当前位置:文档之家› EMEA关于金属催化剂或金属试剂残留量限度规定的指导文件简介

EMEA关于金属催化剂或金属试剂残留量限度规定的指导文件简介

EMEA关于金属催化剂或金属试剂残留量限度规定的指导文件简介
EMEA关于金属催化剂或金属试剂残留量限度规定的指导文件简介

EMEA关于金属催化剂或金属试剂残留量限度规定的指导文件简介

2008年2月21日EMEA/CHMP颁布了金属催化剂或金属试剂残留量限度规定的指导文件(GUIDELINE ON THE SPECIFICATION LIMITS FOR RESIDUES OF METAL CATALYSTS OR METAL REAGENTS),并将于2008年9月1日在欧盟正式实施。该指导文件从1998年6月开始起草,历经多次咨询、讨论,最后定稿。

目前国内对药物中金属残留量的控制限度还缺乏明确的技术要求。本文对EMEA指导文件进行简要介绍,通过对14种金属的分类、分析方法和控制限度的了解,希望对药物质量控制和技术评价有所帮助。

一、该指导文件的结构框架

该指导文件包括背景介绍、定义和范围、法规基础、正文、名词、参考文献、附录等七个部分。其中正文中包括了重金属分类、暴露量限度、浓度限度的设定、分析方法、批结果和检测频率、金属残留报告水平等6个方面。

该文件有三个附录。附录1是允许日接触量(PDE)设定的考虑因素,附录2是14种金属的单论,包括各金属简介、食物摄取情况、不同给药途径和周期的毒性数据、PDE评估结论,附录3是PDE和浓度限度的计算举例。

二、该指导文件的目的、定义和应用范围

在原辅料合成中可能用到金属催化剂或金属试剂,如铂、钯、锌、铁、铬等,这些金属可能原料药中残留,它们可能以最初形式存在,也可能由于后续化学过程以其他形式存在。原辅料中残留的金属会进一步带入到制剂中。这些残留的金属通常不具有治疗作用,基于安全性和质控的需要进行严格控制。

该指导文件的目的是为原辅料和制剂中残留的金属催化剂或金属试剂推荐最大可接受浓度限度。

该指导原则适用于新批准和已上市的制剂,EMEA为已上市制剂设定了5年的执行过渡期。指导文件不适用于正处于临床研究阶段的新原料药和辅料,他们可以设定更高的可接受的金属残留限度。

该指导文件不适用于原辅料中应有的金属成分(如用作成盐离子对的金属),也不适用于制剂中应有的含金属辅料(如制剂中的铁氧化物颜料)。这一指导文件通常不用于由于未能贯彻GMP、GDP等导致的外来金属污染。

三、主要内容介绍

1、金属分类

该指导文件基于安全考虑(对人体健康的潜在风险),将金属分为以下3类。

第1类金属:具有显著安全性担忧。这一类金属具有已知的或怀疑的人体致癌性,或者具有其他显著的毒性。包括铂(Pt)、钯(Pd)、铱(Ir)、铑(Rh)、钌(Ru)、锇(Os)、钼(Mo)、镍(Ni)、铬(Cr)、钒(V)十种金属。其中第1类金属又被分为1A、1B 、1C三个亚组,1A 亚组包括Pt、Pd。1B亚组包括Ir、Rh、Ru、Os。1C亚组包括Mo、Ni、Cr、V。

第2类金属:具有低的安全性担忧。这一类金属对人体有潜在的较低毒性。通常可以较好耐受此类金属在常见药物中的暴露量。可能是营养需要的痕量金属,常存在于食物原料中或营养补充剂中。包括铜(Cu)、锰(Mn)。

第3类金属:安全性担忧最小。这一类金属无明显毒性。已建立了安全范围,在远大于常见药物中的量时,也可以较好耐受。通常广泛存在于环境、植物或动物中。包括铁(Fe)和锌(Zn)。

该指导文件的14种金属分类见表1。

2、金属残留限度的表示方法

类似于ICH Q3C中有机溶剂残留量限度的表示方法,本指导文件也引入了两个限度概念,分

别是允许日接触量和浓度限度。

(1)允许日接触量(permitted daily exposure, PDE)

是指某一金属被允许长期摄入而不产生人体毒性的最大可接受剂量,单位为μg/天。某一金属的PDE值是由不产生反应量、体重调整系数、种属之间差异的系数、个体差异、短期接触急性毒性研究的可变系数等推算出的,PDE的推算公式和两个实例(铂和铜口服途径的PDE计算过程)见本指导文件的附录3。

影响金属PDE的因素较多,如金属的不同形式(化合物、价态)、营养需求和毒性效应的平衡、不同给药途径、给药周期和暴露年龄、数据可获得性、不同金属遗传毒性和致癌潜力、毒性数据外推、相互作用等,具体的讨论见本指导原则的附录1。

需要注意的是,不同的给药途径,同一金属的PDE数值不同,这是因为许多金属通过胃肠道吸收很少,因此口服、静脉、吸入给药会显示出不同的毒性,也会有不同的PDE限度。表1中的静脉给药PDE是口服PDE的10%。

(2)浓度限度(Concentration Limits)

是在PDE表示方法的基础上,以浓度表示的限度。浓度限度的设定基于最大日剂量、治疗期限、给药途径和允许日接触量等因素,其计算公式如下:

浓度限度(ppm)=PDE(μg/天) /每日给药量(g /天)。

表1包括了14种金属不同给药途径(口服、静脉、吸入途径)的PDE、浓度限度。1A和1C 亚组的暴露量限度为各金属的限度,1B亚组为所列金属的限度总和。对于1B亚组,暴露限度更为保守,因为可获得的毒性数据有限。表1中各金属的浓度限度由PDE计算而来,其中每日给药量初步定为10g/天。

表1:金属催化剂和金属试剂的分类、PDE和浓度限度

* Pt以六氯铂酸形式

**所列金属残留总和不得超过指定的限度

3、金属残留浓度限度的制定

需要对可能出现在终产品中的金属进行测试并确定浓度限度。浓度限度的确定需要考虑测定准确性、生产能力、生产工艺的变化等因素。

(1)口服、静脉或吸入给药制剂的金属浓度限度制定

方法1: 对每一种金属,可以使用表1中的浓度限度 (ppm)。如果制剂中所有原辅药均满足表1的浓度限度,那么只要制剂每日剂量不超过10g,这些原辅料就可以以任何比例使用。如果制剂日剂量超过10g,则使用方法2。

