当前位置:文档之家› 专题2.9 双星与天体追及相遇问题(教师版)

专题2.9 双星与天体追及相遇问题(教师版)

专题2.9 双星与天体追及相遇问题(教师版)
专题2.9 双星与天体追及相遇问题(教师版)

专题2.9 双星与天体追及相遇问题

【专题诠释】 一、双星问题

(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.

(2)特点:

①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2

L 2=m 2ω22r 2

. ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2.

③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2

r 1.

二、卫星中的“追及相遇”问题

某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】

【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星

( )

A .质量之积

B .质量之和

C .速率之和

D .各自的自转角速度 【答案】 BC

【解析】 两颗中子星运动到某位置的示意图如图所示.

每秒转动12圈,角速度已知,

中子星运动时,由万有引力提供向心力得 Gm 1m 2

l 2=m 1ω2r 1① Gm 1m 2

l 2=m 2ω2r 2② l =r 1+r 2③

由①②③式得G (m 1+m 2)l 2=ω2

l ,所以m 1+m 2=ω2l 3

G ,

质量之和可以估算.

由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤

由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】

1.双星问题求解思维引导

2.对于天体追及问题的处理思路

(1)根据GMm

r

2=mrω2,可判断出谁的角速度大;

(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】

【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。该双星系统以引力波的形式向外辐射能量,使得

圆周运动的周期T 极其缓慢地减小,双星的质量m 1与m 2均不变,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈,将两颗中子星都看做是质量均匀分布的球体,则下列关于该双星系统的说法正确的是( )

A .两颗中子星的自转角速度相同,在合并前约100 s 时ω=24π rad/s

B .合并过程中,双星间的万有引力逐渐增大

C .双星的线速度逐渐增大,在合并前约100 s 时两颗星速率之和为9.6π×106 m/s

D .合并过程中,双星系统的引力势能逐渐增大 【答案】 BC

【解析】 由题可知,两颗中子星的公转角速度相同,在合并前约100 s 时,双星的转动频率为12 Hz ,则公转角速度ω0=2πf =24π rad/s ,而自转角速度由题中条件不能求得,A 错误;设两颗星的轨道半径分别为r 1、r 2,相距为L ,根据万有引力提供向心力可知:Gm 1m 2L 2=m 1r 1ω2公,Gm 1m 2L 2

=m 2r 2ω2公,又r 1+r 2=L ,T =2π

ω公,整理可得G (m 1+m 2)L 2=4π2L

T

2,解得T =

4π2L 3

G (m 1+m 2)

,由此可知,周期变小,双星间的距离变小,双星间的

万有引力F =Gm 1m 2L 2逐渐增大,B 正确;设两颗星的线速度分别为v 1、v 2,则G m 1m 2L 2=m 1v 21r 1,G m 1m 2L 2=m 2v 22

r 2,又r 1+r 2=L ,r 1r 2=m 2

m 1

,解得v 1=

Gm 22

(m 1+m 2)L ,v 2

Gm 21

(m 1+m 2)L

,L 减小,双星的线速度逐渐增大,根据

v =rω可知:v 1=r 1ω公,v 2=r 2ω公,解得v 1+v 2=(r 1+r 2)ω公=Lω公,代入数据可知在合并前约100 s 时两颗星的速率之和为9.6π×106 m/s ,C 正确;合并过程中,双星间的引力做正功,所以引力势能逐渐减小,D 错误。

【例2 】(2019·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆 周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上, 这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”, 假设地球公转轨道半径为R ,“金星凌日”每隔t 0年出现一次,则金星的公转轨道半径为

( )

A.t 01+t 0R B .R

t 0

1+t 0

)3 C .R

3

(1+t 0t 0

)2

D .R

3

(t 01+t 0

)2

【答案】D

【解析】根据开普勒第三定律有R 3金R 3=T 2金T 2地,“金星凌日”每隔t 0年出现一次,故(2πT 金-2π

T 地)t 0=2π,已知T 地=1

年,联立解得R 金R =3(t 01+t 0)2,因此金星的公转轨道半径R 金=R 3(t 01+t 0)2,故D 正确.

【微专题精练】

1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A .

n 3

k 2

T B .n 3

k

T C.n 2

k

T D .n k

T 【答案】B.

【解析】设两恒星中一个恒星的质量为m ,围绕其连线上的某一点做匀速圆周运动的半径为r ,两星总质量为M ,两星之间的距离为R ,由G m (M -m )R 2=mr 4π2T 2,G m (M -m )R 2=(M -m )(R -r )4π2

T 2,联立解得:T =2π

R 3

GM

.经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为T ′=2π

(nR )3

G (kM )

n 3

k

T .选项B 正确. 2.双星系统由两颗绕着它们中心连线上的某点旋转的恒星组成.假设两颗恒星质量相等,理论计算它们绕连 线中点做圆周运动,理论周期与实际观测周期有出入,且T 理论T 观测=n

1(n >1),科学家推测,在以两星球中心连

线为直径的球体空间中均匀分布着暗物质,设两星球中心连线长度为L ,两星球质量均为m ,据此推测,暗 物质的质量为

( ) A .(n -1)m B .(2n -1)m C.n -14m

D.n -28

m

【答案】C

【解析】双星运动过程中万有引力提供向心力:G m 2L 2=m L 2(2πT 理论)2

,解得T 理论=

2π2L 3

Gm

;设暗物质的质量为M ′,对星球由万有引力提供向心力G m 2L 2+G M ′m (L 2)2=m L 2(2πT 观测

)2

,解得T 观测=

2π2L 3G (m +4M ′).根据T 理论T 观测=n 1

联立以上可得:M ′=n -1

4

m ,选项C 正确.

