当前位置:文档之家› PT、CT参数及接线方式

PT、CT参数及接线方式

PT、CT参数及接线方式
PT、CT参数及接线方式

培训时间:2013年04月22日

培训方式:集中培训

主讲人:李志斌

培训内容:西场风电场电压互感器和电流互感器参数及接线方式

西场风电场电压互感器和电流互感器参数及接线方式

一、电压互感器

1、简述互感器的型号及参数

2.接线方案

电压互感器在三相电路中有如图4—15所示的四种常见的接线方案:

(1)一个单相电压互感器的接线(图4—14a):供仪表、继电器接于一

个线电压。

(2)两个单相电压互感器接成v/V形(图4—15b):供仪表、继电器

接于三相三线制电路的各个线电压,它广泛地应用在工厂变配电所的6~

10kV高压装置中。

(3)三个单相电压互感器接成Y0/Y0形(图4—15e):供电给要求线电

压的仪表、继电器,并供电给绝缘监察电压表。由于小接地电流系统在一次侧发生单相接地时,另两相电要升高到线电压,所以不能接入按相电压选择的电压表,否则在发生单相接地时电压表可能被烧坏。

(4)三个单相三线圈电压互感器或一个三相五心柱三线圈电压互感器

接成Y。/Y0/△(开Vl三角)接成Y。的二次线圈,供电给需线电压的仪表、继电器及作为绝缘监察的电压表。辅助二次线圈接成开口三角形,构成零序电压过滤器,供电给监察线路绝缘的电压继电器。三相电路正常工作时,开口三角形两端的电压接近于零。当某一相接地时,开口三角形两端将出现近100V的零序电压,使电压继电器动作,给予信号。

二、电流互感器

1、简述互感器的型号

220kV 西煤线出线电流互感器技术参数

表38(续)

220kV 1号主变高压套管式电流互感器参数

表43 LZZB-10型电流互感器

2、电流互感器的接线方法

①、三相完全星形接线可以准确反映三相中每一相的真实电流。该方式应用在大电流接地系统中,保护线路的三相短路、两相短路和单相接地短路。

②、两相两继电器不完全星形接线可以准确反映两相的真实电流。该方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路和两相短路。

完全星形接线两相两继电器不完全星形接线

③、两相差接反映两相差电流。该接线方式应用在6~10kV中性点不接地的小电流接地系统中,保护线路的三相短路、两相短路、小容量电动机保护、小容量变压器保护。

④、单相接线在三相电流平衡时,可以用单相电流反映三相电流值,主要用于测量回路。

⑤、两相三继电器完全星形接线,流入第三个继电器的电流是Ij=Iu+Iw=-Iv。该接线方式应用在大电流接地系统中,保护线路的三相短路和两相短路。

中性点的三种接线方式

在中性点非直接接地电网中通常有以下三种方式:即中性点不接地方式、经消弧线圈接地方式、经电阻接地方式。此类系统在发生单相接地时,由于故障点的电流很小,而且三相之间的线电压基本保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2小时,而不必立即跳闸,这是采用中性点非直接接地运行的主要优点,但是在单相接地后,其他两相的对地电压要升高倍,对设备的绝缘造成了威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起全系统过电压。为了防止故障的进一步扩大,应及时发出信号,以便运行人员采取措施予以消除。 因此,在单相接地时,一般只要求选择性地发出信号,而不必跳闸。但当单相接地对人身和设备的安全有危险时,则应动作于跳闸。 另外一种情况是,当中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而使非故障相对地电压极大增加。在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。为此,我国采取的措施是:当各级电压电网单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为20A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流来补偿接地故障时的容性电流,就可以减少流经故障点的电流,以致自动熄弧,保证继续供电。 该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找故障点比较难。消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振过电压,给继电保护的功能实现增加了困难。 所以当电缆线路较长、系统电容电流较大时,也可以采用经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。这三种电阻接地方式各有优缺点,要根据具体情况选定。

变压器中性点三种接法浅析

电力系统中性点接地方式是一个很重要的综合性问题,它不仅涉及到电网本身的安全可靠性、过电压绝缘水平的选择,而且对用电设备和人身安全有重要影响。 汤河水库管理局发电厂,原有1号主变为SJL4000/60型,于1984年4月10日正式投入使用,至今使用20多年超过正常使用年限,变损较大,运行得不到安全保障。于2007年4月更换1号主变为S11—M—4000/66型。该变压器无论从节能、安全和免维护等方面都远远优于SJL4000/60型变压器。变压器中性点采用TN—S方式接地。 1 分析对比 根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将变压器中性点接法分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。 TN系统:电源变压器中性点接地,设备外露部分与中性线相连。 TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。 IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。 电力系统中通常采用TN系统。本文就我厂为何选用TN-S方式接地进行对比分析。电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN-C系统、TN-S系统、TN-CS系统。下面分别进行介绍。 1.1 TN—C系统 其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。 (1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN-C系统一般采用零序电流保护;(2)TN-C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN-C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。 由上可知,TN-C系统存在以下缺陷:(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。(2)通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。(3)对接有二极漏电保护开关的单相用电设备,如用于TN-C系

