离。要进行非线性分类,输入值应该大于或等于1,当输入的区域并非线性分离或需要两个超平面才能区分类别时,必须拥有至少一个隐藏层才能解决这个问题。两个隐藏层用于区分输入空间,空间中的不同要素不临近也不相连。

Number of Training Iterations:输入用于训练的迭代次数。

Min Output Activation Threshold:输入一个最小输出活化阈值。如果被分类像元的活化值小于该阈值,在输出的分类中,该像元将被归入未分类(unclassified)。

选择分类结果的输出路径及文件名。

设置Out Rule Images为Yes,选择规则图像输出路径及文件名。

单击OK按钮执行分类。

②分类结果图:

基于光谱信息的神经网络分类结果图

提取每类的光谱信息:

Forest urban

Water H-residential

M- residential L- residential

结果分析:基于经验值的分类结果图只能较为清晰的辨认出城镇用地和水体,而其他利用类型都被混淆。根据神经网络原理分析,可能是由于用于分类的样本不同密度住宅区之间,住宅区与林地之间区分度较低。而较小的贡献阈

值和期望值可能会将部分光谱信息消除。

精度评价:

由上述精度评价也可以看出,不论从生产者精度或用户精度看来,确实只有城镇用地和水体的分类精度达到一定要求。

如urban的生产者精度为89.51%(4905/5480),即在5480被判别为城镇用地的采样点所在像元中,有4905个在分类中被划分为城镇用地。用户精度为86.39%(4905/5678),即在5678个实际被分为城镇用地的像元中,有4905个采样点所在像元被用户正确判别。同理,水体生产者精度为99.58%,用户精度为98.8%,虽然这两类都还存在被错分的现象,然而相对与其他类而言,生产者精度与用户精度相差不大且较高。而高密度住宅区与低密度住宅区,生产者精度与用户精度相差很大,说明类别混淆较严重,分离度较低。事实表明,采用该种参数设置的神经网络分类是不合适的。

(2)采用默认值进行神经网络分类

由于采用上述经验值参数设置方式分类结果不理想,故现采用默认值的进行神经网络分类。

精度评价:

系数为0.7810,较能真实的反映实际地物的光谱信息。

本身就比较低,所以分类结果同样也表明这三类容易混淆。

因此,使用默认值的进行实验结果更好。

Ⅱ基于光谱信息与纹理信息的神经网络分类

1、对影像进行主成分分析:

通过ENVI-Principal Component-Forward PC rotation-Compute New Statistics and Rotate主成分分析模块:

通过对研究区影像的主成分分析,发现第一主成分信息量为74.87%,第二主成分信息量为96.55%,因此选了第一、第二主成分进行纹理提取。

2、纹理信息提取:

通过ENVI-Texture-Coocurrence Measures模块进行纹理信息提取:

窗口大小3*3,步长为1个像素:

通过纹理提取得到的不同纹理特征:

Mean Variance

Homogeneity Contrast

由上述纹理信息提取的情况可得,Mean 纹理提取得到的结果信息量较充分,因此基于光谱信息与纹理信息的神经网络分类方法采用与Mean 纹理镶嵌的方法分类。

3、 利用Mean 纹理进行神经网络分类

由于神经网络分类速度较慢,所以采用论文中评价较高的纹理测度进行分类。

分类结果如下图:

精度评定:

结果分析:该结果总体分离度为46.4779%,KAPPA系数为0.4031;水体,草地,耕地,城镇用地的生产者精度与用户精度较高且相差较小,能够较清晰的区分,可能是由于Mean纹理特征较能反映耕地、草地的信息,而对于不同密度住宅区、

林地依然很难区分。

基于光谱信息的神经网络分类结果

(参数设置采用默认值)

基于光谱信息与纹理信息的神经网络分类结果

总体结果分析与评价:

由以上两种分类结果可得,结合纹理信息的分类结果与单单结合光谱信息的分类结果显示的信息更充分,主要体现在城镇用地与农业用地在一定精度范围内的提高,而房屋数据却被消除。

通过神经网络分类实验,我们发现,虽然迭代次数多,参数设置按一定要求,学习速率与期望误差的设置都较小,然而分类结果却不理想。分析原理可能是由于没有结合房屋数据的训练区选择,虽然基于真实地物的光谱信息更充分,但不同密度住宅区之间,高密度住宅与商业用地之间,低密度住宅与林地之间,由于光谱特征的相似性分离度低。而神经网络分类对光谱信息的量化有一定要求,故我们怀疑没有结合房屋数据的影像分类对神经网络的分类结果不利。

因为该分类方式所花费的时间较长,所以基于不同参数设置方式与光谱信息、纹理信息显示的分类方法还需要进行进一步的探究。

(四)分类后处理与制图

1、建立影像掩模

①打开原影像,在Overlay中选择Classificantion:

②在原影像上显示分类影像,查看分类效果:

③选择不同掩模方式对分类后影像进行类的修改:

选择Polygon add to Class将掩模中的所有类别都替换为活动类别:

活动类别

选择Polygon Delete from Class,在Set Delete Class value中设置一个修改后的类别,如林地,将活动类别设置为要修改的类,如低密度住宅区:

设置修改后的类别

设置要修改的类

依照上述两种方法对分类后的影像进行掩模。

对各土地利用类型名称与符号进行修改:

掩模结果如图所示:

2、去除小图斑

选择分类后处理模块中的Majority/Minority Analysis:

选择所有的类别:

去除小图斑后如图所示:

3、计算各土地利用类型面积

在分类后处理模块中的Class Statistics进行计算:

计算结果如下图,可得出不同土地利用类型的面积与百分比:

遥感图像分类方法研究综述

第2期,总第64期国 土 资 源 遥 感No.2,2005 2005年6月15日RE MOTE SENSI N G F OR LAND&RES OURCES Jun.,2005  遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明 650092;2.云南省寄生虫病防治所,思茅 665000; 3.云南开远市第一中学,开远 661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751 文献标识码:A 文章编号:1001-070X(2005)02-0001-06 0 引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节———图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1 遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I S OM I X)、循环集群 法(I S ODAT A)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及“同物异谱”、 “异物同谱”现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Balstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2], 孙家对M.A.Friedl(1992)和 C.E.B r odley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2 基于统计分析的遥感图像分类方法 2.1 监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-Nearest Neighbor)、决策树法(Decisi on Tree Classifi2 er)和贝叶斯分类法(Bayesian Classifier)。主要步骤包括:①选择特征波段;②选择训练区;③选择或构造训练分类器;④对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre ma等提出的启发式像素分类估计先验概率法。Mclachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

遥感图像处理 分类 实验报告

Lab6 non-parametric classification and post classification 12021005龚鑫烨Objection:the major object of the current lab section are to implement non-parametric classification based on BP networks and support vector machines algorithms,with a full mastery of post-classification operation. Data: the subset of spot 5 imagery covering NJ. Steps: 1、identify a training dataset and an independent set of validation data for built-up, forest,cropland,grassland and water. 2、Implementing above-mentioned non-parametric algorithms to classify your image. 3、Validating your classification. 4、Refining your classification by implementing the majority filtering and modeling process if possible. 实验步骤: 1、将数据加载到envi中

遥感图像分类

实验四遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

实验六:遥感图像监督分类与非监督分类

成都信息工程学院 遥感图像处理实验报告 实验6:遥感图像监督分类与非监督分类 专业:遥感科学与技术 班级: 092班 姓名:李翔 学号:2009043063 实验名称:遥感图像监督分类与非监督分类 实验教室: 5404教室 指导老师:刘志红 实验日期:2011年4月6日和4月13日