3.(2019·广州执信中学期中)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常 可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位 于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形 的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三个星体的质量均为M ,并设两种系统的运 动周期相同,则

( )

A .直线三星系统中甲星和丙星的线速度相同

B .直线三星系统的运动周期T =4πR R 5GM

C .三角形三星系统中星体间的距离L = 3125R

D .三角形三星系统的线速度大小为1

2

5GM

R

【答案】 BC

【解析】 直线三星系统中甲星和丙星的线速度大小相同,方向相反,选项A 错误;三星系统中,对直线三星系统有G M 2R 2+G M 2(2R )2

=M 4π2

T 2R ,解得T =4πR

R

5GM

,选项B 正确;对三角形三星系统根据万有引力和牛顿第二定律可得2G M 2L 2cos 30°=M 4π2T 2·L

2cos 30°,联立解得L =3125R ,选项C 正确;三角形三星系统

的线速度大小为v =2πr T =2π

L 2cos 30°T ,代入解得v =36·312

5

·

5GM

R

,选项D 错误. 4.(2019·聊城模拟)如图所示,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙 在半径为R 的圆轨道上运行,若三颗星质量均为M ,万有引力常量为G ,则( )

A .甲星所受合外力为5GM 24R 2

B .乙星所受合外力为5GM 2

4R 2

C .甲星和丙星的线速度相同

D .甲星和丙星的角速度相同 【答案】AD

【解析】甲星所受合外力为乙、丙对甲星的万有引力的合力,F 甲=GM 2R 2+GM 2(2R )2=5GM 2

4R 2,选项A 正确;

由对称性可知,甲、丙对乙星的万有引力等大反向,乙星所受合力为零,选项B 错误;由于甲、丙位于同

一轨道上,甲、丙的角速度相同,由v =ωR 可知,甲、丙两星的线速度大小相同,但方向相反,故选项C 错误,D 正确.

5.在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为地球 半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A 城市的正上方,已知地球 的自转周期为T ,地球同步卫星的轨道半径约为地球半径的

6.6倍,则A 城市正上方出现下一颗人造卫星至 少间隔的时间约为

( ) A .0.18T B .0.24T C .0.32T D .0.48T

【答案】 A

【解析】 地球的自转周期为T ,即地球同步卫星的周期为T ,根据开普勒第三定律得: (6.6r )3T 2=(3.3r )3

T 21 解得:T 1=

1

8

T 下一颗人造卫星出现在A 城市的正上方,相对A 城市转过的角度为2π

3,则有

(2πT 1-2πT )t =2π3

解得:t ≈0.18T ,故应选A.

6.如图所示,甲、乙两卫星在某行星的球心的同一平面内做圆周运动,某时刻恰好处于行星上A 点的正上方, 从该时刻算起,在同一段时间内,甲卫星恰好又有5次经过A 点的正上方,乙卫星恰好又有3次经过A 点 的正上方,不计行星自转的影响,下列关于这两颗卫星的说法正确的是( )

A .甲、乙两卫星的周期之比为2∶3

B .甲、乙两卫星的角速度之比为3∶5

C .甲、乙两卫星的轨道半径之比为 3925

D .若甲、乙两卫星质量相同,则甲的机械能大于乙的机械能

【答案】C

【解析】设所用时间为t ,则甲卫星的周期为T 甲=t 5,T 乙=t 3,则T 甲T 乙=35,故A 错误;由ω=2π

T ,可知ω甲ω乙=

T 乙T 甲

=53,故B 错误;由万有引力提供向心力可知,GMm r 2=m 4π2T 2r ,可知r =3GMT 24π2,则r 甲r 乙=3T 2甲

T 2乙=3925,故C 正确;要将卫星发射较高的轨道,发射时需要更多的能量,故卫星高度越大,机械能越大,甲的机械能小于乙的机械能,故D 错误.

7.太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示.则下列判断正确的是( )

A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日

C .天王星相邻两次冲日的时间间隔为土星的一半

D .地外行星中,海王星相邻两次冲日的时间间隔最短 【答案】BD

【解析】.由开普勒第三定律r 3

T

2=k 可知T 行=

? ??

