当前位置:文档之家› 圆周运动-圆盘模型(精编文档).doc

圆周运动-圆盘模型(精编文档).doc

圆周运动-圆盘模型(精编文档).doc
圆周运动-圆盘模型(精编文档).doc

【最新整理,下载后即可编辑】

圆周运动——圆盘模型

1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求:

2、(1)转盘的角速度为时绳中的张力T1;

(2)转盘的角速度为时绳中的张力T2。

2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求:

(1)当圆盘转动的角速度为多少时,细线上开始出现张力?(2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()

3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。A离轴心r

=20 cm,B

1

=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为离轴心r

2

其重力的0.4倍,取g=10 m/s2。

(1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件?

(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大?

(3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动?

4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终

与圆盘保持相对静止.则在圆盘转动的角速度

从0缓慢增大的过程中,下列说法正确的是

()

A.B所受合外力一直等于A所受合外力

B.A受到的摩擦力一直指向圆心

C.B受到的摩擦力一直指向圆心

D.A、B两物块与圆盘保持相对静止的最大角速度为

5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求

⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何?

⑵欲使A与盘面间不发生相对滑动,则圆盘

转动的最大角速度多大?(g=10m/s2)

6、如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘间的动摩擦因数相同.当圆盘转速加快到两物体刚好还未发生滑动时,烧断细线,则两个物体的运动情况是()

A.两物体均沿切线方向滑动

B.两物体均沿半径方向滑动,离圆盘圆心越来越远

C.两物体仍随圆盘一起做匀速圆周运动,不会发生滑动

D.物体B仍随圆盘一起做匀速圆周运动,物体A发生滑动,离圆盘圆心越来越远

7、如图所示,在匀速转动的水平圆盘上,沿半径方向放置两个质量均为m=1kg的小物体A、B,它们到转轴的距离分别为r

=10

A =40 cm,A、B与盘面间最大静摩擦力均为重力的0.4倍。cm,r

B

如果圆盘的转速可以从零开始由小到大的调节,试求:(g取10 m/s2)

(1)如图甲所示,A、B之间没有细线相连,随着圆盘转速的增大,哪一个物体先发生相对圆盘的滑动?

(2)如图乙所示,A、B之间用刚好拉直的细线相连,当细线上开始出现弹力T时,圆盘的角速度ω1多大?当A开始滑动时,圆盘的角速度ω2多大?

(3)当A即将滑动时,烧断细线。请在图丙给出的坐标系中,为坐标轴选取合适的标度,作出烧断细线之前,细线上的弹力T 随圆盘角速度平方ω2的变化关系图线。

甲乙

参考答案

1、设角速度为ω0时绳刚好被拉直且绳中张力为零,则由题意有:

………………①

解得:………………②

(1)当转盘的角速度为时,有:

∵,物体所受静摩擦力足以提供物体随转盘做圆周运动所需向心力……③

即:T1=0 ………………④

(2)当转盘的角速度为时,有:

∵,物体所受最大静摩擦力不足以提供物体随转盘做圆周运动所需向心力……⑤

则:………………⑥

解得:………………⑦

2(1)较小时,A、B均由静摩擦力充当向心力,增大,

可知,它们受到的静摩擦力也增大,而,所以A受到的静摩擦力先达到最大值。再增大,AB间绳子开始受到拉力。

由,得:

(2)达到后,再增加,B增大的向心力靠增加拉力及摩擦力共同来提供,A增大的向心力靠增加拉力来提供,由于A增大的向心力超过B增加的向心力,再增加,B所受摩擦力逐渐减小,直到为零,如再增加,B所受的摩擦力就反向,直到达最大静摩擦力。如再增加,就不能维持匀速圆周运动了,A、B就在圆盘上滑动起来。设此时角速度为,绳中张力为,对A、B受力分析:

对A有

对B有

联立解得:

3【答案】(1)ω≤3.7rad/s (2)4.0rad/s (3)A随圆盘一起转动,B 做离心运动

(1)当B所需向心力时,细线上的张力为0,即,

得。

即当时,细线上不会有张力。

(2)当A、B所受静摩擦力均达到最大静摩擦力时,圆盘的角速度

达到最大值ω

m ,超过ω

m

时,A、B将相对圆盘滑动。设细线中的

张力为F

T

对A:,对B:,得。

(3)烧断细线时,A 做圆周运动所需向心力

,又最

大静摩擦力为0.4mg ,则A 随盘一起转动。 B 此时所需向心力,大于它的最大静摩擦力0.4mg ,因此B 将做离心运动。

4、CD

5、⑴………………………①

方向为指向圆心。 ……………………………② ⑵ …………………………③

6、解析:根据两个物体的质量相等且与盘间动摩擦因数相同可知,它们与盘间的最大静摩擦力大小相等.当它们刚好还未发生滑动时,对物体A :f max +T=m ω2·r A ,对物体B :f max -T=m ω2·r B .若细线烧断,对A 而言,仅靠f max 不足以提供需要的向心力,A 将沿半径方向相对圆盘发生滑动;对物体B ,由静摩擦力提供需要的向心力,它将仍随圆盘一起做匀速圆周运动.选项D 正确. 答案:D

