当前位置:文档之家› 泵的汽蚀

泵的汽蚀

泵的汽蚀
泵的汽蚀

★汽蚀现象

液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。

泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。

在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。

气蚀产生的后果:

(1)气蚀发生时泵体震动,并产生噪音;

(2)叶轮局部在巨大冲击的反复作用下,表面出现斑痕及裂纹,甚至呈海绵状逐渐脱落。

(3)液体流量明显下降,同时压头、效率也大幅降低,严重时甚至吸不上液体,输不出液体。资料:瞬间压力可达2000atm(作用面很小),频率25000Hz。

气蚀产生的条件:叶片入口附近K处的压强PK等于或小于输送温度下液体的饱和蒸气压。P和沸点一一对应,压力低,沸点高。泵的高度距液面越高,叶轮处的压强就越低(喝汽水)。★解决泵汽蚀从原理上有两个途径:提高装置有效汽蚀余量或降低泵必须汽蚀余量。

提高装置有效汽蚀余量的具体方法主要有:1、提高液位;2、提高泵入口系统压力;3、减少入口管线沿程损失;4、降低介质汽化压力(通常是降低温度);5、降低泵安装高度等。降低泵必须有效汽蚀余量主要通过泵本身设计来实现的,具体方法主要有更改水力设计、将单吸改为双吸、设置诱导轮、设计成立式筒袋泵等。

★泵抽空的判断方法,在下列情况下可能发生抽空现象

仪表流量指示大幅度波动或流量指示为零;

压力电流指示大幅度波动或无指示;

泵出口压力下降或指示为零;

泵振动较大,并有杂音;

管线内有异常声音。

★容积泵本身都具有自吸能力。离心泵流量随压力改变很大,而容积泵流量随压力改变却很小,与离心泵的轴功率随扬程提高而减小的规律相反,容积泵的轴功率随压力的提高而增大。这要求在容积泵上和泵装置中必须设备安全阀,以防排出管路意外堵塞,造成泵压力过大,从而功率过大,使原动机或泵因超负荷而损坏。因此,容积泵启动时不能关闭出口阀门,直接启动即可正常运行。

★★★★

催化装置一般至少三个汽包,外取汽包,油浆汽包,余热锅炉汽包,每天的连续排污水和定期排污水量很大,原来这部分水经过排污扩容器是直接排入地下的,扩容器顶的蒸汽直接排空,浪费了不说,还造成了污染。尤其北方炼厂的冬天,那儿就是一座冰山。后来我看过另一家北方炼厂的改造,就是在连续和定期排污扩容器的顶上各设置一个压力调节阀,而在定排扩容器顶加一条DN20的非净化风线,可以加孔板,量很小就可以了,连排扩容器出来的

0.5MPa蒸汽可以选择进入除氧器,也可进入3公斤蒸汽管网,用于胺液再生塔底重沸器的热源,再利用。定排扩容器控制压力4公斤,其内部经过冷却的水直接压入循环水回水管网,改造后运行良好。现在还有的炼厂设计什么排污降温池,另外设计两台降温水提升泵,液位高了泵自启,低了泵自停,孰优孰劣,相信大家已经有判断了。

泵的汽蚀及汽蚀余量计算汽蚀分析及处理

第四章泵 思考题: 1.泵如何分类? 2.离心泵的主要过流元件有哪些?功能是什么? 离心泵的主要部件有叶轮、转轴、吸人室、蜗壳、轴封箱和密封环等。 吸入室:吸人室位于叶轮进口前,它把液体从吸入管吸入叶轮。要求液体流过吸人室的流动损失较小,液体流人叶轮时速度分布均匀。 叶轮:旋转叶轮吸入液体转换能量,使液体获得压力能和动能。要求叶轮在流动损失最小的情况下使液体获得较多的能量。 蜗壳:蜗壳亦称压出室,位于叶轮之后,它把从叶轮流出的液体收集起来以便送人排出管。由于流出叶轮的液体速度往往较大,为减少后面的管路损失,要求液体在蜗壳中减速增压,同时尽量减少流动损失。 3.离心泵的流量、扬程、功率(输入功率)、轴功率的定义是什么? 流量:泵在单位时间内输送出去的液体量。 扬程:这里将欧拉方程表示为旋转叶轮传递给单位重量液体的能量,亦称理论扬程。 功率:泵的功率通常指输入功率,即原动机传到泵轴上的轴功率。 4.灌泵的原因是什么? 若不灌泵,因泵内空气密度远小于液体,在一般离心泵的运行条件下,气体通过离心泵所得到的压升很小。也就是叶轮入口处真空度很低,不足以吸进液池的液体 5.离心泵的欧拉方程是什么? 6.汽蚀的原因是什么?(或汽蚀的机理、现象是什么?) 液体汽化、凝结、冲击,形成高压、高压、高频冲击载荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为汽蚀。 7.汽蚀的危害是什么? 1、汽蚀使过流部件被剥蚀破坏; 2、汽蚀使泵的性能下降; 3、汽蚀使泵产生噪音和振动; 4、汽蚀也是水力机械向高流速发展的巨大障碍。 8.判断汽蚀的判据是什么? NPSHa > NPSHr泵不发生汽蚀 NPSHa = NPSHr泵开始发生汽蚀 NPSHa < NPSHr泵严重汽蚀 9.提高离心泵本身抗汽蚀性能的措施有哪些? 1、提高离心泵本身抗汽蚀的性能: a、提高离心泵的吸入口至叶轮叶片入口附近的结构设计;