??r 行r 地3

·T 地=r 3行年,根据相遇时转过的角度之差Δθ=2n π及ω=Δθ

t 可知相邻冲日时间间隔为t ,则????2πT 地-2πT 行t =2π,即t =T 行T 地T 行-T 地=T 行T 行-1,又T 火= 1.53年,T 木= 5.23

年,T 土=9.53年,T 天=193年,T 海=303年,代入上式得t >1年,故选项A 错误;木星冲日时间间隔t

木=

5.23

5.23-1年<2年,所以选项B 正确;由以上公式计算t 土≠2t 天,t 海最小,选项C 错误,选项D 正确. 8.2017年三名美国科学家获本年度诺贝尔物理学奖,用以表彰他们在引力波研究方面的贡献.人类首次发 现了引力波来源于距地球之外13亿光年的两个黑洞(质量分别为26个和39个太阳质量)互相绕转最后合并 的过程.设两个黑洞A 、B 绕其连线上的O 点做匀速圆周运动,如图所示.黑洞A 的轨道半径大于黑洞B 的轨道半径,两个黑洞的总质量为M ,两个黑洞间的距离为L ,其运动周期为T ,则

( )

A .黑洞A 的质量一定大于黑洞

B 的质量 B .黑洞A 的线速度一定大于黑洞B 的线速度

C .两个黑洞间的距离L 一定,M 越大,T 越大

D .两个黑洞的总质量M 一定,L 越大,T 越大 【答案】BD

【解析】设两个黑洞质量分别为m A 、m B ,轨道半径分别为R A 、R B ,角速度为ω,由万有引力定律可知:Gm A m B

L 2

=m A ω2R A ,Gm A m B L 2=m B ω2R B ,R A +R B =L ,得m A m B =R B

R A ,而AO >OB ,黑洞A 的质量小于黑洞B 的质量,选项A 错误;v A =ωR A ,v B =ωR B ,选项B 正确;GM =ω2L 3,又因为

T =2π

ω,故T =2π

L 3

GM

,选项C 错误,D 正确.

9.2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角, 这是一个划时代的发现.在如图所示的双星系统中,A 、B 两个恒星靠着相互之间的引力正在做匀速圆周运 动,已知恒星A 的质量为太阳质量的29倍,恒星B 的质量为太阳质量的36倍,两星之间的距离L =2×105 m , 太阳质量M =2×1030 kg ,万有引力常量G =6.67×10

-11

N·m 2/kg 2.若两星在环绕过程中会辐射出引力波,该引

力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级 是

( )

A .102 Hz

B .104 Hz

C .106 Hz

D .108 Hz

【答案】A

【解析】A 、B 的周期相同,角速度相等,靠相互的引力提供向心力,由牛顿第二定律得,对A 有G m A m B

L 2=

m A 4π2r A T 2,对B 有G m A m B L 2=m B 4π2r B

T 2,又有r A +r B =L ,解得T =

4π2L 3G (m A +m B )

,则f =1

T =

G (m A +m B )

4π2L 3

≈1.66×102 Hz ,故选项A 正确.

10.(2019·衡水调研卷)军用卫星指的是用于各种军事目的的人造地球卫星,在现代战争中大显身手,作用越 来越重要,一颗军事卫星在距离地面高度为地球半径的圆形轨道上运行,卫星轨道平面与赤道平面重合, 侦察信息通过无线电传输方式发送到位于赤道上的地面接收站,已知人造地球卫星的最小周期约为85 min , 则下列判断正确的是

( )

A .该军事卫星的周期约480 min

B .该军事卫星的运行速度约为7 km/s

C .该军事卫星连续两次通过接收站正上方的时间间隔约为576 min

D .地面接收站能连续接收的信息的时间约为96 min

【答案】D

【解析】对于该军事卫星和近地卫星,由开普勒第三定律可知(2R 0R 0)3=(T T min )2

,解得T =22T min ≈240 min ,A

错误;军事卫星运行的速度v =

GM

2R 0

=12

×GM R 0=7.9 km/s

2

≈5.6 km/s ,B 错误;该军事卫星连续2次通过接收站正上方,由几何关系可知2πT t 1-2π

T 0t 1=2π,解得t 1=288 min ,C 错误;卫星与接收站的关系如图所

示.

设卫星在A 1、A 2位置接收站恰好能接收到信息,由几何关系可知∠A 1OB 1=∠A 2OB 2=π3,2π3+t 2T 0·2π=t 2

T ·2π,

解得t 2=TT 0

3(T 0-T )=96 min ,D 正确.

高中物理必修一追及与相遇问题专题练习及答案

追击和相遇问题 一、追击问题的分析方法: A. 根据追逐的两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; ? ?? ;.;.的数量关系找出两个物体在位移上间上的关系找出两个物体在运动时C B 相关量的确定 D.联立议程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 1.一车处于静止状态,车后距车S0=25处有一个人,当车以1的加速度开始起动时,人以6的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少? 答案.S 人-S 车=S 0 ∴ v 人t-at 2 /2=S0 即t 2 -12t+50=0 Δ=b 2 -4ac=122-4×50=-56<0 方程无解.人追不上车 当v 人=v 车at 时,人车距离最小 t=6/1=6s ΔS min =S 0+S 车-S 人 =25+1×62 /2-6×6=7m 2.质点乙由B 点向东以10的速度做匀速运动,同时质点甲从距乙12远处西侧A 点以4的加速度做初速度为零的匀加速直线运动.求: ⑴当甲、乙速度相等时,甲离乙多远? ⑵甲追上乙需要多长时间?此时甲通过的位移是多大? 答案.⑴v 甲=v 乙=at 时, t=2.5s ΔS=S 乙-S 甲+S AB =10×2.5-4×2.52 /2+12=24.5m ⑵S 甲=S 乙+S AB at 2/2=v 2t+S AB t 2 -5t-6=0 t=6s S 甲=at 2/2=4×62 /2=72m 3.在平直公路上,一辆摩托车从静止出发,追赶在正前方100m 处正以v 0=10m/s 的速度匀速前进的卡车.若摩托车的最大速度为v m =20m/s,现要求摩托车在120s 内追上卡车,求摩托车的加速度应满足什么 答案.摩托车 S 1=at 12 /2+v m t 2 v m =at 1=20 卡车 S 2=v o t=10t S 1=S 2+100 T=t 1+t 2 t ≤120s a ≥0.18m/s 2