方法2a:可使用表1中的PDE(μg/天),结合制剂中原辅料的实际每日给药量,计算出原辅料的金属浓度限度。

方法2b:是另一种选择,不必使每一种原辅料都符合方法1或2a计算出的浓度限度。表1中的PDE(μg/天)可以结合制剂每日最大剂量来确定任一种原辅料引入的金属的浓度限度。这一方法的前提是:每种原辅料中的金属残留量已被降低到实际最小值。这种方法提示,某些原辅料中的金属最大水平可能高于方法1或2a的限度,但是这已通过其他原辅料中的较低的金属含量所补偿。

(2)其他给药途径制剂

如果没有合适理由,其他给药途径(包括吸入)的原辅料的金属限度应采用静脉给药的限度。如果其他给药途径的吸收量不超过口服,也可以使用口服给药的限度。例如,皮肤给药可以使用口服给药时的限度。

铂盐可引起过敏,其中六氯铂酸致敏性最强,这一分子的吸入途径的PDE为70 ng/天。六价铬和镍在吸入时可致癌,因此六价铬吸入的PDE为10 ng/天,镍为100ng/天。

(3)短期给药和抢救生命适应症的制剂

该指导文件中的PDE和浓度限度建立在长期用药基础上,对于短期给药(30天或更短),如果方法1和方法2限度均无法得到,更高的PDE和浓度限度也可能被接受。例如,解毒药或诊断药等。

对于抢救生命适应症的药物,特定的风险效益考虑可能会采用较高的金属限度,这需要具体情况具体分析。

4、分析方法

需要采用合适的、经过验证的、有一定专属性的测定分析方法。需要注意金属残留的形式可能不同于金属催化剂和试剂的初始形式。可以使用公认的药典方法,也可以使用其他适宜的测定方法。如果仅有第2类或第3类金属,也可以采用非专属性的方法。对于1B亚组金属,由于是总限度控制,考虑到测定技术所限,可以接受0.5ppm的检测限。

基于pH3.5有色金属硫化物沉淀的半定量测定方法通常不适用于金属的定量测定,但在某些情况下的常规测试中可能适用,如使用标准加入法或与其他专属性的测试方法配合使用。

5、批检验结果,测试频率和标准中删除金属测定项目的考虑

如果确定或怀疑合成过程会导致金属残留,则应进行定量测定。

如果合成过程显示金属可能被去除,常规测试有可能被非常规测试代替。如果连续6批中试产品或3批连续商业规模生产批次的金属残留小于浓度限度的30%,则可认为被金属残留物被充分去除。但常规测试被非常规测试代替并不意味着该测试可从标准中删除。

对于第3类金属,如果能被保证充分去除,则可能从标准中删除测试项。

中外金属材料对照表

常用国内外钢材牌号对照表 中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT ISO 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 Q195 Cr.B Cr.C SS330 SPHC SPHD S185 040 A10 S185 S185 CT1K П CTlC П CTl ПC Q215A Cr.C Cr.58 SS 330 SPHC 040 A12 CT2K П—2 CT2C П—2 CT2ПC —2 Q235A Cr.D SS400 SM400A 080A15 CT3K П—2 CT3C П—2 CT3ПC —2 E235B Q235B Cr.D SS400 SM400A S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 S235JR S235JRGl S235JRG2 CT3K П—3 CT3C П—3 CT3ПC —3 E235B Q255A SS400 SM400A CT4K П—2 CT4C П—2 CT4ПC —2 普 通 碳 素 结 构 钢 Q275 SS490 CT5C П—2 CT5ПC —2 E275A

中国 美国 日本 德国 英国 法国 前苏联 国际标准化组织 GB AST JIS DIN 、DINEN BS 、BSEN NF 、NFEN ΓOCT IS0 630 品 名 牌号 牌号 牌号 牌号 牌号 牌号 牌号 08F 1008 1010 SPHD SPHE 040A10 80K П 10 1010 S10C S12C CKl0 040A12 XCl0 10 C101 15 1015 S15C S17C CKl5 Fe360B 08M15 XCl2 Fe306B 15 C15E4 20 1020 S20C S22C C22 IC22 C22 20 25 1025 S25C S28C C25 IC25 C25 25 C25E4 40 1040 S40C S43C C40 IC40 080M40 C40 40 C40E4 45 1045 S45C S48C C45 IC45 080A47 C45 45 C45E4 50 1050 S50C S53C C50 IC50 080M50 C50 50 C50E4 优 质 碳 素 结 构 钢 15Mn 1019 080A15 15r

C307催化剂操作手册

C307型中低压合成甲醇催化剂操作手册 南化集团研究院 二○○八年八月

C307型中低压合成甲醇催化剂操作手册 1、产品特性和用途 C307型中低压合成甲醇催化剂用于碳氧化物和氢在一定条件下合成甲醇,其化学反应式如下: CO+H2→CH3OH+90.64KJ/mol CO2+H2→CH3OH+H2O+49.47 KJ/mol 该型号产品具有原料适应性能强的特点,可运用于各种原料(天然气、石油、煤、工业尾气等)的低、中压合成甲醇流程。 2产品性质 2.1 化学成份:催化剂主要由铜、锌、铝等氧化物所组成。 2.2 主要物性: 外观:两端为球面的黑色圆柱体 外形尺寸:Ф5×(4~5)mm 堆密度:1.4~1.6 kg/l 比表面:90~110 m2/g 3产品包装和贮运 C307型催化剂包装在铁桶中的聚乙烯密封袋中,每桶净重50kg 。产品在运输和存储过程中,应保持密封,防潮、防污染,禁止摔碰和翻滚。 4催化剂的装填 4.1催化剂的装填 4.1.1催化剂装填前必须用Φ3mm筛子轻轻过筛,除去运输途中产生的少量粉末与碎片。 4.1.2先装合成塔底部氧化铝球,打开上人孔,工人从人孔进入塔内,过筛后的催化剂用漏斗调入合成塔内,由长帆布导入塔内,均匀撒布,力求装填均匀。合

成塔上花板上再装一部分催化剂,用不锈钢丝网压住,丝网上再装100~200㎜高Φ8~10㎜氧化铝球。 4.1.3催化剂装填完毕后,立即封上人孔及进出气口,防止吸潮和有毒气体污染,然后进行催化剂粉末吹除。 4.2催化剂装填注意事项 4.2.1人员严禁在搬运过程中滚动、摔打催化剂桶。 4.2.2安排专人负责开桶、核对催化剂型号、数量。 4.2.3开始装填前,先打开卸料口及进料口,除去合成塔内的各种杂质并用钢刷刷去铁锈,检查塔内有无堵塞物或遗留的工具。 4.2.4计量人员必须准确记录催化剂的装填量,并及时与装填人员联系。 4.2.5装填人员入塔前应将手表、钥匙及口袋内一切杂物掏出,以防止掉入合成塔内,入塔后严禁直接在催化剂上行走和踩踏,应在催化剂上垫木板,用手或木板平整催化剂表面。 4.2.6如气候有变,遇下雨天时应停止装填工作。塔口用防雨布封好,未装完的催化剂放入桶中密封好,并将催化剂桶放置在干燥的屋内。 4.2.7做好安全工作。吊装架下严禁站人,现场人员必须戴安全帽,塔上拉桶人员应配戴安全带。 5产品活化 催化剂是以氧化铜的形式提供给用户的,使用前必须先经还原才能获得所需的催化活性,通过对催化剂升温还原得当活性。催化剂升温还原是催化剂活性相形成的关键步骤。 C307型甲醇催化剂还原的方程式为: CuO + H2 == Cu + H2O + 86.7 kJ/mol CuO + CO == Cu + CO2 + 128.1 kJ/mol 为更好地控制还原气体的流量,催化剂升温还原前需安装一个Ф2~20的配