7、(1)B 先滑动 (2)rad/s , 4 rad/s

圆周运动的三种模型

圆周运动的三种模型 一、圆锥摆模型: 如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成θ角,对小球受力分析, 正交分法解得:竖直方向:水平方向:F X=最终得F合=。 用力的合成法得F合=。半径r=,圆周运动F向==,由F合=F向可得V=,ω= 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。(小球的半径远小于R) 2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果可用根式表示): (1)若要小球离开锥面,则小球的角速度ω0至少为多大? (2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 = 2. 小球能通过最高点的条件: v v 临界(此时,绳子对球产生 力) 3. 不能通过最高点的条件: v v 临界 (实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg 三.轻杆模型: (一)轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二)轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力) 2. 当 =R v m 2临界 ( 轻杆对小球的作用力N= 0 ),gR v 临界 3 当 (即0v 临界)时,有 =R v m 2 (轻杆对小球的作用力N 为 力) 练习: 半径为R=0.5m 的管状轨道,有一质量为m=3kg 的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则( ) A. 外轨道受到24N 的压力 B. 外轨道受到6N 的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N 的压力

圆周运动_圆盘模型

圆周运动——圆盘模型 1、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳中张力为零),物块与转盘间最大静摩擦力是其重力的k倍,求: 2、(1)转盘的角速度为时绳中的张力T1; (2)转盘的角速度为时绳中的张力T2。 2、如图所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B两个小物块。A的质量为,离轴心,B的质量为,离轴心,A、B与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度为多少时,细线上开始出现张力? (2)欲使A、B与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?()

3、如图11所示,在匀速转动的圆盘上,沿半径方向放置以细线相连的质量均为m的A、B两个小物块。A离轴心r1=20 cm,B离轴心r2=30 cm,A、B与圆盘面间相互作用的最大静摩擦力为其重力的0.4倍,取g=10 m/s2。 (1)若细线上没有张力,圆盘转动的角速度ω应满足什么条件? (2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度多大? (3)当圆盘转速达到A、B刚好不滑动时,烧断细线,则A、B将怎样运动? 4、如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B

两个物块(可视为质点).A和B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都是f ,两物块A和B随着圆盘转动时,始终与 m 圆盘保持相对静止.则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是() A.B所受合外力一直等于A所受合外力 B.A受到的摩擦力一直指向圆心 C.B受到的摩擦力一直指向圆心 D.A、B两物块与圆盘保持相对静止的最大角速度为 5、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm处放置一小物块A,其质量为m=2kg,A与盘面间相互作用的静摩擦力的最大值为其重力的k倍(k=0.5),试求 ⑴当圆盘转动的角速度ω=2rad/s时,物块与圆盘间的摩擦力大小多大?方向如何? ⑵欲使A与盘面间不发生相对滑动,则圆盘转动的最大 角速度多大?(g=10m/s2)

圆周运动的三种模型

一、圆锥摆模型: 如图所示:摆球的质量为 m ,摆线长度为L ,摆动后摆球做圆周运动,摆线与竖直方向成 分析, 正交分法解 得: 竖直方向: ________________ 水平方向: F<= _______ 最终得 F 合= _________ 用力的合成法得 F 合= _________ 。半径 r = _______ ,圆周运动 F 向= _________ = ________ , 由F 合=卩向可得V= ________ , 3= ______ 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车, 摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。 力的合力提供向心力,向心力方向水平。 1、小球在半径为 R 的光滑半球内做水平面内的匀速圆周运动,试分析图中 的夹角)与线速度 V ,周期T 的关系。(小球的半径远小于 R ) 2、如图所示,用一根长为 1= 1m 的细线,一端系一质量为 m = 1kg 的小球(可视为质点),另一端固定在一光 滑锥体顶端,锥面 9 3时, 圆周运动的三种模型 共同点是由重力和弹 0 (小球与半球球心连线跟竖直方向 细线的张力为T 。求(取g = 10m/s 2,结果可用根式表示): (1 )右要小球离开锥面,则小球的角速度 30至少为多大? (2)若细线与竖直方向的夹角为 60°则小球的角速度 3Z 为多大?

