当前位置:文档之家› 集成开关电源控制器MC34063的原理及其应用

集成开关电源控制器MC34063的原理及其应用

集成开关电源控制器MC34063的原理及其应用
集成开关电源控制器MC34063的原理及其应用

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

单片开关电源的发展及其应用

单片开关电源的发展及其应用 单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标、能构成高效率无工频变压器的隔离式开关电源等优点。它于90 年代中、后期相继问世后,便显示出强大的生命力,目前它成为国际上开发中、小功率开关电源、精密开关电源及电源模块的优选集成电路。由它构成的开关电源,在成本上与同等功率的线性稳压电源相当,而电源效率显著提高,体积和重量则大为减小。这就为新型开关电源的推广与普及,创造了良好条件。 开关电源被誉为高效节能电源,它代表着稳压电源的发展方向,现已成为稳压电源的主流产品。近20 多年来,集成开关电源沿着下述两个方向不断发展。第一个方向是对开关电源的核心单元——控制电路实现集成化。1997 年国外首先研制成脉宽调制(PWM)控制器集成电路,美国摩托罗拉公司、硅通用公司(Silicon General)、尤尼特德公司(Unitrode)等相继推出一批PWM 芯片,典型产品有MC3520 、SG3524 、UC3842 。90 年代以来,国外又研制出开关频率达1MHz 的高速PWM 、PFM(脉冲频率调制)芯片,典型产品如UC1825 、UC1864 。第二个方向则是对中,小功率开关电源实现单片集成化。这大致分两个阶段:80 年代初意-法半导体有限公司(SGS-Thomson)率先推出L4960 系列单片开关式稳压器。该公司于90 年代又推出了L4970A 系列。其特点是将脉宽调制器、功率输出级、保护电路等集成在一个芯片中,使用时需配工频变压器与电网隔离,适于制作低压输出(5.1~40V)、大中功率(400W 以下)、大电流(1.5A~10A)、高效率(可超过90%)的开关电源。但从本质上讲,它仍属DC/DC 电源变换器。 1994 年,美国动力(Power)公司在世界上首先研制成功三端隔离式脉宽调制型单片开关电源,被人们誉为“顶级开关电源”。其第一代产品为TOPSwitch 系列,第二代产品则是1997 年问世的TOPSwitch-II 系列。该公司于1998 年又推出了高效、小功率、低价格的四端单片开关电源TinySwitch 系列。在这之后,Motorola 公司于1999 年又推出MC33370 系列五端单片开关电源,亦称高压功率开关调节器(HighVoltage Power Switching Regulator)。目前,单片开关电源已形成四大系列、近70 种型号的产品。 TOPSwitch-11 根据封装形式,TOPSwitch-II 可划分成三种类型:TOP221Y~227Y(TO-220 封装),TOP221P~224P(DIP-8 封装),TOP221G~224G(SMD-8 封装),产品分类详见表1。其中以TOP227Y 的输出功率为最大。 2.1 TOPSwitch-11 (1)TOPSWitch-II 内部包括振荡器、误差放大器、脉宽调制器、门电路、高压功率开关管(MOSFET)、偏置电路、过流保护电路、过热保护及上电复位电路、关断/自动重启动电路。它通过高频变压器使输出端与电网完全隔离,使用安全可靠。它属于漏极开路输出的电流控制型开关电源。由于采用CMOS 电路,使器件功耗显著降低。 (2)只有三个引出端:控制端C 、源极S 、漏极D,可同三端线性稳压器相媲美,能以最简方式构成无工频变压器的反激式开关电源。为完成多种控制、偏置及保护功能,C 、D 均属多功能引出端,实现了一脚多用。以控制端为例,它具有三项功能:①该端电压VC 为片内并联调整器和门驱动级提供偏压;②该端电流IC 能调节占空比;③该端还作为电源支路与自动重启动/补偿电容的连接点,通过外接旁路电容来决定自动重启动的频率,并对控制回路进行补偿。