后过渡金属催化剂综述

后过渡金属催化剂综述 1催化剂的意义 催化剂是可以加速化学反应的物质。化学反应若要发生,则反应物分子之间必须有足够能量的发生碰撞以形成活性复合物或过渡态复合物,这个能量就是活化能。而催化剂能够提供一个较低的活化能,因此加速了化学反应的发生。和未添加催化剂的反应的一步实现原理相比,催化反应包含了许多种化合物与过渡态复合物[1]。 催化技术对于目前乃至未来的能源、化学反应、环境工业、石化工业都是至关重要的。原油、煤和天然气向燃料和化学原料的转化,大量石油化工和化学产品的生产,以及CO、NO、碳氢化合物排放物的控制,全都依赖于催化技术。此外,催化剂还是燃料电池电极的必要组分——无论电极使用的是固体氧化物离子还是聚合物质子电解液[2]。催化技术的发展、催化剂的改进和新催化剂的成功开发, 往往会带动已有工艺的改进和新工艺的诞生。据统计,85%以上的化学反应都与催化反应有关。目前工业上采用的催化剂大多为金属、金属盐和金属氧化物等多相催化剂, 其优点是催化性能较稳定, 使用温度广, 容易回收重复使用, 但催化活性较低, 反应常常需要高温、高压条件, 而且副反应较多。最近几十年, 发展了以有机金属络合物为主的均相催化剂, 为化学工业带来革命性进步。这种催化剂分散度高, 活性中心均一, 结构明确, 催化剂活性和选择性都较高, 反应可以在很温和的条件下进行[3]。 2后过渡金属催化剂的性质 聚烯烃工业的发展是一个国家石化工业发展的重要标志。Ziegler - Natta催化剂、茂金属催化剂和后过渡金属催化剂仍然是烯烃聚合催化剂研发的3个主要方向[4]。 90年代,美国北卡罗来纳大学的Brookhart等人[5]报道了利用适当的配体, 可使元素周期表中的第Ⅷ族中Ni和Pd的配合物用来引发烯烃聚合, 从而由单一烯烃可获得高分子量的、有各种支化度的聚合物, 并能实现与极性单体的共聚。他们将这一类催化剂称为烯烃聚合后过渡金属催化剂。后过渡金属催化剂中金属元素的种类涉及到第Ⅷ族中的元素, 目前研究得比较多的为Fe、Co、Ni、Pd4种金属元素[6]。 这类金属配合物的亲氧性相对较弱,对空气和水分不太敏感,特别是催化烯烃以及环烯烃聚合的活性很高[7],而且对比茂金属催化剂, 后过渡金属催化剂具有稳定性好、生产费用低、能生产新品种聚烯烃以及能合成带有官能团的新型聚合物等优点。再加上后过渡金属催化剂合成相对简单, 产率较高,因而其成本远低于茂金属催化剂, 而且聚合时助催化剂用量比较低, 一般与负载的茂金属催化剂相当, 因此成为烯烃聚合用催化剂的新的研究热点[8]。 3 后过渡金属催化剂的种类 后过渡金属烯烃聚合催化剂是指以镍( Ⅱ) 、钯( Ⅱ) 、铁( Ⅱ) 、钴( Ⅱ) 、钌( Ⅱ)等后过渡金属原子为活性中心的一类金属配合物烯烃聚合催化剂。 3.1 镍系 镍系包括双亚胺类、P - O类和N - O类等。双亚胺类镍系烯烃聚合催化剂是指以双亚胺为配体的一类平面型镍(Ⅱ)阳离子配合物。当采用甲基铝氧烷(MAO)作助催化剂时,二溴化双亚胺合镍的衍生物具有很高的催化活性。这类催化剂在Lewis酸如MAO 的作用下形成阳

金属材料牌号对照【详尽版】

金属材料代号和牌号大全 内容来源网络,由深圳机械展收集整理! 更多相关金属材料及金属加工设备展示,就在深圳机械展! 钢种 中国GB 日本JIS 美国ASTM 德国 牌号牌号标准号钢号钢号材料号标准号 碳素钢板Q235-F SS41 G3101 A36 USt37-2 1.0112 DIN17100 Q235 SS41 G3101 A283-C RSt37-2 1.0114 DIN17100 Q255A SS50 G3101 A283-D (RSt42-2) 1.0134 DIN17100 (A3R) SPV24 G3115 A285-C 20g SB42 G3103 A515.Cr60 HⅡ 1.0425 DIN17155 (15g) SB35 G3103 A515.Cr55 HⅠ 1.0345 DIN17155 (25g) SB46 G3103 A515.Cr65 HⅢ 1.0435 DIN17155 25 SM41A G3103 DIN17100 低合金钢板16Mn SM50-B.C G3106 St52-3 1.0841 DIN17155 16MnR SM41B G3106 A299/A537-Ⅰ.Ⅱ 17Mn4 19Mn5 1.0841 1.8045 16MngC SPV36 G3115 St52-3 15MnVR SPV36 (WELTEN50) G3115 A225Gr.A.B WStE39 1.8930 15MnVgC (A633-GR.B) 15MnVNTR (K-TEN62M) A302-GR.B 18MnMoNbR A533-Gr.A.I 耐热钢板16Mo SB46M G3103 A204-Gr A.B 15 Mo3 1.5414 DIN17155 12CrMo SCMV1 G4109 A387-Gr.2 15CrMo SCMV2 G4109 A387-Gr.12 13 CrMo44 1.7335 DIN17155 12Cr2Mo1 SVMV4 G4109 A387-Gr.22 10 Mo910 1.7362 DIN17155