二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1?临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: ______ = _____ ,v 临界= 2?小球能通过最高点的条件: v ____ v 临界(此时,绳子对球产生 —力) 3. 不能通过最高点的条件: v v 临界(实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为 v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A . 0 B. mg C .3mg D 5mg (一)轻杆模型的特点: 1. 轻杆的质量和重力不计; 2. 能产生和承受各方向的拉力和压力 (二 )轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度 v= ___ ,此时轻杆对小球的作用力 N= ___ ( 2 2. 当 _______ =m v 临界(轻杆对小球的作用力 N= 0 ), V 临界 __ j gR (即0v 临界)时,有

匀速圆周运动基本模型归纳总结水平转盘模型

一.经典例题 1.如图所示,相同材料的A、B两物块置于绕竖直轴匀速转动的水平圆盘上,B的质量是A 的质量的2倍,A与转动轴的距离等于B与转动轴的距离2倍,两物块相对于圆盘静止,则两物块() A.角速度相同 B.线速度相同 C.向心加速度相同 D.若转动的角速度增大,A、B同时滑动 2.如图,A、B两个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为m,B质量为2m,B离轴为R,A离轴为2R,则当圆台旋转时,(设A、B都没有滑动)() A.A、B加速度一样大 B.A、B物的静摩擦力一样大 C.当圆台转速增加时,B比A先滑动 D.当圆台转速增加时,A、B同时滑动 总结 1

(1)水平转盘模型概述: 1.向心力由静摩擦力提供,方向指向圆心 2.满足方程: 3.当物体刚要滑动时,有静摩擦力等于滑动摩擦力,从而解出临界角速度 (2)规律 物体离中心O越远,就越容易甩出去。如生活中汽车在水平面上的拐弯 二.相关练习题 1.如图所示,水平圆盘绕过圆心的竖直轴匀速转动,转动的角速度为2rad/s.在距离圆心0.8m处放一质量为0.4kg的金属块,随圆盘一起做匀速圆周运动而不被甩出,求: (1)金属块随圆盘运动的向心加速度; (2)金属块受到的静摩擦力. 2.如图所示,A、B、C三个物体放在水平旋转的圆盘上,三物与转盘的最大静摩擦因数均为μ,A的质量是2m,B和C的质量均为m,A、B离轴距离为R,C离轴2R,若三物相 对盘静止,则() 2

A.每个物体均受重力、支持力、静摩擦力、向心力四个力作用 B.C的向心力最大 C.A、B的摩擦力相等 D.当圆台转速增大时,C比B先滑动,A和B同时滑动 3.A、B物体随圆盘一起做匀速圆周运动,A物体受到的沿水平方向的作用力是() A.圆盘与B对A的摩擦力,两个力都指向圆心 B.圆盘与B对A的摩擦力及向心力 C.圆盘对A的摩擦力指向圆心,B对A的摩擦力背离圆心 D.圆盘对A的摩擦力及向心力 4.如图所示,一水平圆盘绕过圆心的竖直轴匀速转动,圆盘边缘有一个小物块.当圆盘转动的角速度达到某一数值,再增大时,物块从圆盘边缘滑落到地面.已知圆盘半径R=0.5m,物块与圆盘间的动摩擦因数为μ=0.2,最大静摩擦力等于滑动摩擦力,圆盘中心与地面的距离为h=10m,g=10m/s2. 求:(1)圆盘转动时能保证物块相对圆盘静止的最大角速度. (2)物块落地点到圆盘中心的水平距离为多大? 3

课时分层作业50匀速圆周运动的数学模型函数y=Asin(ωx+φ)的图象

课时分层作业 (五十 ) 函数 y = Asin(x + φ) (建议用时: 60 分钟) [合格基础练 ] 、选择题 1.下列表示函数 y =sin 2x - 3 在区间 -2 ,π上的简图正确的是 ( 当 x =6π 时 y = sin 0=0,排除 C , 故选 A.] 2.把函数 y =sin 2x -4π的图象向左平移 8π个单位长度, 所得到的图象对应的 函数是 ( ) A .奇函数 B.偶函数 C .既是奇函数也是偶函数 D.非奇非偶函数 A [y =sin 2x -4π=sin 2 x -8π ,向左平移 8π个单位长度后为 y = 3.同时具有性质“ (1)最小正周期是 π;(2)图象关于直线 x =3π对称; (3)在 A [当 x =π时, y = sin -3π=- 23 排除 B 、 D. sin 2x ,为奇函数 .]