遥感数字图像处理实验报告 一、项目名称 遥感图像监督分类与非监督分类 二、实验目的 学会使用ERDAS IMAGINE软件对遥感图像进行非监督分类、监督分类、分类后处理、决策树分类,加深对图像分类过程和原理的理解,为图像解译打下基础。 三、实验原理 同类地物在相同的条件下应该具有相同或相似的光谱信息和空间信息特征。反之,不同类的地物之间具有这些差异。根据这些差异,将图像中的所有像素按其性质分为若干类别的过程,称为图像的分类。 根据是否需要分类人员事先提供已知类别及其训练样本,对分类器进行训练和监督,可将遥感图像分类方法划分为监督分类和非监督分类。 分类后处理包括聚类统计、过滤分析、去除分析和分类重编码等操作。 聚类统计是通过计算分类专题图像每个分类图斑面积、记录相邻区域中最大图斑面积的分类操作。 四、数据来源 1.下载网站:https://www.doczj.com/doc/6c12018079.html,/admin/dataLandsatMain.jsp 2.波段数为6个。 3.分辨率为28.50,米。 4.投影为UTM, Zone48。 五、实验过程 一、非监督分类 1.在ERDAS IMAGINE依次点击如下图标,打开对话框, 2. 设定好输出数据,设置聚类选项,确定初始聚类方法和分类数。设置预处理选项,确定循环次数和阈值。如图所示:

遥感影像分类envi

遥感课程教学实验之二: 遥感影像分类 实验二遥感影像的分类遥感影像的监督分类 ?实验目的

理解计算机图像分类的基本原理以及监督分类的过程,学会利用遥感图像处理软ENVI 件对遥感图像进行分类的方法。 ?实验内容 1、遥感图像分类原理。 2、遥感图像监督分类。 3、最大似然法分类 ?实验条件 电脑、ENVI4.5软件。厦门市TM遥感影像。 ?实验步骤 1、启动ENVI软件,从文件菜单打开多波段影像文件,从可用波段列表中装载彩色或假色 影像,显示遥感影像。 2、从主图像窗口的工具Tools →Region of Interest →ROI Tools; 3、在自动打开的ROI Tools窗口中,设定ROI_Type 为“Polygon”(多边形),选定样本采 集的窗口类型,用Zoom(缩放窗口)进行采集。。

4、在选定的窗口如Zoom用鼠标左键画出样本区域,在结束处击鼠标右键二次,样本区域 被红色充填,同时ROI Tools窗口中显示采集样本的信息。采集新的样本点击“New Region”,重新上述步骤进行多个地物样本采集。。 5、从ENVI主菜单中,选 Classification > Supervised > Maximum Likelihood;或在端元 像元采集对话框 Endmember Collection中选择 Algorithm >MaximumLikelihood 进行最大似然法分类。

6、在出现Classification Input File 对话框中,选择输入影像文件,出现 Maximum Likelihood Parameters 对话框。 7、输入常规的分类参数。 设定一个基于似然度的阈值(Set Prpbability Threshold):如不使用阈值,点击“None” 按钮。要对所有的类别使用同一个阈值,点击“Single Value”按钮,在“Probability Threshold”文本框中,输入一个0 到1 之间的值。似然度小于该值的像元不被分入该类。 要为每一类别设置不同的阈值: ●在类别列表中,点击想要设置不同阈值的类别。 ●点击“Multiple Values”来选择它。 ●点击“Assign Multiple Values”按钮。 ●在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本框中输入阈值。为每 个类别重复该步骤。 最后给定输出结果的保存方式:文件或内存,当影像较大时建设保存到文件中,以免因内存不够而出错运算错误。 点击“OK”计算机开始自动分类运算。 8、在可用波段列表中显示分类图像。 ?实验总结