(精选)低变催化剂使用说明书

S B-3(B301Q)耐硫低变催化剂 S B-3(B301Q)耐硫低变催化剂是在S B-1催化剂基础上改进制备工艺研制的球形耐硫变换催化剂,—九八七年投入工业应用,一九九一年通过化工部鉴定,并被命名为国家正式产品,已广泛应用于全国300多家化肥厂。该催化剂具有活性温度低、选择性好、堆比重轻、床层阻力小、机械性能和热稳定好以及使用寿命长等特点。 一、物理性质和化学组成: 外形:球形;颜色:灰黑色;规格:Φ4~6m m;堆比重:0.75~0.85k g/L; 破碎强度:>78N/颗比表面积:≥120m2/g(B E T法)孔容:≥0.30m l/g(压汞法);平均孔径:100?;活性组份:C o O、M003、碱金属促进剂、助剂等,载体:γ-A l203; 二、应用领域: S B-3(B301Q)耐硫低变催化剂的应用领域为以煤、渣油为原料的合成氨厂及制氢企业的一氧化碳变换工序,适用于铜洗净化的“中串低”、“中低低”变换工艺和甲烷化净化的“中低低”、“全低变”深度变换工艺。 三、使用条件 压力:常压~4.0M P a温度:190~460汽气比:0.15~0.70; H2S含量:视温度、汽气比情况而定;空速:中串低≥1300h r-1(0.75M P a) 中低低≥1000h r-1(0.75M P a) 全低变≥800h r-1(0.75M P a) 详见《钴钼耐硫变换催化剂使用说明书》。 四、产品性能 S B-3(B301Q)耐硫低变催化剂的技术性能远高于化工部H G2779-1996-H G2781 -1996所规定的水平。在正常情况下: 中串低变换工艺:0.75M P a,进口温度200℃,使用空速1500h r-1,入中变总汽比 0.50,进低变C O≤6.0%,出低变C O≤1.0%;使用寿命三年以上。 中低低变换工艺:0.75M P a,一、二段进口温度200℃、190℃;使用空速:1000 H r-1,入中变总汽比0.40,进低变C O≤10.0%,出低变C O≤1.2%;使用寿命三年以上 在深度变换工艺中,S B-3(B301Q)催化剂更有上佳表现。完全可以将C O降至 0.3%以下。 五、应用情况(应用实例) 河南省某中型化肥厂是以煤焦为原料,当年生产能力8万吨合成氨。最终产品为尿素的中型氮肥厂。1991年6月使用上海化工研究院S B-3(B301Q)耐硫低变催化剂23M3,使用压力1.8M P a,半水煤气流量34000m3/h r。硫化采用循环硫化法硫化,硫化最终温度360℃,用C S2近2T。投入运行后,低变进口温度200~210℃,热点温度≤260℃;入中变总汽气比约0.55(后再热钾碱脱碳),入低变C O≤5%左右,出低变C O≤0.8%;年综合经济效益147万元/年;吨氨节能1.34x103M J。一直使用至一九九八年底(因故进水)而更换,使用寿命达七年半。

第六章金属催化剂催化作用讲解

第六章金属催化剂催化作用 章节分配 一、金属催化剂重要类型及重要催化反应示例 二、乙烯环氧化催化作用 1. 乙烯环氧化工业催化剂 2. 乙烯环氧化反应机理 3. 乙烯环氧化中助催剂、促进剂的作用及新型催化剂 三、氨合成催化剂催化作用 1. 合成氨催化剂简况 2. 熔铁催化剂的结构 3. 各种助剂的作用及含量的最佳值范围 4. 氨合成铁催化剂活性中心模型及其作用机理 四、烃类催化重整催化剂作用原理 1. 催化重整反应及重整催化剂 2. 烃类在过渡金属上的吸附态及烃类脱氢 3. 催化重整作用机理 五、其他重要类型金属催化剂简介 1. 镍系催化剂 2. 裂解气中炔烃选择加氢催化剂 六、金属催化剂的电子迁移、d空穴与催化活性 七、多位理论的几何因素与能量因素 八、对多位理论及电子理论的评价 金属催化剂是固体催化剂中研究得最早、最深入,同时也是获得最广泛应用的一类催化剂,例如,氨的合成(Fe)和氧化(Pt),有机化合物的加氢(Ni,Pd,Pt,等)、氢解(Os, Ru,Ni,等)和异构(Ir,Pt,等),乙烯的氧化(Ag),CO的加氢(Fe,

Co,Ni,Ru,等)以及汽车尾气的净化(Pt,Pd,等)等等。其主要特点是具有很高的催化活性和可以使多种键发生开裂。 (1) 自从上世纪P.Sabatier发现金属镍可催化苯加氢生成环己烷以来,迄今除金属催化剂以外,尚未发现过能催化这一反应的其它类型催化剂.又如,乙烷氢解对金属催化剂来说并非难事.然而除金属催化剂之外,也末发现可使乙烷加氢分解的别种催化剂,另外,如众所周知,F—T合成也只有在金属催化剂上才能进行等等.那么,金属催化剂之所以具有这种高的活性,其内在因素是什么? (2)所有金属催化剂几乎都是过渡金属,而且,金属催化剂的功能又都和d 轨道有关,这是为什么? (3)当过渡金属催化剂按其活性排列时,对每个反应都有自己独有的序列,即使对每类反应,至今也未发现它们有相同的序列,什么是决定这种序列的内在因素? (4)对一个反应来说,为什么同类金属又常常有明显不同的选择性? (5)对某些反应来说,单位表面积的催化活性决定于金属的晶面、金属晶粒的大小(如果金属是负载着的),载体以及制法,为什么对活性有这种差别?又怎样和反应相联系? (6)由两种金属制成的合金催化剂,其催化功能随组分有强大变化,而且又明显地取决于所研究的反应,产生这些效果的原因是什么? 表6-1 金属催化剂类型(按制备方法划分)