PT的接线方式和几种常见接地点的作用

PT的接线种类和VV接线分析 时间:2011-11-10点击:6280 长川电气技术中心: 常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监

察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。 V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则 ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。另外,通过接地,可以给绝缘监视装置提供相电压。 二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。 根据继电保护等具体要求加以选用。 采用V相接地时,中性点不能再直接接地。为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。 二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。 铁心接地 在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用。

简述电网中性点接地方式有哪几种

1、简述电网中性点接地方式有哪几种,各有何优缺点。 答:①中性点直接接地 1)设备和线路对地绝缘可以按相电压设计,从而降低了造价。电压等级愈高,因绝缘降低的造价愈显著。 2)由于中性点直接接地系统在单相短路时须断开故障线路,中断用户供电,影响供电可靠性. 3)单相短路时短路电流很大,开关和保护装置必须完善。 4)由于较大的单相短路电流只在一相内通过,在三相导线周围将形成较强的单相磁场,对附近通信线路产生电磁干扰。 ②中性点经消弧线圈接地 1)在发生单相接地故障时,可继续供电2小时,提高供电可靠性. 2)电气设备和线路的对地绝缘应按线电压考虑. 3)中性点经消弧线圈接地后,能有效地减少单相接地故障时接地处的电流,迅速熄灭接地处电弧,防止间歇性电弧接地时所产生的过电压,故广泛应用在不适合采用中性点不接地的以架空线路为主的3-60kV系统。 ③中性点不接地 1)当发生金属性接地时,接地故障相对地电压为零。 2)中性点对地的电压上升到相电压,且与接地相的电源电压相位相反。 3)非故障相对地电压由相电压升高为线电压。 4)三相的线电压仍保持对称且大小不变,对电力用户接于线电压的设备的工作并无影响,无须立即中断对用户供电。 5)单相接地电流,等于正常运行时一相对地电容电流的三倍,为容性电流。 2,什么是计算负荷?确定计算负荷的目的是什么? 答:(1)根据已知的工厂的用电设备安装容量求取确定的,预期不变的最大假想负荷。也就是通过负荷的统计运算求出的。用来按发热条件选择供电系统中各个元件的负荷值,成为计算负荷。(2)目的:计算负荷是用户供电系统结构设计,供电线路截面选择,变压器数量和容量选择,电气设备额定参数选择等的依据,合理地确定用户各级用电系统的计算负荷非常重要。 3,用什么方法进行计算负荷 需要系数法,附加系数法,二项式法等。主要计算:Pc计算有功负荷,Qc无功计算负荷,Ic计算电流等。

电气原理图和接线图识图方法

电气原理图和接线图识图方法 电气图纸一般可分为A、B两类: A:电力电气图,它主要是表述电能的传输、分配和转换,如电网电气图、 电厂电气控制图等。 B:电子电气图,它主要表述电子信息的传递、处理;如电视机电气原理图。 电力电气图分一次回路图、二次回路图。 一次回路图也叫一次系统图,是表示一次电气设备(主设备)连接顺序的电气图。 电力的生产、输送和分配、使用需要大量各种类型的电气设备。比如变压器、断路器、互感器、隔离开关等直接参加电能的发、输、配主系统的设备,这就是一次设备。这些设备连接在一起所形成的电路叫一次回路,它们之间 的连接称之为一次接线或主接线。、 二次回路图是表示二次设备之间连接顺序的电气图。 为了确保主系统安全可靠、持续稳定地运行,加装继电保护、安全自动装 置以及监控、测量、调节和保护等装置,以向用户提提供充足的、合格的电能,这就是二次设备。比如各种测量仪器、仪表、控制、信号器件及自动装 置等。这些设备根据特定的要求连接在一起所形成的电路叫二次回路,也称 之为二次接线,二次回路依电源及用途可分为电流回路、电压回路、操作回路、信号回路。 一次系统图:(系统原理图) 用比较简单的符号或带有文字的方框,简单明了地表示电路系统的最基 本结构和组成,直观表述电路中最基本的构成单元和主要特征及相互间关系 的电路图。 二次原理图:(电路原理图) 二次原理图又分为集中式、展开式两种。集中式电路图中各元器件等均 以整体形式集中画出,说明元件的结构原理和工作原理。识读时需清楚了解 图中继电器相关线圈、触点属于什么回路,在什么情况下动作,动作后各相 关部分触点发生什么样变化。

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。

电气原理图识图步骤和方法

步骤和方法 电气原理图绘制一般原则 1.按标准---按规定的电气符号绘制。 2.文字符号标准---按国家标准GB7159-1987规定的文字符号标明。 3.按顺序排列---按照先后工作顺序纵向排列,或者水平排列。 4.用展开法绘制---电路中的主电路,用粗实线画在的左边、上部或下部。 5.表明动作原理与控制关系---必须表达清楚控制与被控制的关系。 6. 电气原理图中的主电路和辅助电路(主电路、辅助电路)。 电气原理图识图的步骤 1.识主电路的具体步骤 (1)查看主电路的选用电器类型。 (2)查看电器是用什么样的控制元件控制,是用几个控制元件控制。(3)查看主电路中除用电器以外的其他元器件,以及这些元件所起的作用。(4)查看电源。电源的种类和电压等级。 2.查看辅助电路的具体步骤 (1)查看辅助电路的电源(交流电源、直流电源)。 (2)弄清辅助电路的每个控制元件的作用。 (3)研究辅助电路中各控制元件的作用之间的制约关系。 电气接线图识图的步骤和方法 电气接线图绘制的基本原则