汽蚀的成因及危害

汽蚀的成因及危害 液体在一定温度下,降低压力,当压力达到该温度下的汽化压力时,液体便产生汽泡而汽化。这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,在其过流部分的局部区域,通常是叶轮叶片进口稍后的区域,因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力,液体便在该处开始汽化,产生大量蒸汽,形成气泡。 当含有大量气泡的液体向前流动,经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在这个及其短暂的瞬间,液滴质点将产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒数万次,严重时会将壁板击穿。 在水泵中产生气泡和气泡破裂,过流部件遭受到损坏乃至破坏的过程称之为水泵的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,同时导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 降低汽蚀现象的措施 一、增大装置的汽蚀余量 准确计算离心泵的安装高度选择合适的安装位置增大泵前贮液罐中液面的压力,降低被输送液体的温度以降低,的值减小吸入管路的阻力增加吸入管直径缩短吸入长度减少弯管阀门选用吸入良好的喇叭管,将调节阀安装在排出管线上在满足生产需要的前提下降低叶轮的转速,可适当降低离心泵工作时的流量,也可起到增大装置汽蚀余量的目的。将吸上装置改为倒灌装置。 二、1)提高泵本身的抗汽蚀性能 改进泵本身结构或结构形式使泵具有尽,可能小的允许汽蚀余量,改进泵的入口至叶轮附近的结构设计增大,过流面积,增大叶轮盖板进口段的曲率半

离心泵产生气蚀现象的原因及防止措施

离心泵因其操作简易、运行平稳、性价比高及便于维修护理而受到多数使用客户的喜爱并广泛应用于工业领域和日常生活。但凡是机械设备,在经过长时间的持续工作状态下,难免会出现设备的损坏和故障问题,离心泵的气蚀现象就是离心泵的常见故障之一。泵一旦发生汽蚀,其流量和扬程性能不仅会下降,还会表现出噪声、振动明显偏高,严重时甚至会使泵中液流中断,不能正常工作。汽蚀还会对泵的过流部件产生破坏,甚至影响管路系统。产生气蚀现象的原因有很多,例如离心泵产品质量有问题,操作人员的使用不当等。产品在出厂前会经过多道程序的质量检测,所以人为因素的影响比例更大。在工作状态下,离心泵的工作环境及操作因素的影响,占到离心泵发生气蚀现象比例的绝大部分。下面深圳恒才具体为大家介绍下气蚀产生的原因。 气蚀原因: 离心泵在工作的时候,离心泵输送的液体压力,会随着泵内液体从入口到叶轮入口下降而下降。当叶片入口附近的液体压力达到最低的时候,叶轮开始对液体做功,液体压力开始上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就会发生汽化的现象。同时溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力突然增加。这样,不仅阻碍了离心泵输送的液体正常流动。而且当这些气泡在叶轮壁面附近破裂的时候,则液体就会连续不断地撞击离心泵的内壁表面。长期的撞击之下就会造成离心泵内壁的结构损坏和剥落。如果气泡内掺杂着一些化学气体例如氧气,这些气体就会借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHa NPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa>NPSHr可防止发生汽蚀的措施如下: 1.减小几何吸上高度hg(或增加几何倒灌高度); 2.减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附件等; 3.防止长时间在大流量下运行; 4.在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5.泵发生汽蚀时,应把流量调小或降速运行; 6.泵吸水池的情况对泵汽蚀有重要影响; 7.对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

防止水泵汽蚀方法措施

防止水泵汽蚀方法措施 一水泵的类型原理 一、水泵的定义:通常把提升液体、输送液体或使液体增加压力, 即把原动机的机械能变为液体能量从而达到抽送液体目的的机器统称为泵。 二、水泵的工作原理: 1 容积式泵_ 利用工作腔容积周期变化来输送液体。 2 、叶片泵_ 利用叶片和液体相互作用来输送液体。 三、水泵的具体用途:水泵的不同用途、不同的输送液体介质、不同 流量、扬程的范围,泵的结构型式当然也不一样,材料也不同,概括起来,大致可以分为: 1 、城市供水 2 、污水系统 3 、土木、建筑系统 4 、农业水利系统 5 、电站系统 6 、化工系统 7 、石油工业系统 8 、矿山冶金系统 9 、轻工业系统10 、船舶系统 二汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力

