当前位置:文档之家› CS5463与51单片机链接编写程序读取功率因数

CS5463与51单片机链接编写程序读取功率因数

CS5463与51单片机链接编写程序读取功率因数
CS5463与51单片机链接编写程序读取功率因数

//程序读取功率因数,显示在数码管上,并通过串口发送,串口波特率 9600,8, ,n,1 #include #define uchar unsigned char #define uint unsigned int int count1s; unsigned int count1m; unsigned char dis_bitcount=0; unsigned char display_o[6]; unsigned char display_q[6]; unsigned char display_pf[6]; unsigned char display_temp[6]; unsigned char SEG[30]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0xbf, 0x00} ;//0,1,2,3,4,5,6,7,8,9 后面是带小数点的 0~9 unsigned char dis_bitdriver=0; static uchar idata cs5463rw[3]={0,0,0}; //cs5463 读写寄存器 static uchar idata cs5463tm[3]={0,0,0}; //cs5463 读出状态 sbit reset_5463=P2^1; sbit cs_5463=P2^0; sbit sdi_5463=P2^5; sbit sdo_5463=P2^2; sbit sclk_5463=P2^4; sbit int_5463=P2^3; sbit s1=P3^3; unsigned char result_h; // unsigned char result_l; // unsigned int pf,tem; /*延时 1ms 乘以 count*/ void delay1ms(int count) { int j,k; while(count-- != 0) { for(j=0;j<9;j++) for(k=0;k<15;k++); } } //---void nop_1us(void) { uchar i; for(i = 0;i < 3;i++); } send(unsigned char a) { TI = 0; SBUF=a; while(!TI);
//1us

} /**********cs5463**********/ /**********cs5463**********/ void send_5463(uchar send_data) //发一个命令字节 cs5463 { uchar i; sclk_5463 = 0; for(i = 0;i < 8;i++) { if(send_data & 0x80) sdi_5463 = 1; else sdi_5463 = 0; sclk_5463 = 1; send_data <<= 1; nop_1us(); sclk_5463 = 0; } } void write_5463(uchar *pbuf,uchar command) //*pbuf = h_byte *(pbuf+1) = m_byte *(pbuf+2) = l_byte { uchar j,k; send_5463(command); for(j = 0;j < 3;j++) { sclk_5463 = 0; for(k = 0;k < 8;k++) { if(*pbuf&0x80) sdi_5463 = 1; else sdi_5463 = 0; sclk_5463 = 1; *pbuf <<= 1; nop_1us(); sclk_5463 = 0; } pbuf += 1; } } void read_5463(uchar *pbuf,uchar command) //*pbuf = h_byte *(pbuf+1) = m_byte *(pbuf+2) = l_byte { uchar j,k,const_fe; send_5463(command); for(j = 0;j < 3;j++) { *pbuf = 0x00; const_fe = 0xfe; for(k = 0;k < 8;k++)

{ sclk_5463 = 0; *pbuf <<= 1; if(sdo_5463) *pbuf |= 0x01; if(const_fe&0x80) sdi_5463 = 1; else sdi_5463 = 0; const_fe <<= 1; nop_1us(); sclk_5463 = 1; } pbuf += 1; } } void { init_5463(void) uchar *temp; sdi_5463 = 0; sclk_5463 = 0; nop_1us(); cs_5463 = 0; reset_5463 = 0; delay1ms(6); reset_5463 = 1; nop_1us(); send_5463(0xff); send_5463(0xff); send_5463(0xff); send_5463(0xff); send_5463(0xff); send_5463(0xff); nop_1us(); send_5463(0xfe); cs5463rw[0] = 0x00; // cs5463rw[1] = 0x10; cs5463rw[2] = 0x01; temp = &cs5463rw[0]; write_5463(temp,0x40); delay1ms(1); cs5463rw[0] = 0x00; cs5463rw[1] = 0x0F; cs5463rw[2] = 0xA0; temp = &cs5463rw[0]; write_5463(temp,0x4a); delay1ms(1); cs5463rw[0] = 0x00; cs5463rw[1] = 0x00;