金属材料材料牌号对照表

C Mn Si 00Cr19Ni10中≤0.030≤2.00≤1.00TP304L 美≤0.0358≤2.00≤0.75TP304LN 美≤0.0358≤2.00≤0.75SUS304L TP 日≤0.030≤2.00≤1.00TP304美≤0.08≤2.00≤0.750Cr18Ni9 中≤0.07≤2.00≤1.00TP304N 美≤0.08≤2.00≤0.75SUS304L TP 日≤0.08≤2.00≤1.00TP304H 美0.04-0.10≤2.00≤0.75SUS304L TP 日0.04-0.10≤2.00≤0.750Cr18Ni10Ti 中≤0.08≤2.00≤1.001Cr18Ni9Ti 中≤0.12≤2.00≤1.00TP321 美≤0.08≤2.00≤0.75TP321H 美0.04-0.10≤2.00≤0.75SUS321 TP 日≤0.08≤2.00≤1.00SUS321H TP 日0.04-0.10≤2.00≤0.750Cr18Ni11Nb 中≤0.08≤2.00≤1.00TP347美≤0.08≤2.00≤0.75TP347H 美0.04-0.10≤2.00≤0.75TP348 美≤0.08≤2.00≤0.75TP348H 美0.04-0.10≤2.00≤0.75SUS347 TP 日≤0.08≤2.00≤1.00SUS347H TP 日0.04-0.10≤2.00≤1.0000Ci17Ni14Mo2中≤0.03≤2.00≤1.00TP316L 美≤0.035≤2.00≤0.75TP316LN 美≤0.035≤2.00≤0.75SUS 316L TP 日≤0.03≤2.00≤1.000Cr18Ni12Mo2Ti 中≤0.08≤2.00≤1.001Cr18Ni12Mo2Ti 中≤0.21≤2.00≤1.000Cr17Ni12Mo2 中≤0.08≤2.00≤1.00TP316 美0.04-0.10 ≤2.00≤0.75TP316H 美≤2.00 ≤0.75TP316N 美≤0.08≤2.00≤0.75SUS 316 TP 日≤0.08≤2.00≤1.00SUS 316H TP 日0.04-0.10≤2.00≤0.7500Ci19Ni13Mo3 中≤0.030≤2.00≤1.00TP317L 美≤0.035≤2.00≤0.75SUS 316L TP 日≤0.030≤2.00≤1.000Ci19Ni13Mo3中≤0.08≤2.00≤1.000Cr18Ni12Mo3Ti 中 ≤0.08≤2.00≤1.00 国别钢号材料类别00-18Cr-8Ni 0-18Cr-8Ni 1-18Cr-8Ni 18Cr-10Ni-Ti 18Cr-10Ni-Cb 00-16Cr-12Ni-2Mo 16Cr-12Ni-2Mo 00-18Cr-13Ni-3Mo

催化剂使用说明

催化剂使用说明 1 尺寸规格100*100*40 2目数:200cpsi 3载体材料:陶瓷堇青石 4涂层材料/γ-Al2O3 5贵金属Pd或Pt 为了更有效,合理的使用及高活性,高净化率,耐高温,节能及使用寿命等特点,在具体使用过程中请注意以下各操作事项: 在每次使用催化剂前,必须首先使用新鲜空气在高于可燃物的起燃温度100-150℃的温度范围内(一般在300-400℃)循环半小时以上,充分预热催化剂床层。 绝对禁止当催化剂床层温度低于起燃温度时引入有机废气,不然很容易使催化剂中毒失效及反应器出现“门堵”现象。 尽可能避免引入明显的尘埃,可有效预防催化剂孔道的堵塞。 催化剂的最佳使用温度范围在400-700℃,尽可能避免使催化剂长时间处于800℃以上高温。停车时必须先切断废气源,绝对禁止在切断催化剂床层的加热电源后且温度已低于所要求的预热温度时继续通入废气。切断废气源后应继续加热催化剂长前新鲜空气并通气半小时以上,满足要求后方可完全停车,避免急冷。 如果遇到由于催化剂床层温度过低或废气中可燃物浓度过高等原因造成了催化剂活性的下降,或遇到突然停电事故,再次开机时请把催化剂床层前的预热温度提升到500℃并通新鲜空气1-2小时,可恢复或部分恢复催化剂活性。 特别提醒:由于某些化学物质会使催化剂中毒,例如含磷,硫,铅,汞,砷及卤素等的有机或无机物对催化剂的破坏作用很强,将导致催化剂的永久性失活,无法恢复活性。 根据具体设备使用情况,当催化剂使用较长时间后活性有可能下降时,可把上下(前后)层的催化剂进行对调防止,必要时适当提高催化剂床层和废气的预热温度。 催化剂在使用过程中在后期活性会慢慢下降,到一定程度时请与本公司联系更换新的催化剂无锡威孚环保催化剂有限公司

常用金属材料参考手册

Q/NVC 惠州雷士光电科技有限公司企业标准 (技术手册) Q/NVC XXX-2011 常用材料参考手册 --------金属材料 2011年10月1日发布2011年12月1日实施 惠州雷士光电科技有限公司发布

目录 1 范围 2 规范性引用文件 3 术语 4 常用碳素结构钢材 5 弹簧钢 6 镀锌钢板及钢带 7 常用不锈钢 8 铝合金板材 9 压铸铝合金 10 铜合金

常用金属材料参考手册 1 范围 本手册列举了常用钢材、不锈钢材、铝合金、铜合金的标记、性能参数及一般用途。为设计工程师、品检工程师提供依据。 2 规范性引用文件 2.1 GB/T 699《优质碳素结构钢》 2.2 GB/T 700《碳素结构钢》 2.3 GB/T 2518《连续热镀锌钢板及钢带》 2.4 ASTM A666《退火或冷加工奥氏体不锈钢薄板、钢带、厚板和扁钢》2.5 GB/T 16475《变形铝及铝合金状态代号》 2.6 GB/T 1222 《弹簧钢》 3 术语 3.1 抗拉强度(tensile strength):是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致上的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 3.2 伸长率(elongation):指金属材料受外力(拉力)作用断裂时,试棒伸长的长度与原来长度的百分比,伸长率按试棒长度的不同分为:短试棒求得的伸长率,代号为δ5,试棒的标距等于5倍直径长试棒求得的伸长率,代号为δ10,试棒的标距等于10倍直径,其中标距为用来测定试样应变或长度变化的试样部分原始长度。 4 常用碳素结构钢材 4.1 标记: 我司常用碳素结构钢建议采用国家标准牌号,具体参考:GB/T699及GB/T700,也可根据日本牌号(宝钢)如下: 厚度 牌号,如Q235、08AL、SPHC、SPHD、SPCC等 名称 4.2 碳素结构钢热轧薄钢板,参考GB/T700

SCR脱硝催化剂及密封件安装

山东华鲁恒升化工股份有限公司1-4#CFB锅炉SCR脱硝改造项目 分 项 工 程 质 量 报 验 福建龙净环保股份有限公司

催化剂安装报验申请表表单编号FJLJ/ 10C-0302.1版本编号Ⅰ 页修订次0 保存期限长期 项目名称山东华鲁恒升化工股份有 限公司1-4#CFB锅炉SCR 脱硝改造项目 致:山东华鲁恒升化工股份有限公司 我方承担的山东华鲁恒升化工股份有限公司1-4#CFB锅炉SCR脱硝改造项目,#1炉催化剂及密封件安装已完成,现将上报工程报验申请表,请予以审查和验收。 附: 1、分项工程施工质量验收表 2、催化剂模块安装记录 承包单位(章): 项目经理: 日期:年月日审查意见: 建设单位:(章) 项目负责人: 日期:年月日