开关电源工作原理

开关电源 一.开关电源得工作原理 (以LQ-1600K3电源为例) 1、滤波电路 交流输入经滤波电路整形进入全桥整流。滤波电路减小了外部噪声与打印机内部所产生得噪声。滤波器中使用得线圈与电容得作用就是抑制交流电中得毛刺脉冲,使噪声干扰降低到最小从而得到一个较平滑得正弦波.C3、C4电容接于地就是为了防止电源中窜入高脉冲损坏电路. 经全桥整流与电容滤波形成300多伏得准直流电压。 2.开关电路 开关电路使用环形阻塞转换器式交流输入开关电源电路。具有元件少,变压器小得特点,场效应管Q1既就是开关管又就是振荡管,振荡周期由电阻R11与C13得充放电时间常数所决定。电路得工作过程就是导通饱与→截止→导通饱与,周而复始地进行下去。其工作过程如下: a、导通饱与阶段 电源接通,交流220V经过滤波、整流、平滑输出直流电压300V,由启动电阻R10、R31接至振荡管Q1得栅极上,产生栅压Vgs,在Q1得漏极上产生漏极电流Id,从小到大。在变压器T1上线圈T15—12内产生一个力图阻止Id增大得自感电动势,极性为上正下负,同时在T10—9中感应出一个感应电动势其极性也为上正下负,由于C13两端电压不能突变,因此T10—9线圈中产生得感应电势不能立即充电, 通过R11、C13加至Q1得栅极,使栅极电位提高,Q1漏极电流更加增大,又通过T10—9使Q1栅极电位更加提高,从而使漏极电流增

大更快,这种连锁得正反馈使Q1进入饱与状态. b、从饱与到截止阶段 由于Q1导通饱与后,T10—9感应电动势通过R11、R19向C13充电,充电方向从T10-9得10端经R11、C13、R19,于就是C13被充电,电压为右正左负,随着充电得进行,C13右端电位逐渐升高,左端电位随着降低,经过一段时间,当C13左端电位低到一定数值时,Q1得栅压开始减小,漏极电流Id也随之减小,由于线圈有抵制电流变化得特性,T15—12线圈中就产生一个力图阻止漏极电流减小得自感电动势,它得极性与刚才得相反,就是上负下正,并且在线圈T10—9中感应出一个上负下正得感应电动势,它得负端通过R11、C13加到Q1得栅极,使栅极电压更负,从而使漏极电流Id更小,这种正反馈得作用,使Q1很快脱离饱与转入截止状态,即所谓截止阶段. Q1关断时,产生一个浪涌电流经线圈T15—12使线圈T15-12中产生一个上正下负得感应电动势,并且在线圈T11—9中也感应出一个上正下负得感应电动势,然而Q3得发射极电压超过了基极电压,而Q3得基极电压就是由IC1(TL431)稳压得,所以Q3导通,便使?Q2也导通,并且短路Q1得栅极,维持接地,保持Q1可靠得截止,直至浪涌电压经地线耗尽为止。 c、从截止到导通饱与阶段 Q1截止后,C13停止充电,并通过R11→T10-9→D2→C13放电,C13两端电位发生了变化,C13右边电位降低,左边电位相对提高,于就是通过C13左边连接到Q1栅极得电位也随之提高,当栅极得电位升高到一定数值时,就重新产生漏极电流,如上述由于正反馈得作用使Q1很快从截止状态进入导通饱与阶段. 所以振荡电路从导通饱与—-截止——导通饱与周而复始地循环 3.+35V整形电路 包括T3—5、T4—6、D51、C51、C52等。 4、 +35V稳压控制电路 正常工作状态下,稳压控制电路使输出电压稳定在35±6%之间。如果因某种原因引起输出电压高于35V+6%,而稳压二级管ZD51、ZD81~ZD85两端电压32、7V保持不变;或因稳压二级管ZD51、ZD81~ZD85两端电压低于32、7—2、75%V时,流经DZ51—DZ85—D81-R57得电流会增大,使得PC1得1-2腿上得电流加大并使7—8腿导通,以至于使Q3发射极电位提高导至Q3、Q2导通,使Q1截止;相反若输出低于35V-6%时,PC1、Q2截止,Q1处于正常导通状态,输出继续增大,直到恢复35V±6%。 5、 +35V过载检测电路

[工作]开关电源原理与维修开关电源原理图

[工作]开关电源原理与维修开关电源原理图开关电源原理与维修开关电源原理图 电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二(开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1( 主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2( 控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3( 检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4( 辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。 开关电源原理图 三(开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源工作原理详细解析