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

《遥感原理与应用》实验报告——影像分类

实验名称:影像分类 一、实验内容 1.对同一副遥感影像分别用监督和非监督两种方法进行分类,并对分类结果进行比较; 2.对同一种方法下的不同判别准则(如最小距离准则和最大似然分类)得到的分类结果进行 比较。 二、实验所用的仪器设备,包括所用到的数据 电脑一台,Window7操作系统,遥感影像处理软件(ENVI4.3)软件,一幅多波段卫星遥感影像,如图1所示。 三、实验原理 (一)监督分类 1.监督分类的原理 监督分类(supervised classification)又称训练场地法,是以建立统计识别函数为理论基础,依据典型样本训练方法进行分类的技术。即根据已知训练区提供的样本,通过选择特征参数,求出特征参数作为决策规则,建立判别函数以对各待分类影像进行的图像分类,是模式识别的一种方法。要求训练区域具有典型性和代表性。判别准则若满足分类精度要求,则此准则成立; 反之,需重新建立分类的决策规则,直至满足分类精度要求为止。常用算法有:平行算法、最小距离法、最大似然法等。 2.最小距离分类:是指求出未知类别向量到要识别各类别代表向量中心点的距离,将未知类 别向量归属于距离最小一类的一种图像分类方法。 3.最大似然分类:假定每个波段每一类统计呈均匀分布,并计算给定像元属于一特定类别的 可能性。除非选择一个可能性阈值,所有像元都将参与分类,每一个像元被归到可能性最大的那一类里。 (二)非监督分类 1.非监督分类的原理 非监督分类也称聚类分析。是指人们事先对分类过程不施加任何的先验知识,而仅凭数据,即自然聚类的特性,进行“盲目”的分类;其分类的结果只是对不同类别达到了区分,但并不能确定类别的属性,亦即:非监督分类只能把样本区分为若干类别,而不能给出样本的描述;其类别的属性是通过分类结束后目视判读或实地调查确定的。 2.ISODATA分类 ISODATA非监督分类计算数据空间中均匀分布的类均值,然后用最小距离技术将剩余像元迭代聚集。每次迭代重新计算了均值,且用这一新的均值对像元进行再分类。重复分类是分割、融合和删除是基于输入的阈值参数的。除非限定了标准差和距离的阈值(这时,如果一些像元不满足选择的标准,他们就无法参与分类),所有像元都被归到与其最临近的一类里。这一过程持续到每一类的像元数变化少于选择的像元变化阈值或已经到了迭代的最多次数。

遥感图像地学分类实验指导

遥感图像分类 一、背景知识 图像分类就是基于图像像元的数据文件值,将像元归并成有限几种类型、等级或数据集的过程。常规计算机图像分类主要有两种方法:非监督分类与监督分类,本实验将依次介绍这两种分类方法。 非监督分类运用ISODATA(Iterative Self-Organizing Data Analysis Technique)算法,完全按照像元的光谱特性进行统计分类,常常用于对分类区没有什么了解的情况。使用该方法时,原始图像的所有波段都参于分类运算,分类结果往往是各类像元数大体等比例。由于人为干预较少,非监督分类过程的自动化程度较高。非监督分类一般要经过以下几个步骤:初始分类、专题判别、分类合并、色彩确定、分类后处理、色彩重定义、栅格矢量转换、统计分析。 监督分类比非监督分类更多地要用户来控制,常用于对研究区域比较了解的情况。在监督分类过程中,首先选择可以识别或者借助其它信息可以断定其类型的像元建立模板,然后基于该模板使计算机系统自动识别具有相同特性的像元。对分类结果进行评价后再对模板进行修改,多次反复后建立一个比较准确的模板,并在此基础上最终进行分类。监督分类一般要经过以下几个步骤:建立模板(训练样本)分类特征统计、栅格矢量转换、评价模板、确定初步分类图、检验分类结果、分类后处理。由于基本的非监督分类属于IMAGINE Essentials级产品功能,但在IMAGINE Professional级产品中有一定的功能扩展,非监督分类命令分别出现在Data Preparation菜单和Classification菜单中,而监督分类命令仅出现在Classification菜单中。 二、实验目的 理解并掌握图像分类的原理,学会图像分类的常用方法:人工分类(目视解译)、计算机分类(监督分类、非监督分类)。能够针对不同情况,区别使用监督分类、非监督分类。理解计算机分类的常用算法实现过程。熟练掌握遥感图像分类精度评价方法、评价指标、评价原理,并能对分类结果进行后期处理。 三、实验内容(6课时) 1.非监督分类(Unsupervised Classification); 2.监督分类(Supervised Classification); 3.分类精度评价(evaluate classification); 4.分类后处理(Post-Classification Process); 四、实验准备 实验数据: 非监督分类文件:germtm.img 监督分类文件:tm_860516.img 监督模板文件:tm_860516.sig 五、实验步骤、方法 1、非监督分类(Unsupervised Classification)