-6π,3π 上单调递增”的一个函数是 ( ) 证知只有 C 符合要求 . ] 4.已知函数 f(x)=Asin(ωx+φ)+B 的一部分图象如图所示, 若 A>0,ω>0, |φ|< 2π ,则 ( ) A . B =4 C .ω=1 B [ 由函数图象可知 f(x) min = 0, f(x) max =4. 4-0 4+0 所以 A = 2 = 2,B = 2 =2. 2π 5π π 由周期 T =ω=4 12-6 知 ω=2. 由 f 6 =4得 2sin 2× 6+φ+ 2= 4, π π π sin 3+φ= 1,又 |φ|<2,故 φ=6.] 5.已知函数 f(x)=cos ωx -6π (ω>0)的相邻两个零点的距离为 2π ,要得到 y =f(x)的图象,只需把 y =cos ωx 的图象 ( ) A .向右平移 1π2个单位 B .向左平移 1π2个单位 A . y =sin 2x +6 B . y =cos 2x + 3 C . π y =sin 2x - 6 D . y =cos2x -6 [ 由(1)知 T =π=2ω π, 2,排除 A. 由(2)(3)知 x = ,f(x)取最大值 ,验 π B .φ=6 D .A =4 π C .向右平移 6π 个单 D .向左平移 6π 个单位

高考物理模型之圆周运动模型

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22=μ。 2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A 、B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心

r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A 、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A 、B 受力分析: 对A 有F F m r fm T 11121+=ω 对B 有F F m r T fm -=2212 2ω 联立解得:ω112 112252707=+-==F F m r m r rad s rad s fm fm /./ 3. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径 R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A 轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A. R B 4 B. R B 3 C. R B 2 D. R B 答案: C

圆周运动的常见模型

圆周运动的常见模型(绳、杆模型)教案 授课人:马少芳 地点:高一(5)班 时间:2014-3-21 【课前分析】 本节课主要讲圆周运动的常见模型中的轻绳模型和轻杆模型,这两个模型都属于竖直平面内的圆周运 动。竖直平面内的圆周运动一般是变速圆周运动 (带电粒子在匀强磁场中运动除外 ),运动的速度大小和方 向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任 意位置的情况,只研究特殊的临界位置——最高点和最低点 【教学目标】 (一) 知识与技能: 1、 加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、 知道两类问题的“最高点”、“最低点”临界条件。 (二) 过程与方法: 通过对几个圆周运动的事例的分析,掌握分析绳、杆问题中向心力的方法。 (三) 情感态度与价值观: 培养学生独立观察、分析问题,解决问题的能力,提高学生概括总结知识的能力。 【教学重点】绳、杆两类问题的“最高点”临界条件中向心力的分析。 【教学难点】过最高点临界条件的理解? 学情分析】通过前面知识点的学习,学生初步掌握圆周运动、向心力的相关知识,掌握了分析圆周运 动向心力来源的方法,为本节课学习做了铺垫和准备。 【教学方法】 讲授法提问法演示法 【教学用具】 黑板 多媒体 绑细线的道具小桶 【课时安排】1课时(45min ) 【教学过程】 (一)开门见山,直接导入 [师]:前面我们通过生活中的圆周运动了解了圆周运动在生活中的联系与应用,这节课我们继续了解圆周 运动中常见的模型,其中典型的一种用绳子拉着一物体 (小球)在竖直平面内做圆周运动,这种模型叫 轻绳模型,或绳球模型。另一种是用一根杆支撑着物体在竖直面做圆周运动的,叫轻杆模型或杆球模 型。我们先了解第一种模型:轻绳模型 (说明)[师]:轻绳模型和轻杆模型都是竖直平面内的圆周运动,一般是变速圆周运动运动的速度大小和 方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向还要改变速度大小,所以一般不研究任 意位置的情况,只研究特殊的临界位置——最高点和最低点 一、轻绳模型:如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为 1、在最低点时,设小球速度为 v 列小球在最低点向心力的表达式 (前面有初步了解, 请学生1回答) 最低点: 对小球受力分析,小球受到重力、绳的拉力 由牛顿第二定律得(向心力由重力 mg 和拉力T 1的合力提供) 2 得:T 1 =mg+m V1- r 在最低点拉力大于重力,速度越大,绳子拉力越大,所以在最低点绳子容易被拉断。 2、在最高点时,假设运动到最高点速度为 v,求列小球在最高点向心力的表达式(请学生 2回答) 最高点: m ,绳长为r 2 T 1-mg =m Vk r

大全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑 动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

