当前位置:文档之家› 基于贝叶斯估计的信息融合方法研究

基于贝叶斯估计的信息融合方法研究

基于贝叶斯估计的信息融合方法研究
基于贝叶斯估计的信息融合方法研究

基于贝叶斯估计的信息融合方法研究

摘 要:为了有效融合多个传感器的测量数据,得到准确的融合结果,本文以置信距离测度作为数据融合的融合度,利用分位图法,通过置信距离矩阵、关系矩阵寻找多传感器的最佳融合数,并以Bayes 估计理论为基础得到多传感器最优融合数据,最后将它与其它方法得到的融合数据进行了比较。 关键词:Bayes 估计;信息融合;分位图;传感器

Study on Information Fusion MethodsBased on Bayes Estimation

Abstract :For getting accurate fused data by fusing multi-sensor measurement data, in this PaPer,the confidence distance measure is used to be fusion measure of data fusion.The useful fused data are looked for by confidence distance matrix and relation matrix through using a method of bitmap.The optimal fused data is given by Bayes estimation theory, and optimal fused results obtained by other methods are compared with it. Key words :Bayes estimation; information fusion; bitmap; sensor

1 引言

信息融合是把来自多种或多个传感器的信息和数据进行综合处理,得到更为准确可靠的理论,从而减少在信息处理中可能出现的失误。一个系统中同时使用着多个信息采集传感器,它们既可以是同种类型的,也可以是不同类型的。在实际应用中不同的传感器所测得的同一物体的某特性参数的数据会有偏差。这种偏差一方面来自传感器本身的误差,另一方面来自数据处理过程的数学方法。必须对传感器所测得的数据进行判断,以决定数据是否可信。信息融合的关键是对各个传感器所得数据的真实性进行判别,找出不同传感器数据之间的相互关系,从而决定对哪些传感器的数据进行融合。数据融合的目的在于运用一定的准则和算法,借助现代科技成果,自动对来自各信源的数据呈报进行联合、变换、相关和合成,从中提取质量的战术情报,洞察战场威胁态势,为作战指挥决策提供可靠依据[1]。本文以置信距离测度作为数据融合的融合度,利用置信矩阵、关系矩阵得到多传感器的最佳融合数,以Bayes 估计理论[2,3]为基础得到多传感器最优融合数据。

2 置信距离测度和置信距离矩阵的确定

用多传感器测量同一个指标参数时,设第i 个传感器和第j 个传感器测得的数据为

i X ,j X 。i X ,j X 都服从Gauss 分布,以它们的pdf 曲线作为传感器的特性函数,记成()x f i ,()x f j 。i x ,j x 为i X ,j X 的一次观测值。为了反应观测值i x ,j x 之间偏差的大小,引进

置信距离测度ij d (i ,j =1,2,…,m),ij d 的值称为第i 个传感器与第j 个传感器数据的置信距离测度[4],ij d 的值越小,i ,j 2个传感器的观测值越相近,否则偏差就很大,因此ij d 也称为i ,j 2个传感器的融合度。设

()A ==?22dx x x f d i x x i ij j i

(1)

()B ==?22dx x x f d j x x j ji i j

(2)

式中,

()??

???????????? ??--=2

21exp 21i i

i i i x x x x f σσπ (3)

()??

???????????? ??--=

2

21exp 21j j

j

j j x x x x f σσπ (4) ij d 的值可以借助于误差函数()θerf 直接求得。事实上,

()du e erf u ?

-=

θ

π

θ0

2

2

(5)

文献[4]已得到

????

?

?-=i i j ij x x erf d σ2 (6) ?

???

?

?-=j j i

ji x x erf d σ2 (7) 如果有m 个传感器测量同一指标参数,置信距离测度ij d (i ,j =1,2,…,m)构成一个矩阵

m D :??

??

?

?

?

???

????=mm m m m m m d d d d d d d d d D 2122221

11211

,称m D 为多传感器数据的置信距离矩阵。 在一般情况下,人为确定一个阈值ε,当置信距离测度小于ε时认为2个传感器相互支

持,值为1(1=ij r ),否则为0,则关系矩阵为??