分项工程施工质量验收表 工程编号:性质:主控表工程名称山东华鲁恒升化工股份有限公司1-4#CFB锅炉SCR脱硝改造工程分项工程名称热动#1炉脱硝改造催化剂及密封件安装 工序检验项目性质单位质量标准质量检验结果结论 设备检查 外观检查主控 催化剂无裂纹、碎裂、损伤、 受潮等,催化剂单体之间隔 层材料完好未松动,介质通 道内无杂物,催化剂及催化 剂模块编号完好、清晰 符合要求合格 模块外形尺寸 mm 符合图纸要求符合要求合格 对角线差≤10 符合要求合格 催化剂节距mm 符合厂家设计要求符合要求合格 催化剂材质主控符合厂家设计要求符合要求合格 模块包装件合金材质无错用无错用合格厂家焊缝 高度符合设计要求,焊接无 咬边、气孔、裂纹等缺陷, 成型良好 符合要求合格 设备安装 安装时间主控h 烟气清洁系统的温态运行 (烘炉)后进行安装 符合要求合格安装前检查 炉膛至反应器内部无水渍、 浮锈、积灰等杂物 符合要求合格催化剂模块转运 催化剂模块内催化剂单体方 向与车辆前进方向一致 符合要求合格模块位置、数量主控 符合厂家设计图纸,安装记 录详细、全面 符合要求合格模块间隙误差mm ≤5 符合要求合格催化剂本体 安装过程中无机械损伤、受 潮现象 符合要求合格模块滤网安装 滤网无锈蚀、损坏,无明显 凹凸不平,固定牢固 符合要求合格

后过渡金属催化剂的研究进展-哈尔滨工业大学教师个人主页

《高等无机化学》课程论文文献综述 综述题目后过渡金属催化剂 的研究进展 作者所在系别理学院 作者所在专业无机化学 作者姓名吕海涛 作者学号12S007005 导师姓名唐冬雁 导师职称教授 完成时间2013 年 4 月 哈尔滨工业大学材料化学教研室制

说明 1.文献综述各项内容要实事求是,文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 2.学生撰写文献综述,阅读的主要参考文献应在10篇以上。本课程的相关教材也可列为参考资料,但必须注明参考的具体页码。 3.文献综述的撰写格式按撰写规范的要求,字数在2000字左右。

后过渡金属催化剂的研究进展 1 后过渡金属催化剂的进展 后过渡金属催化剂是近年来受到广泛关注的一种新型催化剂,是对聚合催化剂的又一重要革新。它开辟了一个完全崭新的催化领域,将成为继茂金属催化剂之后的又一研究开发热点。后过渡金属( 铁、钴、镍、钯等) 配合物用于烯烃催化研究可追溯至上世纪70年代,其研究结果发展成了SHOP( Shell higher olefin process) 催化体系(1987)[1],被广泛用于工业生产线性A烯烃。然而,由于后过渡金属容易导致B氢消除反应,影响了乙烯聚合催化的发展。直到上世纪90 年代中期,Brookhart研究组发现了A—二亚胺镍、钯配合物能催化乙烯聚合制得高分子量聚乙烯(1995)[2],后过渡金属配合物催化乙烯聚合的重要性才真正为人们所认识。 研究后过渡金属催化剂卓有成效的世界著名大公司有Du Pont、Shell、BP 、BF Goodrich和W.R.Grace 公司等(1996)[3]。他们在该技术领域投人了大量精力,深入研究,取得令人瞩目的成就,其中有的研究已接近于工业化。shell公司于1996年在英国的Carringtion开始运转了一套使用后过渡金属把基络合物催化剂的聚酮装置,生产能力约1.5万t/a ,这种商品名为Carilon的聚酮产品已经销售到了欧洲和美国。该公司目前正对第二套聚酮装置的地点和生产能力进行评估, 准备扩大生产规模。BP公司在英国的Grangemouth也有采用钯基催化剂的CO/烯烃共聚物中试装置运行。 后过渡金属催化烯烃以及环烯烃聚合的研究在近年来取得了重大进展, 已经能够设计合成具有特殊微观结构的聚烯烃;实现了乙烯与极性单体、乙烯与环烯烃的共聚;催化机理的研究也日益完善。这些结果将为新型催化体系的设计及新型功能材料的合成起到一定的指导作用。在后过渡金属烯烃催化剂的合成过程中, 近年来开始出现了一些新的方法和技术。例如高通量筛选方法( high throughput screening, HTS) 的应用(2002)(2003)[4,5],其优点在于, 在相同的时间段内合成和试验数个甚至数十个配体和配合物, 极大地加速了高效催化剂的筛选, 节省了大量时间, 降低了药品的消耗。相信这一技术将大大促进催化剂合成与筛选的速度。 2 后过渡金属催化剂的特点 后过渡金属(铁、钴、镍、钯等)配合物催化剂由于具有稳定性高、易于合成和耐受杂原子和极性基团的能力,具有与前过渡系催化剂明显不同的性能(2009)(2003)[6,7]为烯烃齐聚、聚合及共聚研究提供了新的发展空间。其主要特点有:(l) 聚合活性极高。这种新型络合物均相催化剂无论与传统高效Ziegler催化剂或茂金属催化剂相比, 都显示出异常高的活性, 高达11x106gPE/mol·h。 (2)聚合能力强,聚合单体范围广。可以接受官能化的极性单体,用于全范围的单体聚合及共聚合,合成种类繁多的新型聚烯烃树脂和特种性能树脂等。

钢板金属材料牌号对照

钢板金属材料牌号对照 钢种 中国GB 日本JIS 美国ASTM 德国 牌号牌号标准号钢号钢号材料号标准号 碳素钢板Q235-F SS41 G3101 A36 USt37-2 1.0112 DIN17100 Q235 SS41 G3101 A283-C RSt37-2 1.0114 DIN17100 Q255A SS50 G3101 A283-D (RSt42-2) 1.0134 DIN17100 (A3R) SPV24 G3115 A285-C 20g SB42 G3103 A515.Cr60 HⅡ 1.0425 DIN17155 (15g) SB35 G3103 A515.Cr55 HⅠ 1.0345 DIN17155 (25g) SB46 G3103 A515.Cr65 HⅢ 1.0435 DIN17155 25 SM41A G3103 DIN17100 低合金钢板 16Mn SM50-B.C G3106 St52-3 1.0841 DIN17155 16MnR SM41B G3106 A299/A537-Ⅰ.Ⅱ 17Mn4 19Mn5 1.0841 1.8045 16MngC SPV36 G3115 St52-3 15MnVR SPV36 (WELTEN50) G3115 A225Gr.A.B WStE39 1.8930 15MnVgC (A633-GR.B) 15MnVNTR (K-TEN62M) A302-GR.B 18MnMoNbR A533-Gr.A.I 耐热钢板 16Mo SB46M G3103 A204-Gr A.B 15 Mo3 1.5414 DIN17155 12CrMo SCMV1 G4109 A387-Gr.2 15CrMo SCMV2 G4109 A387-Gr.12 13 CrMo44 1.7335 DIN17155 12Cr2Mo1 SVMV4 G4109 A387-Gr.22 10 Mo910 1.7362 DIN17155 低温钢板 16MnR SLA24B G3126 A516-Gr55 TTSTE26 1.0463 SEW089 15MnVR SLA33A A516-Gr60 TTSTE29 1.0488 15MnVNTR A516-Gr65 A516-Gr70 TTSTE32 TTSTE36 1.0851 1.0859