(1)按照国家规定的电气图形符号绘制,而不考虑真实。 (2)电路中各元件位置及内部结构处理。 (3)每条线都有明确的标号,每根线的两端必须标同一个线号。 (4)凡是标有同线号的导线可以并接于一起。 (5)进线端为元器件的上端接线柱,而出线端为元件的下端接线柱。 电气接线图中电气设备、装置和控制元件位置常识 (1)出入端子处理----安排在配电盘下方或左侧。 (2)控制开关位置----一般都是安排在配电盘下方位置(左上方或右下方)。 (3)熔断器处理----安排在配电盘的上方位置。 (4)开关处理----安装在容易操作的面板上,而不是安装在配电盘上。 (5)指示灯处理----安装在容易观察的面板上。 (6)交直流元件区分处理----采用直流控制的元器件与采用交流控制的元器件分开安装。 电气接线图的识图步骤和方法 (1)分析清楚电气原理图中主电路和辅助电路所含有的元器件,弄清楚每个元器件的动作原理。 (2)弄清楚电气原理图和电气接线图中元器件的对应关系。 (3)弄清楚电气接线图中接线导线的根数和所用导线的具体规格。 (4)根据电气接线图中的线号研究主电路的线路走向。 (5)根据线号研究辅助电路的走向。

电工必备:电气识图和接线口诀

电工必备:电气识图和接线口诀 目录 一、识图口诀 (2) 一、熟悉电气图的有关规定 (4) 二、熟悉常用电气图的特点 (4) 三、熟悉电气元件的结构和原理 (5) 二、接线口诀 (6) 1、接地线的顺序是什么? (6) 2、安全注意事项 (7) 3、单相电源插座接线的规定 (7) 4、三相交流电源的两种接法和两种出线方式 (7) 作为电工必须学会看图,包括原理图,接线图,电路图,如果你是搞电机修理的,那还要会看下线图和扩展图的,看电路图和接线图有个原则:从上到下,从左到右。看到像蜘蛛网一样的图不要着急,按照上面的原则一点点看,慢慢会习惯的!识电图,有方法,掌握技巧,少走弯路! 一些技术要求不可能都在图面上反映出来,也不可能在图面上一一标注清楚,因为这些技术要求在有关国家标准和技术规程、规范中已做了明确的规定。因而在读电气图时,还必须了解这些相关标准、规程、规范,这样才算真正识图。 还要多了解、熟悉、理解电气图中涉及的有关基本概念。例如,在看电动机控制电路图时,必须首先熟悉电气联锁、自锁等概念;然后分析关键点的电位,各点电位如何变化,

如何互相关联,如何形成回路、通路;哪些构成直流回路,哪些形成信号通道,哪些属于控制回路等。 今天,电老虎网就分享一些老电工整理的看图以及接线口诀,希望大家能学以致用,提高工作效率。 一、识图口诀 接线原理详细看,万千资料记心间。 标题栏,元件表,读说明,图形号, 先从总体到局部,再从电源到负载。 主电路,要看详,副电路,不能忘, 从上到下有顺序,从左至右不漏项。 能量径,信息流,各表图,要了解, 分析电源到负载,二次回路信号线。 材料表,施工书,总要求,目录号, 图样说明看详细,识图重点便明了。 看原理,分主副,交直流,细分清, 先看电源各回路,保护测量控制清。 安装图,照主副,经线路,到负载, 不忘电源一段段,元件连接按序看。 展开图,识读时,据原理,在回路, 电器元件功能键,分别画在线路间。 平面图,剖面图,看土建,看管道,