(完整版)最全圆周运动模型

圆周运动模型 一、匀速圆周运动模型 1.随盘匀速转动模型 1.如图,小物体m 与圆盘保持相对静止,随盘一起做匀速圆周运动,则物体的受力情况是: A .受重力、支持力、静摩擦力和向心力的作用 B .摩擦力的方向始终指向圆心O C .重力和支持力是一对平衡力 D .摩擦力是使物体做匀速圆周运动的向心力 2. 如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为 L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度 做匀速圆周运动,求: (1)物体运动一周所用的时间T ; (2)绳子对物体的拉力。 3、如图所示,MN 为水平放置的光滑圆盘,半径为1.0m ,其中心O 处有一个小孔,穿过小孔的细绳两端各系一小球A 和B ,A 、B 两球的质量相等。圆盘上的小球A 作匀速圆周运动。问 (1)当A 球的轨道半径为0.20m 时,它的角速度是多大才能维持B 球静止? (2)若将前一问求得的角速度减半,怎样做才能使A 作圆周运动时B 球仍能保持静止? 4、如图4所示,a 、b 、c 三物体放在旋转水平圆台上,它们与圆台间的动摩擦因数均相同,已知a 的质量为2m ,b 和c 的质量均为m ,a 、b 离轴距离为R ,c 离轴距离为2R 。当圆台转动时,三物均没有打滑,则:(设最大静摩擦力等于滑动摩擦力)( ) A.这时c 的向心加速度最大 B .这时b 物体受的摩擦力最小 C.若逐步增大圆台转速,c 比b 先滑动 D .若逐步增大圆台转速,b 比a 先滑动 5、如右图所示,某游乐场有一水上转台,可在水平面内匀速转动,沿半径方向面对面手拉手坐着甲、乙两个小孩,假设两小孩的质量相等,他们与盘间的动摩擦因数相同,当圆盘转速加快到两小孩刚好还未发生滑动时,某一时刻两小孩突然松手,则两小孩的运动情况是( ) A .两小孩均沿切线方向滑出后落入水中 B .两小孩均沿半径方向滑出后落入水中 C .两小孩仍随圆盘一起做匀速圆周运动,不会发生滑动而落入水中 D .甲仍随圆盘一起做匀速圆周运动,乙发生滑动最终落入水中 6、线段OB=AB ,A 、B 两球质量相等,它们绕O 点在光滑的水平面上以相同的角速度转动时,如图4所示,两段线拉力之比T AB :T OB =______。 2.转弯模型 1.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时:[ ] A .对外轨产生向外的挤压作用 B .对内轨产生向外的挤压作用 C .对外轨产生向内的挤压作用 D .对内轨产生向内的挤压作用 2.火车通过半径为R 的弯道,已知弯道的轨道平面与水平面的夹角为θ,要使火车通过弯道时对内外轨道不产生挤压,求火车通过弯道时的速度? O ω ω m

圆周运动中的几种模型

圆周运动中的几种模型 一.轻绳模型 (一). 轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二).轻绳模型在圆周运动中的应用 小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: 2. 小球能通过最高点的条件:(当时,绳子对球产生拉力) 3. 不能通过最高点的条件:(实际上小球还没有到最高点时,就脱离了轨道) 例:质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v的速度经过最高点时,对轨道的压力是() A . 0 B. mg C .3mg D 5mg

分析:内侧轨道只能对小球产生向下的压力,其作用效果同轻绳一样,所以其本质是轻绳模型 当小球经过最高点的临界速度为v ,则 当小球以 2v的速度经过最高点时,轨道对小球产生了一个向下的压力N ,则 因为所以 根据牛顿第三定律,小球对轨道压力的大小也是,故选 c. 二.轻杆模型: (一). 轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二). 轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的临界条件:v=0 ,N=mg ( N为支持力) 2. 当时,有( N为支持力)

3 当时,有(N=0 ) 4 当时,有(N 为拉力) 例:半径为R=0.5m 的管状轨道,有一质量为m=3kg的小球在管状轨道内部做圆周运动,通过最高点时小球的速率是2m/s ,g=10m/s2 ,则() A. 外轨道受到24N的压力 B. 外轨道受到6N的压力 C. 内轨道受到24N 的压力 D. 内轨道受到 6N的压力 分析:管状轨道对小球既有支持力又有压力,所以其本质属于杆模型: 当小球到最高点轨道对其作用力为零时:有 则, =>2m/s 所以,内轨道对小球有向上的支持力,则有 代入数值得: N=6N 根据牛顿第三定律,小球对内轨道有向下的压力大小也为6N ,故选 D 三.圆锥摆模型: 圆锥摆模型在圆周运动中的应用:

(完整版)圆周运动知识点总结

曲线运动 圆周运动---章节知识点总结 §1 曲线运动 1、曲线运动:轨迹是曲线的运动 分析学习曲线运动,应对比直线运动记忆,抓住受力这个本质。 2、分类:平抛运动 圆周运动 3、曲线运动的运动学特征: (1)轨迹是曲线 (2)速度特点:①方向:轨迹上该点的切线方向 ②可能变化可能不变(与外力有关) 4、曲线运动的受力特征 ①F 合不等于零 ②条件:F 合与0v 不在同一直线上(曲线);F 合与0v 在同一直线上(直线) 例子----分析运动:水平抛出一个小球 对重力进行分解:x g 与A v 在同一直线上:改变A v 的大小 y g 与A v 为垂直关系:改变A v 的方向 ③F 合在曲线运动中的方向问题:F 合的方向指向轨迹的凹面 (请右图在箭头旁标出力和速度的符号) 5、曲线运动的加速减速判断(类比直线运动) F 合与V 的夹角是锐角-------加速 F 合与V 的夹角是钝角-------减速 F 合与V 的夹角是直线-------速度的大小不变 拓展:若F 合恒定--------匀变速曲线运动(典型例子:平抛运动) 若F 合变化--------非匀变速曲线运动(典型例子:圆周运动) §2 运动的合成与分解 1、合运动与分运动的基本概念:略 2、运动的合成与分解的实质:对s 、v 、a 进行分解与合成--------高中阶段仅就这三个物理量进行正交分解。 3、合运动与分运动的关系:等时性---合运动与分动的时间相等(解题的桥梁) 独立性---类比牛顿定律的独立性进行理解 等效性:效果相同所以可以合成与分解 4、几种合运动与分运动的性质 ①两个匀速直线运动合成---------匀速直线运动 ②一个匀速直线运动与一个匀变速直线运动合成-------匀变速曲线运动 ③两个匀变速直线运动合成-----------可能是匀变速直线运动可能是匀变速曲线运动 分析:判断物体做什么运动,一定要抓住本质-----受力!