(完整word版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中陈庆威2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。 根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。 一、追及问题 【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力 ,因此T1

果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了 π。所以再次相距最近的时间t 1,由;第一次相 距最远的时间t 2,由。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。地球的轨道半径为R ,运转周期为T 。地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。若某时刻该行星正好处于最佳观察期,问该行星下一次处于最佳观察期至少需经历多长时间? 解析:由题意可得行星的轨道半径θsin R r = 设行星绕太阳的运行周期为T /,由开普勒大三定律有: 23 23T r T R ' =,得:θ3sin T T =' 绕向相同,行星的角速度比地球大,行星相对地球 θ θπππω33sin )sin 1(222T T T -=-'=? 某时刻该行星正好处于最佳观察期,有两种情况:一是 刚看到;二是马上看不到,如图3所示。到下一次处于最佳观察期至少需经历时间分别为 两者都顺时针运转:T t ?--=?-= ) sin 1(2sin )2(2331θπθ θπωθπ 两者都逆时针运转: T t ?-+=?+= )sin 1(2sin )2(2332θπθ θπωθπ 二、相遇问题 【例3】设地球质量为M ,绕太阳做匀速圆周运动,有一质量为m 的飞船由静止 开始从P 点沿PD 方向做加速度为a 的匀加速直线运动,1年后在D 点飞船掠过地球上空,再过3个月又在Q 处掠过地球上空,如图4所示(图中“S ”表示太阳)。根据以上条件,求地球与太阳之间的万有引力大小。 视角 太阳 行星 图2 太阳 行星 地球 图3 θ θ

(完整版)追及与相遇问题(含答案)

追及与相遇问题 1、追及与相遇的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2、理清两大关系: 时间关系、位移关系。 3、巧用一个条件: 两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 4、三种典型类型 (1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B ①当 B A v v =时,A 、B 距离最大; ②当两者位移相等时, A 追上B ,且有B A v v 2= (2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A 判断B A v v =的时刻,A 、B 的位置情况 ①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小 ②若AB 在同一处,则B 恰能追上A ③若B 在A 前,则B 能追上A ,并相遇两次 (3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B ①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件; ②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离; ③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。 5、解追及与相遇问题的思路 (1)根据对两物体的运动过程分析,画出物体运动示意图 (2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中 (3)由运动示意图找出两物体位移间的关联方程 (4)联立方程求解 注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用 【典型习题】 【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求: (1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少? (2)在什么地方汽车追上自行车?追到时汽车的速度是多大?

追击相遇问题专题总结

追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。 1、速度小者追速度大者(一定追上)

追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1 v2):v1> v2时,两者距离变小;v1=v2时,①若满足x1<x +Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足2 x1>x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少? 例2中若汽车在自行车前方4m的地方,则自行车能否追上汽车?若能,两车经多长时间相遇?

追及相遇问题专题

追及相遇问题专题

追击和相遇问题 1.相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 2. 解相遇和追击问题的关键:“两个关系,一个条件” (1)时间关系 :0 t t t B A ±= (2)位 移关系:0 A B x x x =± (3)速临界条件: 两者速度相等——是物体间能否追上、恰好避免相碰、(两者)距离最大、最小的临界条件,也是分析判断的切入点。 3. 相遇和追击问题剖析: (一) 追及问题(设甲追乙,两物体初始时刻相距 x ) 1.第一类:速度小者加速追速度大者(如做初速度为零的匀加速物体追匀速运动物体) (1)两者速度相等前间距在增大,当两者速度相等时有最大距离,之后两者距离减小 (2)当两者位移满足甲 乙 x x x =+0时,则追上 2.第二类:速度大者减速追速度小者(如做匀减速直线运动追匀速运动)

(1)开始追及后,两者间距减小 (2)当两者速度相等时: ① 若两者位移差满足0 -x x x x ==?乙甲 ,则甲恰好追上乙,且只相遇一次(避免碰撞的条件) ② 若两者位移差满足0 -x x x x <=?乙甲 ,则不能追 上,两者存在最小间距为甲 乙 x x x -0+ ③ 若两者位移差满足0 -x x x x >=?乙甲 ,则会相遇两 次 3、分析追及问题的注意点: ⑴ 要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注..................意. 追上前该物体是否已经停止运动。............... ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。 (二)、相遇问题 ⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。 ⑵ 相向运动的物体,当各自发生的位移绝对值