上升气泡消失在液体中的现象称为汽蚀溃灭。 水泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 三水泵汽蚀基本关系式 水泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从水泵本身和吸入装置双方来考虑,水泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHrNPSHc——水泵开始汽蚀 NPSHa NPSHa>NPSHrNPSHc——水泵无汽蚀

离心泵的气缚与气蚀现象

离心泵的气缚与气蚀现象 为区分离心泵的“气缚”与“汽蚀”现象,有必要先简要了解离心泵的结构和理解其工作原理。 离心泵的外观是一个蜗牛状的泉壳,里面装有与泵轴相连的叶轮及泵的进出口阀门等构成。离心泵在开泵前,泵内必须充满液体。启动电机后,电机通过轴带动叶轮高速旋转。高速旋转的叶轮带动液体转动,因叶轮的特殊结构,在离心力的作用下使液体获得很高的能量,表现为流速、压力的增大。在泵壳中崮泵壳的蜗壳形状.流速会逐渐减小,而压力会进一步增大,最终以较高的压力从泵的出口排出。同时,当叶轮中心的液体被甩出后,在叶轮中心形成一定的真空度,而液面的压强比叶轮中心处要高,液面与叶轮中心形成一定压力差。在压差的作用下,液体被吸入泵内。通俗地说离心泵的工作过程是吸进来压出去。 “气缚”现象 离心泵运转时,如果泵内没有充满液体。或者在运转中泵内漏入了空气,由于空气很轻(密度很小),产生的离心力小,在吸入口处所形成的真空度低,不足以将液体吸入泵内。这时,虽然叶轮转动,却不能输送液体,这种现象称为“气缚”。 可见“气缚”现象是由于泵内存有气体而不能吸液的现象。没有液体的吸入,当然就没有液体的排出。如果泵安装在液面以上时,在

吸入管底部必须安装一个单向底阀。目的是为了不使泵内液体漏掉,以防“气缚”产生。 对于“气缚”现象,只要赶跑泵内空气,使泵内充满液,泵就能恢复正常运行。 “汽蚀”现象 “汽蚀”现象是由于泵的安装高度过高,泵内叶轮中心附近压力过低,当压力低到等于被输送液体的饱和蒸汽压时,入口处液体将在泵内汽化,产生大量汽泡,随同液体一起进入高压区,在高压区内便被周围高压液体压碎。瞬间内周围的高压液体以极高的速度打向原汽泡所占据的空间,类似于子弹打在这些点上。使叶轮或泵壳出现麻点和小的裂缝,久而久之,叶轮或泵壳将烂成海绵状,这种现象称为“汽蚀”。 简要地说,“汽蚀”现象是由于泵的安装高度过高,叶轮中心附近压力过低.液体在泵内汽化而损坏泵体的现象。当“汽蚀”现象发生时,其特征是泵体震动并发出噪音,泵的流量、扬程也明显下降。 可见“气缚”与“汽蚀”直接导因是不同的。“气缚”是由于泵内存有空气而产生,不会严重损坏泵体。“汽蚀”是由于液体在泵内汽化而产生.会严重损坏泵体。因此在使用中,应严禁“汽蚀”现象的发生。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍 (一)、离心泵的汽蚀现象 离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。 (二)、离心泵的安装高度Hg 1允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度 而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。 (1) 输送清水,但操作条件与实验条件不同,可依下式换算 Hs1=Hs+(Ha-10.33) - (Hυ-0.24) (2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s 2 汽蚀余量Δh 对于油泵,计算安装高度时用汽蚀余量Δh来计算,即 用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。若输送其它液体,亦需进行校正,详查有关书籍。 从安全角度考虑,泵的实际安装高度值应小于计算值。又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。 例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。试计算: (1) 输送20℃清水时泵的安装; (2) 改为输送80℃水时泵的安装高度。

泵的汽蚀现象分析及防止汽蚀措施标准版本

文件编号:RHD-QB-K8890 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 泵的汽蚀现象分析及防止汽蚀措施标准版本

泵的汽蚀现象分析及防止汽蚀措施 标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当

含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)--泵开始汽蚀

离心泵汽蚀原因及预防措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.离心泵汽蚀原因及预防措 施正式版