圆周运动典型模型2019

圆周运动典型模型2019.3.15 1.如图,半径10cm的圆盘水平放置,每3.14s转一周, 在圆盘的边沿放置一个质量为0.1kg 的小物体A(可视为质点)随圆盘一起做圆周运动而不打滑,Л=3.14,求 (1)圆盘旋转的角速度多大; (2)圆盘边沿一点的线速度多大; (3)圆盘边沿一点的向心加速度多大; (4)小物体受到的摩擦力多大; (5)若物体受到圆盘的最大静摩擦力为0.16N,若不打滑圆盘最大的角速度为多大。 2.已知地球自转周期为T,地球半径为R,物体1位于赤道处,物体2位于北纬600处,求(1)在图上标出物体2的位置、随地球自转的圆心o’; (2)1、2两物体圆周运动的角速度ω1、ω2分别多大; (3)1、2两物体圆周运动的半径r1、r2分别多大; (4)1、2两物体圆周运动的向心加速度a1、a2分别多大。 3.已知小球质量m、重力加速度g、绳长l、绳子和竖直方向的夹角θ,当小球在水平面内做匀速圆周运动时,求: (1)画出小球在图中位置的受力分析,标出θ;(2)绳子拉力的大小; (3)小球向心力的大小; (4)小球的线速度的大小;

4.如图所示,为一火车转弯时的情景,已知火车质量为 m,重力加速度为g,路面倾角为θ,转弯半径为R, 若火车与内外轨都无挤压则最安全,将此时的速度称为 规定行驶速度,求 (1)该处火车的规定行驶速度v0多大; (2)若某次该弯道处火车的实际行驶速度v1> v0,将出现(“内”或“外”)侧轮缘挤压轨道的情况,此时轨道会对火车产生指向轨道(“内”或“外”)侧的压力。 5.假设汽车质量为m,重力加速度为g,拱桥的半径为r,当汽车以速度v通过拱桥最高点时,则: (1)求汽车对拱桥的压力F压的大小和方向; (2)判断汽车此时是超重还是失重; (3)汽车对桥面的压力过小是不安全的,从该角度判断并说明此处汽车的速度v大还是小会更安全; (4)若把拱桥变为半径为r的凹桥,当汽车以速度v通过凹桥最低点时,求汽车在此处受到的支持力的大小。 6.用细绳拴一小桶,盛0.5kg水后,使小桶在竖直平面内做半径为90cm的圆周运动,g取10m/s2,求: (1)要使小桶过最高点时水刚好不流出,小桶过最高点的速度应是多大; (2)当小桶过最高点的速度为6m/s时,水对桶底的压力F的大小和方向; (3)若小桶底部能承受的最大压力为50N,则小桶在圆周最低点的最大速度为多少。

高中物理分类模型:圆周运动

第1 页 第二章圆周运动 解题模型: 一、水平方向的圆盘模型 1.如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求:(1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。(2)当转盘的角速度ωμ232= g r 时,细绳的拉力F T 2。图2.01解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0=g r 。(1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得 F mg T 22 =μ。2.如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的A、B 两个小

物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A、B 与盘面间不发生相对滑动,则圆盘转动的最大 角速度为多大?(g m s =102 /)图2.02 (1)当圆盘转动的角速度ω0为多少时,细线上开始出现张力? (2)欲使A、B 与盘面间不发生相对滑动,则圆盘转动的最大角速度为多大?(g m s =102 /) 解析:(1)ω较小时,A、B 均由静摩擦力充当向心力,ω增大,F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./(2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运动了,A、B 就在圆盘上滑动起来。设此时角速度为ω1,绳中张力为F T ,对A、B 受力分析: 对A 有F F m r fm T 1112 1 +=ω对B 有F F m r T fm -=22122 ω