中性点运行方式及中性点连接、接地

中性点运行方式是指中性点以何种方式与地连接。按照实际施工方法分类,有如下六种方式。 1.中性点不接地方式 用在变压器Δ-Δ接线中。这种方式包括用接地型电压互感器,将接地型电压互感器的一次侧中性点直接的方式。发生一线完全接地事故时,非故障相电压上升至线电压。但在送电电压低、线路对地静电电容小的情况下,接地电流小,接地时电弧电离空气可能性小,只要不是绝缘子破损之类的永久性接地事故,一般可自动切除,继续保持送电。该方式适合要使用低压短距离送电线的对地静电 电容小的系统,但已经很少使用了。 2.中性点电阻接地方式 在回路中设置Y接线,其中性点用适当电阻接地,在接地故障时限制接地电流,同时防止发生电弧接地现象,并且使接地继电器可靠动作,断开故障回路。接地电阻若足够大时与不接地系统相似,对通讯回路危害较小。其缺点在于可能出现电弧接地,继电器的动作不太可靠。因此在考虑接地电阻值时,要注意:电阻值能够防止因电弧接地现象引起的异常电压;电阻值能够使继电器可靠动作;电阻值能够限制接地电流,对邻近通讯回路不会感应出现危险电压。采用电阻接 地有代替不接地系统的发展趋势。 3.中性点直接接地方式 采用低电阻将回路中的中性点直接接地。当一线接地故障,与其他接地方式比较,另外两个非故障相的电位上升可以抑制在更低的值。本方式原来广泛应用在美国,在日本因国土狭小,送电线路与通讯线路接近的情况很多,为了防止感应,从不采用该方式。但是最近随着送电距离增大,送电电压升高,即使历来使用以消弧线圈为主的欧洲各国,对超高压线路也逐渐采用直接接地方式。 日本在187kV以上超高压线路上采用本方式,其理由如下:可降低系统的耐压水平,从而可降低线路及变电所费用。由于断路器及保护继电器装置的技术进步,事故切除的时间非常快,可能在很短的几个周波内完成。因此瞬时接地电流很大。因此即使接地电流大,但感应危害及对系统稳定性的影响都极小。通讯回路使用的避雷器更加先进。对超高压长距离送电线路使用电抗接地,对消弧考虑有一定限度。日本的超高压接地方式全部按有效接地方式设计,其他各国的直接接地方式不能说是有效接地。因此设计时要判断是否有效接地。 4.中性点消弧线圈接地方式 送电线路的中性点具有适当电感的电抗器接地,该线路上即使发生一线接地故障,从故障点流向大地的接地电流也会大大减少,故障点再次发生电弧的可能性完全没有,即可防止异常电压的产生。用其他方式必须断开故障线路的情况,用本方式则能瞬时恢复,一般都能继续运行。 消弧线圈接地方式,如果送电线路很长,其电抗分量不可忽视,其接地电流的有效分量成为残余电流,因为电抗对它不能补偿,所以该电流值太大就不能发挥其消弧作用。另外,有将消弧线圈与接地电阻并联或串联的方式,故障时间长 时将电阻投入,使继电器动作。 5.中性点补偿电抗器接地

电力系统接线方式

电力系统接线方式 电力系统中性点是指星形连接的变压器或发电机的中性点。电力系统的中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性、人身安全、设备安全、绝缘水平、过电压保护、继电保护、通信干扰(电磁环境)及接地装置等问题有密切的关系。电力系统中性点接地方式是人们防止系统事故的一项重要应用技术,具有理论研究与实践经验密切结合的特点,因而是电力系统实现安全与经济运行的技术基础。电力系统中性点接地方式主要是技术问题,但也是经济问题。在选定方案的决策过程中,应结合系统的现状与发展规划进行技术经济比较,全面考虑,使系统具有更优的技术经济指标,避免因决策失误而造成不良后果。简言之,电力系统的中性点接地方式是一个系统工程问题。接地,出于不同的目的,将电气装置中某一部位经接地线和接地体与大地作良好的电气连接称为接地。根据接地的目的不同,分为工作接地和保护接地。工作接地是指为运行需要而将电力系统或设备的某一点接地。如变压器中性点直接接地或经消弧线圈接地、避雷器接地等都属于工作接地。保护接地是指为防止人身触电事故而将电气设备的某一点接地。如将电气设备的金属外壳接地、互感器二次线圈接地等。接地方式主要有 2 种,即直接接地系统和不接地系统。 1. 中性点直接接地系统中性点直接接地系统——又称大电流系统;适于110kV 以上的供电系统,380V 以下低压系统。直接接地系统发生单相接地是会使保护马上动作切除电源与故障点。随着电力系统电压等级的增高和系统容量增大,设备绝缘费用所占比重也越来越大。中性点不接地方式的优点已居于次要地位,主要考虑降低绝缘投资。所以,110kV 及以上系统均采用中性点直接接地方式。对于380V 以下的低压系统,由于中性点接地可使相电压固定不变,并可方便地获得相电压供单相设备用电,所以除了特定的场合以外(如矿井),亦多采用中性点接地方式。对于高压系统,如110kV 以上的供电系统,电压高,设备绝缘会高,如果中性点不接地,当单相接地时,未接地的二相就要能够承受√3 倍的过电压,瓷绝缘子体积就要增大近一倍,原来 1 米长的绝缘子就要增加到 1.732 米以上,不但制造起来不容易,安装也是问题,会使设备投资大大增加;另外110kV 以上系统由于电压高,杆塔的高度也高,不容易出现单相接地的情况,因而就是出现了接地就跳闸也不会影响多少供电可靠性,因而从投资的经济性考虑,在110kV 以上供电系统,多采用中性点直接接地系统。在低压380/220V 系统中,有许多单相用电设备,如果中性点不接地运行,则发生单相接地后,有可能未接地的相电压会升高,因过电压烧毁家用电器,从安全性考虑,必须采用中性点直接接地系统,将中性点牢牢接地。1kV 以下的供电系统(380/220 伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。中性点直接接地系统的优点:发生单相接地时,其它两完好相对地电压不会升高,因此可降低绝缘费用,保证安全。中性点直接接地系统的缺点:发生单相接地短路时,短路电流大,要迅速切除故障部分,使供电可靠性低。 2. 中性点不接地系统中性点不接地系统——又称小电流系统;目前我国中性点不接地电网的适用范围如下。(1)3~10kV 电网中,当单相接地电流小于30A时,如要求发电机能带内部单相接地故障运行,则当与发电机有电气连接的3-10KV 电网的接地电流小于5A 时。(2) 20~66kV 电网中单相接地电流小于10A时。中性点不接地系统是中性点非有效接地系统的一种,实际上可以视为经容抗接地的接地系统。该电容 2 是由电网中的电缆、架空线路、电机、变压器等所有电气产品的对地耦合电容所组成的。当发生单相接地故障时,流经故障点的稳态电流是单相对地电容电流。此接地方式在我国中