cs5463rw[2] = 0x69; temp = &cs5463rw[0]; write_5463(temp,0x64); delay1ms(1); cs5463rw[0] = 0x00; cs5463rw[1] = 0x00; cs5463rw[2] = 0x00; temp = &cs5463rw[0]; write_5463(temp,0x74); delay1ms(1); cs5463rw[0] = 0x00; cs5463rw[1] = 0x00; cs5463rw[2] = 0x00; temp = &cs5463rw[0]; write_5463(temp,0x78); delay1ms(1); cs5463rw[0] = 0xff; cs5463rw[1] = 0xff; cs5463rw[2] = 0xff; temp = &cs5463rw[0]; write_5463(temp,0x5e); delay1ms(1); send_5463(0xe8); } void ceshi(void) { uchar *temp; unsigned char bw,sw,gw,qsw; temp = &cs5463rw[0]; read_5463(temp,0x1e); //读状态 cs5463tm[0] = cs5463rw[0]; cs5463tm[1] = cs5463rw[1]; cs5463tm[2] = cs5463rw[2]; if(cs5463rw[0]&0x80) { //*************************************** temp = &cs5463rw[0]; read_5463(temp,0x32); //read PF 32 send(cs5463rw[0]); send(cs5463rw[1]); /*各种参数的读取,按您的需要取舍 temp = &cs5463rw[0]; read_5463(temp,0x26); //read temperature TI = 0; SBUF='S'; while(!TI); send_2asc(cs5463rw[0]); send_2asc(cs5463rw[1]); temp = &cs5463rw[0];

read_5463(temp,0x18); //read Vrms send_2asc(cs5463rw[0]); send_2asc(cs5463rw[1]); temp = &cs5463rw[0]; read_5463(temp,0x16); //read Irms send_2asc(cs5463rw[0]); send_2asc(cs5463rw[1]); temp = &cs5463rw[0]; read_5463(temp,0x32); //read PF send_2asc(cs5463rw[0]); send_2asc(cs5463rw[1]); temp = &cs5463rw[0]; read_5463(temp,0x1A); //read frequency send_2asc(cs5463rw[0]); send_2asc(cs5463rw[1]); temp = &cs5463rw[0]; read_5463(temp,0x36); //read Ps send_2asc(cs5463rw[0]); send_2asc(cs5463rw[1]); temp = &cs5463rw[0]; read_5463(temp,0x2C); //read Ipeak temp = &cs5463rw[0]; read_5463(temp,0x2E); //read Vpeak temp = &cs5463rw[0]; read_5463(temp,0x14); //read Pactive */ if(cs5463rw[0]>0x80) { cs5463rw[0]=~cs5463rw[0]+1; pf=cs5463rw[0]; display_pf[3]=20; } else { pf=cs5463rw[0]; display_pf[3]=0; } pf=cs5463rw[0]; pf=pf*100/127; bw=pf/100; display_pf[2]=bw+10; qsw=pf-bw*100; sw=qsw/10; display_pf[1]=sw; gw=qsw-sw*10; display_pf[0]=gw; //**************************************** } cs5463rw[0] = cs5463tm[0]; //清除状态位

cs5463rw[1] = cs5463tm[1]; cs5463rw[2] = cs5463tm[2]; temp = &cs5463rw[0]; write_5463(temp,0x5e); } /**********cs5463**********/ /**********cs5463**********/ void init() { SCON = 0x50; /* mode 1: 8-bit UART, enable receiver TMOD= 0x20; /* timer 1 mode 2: 8-Bit reload PCON=PCON|0x80; TH1= 0xfa; /* reload value 9600 baud /11.059M TR1= 1; /* timer 1 run TI=1; } main() { unsigned char p2code=0; count1m=0; count1s=0; delay1ms(100); init_5463(); init(); while(1) { switch(dis_bitcount+1) { case 1:dis_bitdriver=0x01; break;/*display 1*/ case 2:dis_bitdriver=0x02; break;/*display 2*/ case 3:dis_bitdriver=0x04; break;/*display 3*/ default:dis_bitdriver=0x08; break;/*display 4 */ } // p2code=P1; p2code=p2code&0xF0; p2code=p2code|dis_bitdriver; // dcode=SEG[display_q[dis_bitcount]]; P0=SEG[display_q[dis_bitcount]]; P1=p2code; if(dis_bitcount>=3) dis_bitcount=0; else dis_bitcount++; count1s++; if(count1s>=200) { count1m++; count1s=0; ceshi(); //测试功率因数 } else
*/ */ */ */