离心泵汽蚀原因及预防措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 汽蚀主要危害 (1)造成材料破坏。汽蚀发生时,由于机械剥蚀于化学腐蚀的共同作用,使材料受到破坏。由于汽蚀现象的复杂性,所以其形成机理直到现在仍在研究探讨中。一般认为水力冲击引起的机械剥蚀,首先使材料破坏,而且是造成材料破坏的主要因素。 (2)产生噪声和振动。汽蚀发生时汽泡的破裂和高速冲击会引起严重的噪声。另外,汽蚀过程本身是一种反复凝结、冲击的过程,伴随很大的脉动力。如果这些

脉动力的频率与设备的自然频率接近,就会引起强烈的振动。如果汽蚀造成泵转动部件材料破坏,必然影响转子的静平衡及动平衡,导致严重的机械振动。 (3)使离心泵的性能下降。泵汽蚀时,会使其性能下降。泵内气泡较少时,泵的性能曲线并无明显的变化,这是汽蚀的初生阶段。 气泡大量产生时,流道被“堵塞”,这时汽蚀已到了发达阶段。表现在泵的性能曲线上,出现明显的变化,性能曲线发生显著下降,出现了“断裂”工况。但是不同的比转速泵,其汽蚀性能曲线下降的情况是不同的。 防止离心泵汽蚀的9 大措施

水泵汽蚀原因分析及其防护措施标准版本

文件编号:RHD-QB-K4372 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 水泵汽蚀原因分析及其防护措施标准版本

水泵汽蚀原因分析及其防护措施标 准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 水泵汽蚀产生的原因 液体在泵内流动时,若局部压力低于一定值,液体内的杂质、微小固体颗粒或液体与固体接触面的缝中存在的气泡或汽核,会迅速生成人眼可见的气泡或汽泡,为简化起见,把汽、气核统称为气核。气泡流称为空泡。 气核进入低压区生成为空泡,空泡随液流到达压力较高区域时,受到周围液体的压缩,并经过反弹膨胀,直到最后破灭,破灭对水泵产生的危害,称为汽蚀。

1.进入流道尺寸设计不合理。如解台站进水流道为开敞式半圆形后壁,因喇叭管后壁距偏大,进水流道宽度偏小,进水流道内水流表面流态紊乱,形成涡流和回流,造成水力损失增加,把大量的气体带入泵体,加剧了水泵的汽蚀。 2.喇叭管悬高大,低水位运行。解台抽水站设计流道底板高程22.5米,叶轮中心高24.02米,喇叭管悬高1.0米,设计下游最低抽水位25.5米,叶轮中心临界淹没水深为1.5米,因急需用水及拦污栅杂物阻水,造成长期低水位运行,增加了泵体的汽蚀。 3.解台抽水站选用了36ZLB——100型轴流泵配用JSL14—10立式异步电动机,设计扬程5.5米,净扬程5米,根据运行资料,有时达5.5米以上,这样水泵的设计扬程满足不了实际运行要求,水泵在偏离设计工况下运行,加大了流液进口冲角,使叶片背面产生