电气识图全套试题及答案

《电气识图》 一、判断题 1.图纸是表示信息的一种技术文件,必须有一定的格式和共同遵守的规定。(√) 2.A1号电气平面图的幅面尺寸为420×594。 (×) 3.标题栏(又名图标)的格式,在我国有统一的格式。 (×) 4.在电气平面图中点划线可表示为信号线或控制线。 (√) 5.弱电平面图中—H2—表示二根电话线。 (×) 6.在电气平面图中O + + +是表示接地装置。 ? O+ O ? (×) 7.建筑物垂直方向的定位轴线标号应选用拉丁字母由上往下注写.。(×) 8.室内开关的安装高度一般选用绝对标高表示。 (×) 9.图形符号的方位可根据图面布置的需要旋转或成鏡像放置。 (√) 10.7159中基本文字符号不得超过三个字母。

(×) 11.建筑电气工程图是用投影法绘制的图。 (×) 12.电气系统图表示了电气元件的连接关系和接线方式。 (×) 13.电气工程图是表示信息的一种技术文件,各设计院都有自己的格式和规定。(×) 14.电气设备器件的种类代号可由字母和数字组成,其字母是选用26个拉丁字母。(×) 15.电气工程图的幅面尺寸分六类,为A05。 (×) 16.辅助文字符号不能超过三个字母,其中I、O、J不用。 (×) 17.电气平面图是采用位置布局法来绘制的。 (√) 18.电气系统图即能用功能布局法绘制,又可用位置布局法绘出。 (√) 19.电气平面图中电气设备和线路都是按比例绘出的。 (×) 20.-S系统中工作零线和保护零线共用一根导线。 (×)

21.-1250-10/0.4表示三相干式电力变压器器,1250,一次绕组电压为 10,二次绕组电压为0.4。 (√) 22.对一次设备进行监视,测量,保护与控制的设备称为二次设备。(√) 23.4(100×10)表示为硬铜母线,4根,宽为100,厚度为10。 (√) 24.开关柜的屏背面接线图一般都采用相对编号法绘制。 (√) 25.-3×1.5表示塑料绝缘,护套、屏蔽铜芯软线,3根1.52。 (×) 26.低配电系统图可采用位置布局法或功能布局法绘出。 (√) 27.变压器的差动保护可以保护变压器的短路事故。 (√) 28.电流互感器在线路中的作用是供电气测量用。 (×) 29.放射式供电线路,可靠性好,当某一条线路发生故障,不会影响其它供电线路。(√) 30.地坪内配线使用Φ20的塑料管穿线暗敷的英文代号为20-。