{ delay1ms(4); } display_q[3]=display_pf[3]; display_q[2]=display_pf[2]; display_q[1]=display_pf[1]; display_q[0]=display_pf[0]; } }
电 源

51单片机中断程序大全

//实例42 :用定时器T0 查询方式 P2 口8 位控制LED 闪烁 //#include单片机寄存器定义的头文件 51包含 /******************************************************* *******函数功能:主函数 ******************************************************** ******/void main(void){ // EA=1;开总中断// 中断允许T0 // 定时器// ET0=1; 1的模式TMOD=0x01;// 使用定时器T0 位赋初值定时器T0 的高8 TH0=(65536-46083)/256; // 位赋初值的高8 TL0=(65536-46083)%6; // 定时器T0 T0启动定时器TR0=1;// TF0=0;P2=0xff; 无限循环等待查询while(1)// {while(TF0==0); TF0=0;P2=~P2; 位赋初值的高8 定时器TH0=(65536-46083)/256; // T0 位赋初值T0 TL0=(65536-46083)%6; //

定时器的高8 }} 1KHzT1:用定时器43 实例// 音频查询方式控制单片机发出 #include 单片机寄存器定义的头文件51 // 包含sbit sound=P3^7;将// 引脚sound P3.7 位定义为 /********************************************************** **** 函数功能:主函数 ******************************************************** ******/void main(void){// EA=1;开总中断// 中断允许ET0=1;// // 定时器T0 1的模式使用定时器// T1 TMOD=0x10; 位赋初值// TH1=(65536-921)/256; T1 定时器的高8 TL1=(65536-921)%6; // 定时器T1 的高8 位赋初值 TR1=1;// 启动定时器T1TF1=0; while(1)// 无限循环等待查询{while(TF1==0); TF1=0;

单片机中断程序大全

单片机中断程序大全公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

//实例42:用定时器T0查询方式P2口8位控制L E D闪烁#include // 包含51单片机寄存器定义的头文件void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x01; //使用定时器T0的模式1 TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 TF0=0; P2=0xff; while(1)//无限循环等待查询 { while(TF0==0) ; TF0=0; P2=~P2; TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 //实例43:用定时器T1查询方式控制单片机发出1KHz音频

#include // 包含51单片机寄存器定义的头文件sbit sound=P3^7; //将sound位定义为P3.7引脚 void main(void) {// EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x10; //使用定时器T1的模式1 TH1=(65536-921)/256; //定时器T1的高8位赋初值 TL1=(65536-921)%256; //定时器T1的高8位赋初值 TR1=1; //启动定时器T1 TF1=0; while(1)//无限循环等待查询 { while(TF1==0); TF1=0; sound=~sound; //将P3.7引脚输出电平取反 TH1=(65536-921)/256; //定时器T0的高8位赋初值 TL1=(65536-921)%256; //定时器T0的高8位赋初值 } } //实例44:将计数器T0计数的结果送P1口8位LED显示 #include // 包含51单片机寄存器定义的头文件sbit S=P3^4; //将S位定义为P3.4引脚

51单片机中断程序大全

//实例42:用定时器T0查询方式P2口8位控制LED闪烁#include // 包含51单片机寄存器定义的头文件 /************************************************************** 函数功能:主函数 **************************************************************/ void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x01; //使用定时器T0的模式1 TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 TF0=0; P2=0xff; while(1)//无限循环等待查询 { while(TF0==0) ; TF0=0; P2=~P2; TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 } } //实例43:用定时器T1查询方式控制单片机发出1KHz音频#include // 包含51单片机寄存器定义的头文件 sbit sound=P3^7; //将sound位定义为P3.7引脚 /************************************************************** 函数功能:主函数 **************************************************************/ void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x10; //使用定时器T1的模式1 TH1=(65536-921)/256; //定时器T1的高8位赋初值