圆周运动的三种模型

圆周运动的三种模型 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

圆周运动的三种模型 一、圆锥摆模型: 如图所示:摆球的质量为m,摆线长度为L ,摆动后摆球做圆周运动,摆线 与竖直方向成θ角,对小球受力分析, 正交分法解得:竖直方向:水平方向:F X=最终得 F合 =。用力的合成法得F合=。半径r=,圆周运动F向= =, 由F合=F向可得V=,ω= 圆锥摆是物理学中一个基本模型,许多现象都含有这个模型。分析方法同样适用自行车,摩托车,火车转弯,飞机在水平面内做匀速圆周飞行等在水平面内的匀速圆周运动的问题。共同点是由重力和弹力的合力提供向心力,向心力方向水平。 1、小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中θ(小球与半球球心连线跟竖直方向的夹角)与线速度V ,周期T 的关系。(小球的半径远小于 R) 2、如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T。求(取g=10m/s2,结果 可用根式表示): (1)若要小球离开锥面,则小球的角速度ω0至少为多大 (2)若细线与竖直方向的夹角为60°,则小球的角速度ω'为多大 二.轻绳模型 (一)轻绳模型的特点: 1. 轻绳的质量和重力不计; 2. 只能产生和承受沿绳方向的拉力; (二)轻绳模型在圆周运动中的应用

小球在绳的拉力作用下在竖直平面内做圆周运动的临界问题: 1. 临界条件:小球通过最高点,绳子对小球刚好没有力的作用,由重力提供向心力: = ,v 临界 = 2. 小球能通过最高点的条件:v v 临界(此时,绳子对球产生 力) 3. 不能通过最高点的条件:v v 临界(实际上小球还没有到最高点时,就脱离了轨道) 练习: 质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是( ) A. 0 B. mgC .3mgD 5mg 三.轻杆模型: (一)轻杆模型的特点: 1.轻杆的质量和重力不计; 2.能产生和承受各方向的拉力和压力 (二)轻杆模型在圆周运动中的应用 轻杆的一端连着一个小球在竖直平面内做圆周运动,小球通过最高点时,轻杆对小球产生弹力的情况: 1. 小球能通过最高点的最小速度v= ,此时轻杆对小球的作用力N= ( N 为 力) 2. 当 =R v m 2临界 (轻杆对小球的作用力N= 0 ),gR v 临界 3当 (即0v 临界)时,有 =R v m 2(轻杆对小球的作用力N 为 力) 练习:

课时分层作业50 匀速圆周运动的数学模型 函数y=Asin(ωx+φ)的图象

课时分层作业(五十) 函数y =A sin(x +φ) (建议用时:60分钟) [合格基础练] 一、选择题 1.下列表示函数y =sin ? ????2x -π3在区间???? ??-π2,π上的简图正确的是( ) A [当x =π时,y =sin ? ???? -π3=-32排除B 、D. 当x =π 6 时y =sin 0=0,排除C ,故选A.] 2.把函数y =sin ? ? ???2x -π4的图象向左平移π8个单位长度,所得到的图象对应的 函数是( ) A .奇函数 B.偶函数 C .既是奇函数也是偶函数 D.非奇非偶函数 A [y =sin ? ????2x -π4=sin ?????? 2? ????x -π8,向左平移π8个单位长度后为y = sin ???? ?? 2? ????x -π8+π8=sin 2x ,为奇函数.] 3.同时具有性质“(1)最小正周期是π;(2)图象关于直线x =π 3对称;(3)在???? ?? -π6,π3上单调递增”的一个函数是( )

A .y =sin ? ???? x 2+π6 B .y =cos ? ? ???2x +π3 C .y =sin ? ?? ??2x -π6 D .y =cos ? ?? ??2x -π6 C [由(1)知T =π=2πω,ω=2,排除A.由(2)(3)知x =π 3时,f (x )取最大值,验证知只有C 符合要求.] 4.已知函数f (x )=A sin(ωx +φ)+B 的一部分图象如图所示,若A >0,ω>0,|φ|<π 2,则( ) A . B =4 B .φ=π 6 C .ω=1 D .A =4 B [由函数图象可知f (x )min =0,f (x )max =4. 所以A =4-02=2,B =4+0 2=2. 由周期T =2πω=4? ???? 5π12-π6知ω=2. 由f ? ????π6=4得2sin ? ???? 2×π6+φ+2=4, sin ? ?? ?? π3+φ=1,又|φ|<π2,故φ=π6.] 5.已知函数f (x )=cos ? ? ???ωx -π6(ω>0)的相邻两个零点的距离为π2,要得到y =f (x )的图象,只需把y =cos ωx 的图象( ) A .向右平移π 12个单位 B .向左平移π 12个单位 C .向右平移π 6个单位 D .向左平移π 6个单位 A [由已知得2πω=2×π 2,故ω=2. y =cos 2x 向右平移π12个单位可得y =cos 2? ????x -π12=cos ? ? ? ??2x -π6的图象.]