针对热水泵汽蚀现象的分析和解决方法

针对热水泵汽蚀现象的分析和解决方法 摘要:在如今的很多化工生产过程中,对于管路输送需要伴热要求,在100℃以下的情况下,大多数会选择简单经济的热水循环系统。在温度要求比较高的时候,比如说高于95℃,热水循环泵经常会出现异常情况,表现在噪音和振动,以及输出流量和压力上。针对这种热水循环系统的异常现象,本文通过理论计算判断是泵出现了汽蚀现象。汽蚀轻则会造成系统压力不稳流量减少,重则会降低泵的使用寿命甚至造成泵的损坏。因此使用过程中我们需要想方设法避免汽蚀的出现。本文通过理论推算,将泵的吸入高度提高了3.5米。然后再通过现场整改后的观察验证了之前的分析,泵的运转回归了正常,从而保证了热水循环系统的稳定运行,进而满足了工厂生产条件,为公司和客户消除了一个生产隐患。 关键词:热水泵汽蚀;热水循环系统;热水泵故障分析 作者公司乳化产品工艺生产线的输送管路部分对介质的温度有较高的要求,因此输送管路要求伴热温度在95±3℃,伴热系统选择的是热水循环系统,整个系统由热水箱(采用蒸汽加热),管路、泵和阀门组成,目前这套系统已在十多条生产线上得到推广应用。但在实际生产使用过程中,我发现很多工厂在热水的温度超过95℃时,热水循环泵的运行状态出现不稳定,具体表现为振动和噪音加大,输出流量出现异常波动,输出压力降低等,根据这种现象初步判断为泵出现了明显汽蚀。根据掌握的知识,作者大致分析了汽蚀的发生过程:水汽化时的压力称为汽化压力(饱和蒸汽压力),它汽化压力的大小和温度有关,温度越高,由于分子运动更剧烈,其汽化压力越大。20℃清水的汽化压力为233.8Pa,而100℃水的汽化压力为101296Pa(一个大气压)。可见,一定温度下的压力是促成液体汽化的外界因素。液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生气泡。这种气泡会降低泵吸入端的压强,当泵吸入压强降到水的饱和蒸汽压以下时,液体又会产生气泡。气泡聚集在一起,会在泵腔内在泵壳内形成一个充满蒸汽的空间,随着泵旋转,气泡进入高压区。由于压差的作用,气泡受压破裂而重新凝结,在凝结的一瞬间,质点互相撞击,产生了很高的局部压力,如果这些气泡在金属表面附近破裂而凝结,则液体质点就象无数小弹头一样,连续击打在金属表面,使金属表面产生疲劳和裂纹,甚至局部产生剥落现象,使叶轮表面呈蜂窝状,同时气泡中的某些活泼气体如氧气等进入到金属表面的裂纹中,借助气泡凝结时放出的热量,使金属受到化学腐蚀作用,上述现象即为汽蚀。汽蚀现象产生时,泵将产生噪音和振动,使泵的扬程、流量、效率的性能急剧下降,同时加速了材料的损坏,缩短了机件的使用寿命,因此需要极力避免和消除汽蚀现象。为了验证分析是否正确,我们通过以下计算来进行理论分析。 作者公司一直选用的热水泵型号为上海中耐制泵有限公司生产的IRG型单级单吸立式热水循环离心泵,适用于能源、冶金、化工、纺织、造纸,以及宾馆饭店等锅炉高温热水增压循环输送及城市采暖系统循环用泵,使用介质温度不超过120℃。1、吸入压力≤1.0MPa,或泵系统最高工作压力≤1.6MPa,即泵吸入口压力+泵扬程≤1.6MPa,泵静压试验压力为2.5MPa,整体采用铸铁结构,密封处为机械密封。

如何防止泵发生汽蚀现象

如何防止泵发生汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为 NPSHc≤NPSHr≤[NPSH]≤NPSHa NPSHa=NPSHr(NPSHc)——泵开始汽蚀 NPSHaNPSHa>NPSHr(NPSHc)——泵无汽蚀 式中NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好; NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; [NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=(1.1~1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ρg+Vs/2g-Pc/ρg=Pc/ρg±hg-hc-Ps/ρg 四、防止发生汽蚀的措施

浅谈泵汽蚀余量

浅谈泵的汽蚀余量 摘 要:阐述了泵汽蚀余量和装置汽蚀余的概念、物理意义及区别,简要地分析了泵汽蚀余的确定方法。对临界汽蚀余量和允许汽蚀余量的确定中存在的问题进行了初步探讨,并对汽蚀余量和吸上真空度的转换进行了简要说明。 关键词:泵汽蚀余量, 有效汽蚀余量,临界状态,汽蚀实验,真空度 A superficial discussion on NPSH r Qiu Dong Abstract : In this paper, the concept, physical meaning and distinction of NPSH r and NPSH a are described, the method of NPSH r determination are analyzed. Critical cavitations margin and allow the determination of NPSH problems were discussed, and the relationship between suction vacuum and NPSH r is given. Keywords: NPSH r , NPSH a , critical state, cavitations test, vacuum 1 导言 泵汽蚀余量是表征水泵汽蚀性能的重要参数之一, 并据此计算水泵装置几何吸上高度和确定水泵安装高程, 在生产实践上具有重要意义。因此, 在水泵设计、制造、试验、安装和运行各个阶段, 都应该对泵的汽蚀余量予以特别的重视。但是, 目前国内对水泵的汽蚀试验方法、临定汽蚀余量的制定、汽蚀安全余量的取值等问题存在一定的混乱状况, 对此进行深入研究和探讨十分必要。 2 泵汽蚀余量和装置汽蚀余量的概念、物理意义及区别 根据图(1),以通过泵轴线的平面为基准面,分别列出泵进口与叶片进口两断面的绝对运动能量方程以及叶片进口与叶片背面压力最低点点的相对运动能量方程。当点的绝对压力下降到等于水泵工作温度下液体的汽化压力时, 水泵开始发生汽蚀, 临界状态下的水泵汽蚀方程式为: g w g v P g v g P v s s 22g 22122012λλρρ+=-+ (1) 式中,P s 、v s 为泵进口断面至基淮面上的绝对 压力和平均流速,v 0和w 1为叶轮进口断面上的