51单片机中断程序大全

//实例42 :用定时器TO查询方式P2 口8位控制LED闪烁#include // 包含 51 单片机寄存器定义的头文件/************************************************************** 函数功能:主函数 void main(void) { // EA=1; // 开总中断 // ETO=1; // 定时器 TO 中断允许 TMOD=OxO1; // 使用定时器 TO 的模式 1 THO=(65536-46O83)/256; // 定时器 TO 的高 8 位赋初值 TLO=(65536-46O83)%256; // 定时器 TO 的高 8 位赋初值 TRO=1; // 启动定时器 TO TFO=O; P2=Oxff; while(1)// 无限循环等待查询 { while(TFO==O) TFO=O; P2=~P2; THO=(65536-46O83)/256; // 定时器 TO 的高 8 位赋初值

TL0=(65536-46083)%256; // 定时器 T0 的高 8 位赋初值 } // 实例43 :用定时器T1 查询方式控制单片机发出1KHz 音频#include // 包含 51 单片机寄存器定义的头文件 sbit sou nd=P3^7; // 将 sound 位定义为 P3.7 引脚 /************************************************************** 函数功能:主函数 **************************************************************/ void main(void) { // EA=1; // 开总中断 // ET0=1; // 定时器 T0 中断允许 TMOD=0x10; // 使用定时器 T1 的模式 1 TH1=(65536-921)/256; // 定时器 T1 的高 8 位赋初值 TL1=(65536-921)%256; // 定时器 T1 的高 8 位赋初值 TR1=1; // 启动定时器 T1 TF1=0; while(1)// 无限循环等待查询 {

51单片机中断程序大全

( //实例42:用定时器T0查询方式P2口8位控制LED闪烁 #include<> // 包含51单片机寄存器定义的头文件 void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x01; //使用定时器T0的模式1 TH0=(65536-46083)/256; //定时器T0的高8位赋初值 : TL0=(65536-46083)%256; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 TF0=0; P2=0xff; while(1)//无限循环等待查询 { while(TF0==0) ; ] TF0=0; P2=~P2; TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 //实例43:用定时器T1查询方式控制单片机发出1KHz音频 #include<> // 包含51单片机寄存器定义的头文件 sbit sound=P3^7; //将sound位定义为引脚 void main(void) ( {// EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x10; //使用定时器T1的模式1 TH1=(65536-921)/256; //定时器T1的高8位赋初值 TL1=(65536-921)%256; //定时器T1的高8位赋初值 TR1=1; //启动定时器T1 TF1=0; while(1)//无限循环等待查询 — { while(TF1==0); TF1=0;

51单片机外部中断实验

实验6 外部中断实验 (仿真部分) 一、实验目的 1. 学习外部中断技术的基本使用方法。 2. 学习中断处理程序的编程方法。 二、实验内容 在INT0和INT1上分别接了两个可回复式按钮,其中INT0上的按钮每按下一次则计数加一,其中INT1上的按钮每按下一次则计数减一。P1.0~ P1.3接LED灯,以显示计数信号。 三、实验说明 编写中断处理程序需要注意的问题是: 1.保护进入中断时的状态,并在退出中断之前恢复进入时的状态。 2.必须在中断处理程序中设定是否允许中断重入,即设置EX0位。 3.INT0和INT1分别接单次脉冲发生器。P1.0~ P1.3接LED灯,以查看计数信号. 四、硬件设计 利用以下元件:AT89C51、BOTTON、CAP、CAP-POL、CRYSTAL、RES、NOT、LED-Yellow。设计出如下的硬件电路。晶振频率为12MHz。 五、参考程序框图 设置P1.0~ 3初始状态