高考物理模型之圆周运动模型

高考物理模型之圆周运 动模型 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 圆周运动 解题模型: 一、水平方向的圆盘模型 1. 如图1.01所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其正压力的μ倍,求: (1)当转盘的角速度ωμ12=g r 时,细绳的拉力F T 1。 (2)当转盘的角速度ωμ232=g r 时,细绳的拉力F T 2。 图2.01 解析:设转动过程中物体与盘间恰好达到最大静摩擦力时转动的角速度为ω0,则μωmg m r =02,解得ωμ0= g r 。 (1)因为ωμω102=g r ,所以物体所需向心力大于物与盘间的最大静摩擦力,则细绳将对物体施加拉力F T 2,由牛顿的第二定律得:F mg m r T 222+=μω,解得F mg T 22=μ。

2. 如图2.02所示,在匀速转动的圆盘上,沿直径方向上放置以细线相连的 A 、 B 两个小物块。A 的质量为m kg A =2,离轴心r cm 120=,B 的质量为m kg B =1,离轴心r cm 210=,A 、B 与盘面间相互作用的摩擦力最大值为其重力的0.5倍,试求: (1)当圆盘转动的角速度ω0为多少时,细线上开始 出现张力? (2)欲使A 、B 与盘面间不发生相对滑动,则圆盘转 动的最大角速度为多大( g m s =102/) 图2.02 解析:(1)ω较小时,A 、B 均由静摩擦力充当向心力,ω增大, F m r =ω2可知,它们受到的静摩擦力也增大,而r r 12>,所以A 受到的静摩擦力先达到最大值。ω再增大,AB 间绳子开始受到拉力。 由F m r fm =1022ω,得:ω011111 055===F m r m g m r rad s fm ./ (2)ω达到ω0后,ω再增加,B 增大的向心力靠增加拉力及摩擦力共同来提供,A 增大的向心力靠增加拉力来提供,由于A 增大的向心力超过B 增加的向心力,ω再增加,B 所受摩擦力逐渐减小,直到为零,如ω再增加,B 所受的摩擦力就反向,直到达最大静摩擦力。如ω再增加,就不能维持匀速圆周运

圆周运动的常见模型

圆周运动的常见模型(绳、杆模型)教案 授课人:马少芳 地点:高一(5)班 时间:2014-3-21 【课前分析】 本节课主要讲圆周运动的常见模型中的轻绳模型和轻杆模型,这两个模型都属于竖直平面内的圆周运动。竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点 【教学目标】 (一)知识与技能: 1、加深对向心力的认识,会在绳、杆两类问题中分析向心力的来源。 2、知道两类问题的“最高点”、“最低点”临界条件。 (二)过程与方法: 通过对几个圆周运动的事例的分析,掌握分析绳、杆问题中向心力的方法。 (三)情感态度与价值观: 培养学生独立观察、分析问题,解决问题的能力,提高学生概括总结知识的能力。 【教学重点】绳、杆两类问题的“最高点”临界条件中向心力的分析。 【教学难点】过最高点临界条件的理解. 【 学情分析】通过前面知识点的学习,学生初步掌握圆周运动、向心力的相关知识,掌握了分析圆周运动向心力来源的方法,为本节课学习做了铺垫和准备。 【教学方法】 讲授法 提问法 演示法 【教学用具】 黑板 多媒体 绑细线的道具小桶 【课时安排】1课时(45min ) 【教学过程】 (一)开门见山,直接导入 [师]:前面我们通过生活中的圆周运动了解了圆周运动在生活中的联系与应用,这节课我们继续了解圆周运动中常见的模型,其中典型的一种用绳子拉着一物体(小球)在竖直平面内做圆周运动,这种模型叫轻绳模型,或绳球模型。另一种是用一根杆支撑着物体在竖直面做圆周运动的,叫轻杆模型或杆球模型。我们先了解第一种模型:轻绳模型 (说明)[师]:轻绳模型和轻杆模型都是竖直平面内的圆周运动,一般是变速圆周运动运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点 一、轻绳模型:如图所示小球在细绳的约束下,在竖直平面内做圆周运动,小球质量为m ,绳长为r 1、在最低点时,设小球速度为v,列小球在最低点向心力的表达式 (前面有初步了解, 请学生1回答) 最低点: 对小球受力分析,小球受到重力、绳的拉力T 1。 由牛顿第二定律得(向心力由重力mg 和拉力T 1的合力提供) T 1-mg =21v m r 得:T 1 =mg+2 1v m r 在最低点拉力大于重力,速度越大,绳子拉力越大,所以在最低点绳子容易被拉断。 2、在最高点时,假设运动到最高点速度为v,求列小球在最高点向心力的表达式(请学生2回答)

相关主题
文本预览
相关文档 最新文档