(完整版)天体运动中的追及相遇问题

天体运动中的追及相遇问题 信阳高中 陈庆威 2013.09.17 在天体运动的问题中,我们常遇到一些这样的问题。比如, A 、B 两物体都 绕同一中心天体做圆周运动,某时刻 A 、B 相距最近,问 A 、B 下一次相距最近或 最远需要多少时间,或“至少”需要多少时间等问题。 而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在 思维有上一些相似的地方, 即必须找出各相关物理量间的关系, 但它也有其自身 特点。 根据万有引力提供向心力, 即当天体速度增加或减少时, 对应的圆周轨道就 会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相 遇。天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂, 成为 同学们学习中的难点。 而解决此类问题的关键是就要找好角度、 角速度和时间等 物理量的关系。 、追及问题 【例 1】如图 1所示,有 A 、B 两颗行星绕同一颗恒星 M 做圆周运动,旋转方向相 同, A 行星的周期为 T 1,B 行星的周期为 T 2,在某一时刻两行星相距最近,则 ①经过多长时间,两行星再次相距最近? ②经过多长时间,两行星第一次相距最远? 有达到一周,但是要它们的相距最近,只有 A 、B 行星和恒星 M 的连线再次在一 条直线上,且 A 、B 在同侧,从角度上看,在相同时间内, A 比 B 多转了2π; 如 解析:A 、B 两颗行星做匀速圆周运动 ,由 万有引力提供向心力 B 还没

果 A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内, A 比 B 多转了 距最远的时间 t 2,由 。如果在问题中把“再次” 或“第一次”这样的词去掉,那么就变成了多解性问题。 【例 2】 如图 2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。 地球的轨道半径为 R ,运转周期为 T 。地球和太阳中心的连线与地球和行星的连 线的夹角叫地球对行星的观察视角(简称视角)。已知该行星的最大视角为θ, 当行星处于最大视角处时, 是地球上天文爱好者观察该行星的最佳时期。 若某时 刻该行星正好处于最佳观察期, 问该行星下一次处于最佳观察期至少需经历多长 时间? 解析: 由题意可得行星的轨道半径 r Rsin 设行星绕太阳的运行周期为 T / ,由开普勒大三定律有: 二、相遇问题 【例 3】设地球质量为 M ,绕太阳做匀速圆周运动,有一质量为 m 的飞船由静止 开始从 P 点沿PD 方向做加速度为 a 的匀加速直线运动, 1年后在 D 点飞船掠过地 球上空,再过 3个月又在 Q 处掠过地球上空,如图 4所示(图中“ S ”表示太阳) 根据以上条件, 求地球与太阳之间的万有引力大小。 π。所以再次相距最近的时间 太阳 R 3 T 2 3 T r 2 ,得:T T sin 3 绕向相同, 行星的角速度比地球大,行星相对地球 2 2 (1 sin 3 ) 行星 视角 地球 图2 T T sin 3 某时刻该行星正好处于 最佳观察期, 刚看到;二是马上看不到 , 如图 3 所示。 观察期至少需经历时间分别为 有两种情况: 到下一次处于最佳 两者都顺时针运转: t 1 2 ) sin 3 ?T 3 2 (1 sin 3 ) 两者都逆时针运转: t 2 ( 2 ) sin 3 ?T 2 (1 sin 3 ) 太阳 行星 θθ 地球 图3 t 1, ;第一次相

高中物理追击和相遇问题专题带答案

专题:直线运动中的追击和相遇问题 一、相遇和追击问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 二、 解相遇和追击问题的关键 画出物体运动的情景图,理清三大关系 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系: 两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 三、追击、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解. 说明:追击问题中常用的临界条件: ⑴速度小者追速度大者,追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上, 否则就不能追上. 四、典型例题分析: (一).匀加速运动追匀速运动的情况(开始时v 1< v 2):v 1< v 2时,两者距离变大;v 1= v 2时, 两者距离最大;v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 答案:(1) 2s 6m (2)12m/s (二).匀速运动追匀加速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次;③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s 2的加速度匀加速启动前进,问:人能否追上汽车?若能追上,则追车过程中人共跑了多少距离?若不能追上,人和车最近距离为多少? 答案:不能追上 7m (三).匀减速运动追匀速运动的情况(开始时v 1> v 2):v 1> v 2时,两者距离变小;v 1= v 2时,①若满足x 1 x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例3】汽车正以10m/s 的速度在平直公路上前进,突然发现正前方有一辆自行车以4m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度大小为 6 m/s 2的匀减速运动,汽车恰好不碰上自

追击相遇问题专题总结(完整资料).doc

此文档下载后即可编辑 追及相遇问题专题总结 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 二、图像法:画出v t -图象。

1、速度小者追速度大者(一定追 上) 追击与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v 时, 2 两者距离最大;v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相 遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长

时间两者相距最远?此时距离是多少?(2)小汽车什么时候追上自行车,此时小汽车的速度是多少? 【针对练习】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少? (二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?