主程序框图 INT0中断处理程序框图 实验6 外部中断实验 (实验箱部分) 1.实验目的 认识中断的基本概念 学会外部中断的基本用法 学会asm和C51的中断编程方法 2.实验原理 图按键中断 【硬件接法】 控制LED,低电平点亮 INT1接按键,按下时产生低电平 【运行效果】 程序工作于中断方式,按下按键K2后,LED点亮,秒后自动熄灭。

8051单片机有/INT0和/INT1两条外部中断请求输入线,用于输入两个外部中断源的中断请求信号,并允许外部中断源以低电平或下降沿触发方式来输入中断请求信号。/INT0和/INT1中断的入口地址分别是0003H和0013H。 TCON寄存器(SFR地址:88H)中的IT0和IT1位分别决定/INT0和/INT1的触发方式,置位时为下降沿触发,清零时为低电平触发。实际应用时,如果外部的中断请求信号在产生后能够在较短时间内自动撤销,则可以选择低电平触发。在中断服务程序里要等待其变高后才能返回主程序,否则会再次触发中断,产生不必要的麻烦。 如果外部的中断请求信号产生后可能长时间后才能撤销,则为了避免在中断服务程序里长时间无谓等待,可以选择下降沿触发。下降沿触发是“一次性”的,每次中断只会有1个下降沿,因此中断处理程序执行完后可以立即返回主程序,而不必等待中断请求信号恢复为高电平,这是一个重要的技巧。 3. 实验步骤 参考实验例程,自己动手建立Keil C51工程。注意选择CPU类型。Philips半导体的P89V51RB2。 编辑源程序,编译生成HEX文件。 ISP下载开关扳到“00”,用Flash Magic软件下载程序HEX文件到MCU BANK1,运行。 运行Flash Magic软件。各步骤操作如下: Step 1: COM Port:选择实际使用的串行口,通常为COM1; Baud Rate:波特率不可设置得过高,推荐用9600; Device:请选择正确的型号89V51RB2; Interface:选择None(ISP)。 Step 2:请勾中“Erase blocks used by Hex File”。 Step 3:装入你的程序文件,注意必须为HEX格式。 Step 4: 请勾中“Verify after programming”(编程后校验); 对其它几项如果不了解,请不要勾中。 Step 5: 请先给电路板上电,同时按住复位键不松手,然后点击Flash Magic软件的“Start”按

51单片机中断系统程序实例

51单片机中断系统程序实例(STC89C52RC) 51单片机有了中断,在程序设计中就可以做到,在做某件事的过程中,停下来先去响应中断,做别的事情,做好别的事情再继续原来的事情。中断优先级是可以给要做的事情排序。 单片机的学习不难,只要掌握学习方法,学起来并不难。什么是好的学习方法呢,一定要掌握二个要点: 1. 要知道寄存器的英文全拼,比如IE = interrupt中断 不知道全拼,要去猜,去查。这样就可以理解为什么是这个名称,理解了以后就不用记忆了。 2. 每个知识点要有形像的出处 比如看到TF0,脑子里马上要形像地定位到TCON寄存器的某位 看到ET0, 马上要形像地定位到IE寄存器的第2位 https://www.doczj.com/doc/6311838281.html,/tuenhai/独家揭秘:形像是记忆的最大技巧。当人眼看到某个图时,是把视觉信号转化成电信号,再转化成人能理解的形像。当我们回忆形像时,就是在重新检索原先那个视觉信号,并放大。在学习过程中,不断练习检索、放大信号,我们的学习能力就会越来越强。 写程序代码时,也要把尽量把每行代码形像化。 51单片机内中断源 8051有五个中断源,有两个优先级。与中断系统有关的特殊功能寄存器有IE(中断允许寄存器)、IP(中断优先级控制寄存器)、中断源控制寄存器(如TCON、SCON的有关位)。51单片机的中断系统结构如下图(注意,IF0应为TF0):