电力系统中性点运行方式特点

电力系统中性点运行方式特点 河北工业职业技术学院宣钢分院周晓静 北京皓天百能环保工程有限公司张凤伟 摘要:中性点接地方式是一个综合性很强的技术问题,随着配电容量的不断增大,选择一种合适的中性点接地方式尤为重要,对电力系统的安全运行起着重要的作用。选择因此本文以此为背景对各种中性点运行方式的特点进行了分析和比较,并根据其不同特点,列举了我国电力系统种主要运用的中性点接线方式。 关键词:中性点接地、消弧线圈、电力系统 电力系统中性点接地方式有两大类:一类是中性点直接接地或经过低阻抗接地;另一类是中性点不接地,经过消弧线圈或高阻抗接地。其中采用最广泛的是中性点接地、中性点经过消弧线圈接地和中性点直接接地等三种方式。本文结合自身经验介绍各种接地方式的特点,供大家选择时参考。 1、中性点不接地系统 当中性点不接地的系统中发生一相接地时,接在相间电压上的受电器的供电并未遭到破坏,它们可以继续运行,但是这种电网长期在一相接地的状态下运行,也是不能允许的,因为这时非故障相电压升高,绝缘薄弱点很可能被击穿,而引起两相接地短路,将严重地损坏电气设备。所以,在中性点不接地电网中,必须设专门的监察装置,以便使运行人员及时地发现一相接地故障,从而切除电网中的故障部分。 在中性点不接地系统中,当接地的电容电流较大时,在接地处引起的电弧就很难自行熄灭。在接地处还可能出现所谓间隙电弧,即周期地熄灭与重燃的电弧。由于电网是一个具有电感和电容的振荡回路,间歇电弧将引起相对地的过电压,其数值可达(2.5~3)Ux。这种过电压会传输到与接地点有直接电连接的整个电网上,更容易引起另一相对地击穿,而形成两相接地短路。 在电压为3-10kV的电力网中,一相接地时的电容电流不允许大于30A,否则,电弧不能自行熄灭。在20~60kV电压级的电力网中,间歇电弧所引起的过电压,数值更大,对于设备绝缘更为危险,而且由于电压较高,电弧更难自行熄灭。因此,在这些电网中,规定一相接地电流不得大于10A。 2、中性点经消弧线圈接地系统 当一相接地电容电流超过了上述的允许值时,可以用中性点经消弧线圈接地的方法来解决,该系统即称为中性点经消弧线圈接地系统。 消弧线圈主要有带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。绕组的电阻很小,电抗很大。消弧线圈的电感,可用改变接入绕组的匝数加以调节。显然,在正常的运行状态下,由于系统中性点的电压三相不对称电压,数值很小,所以通过消弧线圈的电流也很小。采用过补偿方式,即使系统的电容电流突然的减少(如某回线路切除)也不会引起谐振,而是离谐振点更远。 在中性点经消弧线圈接地的系统中,一相接地和中性点不接地系统一样,故障相对地电压为零,非故障相对地电压升高,三相线电压仍然保持对称和大小不变,所以地也允许暂时运行,但不得超过两小时,消弧线圈的作用对瞬时性接系统故障尤为重要,因为它使接地处的电流大大减小,电弧可能自动熄灭。接地电流小,还可减轻对附近弱点线路的影响。在中性点经消弧线圈接地的系统中,各相对地绝缘和中性点不接地系统一样,也必须按线电压设计。 3、中性点直接接地系统 中性点的电位在电网的任何工作状态下均保持为零。在这种系统中,当发生一相接地时,

低压电力系统中中性点的接线行方式及其重要性

附上一篇文章:请参考 低压电力系统中中性点的接线行方式及其重要性 低压电力系统中,变压器的中性点是接地运行的,它涉及技术、经济、安全等多个方面。中性线就是从星形接法的三相绕组的中性点N引出的导线。三相四线制电源对于三相对称负载可以接成三相三线制不需要中性线,可在现实中,由于照明、动力等混合负荷供电,三相负荷往往不能平衡,便不能接成三相三线制,而必需接成三相四线制,且还应尽量使 中性线阻抗等于或接近零。 在三相四线制线路的干线上,中性线中的电流不能超过额定值的四分之一;正确选择中性线截面,中性线截面不能小于相线截面的二分之一,单相供电线路中,中性线截面应和相线相同;尽量减少线路途中的中性线接头,中性线的连接须牢固可靠,若铜线、铝线相接时,应使用铜铝过渡夹,并加强巡查和维护,发现有接头打火或接触不良时,应及时处理,平时还应经常进行检查,避免中性线接触不良等问题的发生,保证中性线在任何时候都不能断开;不能在中性线上安装开关,更不允许装设熔断器,以确保安全供、用电。 这是因为当中性线存在时,负载的相电压对称总是等于电源电压的相电压,这里中性线起着迫使负载相电压对称和不变的作用。因此,当中性线的阻抗等于零时,即使负载不对称,但各相的负载电压仍然是对称的,各相负载的工作彼此独立,互不影响,即使某一相负载出了故障,另外的非故障的负载照常可以正常工作。只是与对称负载不同的地方就是各相电流不再对称,中性线内有电流存在,所以中性线不能去掉。当中性线因故障断开了,这时虽然电压仍然对称,但由于没有中性线,负载的相电压不对称了,造成有的负载的相电压偏高,有的负载相电压偏低,可能使有的负载因电压偏高而损坏,有的负载因电压偏低 而不能正常工作。 详述如下 一、建筑工程供电系统 建筑工程供电使用的基本供电系统有三相三线制、三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面内容就对各种供电系统做一个扼要的 介绍。 TT系统TN-C 供电系统→TN系统→TN-S IT系统TN-C-S (一)工程供电的基本方式 根据IEC规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即T

变压器中性点4种接线方式分析终极总结

变压器中性点问题 电力系统的中性点指星型联结的变压器或发电机的中性点。电力系统中性点接地方式是一个涉及到供电的可靠性、过电压与绝缘配合、继电保护、通信干扰、系统稳定诸多方面的综合技术问题,这个问题在不同的国家和地区,不同的发展水平可以有不同的选择。 三相交流电力系统中,变压器的中性点有三种运行方式:中性点直接接地、中性点经阻抗或消弧线圈接地、中性点不接地。 在电压等级较高的系统中,绝缘费用在设备总价格中占相当大的比重,降低绝缘水平带来的经济效益很显著的话,一般采用中性点直接接地方式,而用其他措施来提高供电可靠性。反之,在电压等级较低的系统中,一般就采用中性点不接地方式以提高供电可靠性, 对于不同电压等级,一般按下述原则选择:220kV以上电力网,采用中性点直接接地方式,防止单相故障时某一相的电压过高,可以降低设备绝缘水平;110kV接地网,大部分采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A时,可采用经消弧线圈接地的方式;3~10kV电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方