??

?

?

?

???????=mm m m m m m r r r r r r r r r R

2122221

11211

。其中,ij r 表示第j 个传感器对第i 个传感器的支持程度。一般情况下阈值是根据经验进行选择,这样必然影响最后的融合结果。若0=ij r ,则认为第i 个传感器与第j 个传感器相容性差,或称它们相互不支持。若1=ij r ,则认为第i 个传感器与第j 个传感器相容性好,第i 个传感器是支持第j 个传感器的。如果一个传感器的读数是无效的,应把这样的读数删除掉。多传感器测量同一参

数时,所有有效数据的集合称为融合集。融合集中数据的个数称为最佳融合数。

3 分位图方法

多传感器的融合的性能很大程度上依赖于测量值的准确性,但是在实际的应用中并不能保证每个传感器的每个测量值都是准确的,甚至有些测量值可能是错误的。某个传感器在某次测量中由于种种原因可能产生虚假的甚至错误的测量值,称为观测失败。如果将观测失败的传感器数据送入融合中心,必定会影响融合的精度。因此在对多个传感器的数据进行融合以前必须对来自多个传感器的测量值进行测试,找出测量值能够彼此支持的一致传感器组,

真正的数据融合将在一致传感器组中进行。

本文采用数据探测技术中的分位图法来寻求一致传感器组。分位图法用中位数(M )、四分位数(F )、四分位数离散度(dF )、淘汰点(ρ)等统计量来反映数据的分布结构,以找出数据中较不可靠的离异值。

假设有N 个传感器的测量值1X ,2X ,…,N X 为m 维向量,其相应的范数i Y 定义为:

2

1

12???

? ??==∑=m

j ij i i X X Y ,N i ,,2,1 = (8)

将i Y 按由小到大的顺序排列为N Y Y Y 21,则N Y ,1Y 分别称为上下极限值,中位数为:

??????????

?

??

+=++为偶数

为奇数

N 2N 212

2

1

N N N Y Y Y M (9)

相应的上、下四分位数u F 、l F 分别为区间:[]N Y M ,与[]M Y ,1的中位数,则四分位数离散度为:

l u F F dF -= (10)

若认为与中位数的距离大于dF β是为离异值,则认定dF M Y i β>-时i Y 是无效数据,则可得到相应的淘汰点为:

dF F l 2

ρ-

= dF F u 2

ρ+

= (11)

其中β为常数。所有在区间[]21,ρρ内的传感器数据被认为是有效的一致传感器数据,将被送入融合中心参加融合处理。

通过分位图法可以排除50%的离异值的干扰[5],并且由于M 与dF 的选择仅与数据的分布位置有关,而与极值点的大小无关,即有效区间的获得与需要排除的离异值关系不大。所以利用分位图法来估算定位参数和尺度参数从而获得一致传感器数据的方法具有相当的抗差性能的(即具有鲁棒性)。

4 基于贝叶斯估计的多传感器信息融合

设n 个传感器测量同一参数所得数据中,最佳融合数为m (n m ≤),融合集为

{}m X X X X ,,,21 =。

下面是用贝叶斯估计方法由融合集中的数据融合成一个最佳融合数据,并把它作为被测量参数的最后结果。

()()()

m m m X X X f X X X f X X X f ,,,,,,;,,,212121 μμ=

(12)

若参数μ服从()20

,σμN

,且k X

服从()2,k

N

σμ,令()m

X X X f ,,,12

1

=α,α是与μ无

关的常数。因此

()??

???????????? ??--??????????????? ??--=∏

=2

00

021

2121exp 2121exp 21

,,,σσπσσπαμu u u X X X X f k k m

k k m ??

?

??????????? ??--???? ??--=∑=m k k k u u u X 12

0022121exp σσα (13) 上式中的指数部分是关于μ的二次函数,因此()m

X X X f ,,,2

1

μ仍为正态分布,假设服

从()

2

,N N N

σμ

,即

()??

?

??????????

?

??--=2

2121exp 21

,,,N

N

N m u u X X X f σσπμ (14) 比较式(13)、式(14)两式的参数得:

????