8052有6个中断源,它比8051多一个定时器/计数器T2中断源。 8051五个中断源分别是: (1)51单片机外部中断源 8051有两个外部中断源,分别是INT0和INT1,分别从P3.2和P3.3两个引脚引入中断请求信号,两个中断源的中断触发允许由TCON的低4位控制,TCON的高4位控制运行和溢出标志。 INT0也就是Interrupt 0。在这里应该看一下你的51单片机开发板的电路原理图。离开形像的记忆是没有意义的。读到上面这句,你应该回忆起原理图上的连接。任何记忆都转化为形像,这是学习的根本原理,我们通过学习单片机要学会这种学习方法,会让你一辈子受益无穷。 TCON的结构如下图: (a)定时器T0的运行控制位TR0

51单片机中断编程

第6章中断系统 在CPU与外设交换信息时,存在一个快速的CPU与慢速的外设间的矛盾。为解决这个问题,采用了中断技术。良好的中断系统能提高计算机实时处理的能力,实现CPU 与外设分时操作和自动处理故障,从而扩大了计算机的应用范围。 当CPU正在处理某项事务的时候,如果外界或内部发生了紧急事件,要求CPU暂停正在处理的工作转而去处理这个紧急事件,待处理完以后再回到原来被中断的地方,继续执行原来被中断了的程序,这样的过程称为中断。向CPU提出中断请求的源称为中断源。微型计算机一般允许有多个中断源。当几个中断源同时向CPU发出中断请求时,CPU应优先响应最需紧急处理的中断请求。为此,需要规定各个中断源的优先级,使CPU 在多个中断源同时发出中断请求时能找到优先级最高的中断源,响应它的中断请求。在优先级高的中断请求处理完了以后。再响应优先级低的中断请求。 当CPU正在处理一个优先级低的中断请求的时候,如果发生另一个优先级比它高的中断请求,CPU能暂停正在处理的中断源的处理程序,转去处理优先级高的中断.请求,待处理完以后,再回到原来正在处理的低级中断程序,这种高级中断源能中断低级中断源的中断处理称为中断嵌套。 MCS-51系列单片机允许有五个中断源,提供两个中断优先级(能实现二级中断嵌套)。每一个中断源的优先级的高低都可以通过编程来设定。中断源的中断请求是否能得到响应,受中断允许寄存器IE的控制;各个中断源的优先级可以由中断优先级寄存器IP 中的各位来确定;同一优先级中的各中断源同时请求中断时,由内部的查询逻辑来确定响应的次序。这些内容都将在本节中讨论。 6 . 1 中断请求源和中断请求标志 1、中断请求源 MCS-51中断系统可用图6-1来表示。五个中断源是: INT来自P3.2引脚上的外部中断请求(外中断0)。 ◆0 INT来自P3.3引脚上的外部中断请求(外中断1)。 ◆1 ◆T0 片内定时器/计数器0溢出(TF0)中断请求。 ◆T1片内定时器/计数器1溢出(TF1)中断请求。 ◆串行口片内串行口完成一帧发送或接收中断请求源TI或RI。 每一个中断源都对应有一个中断请求标志位,它们设置在特殊功能寄存器TCON和SCON中。当这些中断源请求中断时,分别由TCON和SCON中的相应位来锁存。

51单片机汇编语言教程:18课单片机中断系统

51单片机汇编语言教程:第18课-单片机中断系统

MCS-51单片机中断系统的结构: 5个中断源的符号、名称及产生的条件如下。 INT0:外部中断0,由P3.2端口线引入,低电平或下跳沿引起。 INT1:外部中断1,由P3.3端口线引入,低电平或下跳沿引起。 T0:定时器/计数器0中断,由T0计满回零引起。 T1:定时器/计数器l中断,由T1计满回零引起。 TI/RI:串行I/O中断,串行端口完成一帧字符发送/接收后引起。整个中断系统的结构框图见下图一所示。