遥感图像分类后处理

遥感图像分类后处理 一、实验目的与要求 监督分类和决策树分类等分类方法得到的一般是初步结果,难于达到最终的应用目的。 因此,需要对初步的分类结果进行一些处理,才能得到满足需求的分类结果,这些处理过程就通常称为分类后处理。常用分类后处理通常包括:更改分类颜色、分类统计分析、小斑点处理(类后处理)、栅矢转换等操作。 本课程将以几种常见的分类后处理操作为例,学习分类后处理工具。 二、实验内容与方法 1.实验内容 1.小斑块去除 ●Majority和Minority分析 ●聚类处理(Clump) ●过滤处理(Sieve) 2.分类统计 3.分类叠加 4.分类结果转矢量 5.ENVI Classic分类后处理 ●浏览结果 ●局部修改 ●更改类别颜色 6.精度评价 1.实验方法 在ENVI 5.x中,分类后处理的工具主要位于Toolbox/Classification/Post Classification/;

三、实验设备与材料 1.实验设备 装有ENVI 5.1的计算机 2.实验材料 以ENVI自带数据"can_tmr.img"的分类结果"can_tmr_class.dat"为例。数据位于"...\13数据\"。其他数据描述: ?can_tmr.img ——原始数据 ?can_tmr_验证.roi ——精度评价时用到的验证ROI 四、实验步骤 1.小斑块去除 应用监督分类或者非监督分类以及决策树分类,分类结果中不可避免地会产生一些面 积很小的图斑。无论从专题制图的角度,还是从实际应用的角度,都有必要对这些小图斑进行剔除或重新分类,目前常用的方法有Majority/Minority分析、聚类处理(clump)和过滤处理(Sieve)。 1)Majority和Minority分析 Majority/Minority分析采用类似于卷积滤波的方法将较大类别中的虚假像元归到该 类中,定义一个变换核尺寸,主要分析(Majority Analysis)用变换核中占主要地位(像元数最多)的像元类别代替中心像元的类别。如果使用次要分析(Minority Analysis),将用变换核中占次要地位的像元的类别代替中心像元的类别。 下面介绍详细操作流程: (1)打开分类结果——"\12.分类后处理\数据\can_tmr_class.dat"; (2)打开Majority/Minority分析工具,路径为Toolbox /Classification/Post Classification/Majority/Minority Analysis,在弹出对话框中选择"can_tmr_class.dat",点击OK; (3)在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,其他参数按照默认即可,如下图所示。然后点击Choose按钮设置输出路径,点击OK执行操作。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