“双星”问题及天体的追及相遇问题

“双星”问题及天体的追及相遇问题 一、双星问题 1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、 周期相同的匀速圆周运动的恒星称为双星。 2.模型条件: (1)两颗星彼此相距较近。 (2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。 (3)两颗星绕同一圆心做圆周运动。 3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。 (2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。 (3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2 推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。 (4)巧妙求质量和:Gm1m2 L2 =m1ω2r1① Gm1m2 L2 =m2ω2r2②由①+②得: G m1+m2 L2 =ω2L ∴m1+m2= ω2L3 G 4. 解答双星问题应注意“两等”“两不等” (1)“两等”: ①它们的角速度相等。②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。 (2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。 ②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。 二、多星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同. (2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示). ②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).

(完整版)四年级+相遇问题与追及问题

简单的相遇与追及问题 一、学习目标 1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题. 2. 体会数形结合的数学思想方法. 二、主要内容 1. 行程问题的基本数量关系式: 路程=时间×速度;速度=路程÷时间;时间=路程÷速度. 2.相遇问题的数量关系式: 相遇路程=相遇时间×速度和; 速度和=相遇路程÷相遇时间; 相遇时间=相遇路程÷速度和. 3.追及问题的数量关系式: 追及距离=追及时间×速度差; 速度差=追及距离÷追及时间; 追及时间=追及距离÷速度差. 4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题. 三、例题选讲 例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.

例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车. 例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米? 例4 甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米? 例5甲、乙两人同时从相距18千米的两地相向而行,甲每小时行4千米,乙每小时行5千米.甲带着一只狗,每小时走20千米,狗走得比人快,同甲一起出发,碰到乙后,它往甲方向奔走;碰到甲后,它又往乙方向奔走,直到甲、乙两人相遇为止,这只狗一共奔走了多少千米?

天体运动中重要的模型:公转、自转、天体的追及相遇问题

【例1】 火星的半径约为地球半径的一半,火星的质量约为地球质量的1/9。地球上质量为50kg的人,如果到火星去,他的质量和重力分别是( ) A.50kg 500N B.50kg 222N C.25kg 500N D.25kg 222N 【例2】 月球质量是地球质量的1/81,月球的半径是地球半径的1/4。月球上空高500m处有一质量为60kg的物体自由下落。它落到月球表面所需要的时间是多少? 【例3】 宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t小球落回原处。已知该星球的半径与地球半径之比为R星∶R地=1∶4,地球表面重力加速度为g,设该星球表面附近的重力加速度为g′,空气阻力不计。则( ) A.g′∶g=5∶1 B.g′∶g=5∶2 C.M星∶M地=1∶20 D.M星∶M地=1∶80 【例4】 一位善于思考的同学,为探月宇航员估算环绕月球做匀速圆周运动的卫星的最小周期想出了一种方法:在月球表面以初速度v0竖直上抛一个物体,若物体只受月球引力作用,忽略其他力的影响,物体上升的最大高度为h,已知该月球的直径为d,卫星绕月球做圆周运动的最小周期为( ) A B C D

【例5】 某一颗星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体, 水平射程为60m ,如果在该星球上,从相同高度以相同的初速度平抛同一物体,那么其水平射程应为 ( ) A .10m B .15m C .90m D .360m 【例6】 火星的质量和半径分别约为地球的1/10和1/2,地球表面的重力加速度为g ,则火星表面的重力加速度约为( ) A .0.2g B .0.4 g C .2.5g D .5g 【例7】 万有引力定律和库仑定律都遵循平方反比律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比。例如电场中反映各点电场强弱的物理量是电场强度,其定义式为E =F /q ,在引力场中可以有一个类似的物理量来反映各点引力场的强弱,设地球质量为M ,半径为R ,地球表面处的重力加速度为g ,引力常量为G ,如果一个质量为m 的物体位于距离地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是( ) A .2M G R B .2g C .2(2)Mm G R D . 4g 三颗卫星 【例8】 已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍。则以下结论正确的是( ) A . 23v v = B . 231 7 v v = C . 131 7 a a = D . 13491 a a = 【例9】 如图所示,a 为地球赤道上的物体;b 为沿地球表面附近做匀速圆周运动的人造卫星;c 为地球同步卫星。关于a 、b 、c 做匀速圆周运动的说法中正确的是( ) A .角速度的大小关系为a c b ωωω=> B .向心加速度的大小关系为a b c a a a >> C .线速度的大小关系为a b c v v v => D .周期关系为a c b T T T => 同步卫星

高中物理追击和相遇问题专题(含详解)Word

直线运动中的追及和相遇问题 一、相遇和追及问题的实质 研究的两物体能否在相同的时刻到达相同的空间位置的问题。 二、 解相遇和追及问题的关键 1.画出物体运动的情景图 2.理清三大关系 (1)时间关系 :0t t t B A ±= (2)位移关系:0 A B x x x =± (3)速度关系:v A =v B 两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解. 说明:追及问题中常用的临界条件: ⑴速度小者加速追速度大者,速度在接近,但距离在变大。追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析: (一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大; 3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s 2 的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少? (二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小; 2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近; ②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇 两次。 【例2】一个步行者以6m/s 的最大速率跑步去追赶被红灯阻停的公共汽车,当他距离公共汽车25m 时,绿灯亮了,汽车以1m/s