<51单片机中断系统结构> 如图所示,由与中断有关的特殊功能寄存器、中断入口、次序查询逻辑电路等组成,包括5个中断请求源,4个用于中断控制的寄存器IE、IP、ECON和SCON来控制中断类弄、中断的开、关和各种中断源的优先级确定。 中断请求源: (1)外部中断请求源:即外中断0和1,经由外部管脚引入的,在单片机上有两个管脚,名称为INT0、INT1,也就是P3.2、P3.3这两个管脚。在内部的TCON中有四位是与外中断有关的。IT0:INT0触发方式控制位,可由软件进和置位和复位,IT0=0,INT0为低电平触发方式,IT0=1,INT0为负跳变触发方式。这两种方式的差异将在以后再谈。IE0:INT0中断请求标志位。当有外部的中断请求时,这位就会置1(这由硬件来完成),在CPU响应中断后,由硬件将IE0清0。IT1、IE1的用途和IT0、IE0相同。(2)内部中断请求源TF0:定时器T0的溢出中断标记,当T0计数产生溢出时,由硬件置位TF0。当CPU响应中断后,再由硬件将TF0清0。TF1:与TF0类似。TI、RI:串行口发送、接收中断,在串行口中再讲解。2、中断允许寄存器IE在MCS-51中断系统中,中断的允许或禁止是由片内可进行位寻址的8位中断允许寄存器IE来控制的。见下表EAX 其中EA是总开关,如果它等于0,则所有中断都不允许。ES-串行口中断允许ET1-定时器1中断允许EX1-外中断1中断允许。ET0-定时器0中断允许EX0-外中断0中断允许。如果我们要设置允许外中断1,定时器1中断允许,其它不允许,则IE能是EAX 即8CH,当然,我们也能用位操作指令SETB EA SETB ET1SETB EX1 来实现它。3、五个中断源的自然优先级与中断服务入口地址外中断0:0003H定时器0:000BH 外中断1:0013H定时器1:001BH串行口:0023H它们的自然优先级由高到低排列。写到这里,大家应当明白,为什么前面有一些程序一始我们这样写: ORG0000HLJMP START ORG0030H START:。 这样写的目的,就是为了让出中断源所占用的向量地址。当然,在程序中没用中断时,直接从0000H开始写程序,在原理上并没有错,但在实际工作中最好不这样做。优先级:单片机采用了自然优先级和人工设置高、低优先级的策略,即能由程序员设定那些中断是高优先级、

51单片机中断程序大全

void main(void) { // EA=1; // // ET0=1; // TMOD=0x10; // TH1=(65536-921)/256; // 开总中断 定时器T0中断允许使用定时器T1的模式1 定时器T1的高8位赋初值 //实例42 :用定时器TO查询方式P2 口8位控制LED闪烁 #include<> // 包含51 单片机寄存器定义的头文件 /************************************************************** 函数功能:主函数 void main(void) { // EA=1; // // ETO=1; // TMOD=OxO1; // 开总中断 定时器TO 中断允许使用定时器TO 的模式1 TH0=(65536-46083)/256; // 定时器TO的高8位赋初值 TL0=(65536-46083)%256; // 定时器TO的高8位赋初值 TR0=1; // 启动定时器T0 TF0=0; P2=0xff; while(1)// 无限循环等待查询{ while(TF0==0) TF0=0; P2=~P2; TH0=(65536-46083)/256; // 定时器T0的高8位赋初值 TL0=(65536-46083)%256; // 定时器T0的高8位赋初值 } } // 实例43:用定时器T1 查询方式控制单片机发出 #include<> // 包含51 单片机寄存器定义的头文件 sbit sou nd=P3^7; // 将sou nd 位定义为引脚 /************************************************************** 函数功能:主函数 **************************************************************/ 1KHz音频

51单片机的串口中断程序

//############################################################################# // 函数名称:void UART_one_Interrupt_Receive(void) interrupt 4 // 函数说明:串口中断子程序 // 入口参数:无 // 出口参数:无 //############################################################################# void UART_one_Interrupt_Receive(void) interrupt 4 { if(RI) { RI = 0; uartinout[in] = SBUF; if(uart_flag == 1) //进入控制状态 { if(in < 2) { if(uartinout[in] == 0xF9) { ++in; if(in == 2) { if(uart_chflag == 0x5B) in = 0; else uart_chflag = 0x5C; } return; } else { if(in == 1) { in = 0; return; } } //ES = 0; ES_flag = 1; in = 0; return; } else { if(in < 8) {