甲醇催化剂说明书

一、产品特点及用途 KF104催化剂适用于甲醇重整制H2+CO2的反应。它是以C U O为主体,ZnO.Al2O3为间隔体的铜锌铝系列催化剂。由于采用了新的共沉淀工艺技术,增加了新型助剂,因而其有效铜面积较大,活性及稳定性都好,且孔融大、孔径分布适宜。其各项性能测试结果表明,本系列催化剂已处于国内外同类产品的领先地位。 二、产品主要使用条件 使用温度:210℃~270℃(床层中部温度) 正常操作温度:220℃~260℃(床层中部温度) 操作压力:≤2.5MPa 液空速:≤1.2h-1 原料中S含量:<0.1×10-6 原料中Cl-含量:<0.01×10-6 三、采用标准 本系列催化剂执行四川亚联瑞兴化工新型材料有限责任公司企业标准Q/73771266-X.03-2011. 四、催化剂主要物理性质和化学组分 KF104催化剂物理化学性能 五、质量标准 活性测定条件:压力1.2MPa,床层中部温度215℃,液空速:1 h-1,原粒度装量75ml。 原料组成:CH3OH 50%,H2O 50%。 六、使用技术 1、转化器的清洗和准备

(1)将转化器上下封头拆下,检查其质量是否符合、要求,再将转化器上下封头、列管内、管板上的铁锈杂质全部清除干净,必要时可以进行酸洗、水洗、再擦 净、吹干备用,要求无铁锈,无杂质。 (2)下封头花板上放2层20目不锈钢丝网。往花板上堆满已经吹洗干的制氢为直径10mm~20mm的氧化铝瓷球,将瓷球上表面推平,要求瓷球上表面与下板面保持 有10mm~20mm的空间。 (3)仔细装好下封头,要求垫片必须用新的,保证一次安装成功,下封头后的管线暂不装。 2、催化剂装填 2.1 准备 (1)装填前应筛去细粉及碎片。 (2)检查检修工具及防护用品是否齐全完好。 (3)准备好装催化剂的量杯、漏斗、标尺等工具。 (4)对催化剂开桶进行质量检查,用6目~10目的钢网筛将催化剂中的碎粉筛除备用。 因运输、搬运或库存不当受到污染或被水浸泡变质的催化剂一般不能使用。只有确认催化剂质量符合要求后,才能装入转化器。 2.2装催化剂 (1)用量杯、漏斗逐跟往反应管内装催化剂,每装200ml催化剂应以标尺量一次高度,保证每根反应管内催化剂数量、高度相等。 (2)装填时一定要慢并逐根加入,不能急于求成,以防止出现架桥现象,当万一出现架桥现象时应做好标记,用吸附器将催化剂吸出再重新装。 (3)逐根装完后,再检查一遍有无漏装,当确认无漏装并已处理好架桥现象,再补充装一遍,使每根管内的催化剂至上管板平面。 (4)对转化器每根转化管进行吹扫,以除去装填过程中产生的粉尘,装好转化器上盖及管线,再仔细对转化器进行吹扫后装好下封头的管线。 (5)装好封头后应对系统进行试严、试漏。 3、装填注意事项 催化剂装填至关重要,关系能否正常使用,因而要严格按以上要求进行装填,同时要注意: (1)不要在阴雨天装填,以免雨水浸泡或催化剂吸潮而降低活性、强度。 (2)催化剂装填好后即进行升温还原。 (3)装填结束后,应记录装填情况,包括催化剂装填,装填高度等。 (4)吹扫催化剂床层,以除去装填过程中产生的粉尘。 4、催化剂升温还原 KF104催化剂是以氧化态供给的,投入运行前要进行还原,把氧化铜还原成晶粒细小的铜微晶。金属铜微晶是反应的活性组分,还原后催化剂中铜微晶越小,比表面积就越大,活性就越好,所以还原要小心,防止超温,以免损坏催化剂。催化剂还原为强放热反应,还原反应如下: CuO+H2=Cu+H2O(g),△H0298=-86.6KJ/mol 还原后的微晶铜遇氧气会迅速氧化,产生高热,烧毁催化剂。因此,在停车、检修设备过程中。要小心保护好催化剂,防止与氧接触。 4.1催化剂升温 4.1.1 升温介质

国内外金属材料牌号对照表

国内外金属材料牌号对照表 国内外常用灰铸铁牌号对照 序号国别铸 1 中国— HT350 HT300 HT250 HT200 HT150 HT100 2 日本— FC350 FC300 FC250 FC200 FC150 FC100 3 美国 NO.60 NO.50 NO.45 NO.35 NO.30 NO.20 — 4 前苏联CЧ40 CЧ3 5 CЧ30 CЧ25 CЧ20 CЧ15 CЧ10 5 德国 GG40 GG35 GG30 GG25 GG20 GG15 — 6 意大利— G35 G30 G25 G20 G15 G10 7 法国 FGL400 FGL350 FGL300 FGL250 FGL200 FGL150 — 8 英国— 350 300 250 200 150 100 9 波兰 Z140 Z135 Z130 Z125 Z120 Z115 — 10 印度 FG400 FG350 FG300 FG260 FG200 FG150 — 11 罗马尼亚 FC400 FC350 FC300 FC250 FC200 FC150 — 12 西班牙— FG35 FG30 FG25 FG20 FG15 — 13 比利时 FGG40 FGG35 FGG30 FGG25 FGG20 FGG15 FGG10 14 澳大利亚 T400 T350 T300 T260 T220 T150 — 15 瑞典 O140 O135 O130 O125 O120 O115 O110 16 匈牙利 OV40 OV35 OV30 OV25 OV20 OV15 — 17 保加利亚— Vch35 Vch30 Vch25 Vch20 Vch15 — 国际标准18 — 350 300 250 200 150 100 (ISO) 泛美标准19 FG400 FG350 FG300 FG250 FG200 FG150 FG100 (COPANT) 20 中国台湾—— FC300 FC250 FC200 FC150 FC100 21 荷兰— GG35 GG30 GG25 GG20 GG15 — 22 卢森堡 FGG40 FGG35 FGG30 FGG25 FGG20 FGG15 — 23 奥地利— GG35 GG30 GG25 GG20 GG15 — 国内外常用球墨铸铁牌号对照