开关电源工作原理详细解析 个人PC所采用的电源都是基于一种名为―开关模式‖的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC 交流电转化为脉动电压(配图1和2中的―3‖);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的―4‖);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC 直流电输出了(配图1和2中的―5‖) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的―开关电源‖其实是―高频开关电源‖的缩写形式,和电源本身的关闭和开启式没有任何关系的。

三极管开关电源的原理及其应用

三极管开关原理[2009年05月21日] 2009-05-21 22:09 图1 NPN 三极管共射极电路图2 共射极电路输出特性曲 图一所示是NPN三极管的共射极电路,图二所示是它的特性曲线图,图中它有3 种工作区域:截止区(Cutoff Region)、线性区(Active Region) 、饱和区(Saturation Region)。三极管是以B 极电流IB 作为输入,操控整个三极管的工作状态。若三极管是在截止区,IB 趋近于0 (V BE亦趋近于0),

C 极与E 极间约呈断路状态,I C = 0,V CE = V CC。若三极管是在线性区,B-E 接面为顺向偏压,B-C 接面为逆向偏压,IB 的值适中(V BE = 0.7 V),I C =h F E I B呈比例放大,Vce = Vcc -Rc I c = V cc - Rc h FE I B可被I B操控。若三极管在饱和区,I B很大,V BE= 0.8 V,V CE = 0.2 V,V BC = 0.6 V,B-C 与B-E 两接面均为正向偏压,C-E间等同于一个带有0.2 V 电位落差的通路,可得I c=( Vcc - 0.2 )/ Rc,Ic与I B无关了,因此时的I B大过线性放大区的I B值,Ic

正激式变压器开关电源工作原理

正激式变压器开关电源工作原理 正激式变压器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。 1-6-1.正激式变压器开关电源工作原理 所谓正激式变压器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。 图1-17是正激式变压器开关电源的简单工作原理图,图1-17中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R 是负载电阻。 在图1-17中,需要特别注意的是开关变压器初、次级线圈的同名端。如果把开关变压器初线圈或次级线圈的同名端弄反,图1-17就不再是正激式变压器开关电源了。 我们从(1-76)和(1-77)两式可知,改变控制开关K的占空比D,只能改变输出电压(图1-16-b中正半周)的平均值Ua ,而输出电压的幅值Up不变。因此,正激式变压器开关电源用于稳压电源,只能采用电压平均值输出方式。 图1-17中,储能滤波电感L和储能滤波电容C,还有续流二极管D2,就是电压平均值输出滤波电路。其工作原理与图1-2的串联式开关电源电压滤波输出电路完全相同,这里不再赘述。关于电压平均值输出滤波电路的详细工作原理,请参看“1-2.串联式开关电源”部分中的“串联式开关电源电压滤波输出电路”内容。 正激式变压器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关电源变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。因此,在图1-17中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变压器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。 反馈线圈N3绕组和削反峰二极管D3对于正激式变压器开关电源是十分必要的,一方面,反馈线圈N3绕组产生的感应电动势通过二极管D3可以对反电动势进行限幅,并把限幅能量返回给电源,对电源进行充

开关电源各模块原理实图讲解

开关电源原理 一、 开关电源的电路组成: PWM

①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、 F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

① 输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、 功率变换电路: 1、 MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以52、 常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V 时,UC3842停止工作,开关管Q1立即关断 。