++in; return; } else { in = 0; //ES = 0; uart_chflag = 0x5A; return; } } } /* if(uart_flag == 2) //进入读取信道状态{ ++in; if(in == 31) reset_flag = 1; return; } */ ++in; if(in == capacity) in=0; if(in > out) { if((400 - in + out) < 50) { BUSY=1; ES=0; } else { BUSY=0; ES=1; } } else { if((out - in) < 50) { BUSY=1; ES=0; } else {

51单片机定时、中断系统

51单片机定时、中断系统51单片机中断级别 中断源默认中断级别序号(C语言用) INT0---外部中断0 最高0 T0---定时器/计数器0中断第2 1 INT1---外部中断1 第3 2 T1----定时器/计数器1中断第4 3 TX/RX---串行口中断第5 4 T2---定时器/计数器2中断最低 5 中断允许寄存器IE 位序号DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 符号位EA ------- ET2 ES ET1 EX1 ET0 EX0 EA---全局中允许位。 EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。EA=0,关闭全部中断。 -------,无效位。 ET2---定时器/计数器2中断允许位。EA总中断开关,置1为开; ET2=1,打开T2中断。EX0为外部中断0(INT0)开关,…… ET2=0,关闭T2中断。ET0为定时器/计数器0(T0)开关,…… ES---串行口中断允许位。EX1为外部中断1(INT1)开关,…… ES=1,打开串行口中断。ET1为定时器/计数器1(T1)开关,…… ES=0,关闭串行口中断。ES为串行口(TX/RX)中断开关,…… ET1---定时器/计数器1中断允许位。ET2为定时器/计数器2(T2)开关,…… ET1=1,打开T1中断。 ET1=0,关闭T1中断。 EX1---外部中断1中断允许位。 EX1=1,打开外部中断1中断。 EX1=0,关闭外部中断1中断。 ET0---定时器/计数器0中断允许位。 ET0=1,打开T0中断。 ET0=0,关闭T0中断。 EX0---外部中断0中断允许位。 EX0=1,打开外部中断0中断。 EX0=0,关闭外部中断0中断。 中断优先级寄存器IP 位序号DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 位地址--- --- --- PS PT1 PX1 PT0 PX0 -------,无效位。

51单片机中断程序大全教学文案

51单片机中断程序大 全

//实例42:用定时器T0查询方式P2口8位控制LED闪烁#include // 包含51单片机寄存器定义的头文件 void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x01; //使用定时器T0的模式1 TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 TF0=0; P2=0xff; while(1)//无限循环等待查询 { while(TF0==0) ; TF0=0; P2=~P2; TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 //实例43:用定时器T1查询方式控制单片机发出1KHz音频#include // 包含51单片机寄存器定义的头文件 sbit sound=P3^7; //将sound位定义为P3.7引脚 void main(void) {// EA=1; //开总中断 // ET0=1; //定时器T0中断允许

TMOD=0x10; //使用定时器T1的模式1 TH1=(65536-921)/256; //定时器T1的高8位赋初值 TL1=(65536-921)%256; //定时器T1的高8位赋初值 TR1=1; //启动定时器T1 TF1=0; while(1)//无限循环等待查询 { while(TF1==0); TF1=0; sound=~sound; //将P3.7引脚输出电平取反 TH1=(65536-921)/256; //定时器T0的高8位赋初值 TL1=(65536-921)%256; //定时器T0的高8位赋初值 } } //实例44:将计数器T0计数的结果送P1口8位LED显示#include // 包含51单片机寄存器定义的头文件 sbit S=P3^4; //将S位定义为P3.4引脚 void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x02; //使用定时器T0的模式2 TH0=256-156; //定时器T0的高8位赋初值 TL0=256-156; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 while(1)//无限循环等待查询

相关主题
文本预览
相关文档 最新文档