如何解决水泵的气蚀现象

毕业论文 课程名称如何解决水泵的气蚀现象 学生姓名X X X 年级X X 专业X X X X 指导教师X X X

如何解决水泵的气蚀现象 摘要:离心泵以其转速高,体积小,重量轻,效率高,流量大,结构简单,性能平稳,容易操作和维修等优点,使其在输油生产中得到了广泛的应用,汽蚀现象也是离心泵在输油生产中常见的故障。 关键词:离心泵;汽蚀;汽蚀余量 一、气蚀现象含义 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡,把这种产生气泡的现象称为汽蚀。离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体做功,液体压力很快上升。当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。同时,使原来溶解在液体内的气体也逸出,它们形成气泡。当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高,于是金属表面因冲击疲劳而剥裂。如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量,产生电

解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。像这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。 二、水泵运行中产生气蚀现象的原因 液体的汽化程度与压力的大小、温度高低有关。当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。吸入压力降低;吸入高度过高;吸入管阻力增大;输送液体粘度增大;抽吸液体温度过高等影响液体饱和蒸气压增加的现象都会影响汽蚀的发生,通常的因素有: (1)泵进口的结构参数,叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。 (2)泵的操作条件,泵的流量、扬程及转速等。 (3)泵的安装位置,泵的吸入管路水力损失及安装高度。 (4)环境因素,泵安装地点的大气压力以及输送液体的温度等。 三、水泵气蚀现象所产生的危害 水泵汽蚀是水泵损坏的重要原因,水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。运行中使水泵抽水的效率降低,显著减少了水泵的扬程和流量,也减少了水泵的使用寿命。汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动;

泵的汽蚀现象分析及防止汽蚀措施

泵的汽蚀现象分析及防止汽蚀措施泵的汽蚀现象分析及防止汽蚀措施 一、汽蚀现象 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。 二、泵汽蚀基本关系式 泵发生汽蚀的条件是由泵本身和吸入装置两方面决定的。因此,研究汽蚀发生的条件,应从泵本身和吸入装置双方来考虑,泵汽蚀的基本关系式为NPSHc NPSHr NPSHa NPSHa=NPSHr--泵开始汽蚀 NPSHa NPSHa NPSHr--泵无汽蚀 式中 NPSHa--装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀; NPSHr--泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;

NPSHc--临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量; --许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取 =(1.1,1.5)NPSHc。 三、装置汽蚀余量的计算 NPSHa=Ps/ g+Vs/2g-Pc/ g=Pc/ g hg-hc-Ps/ g 四、防止发生汽蚀的措施 欲防止发生汽蚀必须提高NPSHa,使NPSHa NPSHr可防止发生汽蚀的措施如下: 1( 减小几何吸上高度hg(或增加几何倒灌高度); 2( 减小吸入损失hc,为此可以设法增加管径,尽量减小管路长度,弯头和附 件等; 3( 防止长时间在大流量下运行; 4( 在同样转速和流量下,采用双吸泵,因减小进口流速、泵不易发生汽蚀; 5( 泵发生汽蚀时,应把流量调小或降速运行; 6( 泵吸水池的情况对泵汽蚀有重要影响; 7( 对于在苛刻条件下运行的泵,为避免汽蚀破坏,可使用耐汽蚀材料

泵的汽蚀现象以及其产生原因

泵的汽蚀现象以及其产生原因 1、汽蚀 液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。把这种产生气泡的现象称为汽蚀。苏华泵业 2、汽蚀溃灭 汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。苏华泵业 3、产生汽蚀的原因及危害 泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。苏华泵业 4、汽蚀过程 在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。苏华泵业 什么是泵的特性曲线? 通常把表示主要性能参数之间关系的曲线称为离心泵的性能曲线或特性曲线,实质上,离心泵性能曲线是液体在泵内运动规律的外部表现形式,通过实测求得。特性曲线包括:流量-扬程曲线(Q-H),流量-效率曲线(Q-η),流量、功率曲线(Q-N),流量-汽蚀余量曲线(Q-(NPSH)r),性能曲线作用是泵的任意的流量点,都可以在曲线上找出一组与其相对的扬程,功率,效率和汽蚀余量值,这一组参数称为工作状态,简称工况或工况点,离心泵最高效率点的工况称为最佳工况点,最佳工况点一般为设计工况点。一般离心泵的额定参数即设计工况点和最佳工况点相重合或很接近。在实践选效率区间运行,即节能,又能保证泵正常工作,因此了解泵的性能参数相当重要。苏华泵业