开关电源原理与应用讲义

开关电源的原理与应用 课件下载方法: 进入综合信息门户-教学资源-网络教学综合平台中,在课程编号中输入(0806034034)-出现(开关电源的原理与应用)点击进入后-左侧信息中点击(课程互动)-左侧信息中点击(教学材料)-显示(开关电源讲义--2011)-点击后显示(开关电源的原理与应用)-点击下载 序论 开关电源的技术领域-属于电力电子技术 电力电子技术-电力学、电子技术、控制理论三个学科的交叉 1.电力电子技术的概念及研究领域 电力电子技术(Power Electronics)是以电力电子器件(Power Electronic Device)为基础,利用电路和控制理论对电能进行交换和控制的技术,即应用于电力应用领域的电子技术。 电力电子技术也称为电力电子学或功率电子学。 电力电子技术由电力学、电子学、和控制理论三个学科交叉形成,是目前较为活跃的应用型学科。 电力电子技术通常分为器件的制造技术和电力电子电路的应用技术即变流技术两大部分。其中,器件制造技术包括各种电力电子器件的设计、制造、参数测试、模型分析等。而目前所用的电力电子器件基本都采用半导体材料制成,所以电力电子器件也称为电力半导体器件。电力电子器件的制造技术是电力电子技术的基础。 电能有交流(Alternating Current, AC)和直流(Direct Current, DC)两大类。 交流电能有电压大小、相位、频率和相数的差别,直流电能有大小和极性的差别。 在电能的实际应用中,常常需要在两种电能之间,或是对同一种电能的一个或多个参数(如电压、电流、频率等)进行变换,这就是电力变换(Power Conversion),也就

开关电源工作原理解析

开关电源工作原理解析 个人PC所采用的电源都是基于一种名为研关模式旧勺技术,所以我们经常会将个 人PC电源称之为------ 开关电源(Switching Mode Power Supplies,简称SMPS),它还有一 个绰号一一DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ?线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching )。线性 电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V ,而且 经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的一3)11 ;下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的一4)11 ; 此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低 压DC直流电输出了(配图1和2中的一5)11

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、 PlayStati on/Wii/Xbox 等游戏 主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和 AC 市电的频率成反比:也 即说如果输入市电的频率越低时, 线性电源就需要越大的电容和变压器, 反之亦然。由于当 前一直采用的是 60Hz (有些国家是50Hz )频率的AC 市电,这是一个相对较低的频率,所 以其变压器以及电容的个头往往都相对比较大。此外, AC 市电的浪涌越大,线性电源的变 压器的个头就越大。 由此可见,对于个人PC 领域而言,制造一台线性电源将会是一件疯狂的举动, 因 为它的体积将会非常大、重量也会非常的重。所以说个人 PC 用户并不适合用线性电源。 ?开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言, AC 输入电压可以在进入变压器之前升压(升压前一般是 50-60 KHz )。随着输入电源的升 高,变压器以及电容等元器件的个头就不用像线性电源那么的大。 这种高频开关电源正是我 们的个人PC 以及像VCR 录像机这样的设备所需要的。需要说明的是,我们经常所说的 子 关电源I 其实是—高频开关电源I 的缩写形式,和电源本身的关闭和开启式没有任何关系的。

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

TOP204-单片开关电源原理及应用

TOP204-单片开关电源原理及应用 1前言 开关电源自20世纪70年代开始应用以来,涌现出许多功能完备的集成控制电路,使开关电源电路日益简化,工作频率不断提高,效率大大提高,并为电源小型化提供了广阔的前景。三端离线式脉宽调制单片开关集成电路 TOP(Threeterminaloffline)将PWM控制器与功率开关MOSFET合二为一封装在一起,已成为开关电源IC发展的主流。采用TOP开关集成电路设计开关电源,可使电路大为简化,体积进一步缩小,成本也明显降低。 2.TOP开关结构及工作原理 2.1结构 TOP开关集各种控制功能、保护功能及耐压700V的功率开关MOSFET于一体,采用TO 220或8脚DIP封装。少数采用8脚封装的TOP开关,除D、C两引脚外,其余6脚实际连在一起,作为S端,故仍系三端器件。三个引出端分别是漏极端D、源极端S和控制端C。其中,D是内装MOSFET的漏极,也是内部电流的检测点,起动操作时,漏极端由一个内部电流源提供内部偏置电流。控制端C控制输出占空比,是误差放大器和反馈电流的输入端。在正常操作时,内部的旁路调整端提供内部偏置电流,且能在输入异常时,自动锁定保护。源极端S是MOSFET 的源极,同时是TOP开关及开关电源初级电路的公共接地点及基准点。 2.2工作原理 TOP包括10部分,其中Zc为控制端的动态阻抗,RE是误差电压检测电阻。RA 与CA构成截止频率为7kHz的低通滤波器。主要特点是: (1)前沿消隐设计,延迟了次级整流二级管反向恢复产生的尖峰电流冲击; (2)自动重起动功能,以典型值为5%的自动重起动占空比接通和关断; (3)低电磁干扰性(EMI),TOP系列器件采用了与外壳的源极相连,使金属底座及散热器的dv/dt=0,从而降低了电压型控制方式与逐周期峰值电流限制; (4)电压型控制方式与逐周期峰值电流限制。 下面简要叙述一下: (1)控制电压源 控制电压Uc能向并联调整器和门驱动极提供偏置电压,而控制端电流Ic则能调节占空比。控制端的总电容用Ct表示,由它决定自动重起动的定时,同时控制环路的补偿,Uc有两种工作模式,一种是滞后调节,用于起动和过载两种情况,