遥感影像分类方法实验报告

实验报告

目录 1 实验目的 (4) 2 实验数据 (4) 3 实验内容 (4) 4 实验步骤 (5) 4.1 对人口矢量数据(shapefile)进行投影转换 (5) 4.1.1 Census.shp文件投影坐标的检查 (5) 4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N (6) 4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准) (6) 4.2.1 Census.shp在ENVI软件的加载 (6) 4.2.2 对遥感影像进行几何精校正(以矢量数据为基准) (7) 4.2.3 用矢量图层对遥感影像进行裁剪 (10) 4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价 (11) 4.3.1 两种融合方法的原理 (11) 4.3.2 进行 Gram-Schmidt Spectral Sharpening融合 (11) 4.3.4 融合效果进行定性评价 (14) 4.3.5 融合效果进行定量评价(软件提供的计算方法) (15) 4.3.6 融合效果进行定量评价(Matlab编程计算) (16) 4.3.7 遥感影像融合定量分析代码 (20) 4.4 生成住房密度栅格影像 (23) 4.4.1 两表的连接 (23) 4.4.2 计算房屋密度 (24) 4.4.3 直接栅格化 (25) 4.4.4 IDW插值 (25) 4.4.5 对房屋密度图进行重分类 (26) 4.5 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 (26) 4.6 监督分类(融合方法为HSV,波段为5,4,3) (27) 4.6.1 打开Google Earth影像作为监督分类的参照 (27) 4.6.2 建立兴趣区 (29) 4.6.3 训练样区的选择 (30) 4.6.4 训练样区的评价 (31) 4.6.5 执行监督分类 (33) 4.6.6 分类后处理 (35) 4.6.7 评价结果分析 (37) 4.6.8 分类结果面积统计 (38) 4.6.9 分类结果 (41) 4.7 分类结果评价与分析 (41) 4.7.1 未加入房屋密度图层的分类结果评价与分析 (41) 4.7.2 加入IDW插值房屋密度图层的分类结果评价与分析 (42) 4.7.3 加入直接栅格化房屋密度图层的分类结果评价与分析 (43) 4.7.4 加入重分类后IDW插值房屋密度图层的分类结果评价与分析 (44) 4.7.5 从总精度与Kappa系数对分类结果进行评价 (45)

遥感实验:监督分类

监督分类(一) 数字图像处理 实习内容 监督分类 训练样区 图像分类 监督分类 9不同于无监督分类,监督分类由分类者严密控制。分类前需要知道分类的数据以及所需要分的类。在这个过程中,您选择像素能够代表某种类别的模式或土地覆盖类别,这些类别和模式你可以借助其他数据来源,如航空照片,地面真实数据或者地图。 9通过你定的模式,计算机系统可以自动查找具有类似特点的像素。如果分类是准确的,此分类结果代表初分类。 监督分类的基本步骤 监督分类是一个反复的过程,主要有以下步骤: 1.训练样区并创建特征 2. 评价和编辑特征 3. 图像分类 4. 评价分类结果实习内容 监督分类 训练样区 图像分类

怎样定义训练样本? 训练样本就是选择一组像素代表一定潜在类别。在 ERDAS image 中,用户可以选择以下方法完成:?通过矢量层 ?通过的AOI ?通过特定区域具有相似光谱特征的一组连续像素 ?通过专题栅格层的某个类别,例如:无监督分类的输出结果打开germtm.img 启动AOI 工具. 单击the AOI style 按纽设置AOI前景色和背景色为可识别的颜色 尝试其他光谱颜色分配R: 4; G:5; B:3 启动Classifier /Signature Editor 应该创建多边形AOI 工具在图像上暗蓝色区域创建一AOI (可根据需要放 大图像). 在Signature Editor窗口采用Add AOI to signature按纽,添加水域样区1 水域样区1

找到另外一处水域样本,采用AOI growth tool添加单击AOI growth 按钮, 然后单击样本的中间 可以自动产生 复杂的多边 形!单击Region Growing Properties 按钮 在Region Growing Properties Dialog 调整AOI包含更多更纯的样本区,变换the Area and Spectral Distance, 然后单击Redo直到满意为止. 在signature editor窗口添加第2个水域样本区融合相似的训练样本区 融合相似的训练样本区 如果此特征被应用,输出的分类结果如何? 选择signature “water” View…/ Image Alarm…, 在signature alarm dialog单击“OK”.