追及相遇问题专题总结

追及相遇问题专题 球溪高级中学物理组 一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =± (3)速度关系:两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。 二、追及问题中常用的临界条件: 1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离; 2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上: (1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。 (2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。 (3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。 三、图像法:画出v t -图象。 1、速度小者追速度大者(一定追上)

四、相遇和追击问题的常用解题方法总结 画出两个物体运动示意图,分析两个物体的运动性质,找出临界状态,确定它们位移、时间、速度三大关系 (1)基本公式法——根据运动学公式,把时间关系渗透到位移关系和速度关系中列式求解。 (2)图象法——正确画出物体运动的v--t图象,根据图象的斜率、截距、面积的物理意义结合三大关系求解。 (3)相对运动法——巧妙选择参考系,简化运动过程、临界状态,根据运动学公式列式求解。注意“革命要彻底”。 (4)数学方法——根据运动学公式列出数学关系式(要有实际物理意义)利用二次函数的求根公式中Δ判别式求解。 五、追及与相遇问题专项典型例题分析 (一).匀加速运动追匀速运动的情况(开始时v1< v2):v1< v2时,两者距离变大;v1= v2时, 两者距离最大;v1>v2时,两者距离变小,相遇时满足x1= x2+Δx,全程只相遇(即追上)一次。 【例1】一小汽车从静止开始以3m/s2的加速度行驶,恰有一自行车以6m/s的速度从车边匀速驶过.求: (1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少?(2)小汽 车什么时候追上自行车,此时小汽车的速度是多少? 【针对练习1】一辆执勤的警车停在公路边,当警员发现从他旁边驶过的货车(以8m/s的速度匀速行驶)有违章行为时,决定前去追赶,经2.5s将警车发动起来,以2m/s2的加速度匀加速追赶。求:①发现后经多长时间能追上违章货车?②追上前,两车最大间距是多少? (二).匀速运动追匀加速运动的情况(开始时v1> v2):v1> v2时,两者距离变小;v1= v2时,①若满足x1< x2+Δx,则永远追不上,此时两者距离最近;②若满足x1=x2+Δx,则恰能追上,全程只相遇一次;③若满足x1> x2+Δx,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。 【例2】一辆汽车在十字路口等绿灯,当绿灯亮时汽车以3m/s2的加速度开使行驶,恰在这时一辆自行车在汽车后方相距20m的地方以6m/s的速度匀速行驶,则自行车能否追上汽车?若追不上,两车间的最小间距是多少?

专题2.9 双星与天体追及相遇问题(解析版)

高考物理备考微专题精准突破 专题2.9 双星与天体追及相遇问题 【专题诠释】 一、双星问题 (1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示. (2)特点: ①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2 L 2=m 2ω22r 2 . ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2. ③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2 r 1. 二、卫星中的“追及相遇”问题 某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】 【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星 ( ) A .质量之积 B .质量之和 C .速率之和 D .各自的自转角速度 【答案】 BC 【解析】 两颗中子星运动到某位置的示意图如图所示.

每秒转动12圈,角速度已知, 中子星运动时,由万有引力提供向心力得 Gm 1m 2 l 2=m 1ω2r 1① Gm 1m 2 l 2=m 2ω2r 2② l =r 1+r 2③ 由①②③式得G (m 1+m 2)l 2=ω2 l ,所以m 1+m 2=ω2l 3 G , 质量之和可以估算. 由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤ 由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】 1.双星问题求解思维引导 2.对于天体追及问题的处理思路 (1)根据GMm r 2=mrω2,可判断出谁的角速度大; (2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】 【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。该双星系统以引力波的形式向外辐射能量,使得

高一追及和相遇问题专题

追及和相遇问题(高一) 1.在同一平直公路上,一辆自行车正以12m/s的速度向前匀速行驶,在某时刻(设该时刻为计时起点)其前方10m处有一辆汽车以4m/s2 的加速度从静止开始向前做匀加速运动。求两车相遇的时间。(1s,5s) 3.一辆汽车由静止开始以1m/s2的加速度沿直线前进,车后相距为25m处,与车开行方向相同,一人同时以6m/s的速度匀速追车。人能否追上汽车?若能追上,求追上的时间;若追不上,求人车间最小距离。(追不上,7m) 4.在一条平直的公路上,乙车以10m/s的速度匀速行驶,甲车在乙车的后面以0.5m/s2的加速度作匀减速运动。若两车运动方向相同,甲车的初速度为15m/s,则在甲车开始减速时,两车间的距离满足什么条件可以使:(1)两车不相遇;(2)两车只相遇一次;(3)两车能两次相遇。(L>25m;L=25m,L<25m) 5.客车以20m/s速度运行,突然发现前方120m处有一货车正以6m/s 的速度,沿同一轨道向前匀速行驶,于是客车司机紧急刹车,刹车的最大加速度为0.8m/s2,问客车是否会与货车相撞?(会)