离心泵汽蚀原因分析

离心泵汽蚀原因分析 由专业技术人员为你解答一下为什么离心泵会出现这样的清情况呢。首先离心泵工作前,先将泵内充满液体,然后启动离心泵,叶轮快速转动,叶轮的叶片驱使液体转动,液体转动时依靠惯性向叶轮外缘流去,同时叶轮从吸入室吸进液体,在这一过程中,叶轮中的液体绕流叶片,在绕流运动中液体作用一升力于叶片,反过来叶片以一个与此升力大小相等、方向相反的力作用于液体,这个力对液体做功,使液体得到能量而流出叶轮,这时液体的动能与压能均增大。 离心泵依靠旋转叶轮对液体的作用把原动机的机械能传递给液体。由于离心泵的作用液体从叶轮进口流向出口的过程中,其速度能和压力能都得到增加,被叶轮排出的液体经过压出室,大部分速度能转换成压力能,然后沿排出管路输送出去,这时,叶轮进口处因液体的排出而形成真空或低压,吸水池中的液体在液面压力的作用下,被压入叶轮的进口,于是,旋转着的叶轮就连续不断地吸入和排出液体。 离心泵的气缚离心泵启动时,若泵内存有空气,由于空气密度很低,旋转后产生的离心力因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属表面,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。 气蚀现象的危害 汽蚀时传递到叶轮及泵壳的冲击波,加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海面状逐步脱落;发生汽蚀时,还会发出噪声,进而使泵体震动,可能导致泵的性能下降;同时由于蒸汽的生成使得液体的表观密度下降,于是液体实际流量、出口压力和效率都下降,严重时可导致完全不能输出液体。 造成汽蚀的主要原因有:1进口管路阻力过大或者管路过细2输送介质温度过高;3流量过大,也就是说出口阀门开的太大;4安装高度过高,影响泵的吸液量;5选型问题,包括泵的选型,泵材质的选型等气蚀的解决方法 解决办法:1清理进口管路的异物使进口畅通,或者增加管径的大小;2降低输送介质的温度;3降低安装高度;4重新选泵,或者对泵的某些部件进行改进,比如选用耐汽蚀材料等等 一、D型卧式多级离心泵产品概述: D型卧式、单吸多级、分段式离心泵。具有效率高、性能范围广、运行安全平稳、噪音低、寿命长、安 装维修方便等特点。供输送清水或物理化学性质类似于水的其它液体。也可以通过改变泵过流部件材质、 密封形式和增加冷却系统用于输送热水、油类、腐蚀性或含磨粒的介质。产品执行JB/T1051-93《多级清 水自吸泵型式与基本参数》标准。 本司D型卧式多级离心泵全部采用计算机设计和优化处理,公司拥有雄厚的技术力量、丰富的生产经验 和完善的检测手段,从而保证产品质量的稳定可靠。 二、D型卧式多级离心泵产品特点: 1、水力模型先进,效率高,性能范围广。

离心泵的汽蚀原因及措施

离心泵的气蚀原因及采取措施 【摘要】:通过掌握离心泵的气蚀原因,我们在设计、安装、和生产中应如何预防与消除气蚀现象。 【关键词】:离心泵气蚀原因消除措施 离心泵的气蚀原理: 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力p K最低。此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力p K小于液体输送温度下的饱和蒸汽压力p v时,液体就汽化。同时,使溶解在液体内的气体逸出。它们形成许多汽泡。当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加(有的可达数百个大气压)。这样,不仅阻碍液体正常流动,尤为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。其撞击频率很高(有的可达2000~3000Hz),于是金属表面因冲击疲劳而剥裂。如若汽泡内夹杂某种活性气体(如氧气等),它们借助汽泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。上述这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的

综合现象称为气蚀。 离心泵最易发生气蚀的部位有: 1.叶轮曲率最大的前盖板处,靠近叶片进口边缘的低压侧; 2.压出室中蜗壳隔舌和导叶的靠近进口边缘低压侧; 3.无前盖板的高比转数叶轮的叶梢外圆与壳体之间的密封间 隙以及叶梢的低压侧; 4.多级泵中第一级叶轮。 提高离心泵本身抗气蚀性能的措施 (1)改进泵的吸入口至叶轮附近的结构设计。增大过流面积;增大叶轮盖板进口段的曲率半径,减小液流急剧加速与降压;适当减少叶片进口的厚度,并将叶片进口修圆,使其接近流线形,也可以减少绕流叶片头部的加速与降压;提高叶轮和叶片进口部分表面光洁度以减小阻力损失;将叶片进口边向叶轮进口延伸,使液流提前接受作功,提高压力。 (2)采用前置诱导轮,使液流在前置诱导轮中提前作功,以提高液流压力。 (3)采用双吸叶轮,让液流从叶轮两侧同时进入叶轮,则进口截面增加一倍,进口流速可减少一倍。 (4)设计工况采用稍大的正冲角,以增大叶片进口角,减小叶片进口处的弯曲,减小叶片阻塞,以增大进口面积;改善大流量下的工作条件,以减少流动损失。但正冲角不宜过大,否则影响效率。 (5)采用抗气蚀的材料。实践表明,材料的强度、硬度、韧性