遥感图像分类方法研究综述_李石华

第2期,总第64期国土资源遥感N o.2,2005 2005年6月15日RE MOTE SENSI N G FOR LAND&RESOURCES Jun.,2005 遥感图像分类方法研究综述 李石华1,王金亮1,毕艳1,2,陈姚1,朱妙园1,杨帅3,朱佳1 (1.云南师范大学旅游与地理科学学院,昆明650092;2.云南省寄生虫病防治所,思茅665000; 3.云南开远市第一中学,开远661600) 摘要:综述了遥感图像监督分类和非监督分类中的各种方法,介绍了各种方法的优缺点、适用领域和应用情况,并作了简单评述,最后,展望了遥感图像分类方法研究发展方向和研究热点。 关键词:遥感;图像分类;分类方法 中图分类号:TP751文献标识码:A文章编号:1001-070X(2005)02-0001-06 0引言 随着卫星遥感和航空遥感图像分辨率的不断提 高,人们可以从遥感图像中获得更多有用的数据和 信息。由于不同领域遥感图像的应用对遥感图像处 理提出了不同的要求,所以图像处理中重要的环 节)))图像分类也就显得尤为重要,经过多年的努 力,形成了许多分类方法和算法。本文较全面地综 述了这些分类方法和算法,为遥感图像分类提供理 论指导。 1遥感图像分类研究现状 在目前遥感分类应用中,用得较多的是传统的 模式识别分类方法,诸如最小距离法、平行六面体 法、最大似然法、等混合距离法(I SO M I X)、循环集群 法(ISODATA)等监督与非监督分类法。其分类结果 由于遥感图像本身的空间分辨率以及/同物异谱0、 /异物同谱0现象的存在,往往出现较多的错分、漏分 现象,导致分类精度不高[1]。随着遥感应用技术的 发展,傅肃性等对P.V.Ba lstad(1986)利用神经网络 进行遥感影像分类的研究情况以及章杨清等在利用 分维向量改进神经网络在遥感模式识别中的分类精 度问题作了阐述[2],孙家 对M.A.Fried l(1992)和 C.E.Brodley(1996)研究的大量适用于遥感图像分类的决策树结构作了阐述[3],尤其是近年来针对高光谱数据的广泛应用,各种新理论新方法相继涌现,对传统计算机分类方法提出了新的要求[4,5]。 2基于统计分析的遥感图像分类方法 2.1监督分类 监督分类是一种常用的精度较高的统计判决分类,在已知类别的训练场地上提取各类训练样本,通过选择特征变量、确定判别函数或判别规则,从而把图像中的各个像元点划归到各个给定类的分类方法[2,3,6,7]。常用的监督分类方法有:K邻近法(K-N earest Ne i g hbor)、决策树法(Decisi o n Tree C lassif-i er)和贝叶斯分类法(Bayesian C lassifier)。主要步骤包括:1选择特征波段;o选择训练区;?选择或构造训练分类器;?对分类精度进行评价。 最大似然分类法(MLC)是遥感分类的主要手段之一。其分类器被认为是一种稳定性、鲁棒性好的分类器[8]。但是,如果图像数据在特征空间中分布比较复杂、离散,或采集的训练样本不够充分、不具代表性,通过直接手段来估计最大似然函数的参数,就有可能造成与实际分布的较大偏差,导致分类结果精度下降。为此,不少学者提出了最大似然分类器和神经网络分类器。改进的最大似然分类器多采用Gauss光谱模型作为条件概率密度函数模型,其中最简单的是各类先验概率相等的分类器(即通常所说的最大似然分类器),复杂的有Ediri w ickre m a等提出的启发式像素分类估计先验概率法。M clachlang J 收稿日期:2004-11-23;修订日期:2005-03-15 基金项目:国家重点基础研究发展计划(973计划)项目(2003CB41505-11)、国家自然科学基金项目(40361007)和云南省自然科学基金项目(2002D0036M和2003C0030Q)资助。

相关主题
文本预览
相关文档 最新文档