脱硝催化剂安装运行维护手册

发电有限公司 1、2 号机组脱硝改造工程 选择性催化还原法(SCR) 烟气脱硝蜂窝式催化剂 产品操作手册 环保科技股份有限公司 2013.11

目录 目录 (2) 范围 (1) 1. SCR概述 (2) 1.1 SCR系统概述 (2) 1.2 SCR化学反应 (2) 1.3 SCR催化剂 (3) 2. 安全 (4) 2.1 人员安全 (4) 2 . 1 . 1人员保护措施 (4) 2.1.2应急处理措施 (5) 2. 1 .3搬运催化剂时的保护措施 (5) 3. .......................................................................................................................................................... 催化剂的操作说明.. (6) 3.1 单个催化剂单元的操作 (6) 3.1.1催化剂单元的接收 (6) 3. 1 .2催化剂单元的存储 (6) 3.1.3催化剂单元的搬运 (6) 3 . 1 . 4催化剂单元的替换程序 (6) 3.2 催化剂模块的操作 (7) 3.2.1 催化剂模块的包装及储存 (7) 3.2.2催化剂模块的装卸及运输 (8) 3.2.3催化剂模块的安装 (9) 3.3 SCR催化剂的运行和维护 (12) 3.3.1催化剂系统的启动 (12) 3.3.2催化剂系统的正常运行 (13) 3.3.3催化剂系统的停机维护 (14) 3.3.4偏差标准 (15) 3.3.5催化剂机械寿命的保证 (16) 3.4 催化剂的年度取样 (16) 附录 (17) 附件1 -产品化学技术说明书 (17) 附件2:设计条件和限制条件 (19) 附件3-催化剂失活机理 (21)

钌金属催化剂

钌金属催化剂 1 钌催化剂简介 金属催化剂是指以金属为主要活性组分的固体催化剂。主要是贵金属及铁、钴、镍等过渡元素。有单金属和多金属催化剂。 近半个世纪以来,贵金属催化剂的发展十分迅速,已被广泛应用于石油化工、制药、环境工程和精细化工工业。其中钌在有机物如烯烃和醇的催化氧化中具有很好的活性;同时还具有良好的加氢性能;可以在常温常压下活化N2和H2分子,适用于低温低压下合成氨;因而对钌催化剂进行研究开发具有重要的理论意义和工业应用前景。Ru原子的电子结构为4d75s1,是氧化态最多的元素,每一种电子结构又具有多种几何结构,为多样的Ru配合物合成提供良好的基础,因而广泛应用于烯烃复分解聚合和异构化等有机合成反应中 2 应用实例 以钌催化苯选择加氢制备环己烯的反应为例。 2.1 主催化剂 在苯选择加氢制备环己烯的反应中,Ru、Ni、Pt、Rh、Pd和稀土(La、Eu、Yb)等第Ⅷ族及周边的金属都具有一定的活性。使用Pt、Ir、Pd等金属的络合物催化加氢制备环己烯时,环己烯选择性几乎100%,收率可达90%,但该过程过于复杂,难以实现工业化;采用苯蒸气为原料进行气固相催化加氢制备环己烯时, Ni、Ru、Rh都是较好的催化剂,但因其反应条件苛刻,使得环己烯得率很低。大量研究表明,对于目前研究得最多、并且已用于工业生产的气液液固相法催化加氢,Ru是最合适的主催化剂,它可有效抑制环己烯的深度加氢,具有较高的苯选择加氢性能。但是,Ru催化剂的性能,也受到催化剂前驱体、制备方法、助剂和载体等因素的影响。 对于液相苯部分加氢制备环己烯的反应,钌是最适宜的催化剂。随着活性组分前驱体 RuCl 3·3H 2 O、Ru(acac) 3 、Ru(Ac) 3 和Ru(NO)(NO 3 ) 3 的不同,钌的分散状况、电子云密度等发 生变化,从而对反应活性、环己烯的选择性和得率影响较大。Milone等的研究发现,以 RuCl 3·3H 2 O作为前驱体制备的催化剂在催化苯部分加氢时有着较高的环己烯选择性。其可

钢板金属材料牌号对照表(doc 17页)(正式版)

锻件金属材料牌号对照 钢种 中国GB 日本JIS 美国ASTM 德国 牌号牌号标准号钢号 碳素钢锻件20 SF34 S20C G3201 G4051 A105、A181-ⅠC22、CK22 1.0402 101151 DIN17200 25 SF40 S25C G3201 G4051 A181-Ⅰ、A266-Ⅰ 35 SF45 S35C G3201 G4051 A181-Ⅱ、A266-Ⅱ A105 C35、CK35 1.0501 1.1181 DIN17200 45 SF50 S45C G3201 G4051 A266-ⅢC45、CK45 1.0503 1.1191 DIN17200 低合金钢锻件 16Mn 17Mn4 1.0844 DIN17155 20MnMo 15MnMoV 20MnMoNb 35CrMo SFCM3 G3221 AISI-E4135 34CrMo4 1.1200 DIN17200 32MnMoVB 15CrMo SFHV22B G3213 A182-F12、A336-F12 13CrMo44 1.7355 DIN17175 12CrMoV SFHV23B G3213 A182-F11、A336-F11 不锈耐热钢牌号对照(一)耐热钢棒牌号对照 中国美国德国日本法国英国国际 GB1221-92 AISI、ASTM DIN17440 DIN17224 JIS NF A35-572/584 NF A35-576~582 BS 970 BS 1449 ISO683/13 ISO683/16 5CrmN9Ni4N SUH35 349S52 8(注①) 2Cr21Ni2N 2Cr23Ni13 309,S30900 SUH309 Z15CN24.13 309S24 2Cr25Ni20 310,S31000 CrNi2520 SUH310 12CN25.20 310S24 1Cr16Ni35 330 SUH330 Z12NCS35.16 0Cr15Ni25Ti2MoA1VB 660,K66286 SUH660 Z6NCTDV25.15B 0Cr18Ni9 304,S30400 X5Cr189 SUS304 N6CN18.09 304S15 11 0Cr23Ni13 309S,S30908 SUS309S 0Cr25Ni20 310S,S31008 SUS310S 0Cr17Ni12Mo2 316,S31600 X5CrNiMo1810 SUS316 Z6CND17.12 316S16 20,20a 4Cr14Ni4W2Mo2

相关主题
文本预览
相关文档 最新文档