式。但当电网电容电流大于30A时,可采用经消弧线圈接地或经电阻接地的方式;1kV以下,即220/380V三相四线制低压电力网,从安全观点出发,均采用中性点直接接地的方式,这样可以防止一相接地时换线超过250V的危险(对地)电压。特殊场所,如爆炸危险场所或矿下,也有采用中性点不接地的。这时一相或中性点应有击穿熔断器,以防止高压窜入低压所引起的危险。 在中性点有效接地的110kV、220kV高压电力系统中,因运行方式的改变或断路器自行跳闸,有时也会在某一区域内形成非有效接地的部分,这时应及时采取措施,使整个系统全部恢复到有效接地方式运行。 A.中性点直接接地系统 中性点直接接地系统发生单相接地时,通过主变中性点与接地点构成的回路,产生很大的短路电流,继电保护动作切除故障线路,使系统其它没有 接地的部分恢复正常运行。由于 中性点直接接地,发生单相接地 时,中性点对地电压仍为零,非 接地的相电压不发生变化。 我国220kV及以上、大多数110kV系统、0.4kV电压等级的电力系统中性点直接接地运行。0.4kV(指线电压)低压配电系统为了产生相地220V低压,要将其主变中性点接

第四章 电力系统的接线方式

1本章内容: 1 电力网的接线 本章容 熟悉无备用和有备用电力网的接线方式及其优缺点;掌握电气主接线的各种形式及其基本要求 2 掌握电气主接线的各种形式及其基本要求; 掌握有汇流母线的单母线、双母线等接线的特点、倒 2 发电厂、变电所主接线 闸操作顺序和优缺点、改进措施以及应用范围;掌握无汇流母线的单元接线桥形接线和角形接线的3 掌握无汇流母线的单元接线、桥形接线和角形接线的特点、应用范围; 3 中性点接地方式 熟悉典型的发电厂主接线形式; 掌握中性点不同接地方式的特点及使用范围。

1 重点 1 电力网的接线 重点: 单母接线及其倒闸操作;双母接线及其倒闸操作;2 桥形接线的特点;中性点接地方式的特点。 2 发电厂、变电所主接线 3 难点: 单母接线、双母接线的倒闸操作步骤;各种中性点 3 中性点接地方式 接地方式的分析及单相接地故障等值电路的确定。

常用一次设备的图形符号和文字符号11 电力网的接线 GS 序号图形 名称文字符号2 GS ~ ~GS 1G 三相同步发动机 2 发电厂、变电所主接线 2三相感应发动机3~ M ~ M M 3 3两绕组变压器TM 3 中性点接地方式 三绕组变压器T TM 4 或电压互感器 T

常用一次设备的图形符号和文字符号15电抗器L 1 电力网的接线 2 TA 6电流互感器 2 发电厂、变电所主接线 7电压互感器TV 3 8熔断器FU 3 中性点接地方式 F 9 避雷器

常用一次设备的图形符号和文字符号110 隔离开关QS 1 电力网的接线 QK 刀开关 2 QL 11负荷开关 2 发电厂、变电所主接线12跌落式熔断器 FU 3 3 中性点接地方式 13断路器QF 14 自动开关 QF