管道离心泵汽蚀现象分析

管道离心泵汽蚀现象分析 管道离心泵工作时,叶轮由原动机驱动作高速旋转运动,迫使叶片间的液体也随之作旋转运动。同时,因离心力的作用,液体由叶轮中心向外缘作径向运动,随后进入蜗壳。 液体在流经叶轮的运动过程中获得动能,液流进入蜗壳后因过流面积的增大而减速,动能转化为压能。 即通过泵的做功,液体从低压变为高压实现物料的输送。 在离心泵叶轮入口处,由于液体向叶轮外缘流动形成低压区,而入口来流还未获得叶轮的足够能量,即使无外界热量导入,也易于出现压力低于液体气化压的情况,此时泵会产生空化汽蚀现象。 汽蚀是液体在流动中嬗变为汽体、再回归为液体的过程,即汽泡产生、发展及破裂的过程,从汽泡产生到消失所用的时间极短,是一个复杂的动态过程。 汽化的结果就是在液体中产生很多汽泡,汽泡中充满了液体蒸汽以及少量溶解于液体中的气体。当汽泡随液体进入高压区时,汽泡就会迅速破裂,周围液体迅速填充原汽泡空穴,产生巨大的属于内向爆炸性质的冷凝冲击,随之蒸汽又重新凝结成液体,汽泡消失。 汽泡破裂过程中,有一部分汽泡是附着在导流组件表面上破裂凝结成液体的,这部分液体如同无数细小的高频撞击锤撞击金属表面,造成金属表面的侵蚀。 轴承

是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。 滚动轴承使用牛油作为润滑剂,加油要适当,一般为2/3~3/4的体积:太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。 太多油要沿泵轴渗出并且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理! 密封环 又称减漏环。叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低! 间隙过小会造成叶轮与泵壳摩擦产生磨损。为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0.25~1.10mm之间为宜。 填料函 主要由填料,水封环,填料筒,填料压盖,水封管组成。填料函的作用主要是为了封闭泵壳与泵轴之间的空隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。 始终保持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!保持水泵的正常运行。 所以在水泵的运行巡回检查过程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行更换。

离心泵汽蚀

离心泵汽蚀的研究现状 1.1. 汽蚀发生机理 国内外学者对汽蚀发生的机理进行了很多研究,提出了诸多观点和论述,其中最具代表性的是由柯乃普提出的“气核理论”。该理论认为经过特殊处理的“纯水”可以承受拉力,自然界中的水却只能承受很大的压力,其原因是水中存在很多含有气体或蒸汽的微小的气泡(称为核子),这些核子使液体的抗拉强度降低。当液体的压强低于汽化压强时,这些核子将迅速膨胀形成气泡,从而导致汽蚀发生。但是尺寸很小的气核,内部压强是很大的,核子内部的气体会受压而被周围的水体所吸收。所以小的核子将处于不稳定状态。由此可见,核子不可能长期存留在水中。这就得出一个很奇怪的结论:一方面,要产生汽蚀现象,就必须有核子的存在;而另一方面,核子又不可能在水中长期存在。对于这个矛盾,目前还无法正确解释,现有的汽蚀核子理论在很大程度上还带有臆想性,由核子发展成为汽蚀的过程还只是推测。但是,如果不假设气体核子的存在,就不能设想水体中在某种低的临界压强下会出现汽蚀。因此不得不假定气核具有一系列的附加特性,以保证它们能够存在于水中并处于稳定动态平衡。为此许多研究者便进行了一系列的设想。 这些设想的模式中,比较有名的是Fox和Herzfel模式和E.N.Hervery[7]模式。Fox等人提出,微小气核之所以不会溶解,是因为气核被有机薄膜所包围。这种有机薄膜是在水一气界面上自然形成的,它改变了液体的有效表面张力,推迟了蒸发,阻碍了扩散,使微小气核可以持久地悬浮,但有机薄膜是否存在,还有待物理上的证明。 E.N.Hervery于1947年提出,气体核子是水中固体颗粒或绕流物体表面缝隙中未被溶解的一些气体,而这些固体表面是疏水性的,使得在缝隙中的气体形成一个凹面的自由表面。在这样的情况下,表面张力将阻止液面进入缝隙,因而气体并不能被强迫溶解,而仍可能保持气相。Hervey模式可以解释观察到的所有汽蚀现象,也无须再假设一些不可能有的水的性质,并有很多试验数据予以证实。但是这一模式至今仍缺乏数学描述,这是因为缝隙的尺寸和形状的不确定性,以及固体表面疏水性的不同给数学分析造成了难以克服的困难。

相关主题
文本预览
相关文档 最新文档