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3内发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充 电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电

(完整word版)开关电源工作原理超详细解析

开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(switching)。线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC 直流电(配图1和2中的“4”);此时得到的低压直流电依

然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”)配图1:标准的线性电源设计图 配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/Wii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也

L4970A大功率单片集成开关电源原理与应用_杨碧石

收稿日期:2003-08 作者简介:杨碧石(1961 )男,副教授,主要从事电子技术和数字逻辑系统的设计理论与实验教学工作。 L4970A 大功率单片集成开关电源原理与应用 杨碧石 (南通职业大学电子工程系,江苏南通266007) 摘要:介绍L4970A 大功率单片集成开关电源芯片的内部结构、电路特点、工作原理和应用电路。 关键词:开关电源;应用电路;集成电路 中图分类号:TM44 文献标识码:B 文章编号:1006-2394(2004)01-0055-02 L4970A High power Single chip Integrated Switch power s Principle and Application YANG Bi shi (Nantong Vocational College,Nantong 226007,Chi na) Abstract:In this paper,L4970A s internal structure,circui t characteristic,work principle and applicati on circuits are introduced.Key words:s witch power;application circuit;IC L4970A 系列大功率单片集成开关电源是ST 公司继L4960系列之后推出的第二代产品。电路的特点是:采用DMOS 开关功率管、混合式C MOS/双极型晶体管等集成电路制造新工艺研制而成;输出电压在5.1V ~40V 范围内连续可调;通过自举电容可获得大电流输出;利用掉电复位电路能实时地向微机发出信号,监视系统电源的工作状态。1 工作原理 L4970A 的原理框图如图1所示(注:引脚序号适用于L4970A/4975A/4977A)。其内部功能电路主要包括基准电压源,锯齿波发生器,内置40kHz 振荡器,欠压检测与过热保护电路,误差放大器,比较器,PWM 锁存器,或非门,触发器(由两级或门构成),驱动级,DMOS 开关功率管,限流比较器,软启动电路,掉电复 图1 L4970A 原理框图 位电路。其中内部基准电压源能输出两路基准电压,一路是V REF =5.1V,供设定输出电压V 0值用;另一路为V S TART =12V,它与自举电路相配合,可将驱动级的电源电压提升12V 。误差放大器的开环电压增益A VO >60dB,电源电压抑制比PMRR =80dB,输入失调电压为2mV 。 1.1 L4970A 系列的导通阈值电压 导通阈值电压V ON =11V,并有1V 的滞回电压。为保证芯片能可靠工作,要求最低输入电压V IL >11V,一般取V Im i n 15V 。为了给DMOS 开关功率管提供足够大的驱动电压,采用了自举升压方式。利用内部的12V 基准电压源将自举电容C b 充电到12V,叠加到驱动级电源上,使之提升到(V I +12V)。DMOS 功率管的开关时间为50ns,能在200kHz 高频下正常工作,其峰值驱动电流约为0.5A 。 1.2 PWM 控制环路 PW M 控制环路的工作原理是:首先把反馈输入电压与5.1V 基准电压进行比较,产生误差电压V r ;再将V r 与锯齿波电压V J 作比较,获得固定频率的脉冲调制信号,经驱动级驱动DMOS 功率管,最后利用由L 、VD 、C 构成的降压式输出电路,得到稳定的输出电压。图1中,将同步输入信号加到锯齿波发生器上,目的是提供一个前馈信号,使器件在很宽的输入电压范围内具有良好的稳压性能。下面重点介绍限流电路及复位和掉电电路的工作原 55 2004年第1期仪表技术

相关主题
文本预览
相关文档 最新文档