中性点各种接线方式

摘要:供配电系统的中性点接地方式涉及电网的安全运行,供电可靠性,过电压和绝缘的配合,继电保护,接地设计等多个因素,而且对通信和电子设备的电子干扰、人身安全等方面有重要影响。 关键词:供配电系统中性点安全 0 引言 顾名思义:中性,不高也不低,为零。中性点不接地的供电系统,是为了提高供电可靠性,若速断跳闸了可靠性就保证不了。中性点不接地,发生单相对地短路时,大地的电位与接地的相线相同,并且与中性点不能形成回路。在三相三线制电路中,接地改接零,所有接零保护的电器外壳与地之间将变成相电压,使电路不能正常工作,而且所有碰上外壳的人都会触电。 1 电力系统中性点运行方式 电力系统中性点的运行方式是一个复杂的系统工程问题,它涉及到短路电流的大小、供电的可靠性、过电压的大小、继电保护的配置及动作状态、通信的干扰、系统稳定等许多方面的综合技术问题,所以在确定一个电力系统中性点运行方式之前,须经合理的技术经济比较后确定。 电力系统中性点的分类:①电力系统的中性点有效接地,即中性点直接接地。②电力系统的中性点非有效接地,其中包括中性点不接地、中性点经消孤线圈接、中性点经电阻接地。 各种中性点运行方式的特点: 1.1 中性点不接地系统:在正常运行时,网络各相对地电压是对称的,其大小为相电压。线路经过完整换位后,三相对地电容相等,则各相对地电容电流对称且平衡,无电容电流流入地中,所以中性点对地电压为零。 1.2 中性点经消孤线圈接地系统:为了解决中性点不接地系统单相接地电流大、电孤不能熄灭的问题,最常用的方法是在中性点装设消孤线圈,利用消孤线圈中的电感电流和接地的电容电流相位相反进行补偿、抵消,使接地点电流变小,甚至为零,这样接地点的电流就能很快熄灭。根据补偿程度的不同,有三种补偿方式: 1.2.1 会补偿:接地点电流为零。从消孤的观点来看,全补偿最好,但实际上并不采用这种补偿方式,因为在正常运行中,由于各种原因造成电网三相电压不对称,中性点出现一定的电压时,可能引起串联谐振过电压。 1.2.2 欠补偿:接地点尚有未补偿的电容性电流。欠补偿方式也较少采用,原因是在检修、事故切除部分线路或系统频率降低等情况,可能使系统接近或达到全补偿,从而出现串联谐振过电压。 1.2.3 过补偿:接地点具有多余的电感性电流。过补偿可避免谐振过电压的产生,因此得到广泛应用,过补偿接地点的电感性电流也不能超过规定值,否则电孤不可能可靠熄灭。 1.3 中性点直接接地系统防止单相接地故障电孤不能自动熄灭的另一种方法,就是将系统的中性点直接接地,在这种系统中发生单相接地时,故障相经过大地形成单相短路,继电保护动作,将接地相线路切除,在接地点不会产生稳定电孤或间歇电孤,还有在中性点直接接地系统中,中性点的电位保持不变,非故障相的电压也不会升高,仍为相电压,使得在这种系统中的电力设备可以按照相电压的绝缘要求进行制造,比同电压等级的中性点不接地系统的电力设备要按线电压进行制造在经济性上要高出很多。 2 变压器中性点接地与不接地的优缺点比较 2.1 变压器中性点接地系统的优缺点: 2.1.1 优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is ,从而使保护装置

电气识图的步骤和方法

电气识图的步骤和方法-老鬼blog(记于淮北 相山) 一、看电气图的一般步骤 1.详看图纸说明 拿到图纸后,首先要仔细阅读图纸的主标题栏和有关说明,如图纸目录、技术说明、电器元件明细表、施工说明书等,结合已有的电工知识,对该电气图的类型、性质、作用有一个明确的认识,从整体上理解图纸的概况和所要表述的重点。 2.看概略图和框图 由于概略图和框图只是概略表示系统或分系统的基本组成、相互关系及其主要特征,因此紧接着就要详细看电路图,才能搞清它们的工作原理。概略图和框图多采用单

线图,只有某些380/220V低压配电系统概略图才部分地采用多线图表示。3.看电路图是看图的重点和难点 电路图是电气图的核心,也是内容最丰富、最难读懂的电气图纸。 看电路图首先要看有哪些图形符号和文字符号,了解电路图各组成部分的作用、分清主电路和辅助电路,交流回路和直流回路。其次,按照先看主电路,再看辅助电路的顺序进行看图。 看主电路时,通常要从下往上看,即先从用电设备开始,经控制电器元件,顺次往电源端看。看辅助电路时,则自上而下、从左至右看,即先看主电源,再顺次看各条支路,分析各条支路电器元件的工作情况及其对主电路的控制关系,注意电气与机械机构的连接关系。 通过看主电路,要搞清负载是怎样取得电源的,电源线都经过哪些电器元件到达负载和为什么要通过这些电器元件。通过看辅助电路,则应搞清辅助电路的构成,各电器元件之间的相互联系和控制关系及其动作情况等。同时还要了解辅助电路和主电路之间的相互关系,进而搞清楚整个电路的工作原理和来龙去脉。 4.电路图与接线图对照起来看 接线图和电路图互相对照看图,可帮助看清楚接线图。读接线图时,要根据端子标志、回路标号从电源端顺次查下去,搞清楚线路走向和电路的连接方法,搞清每条支路是怎样通过各个电器元件构成闭合回路的。 配电盘(屏)内、外电路相互连接必须通过接线端子板。一般来说,配电盘内有几号线,端子板上就有几号线的接点,外部电路的几号线只要在端子板的同号接点上接出即可。因此,看接线图时,要把配电盘(屏)内、外的电路走向搞清楚,就必须注意搞清端子板的接线情况。 二、看电气控制电路图的方法 看电气控制电路图一般方法是先看主电路,再看辅助电路,并用辅助电路的回路去研究主电路的控制程序。 1.看主电路的步骤 第一步:看清主电路中用电设备。用电设备指消耗电能的用电器具或电气设备,看图首先要看清楚有几个用电器,它们的类别、用途、接线方式及一些不同要求等。 第二步:要弄清楚用电设备是用什么电器元件控制的。控制电气设备的方法很多,有的直接用开关控制,有的用各种启动器控制,有的用接触器控制。 第三步:了解主电路中所用的控制电器及保护电器。前者是指除常规接触器以外的

相关主题
文本预览
相关文档 最新文档