6.客车以20m/s的速度运行,突然发现前方100m处有一货车正以10m/s的速度,沿同一轨道向前匀速行驶,于是客车司机紧急刹车,要保证两车不相撞,客车刹车的加速度至少为多少?(0.5m/s2) 小结:追及和相遇问题:在两物体同直线上的追及、相遇或避免碰撞问题中关键的条件是:两物体能否到达空间某位置。因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系解出。 (1)追及:追和被追的两者的速度相等常是能追上、追不上、二者距离有极值的临界条件。 如①匀减速运动的物体追从不同地点出发同向的匀速运动的物体时,若二者速度相等了,还没追上,则永远追不上,此时二者间有最小距离。若二者相遇时,追者速度等于被追者速度,则恰好追上,也是二者避免碰撞的临界件件;若二者相遇时追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会。

初一数学追及问题和相遇问题专题复习

初一数学追及问题和相遇问题列方程的技巧 行程问题 在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。此类问题一般分为四类:一、相遇问题;二、追及问题;三、 流水行船问题;四、过桥问题。 行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。 一、相遇问题 两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。这类问题即为相遇问题。 相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么: A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有: 两地距离=速度和×相遇时间 相遇时间=两地距离÷速度和 速度和=两地距离÷相遇时间 二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。则有: 第二次相遇时走的路程是第一次相遇时走的路程的两倍。 相遇问题的核心是“速度和”问题。利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。 二、追及问题 两个运动着的物体从不同的地点出发,同向运动。慢的在前,快的在后,经过若干时间,快的追上慢的。有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题。解答这类问题要找出两个运动物体之间的距离和速度之差,从而求出追及时间。解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。 基本公式有: 追及(或领先)的路程÷速度差=追及时间 速度差×追及时间=追及(或领先)的路程 追及(或领先)的路程÷追及时间=速度差 要正确解答有关“行程问题”,必须弄清物体运动的具体情况。如:运动的方向(相向、相背、同向),出发的时间(同时、不同时),出发的地点(同地、不同地)、运动的路线(封闭、不封闭),运动的结果(相遇、相距多少、追及)。 三、流水行船问题 顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,仍然利用速度、时间、路程三者之间的关系进行解答。解答时要注意各种速度的涵义及它们之间的关系。

(完整)高中物理必修一追及与相遇问题专题练习及答案.doc

追及相遇专题练习 1.如图所示是A、 B 两物体从同一地点出发,沿相同的方向做直线运动的v-t 图象,由图象可知() 图 5 A . A 比 B 早出发 5 s B .第 15 s 末 A、 B 速度相等 C.前 15 s 内A的位移比 B 的位移大50 m D.第20 s末A、B位移之差为25 m 2. a、 b 两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是() A .a、 b 加速时,物体 a 的加速度大于物体 b 的加速度 B. 20 秒时, a、 b 两物体相距最远 - 1 υ/(m ·s ) C. 60 秒时,物体 a 在物体 b 的前方 D .40 秒时, a、 b 两物体速度相等,相距200 m 3. 公共汽车从车站开出以 4 m/s 的速度沿平直公路行驶, 2 s 后一辆摩托车从同一车站开出匀加速追赶,加速度 为 2 m/s 2,试问: (1)摩托车出发后,经多少时间追上汽车? (2)摩托车追上汽车时,离出发处多远? (3)摩托车追上汽车前,两者最大距离是多少? 4. 汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s 2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动. 设在绿灯亮的同时,汽车B以8 m/s的速度从A 车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与 A 车相同,则从绿灯亮时开始() A. A车在加速过程中与B车相遇 B. A、B相遇时速度相同 C. 相遇时A车做匀速运动 D.两车不可能再次相遇

5.同一直线上的 A、B两质点,相距 s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速 度为 v 的匀速直线运动, B 从此时刻起做加速度为 a、初速度为零的匀加速直线运动.若 A 在 B前,两者可相遇几次? 若 B在 A前,两者最多可相遇几次? 6. 一列货车以28.8 km/h 的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h 的速度向它靠近. 快车司机发觉后立即合上制动器,但快车要滑行2000 m 才停止 . 试判断两车是否会相碰. 7.一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s 处有另一辆火车正沿着同 一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则 a 应满足什么条件? 8. A、B两车沿同一直线向同一方向运动,A车的速度 v =4 m/s, B 车的速度v =10 m/s.当 B车运动至 A 车前 A B 方 7 m处时,B车以a=2 m/s 2 的加速度开始做匀减速运动,从该时刻开始计时,则 A 车追上 B 车需要多长时间? 在 A 车追上 B 车之前,二者之间的最大距离是多少? 9.从同一地点以30 m/s 的速度先后竖直上抛两个物体,抛出时间相差 2 s,不计空气阻力,两物体将在何处 何时相遇? 10.汽车正以10 m/s 的速度在平直公路上匀速直线运动,突然发现正前方有一辆自行车以 4 m/s 的速度同方向做匀速直线运动,汽车立即关闭油门,做加速度为 6 m/s2的匀减速运动,求汽车开始减速时,他们间距离为 多大时恰好不相撞?

相关主题
文本预览
相关文档 最新文档