?+?

???

??+=∑∑==m k k

m k k

k N X 12021200211σσσμσμ (15)

因此μ的贝叶斯估计为∧

μ:

N N

N

N d u u μμσσπμμ=??

?

??????????

?

??--=?Ω∧

2

21exp 21 (16) 所以,∧

μ即为μ的最优估计。

5 实验分析

假设用n =10个传感器测试特性参数,获得数据如表1:

表1 传感器测试特性参数

传感器序号 1 2 3 4 5 6 7 8 9 10 观测值i X 1.000 0.990 0.980 0.970 0.960 0.50 0.650 1.010 1.030 1.500

方差2i σ 0.05 0.07 0.10 0.20 0.30 0.25 0.10 0.10 0.20 0.30 5.1 利用分位图法获得一致传感器组

首先对10个传感器测量值按由小到大顺序排列为:

6X ,7X ,5X ,4X ,3X ,2X ,1X ,8X ,9X ,10X 。由式(9)、式(10)可得到:()985.0232=+=X X M ,()005.1281=+=X X F u ,()965.0254=+=X X F l ,040.0=-=l u F F dF 。

取2=β,由式(11)得:925.01=-=dF F l ρ,045.12=+=dF F u ρ。则可得在区间

[]21,ρρ内的一致传感器组为:1X ,2X ,3X ,4X ,7X ,8X ,9X ,最佳融合组数为7。

5.2 计算置信距离矩阵

m D 、关系矩阵R

利用式(6)、式(7),采用分位图方法后可以得到测量数据的置信距离矩阵和关系矩阵:

??????????

????????????

=00.025227 0.035671 0.106730.0890210.071270.0534840.02522700.0252270.125630.100660.0755810.0504290.0504290.02522700.100660.0755810.0504290.0252270.10673089021.00.0712700.017840.0356********.012563.010066.0075581.0025227.00025227.0050429.012017.0090278.0060257.0060257.003015.0003015.010673.007127.0035671.010673.007127.0035671.00m D

???

?

??

?

???

???????????

?=1111111111111111111111111111

111111111111111111111

R 利用式(15)求得被测参数的Bayes 最优融合数据的结果为:0.99971

文献[4]中,不采用分位图法,得到的最佳融合组与采用分位图法的一致,其应用极大似然法得到的融合结果为:0.99926 5.3 分析

(1)利用分位图法之前通过R 可以看出最佳融合数为7,融合集为

1X ,2X ,3X ,4X ,7X ,8X ,9X ,而这与通过分位图法得到的传感器组是完全一致的。

(2) 利用分位图法以后,融合的效果有了明显的改进。

(3) 通过分位图法,减少了参与计算的测量数据的数据量,从而降低了运算量,加快了运算速度。

6 结论

本文提出的基于贝叶斯估计的信息融合方法,通过引入数据探测技术中的分位图法对其加以改进。利用分位图法排除尽可能多的离异值,得到一致传感器组,然后从数学方法的角度,以置信距离测度作为数据融合的融合度,利用置信距离矩阵、关系矩阵得到多传感器的最佳融合数、融合集,以贝叶斯估计理论基础得到多传感器最优融合数据,并通过实验仿真证明了方法有效性。

参考文献:

[1]桑炜森,顾耀平.综合电子战新技术[M].北京:国际工业出版社,1996. [2](美)普雷斯(Press.5.James)著.贝叶斯统计学[M].北京:中国统计出版社,1992. [3]中山大学数学力学系.概率论及数理统计[M].北京:高等教育出版社,1980. [4]陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995, 25(2):11-15. [5]黄幼才著.数据探测技术与抗差估计[M].北京:测绘出版社,1990.

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划

浅谈贝叶斯方法

浅谈贝叶斯方法 随着MCMC(马尔可夫链蒙特卡尔理论Markov chain Monte Carlo)的深入研究,贝叶斯(T.Bayes(1702~1761))统计已成为当今国际统计科学研究的热点。翻阅近几年国内外统计学方面的杂志,特别是美国统计学会的JASA(Journal of the American Statistical Association) 、英国皇家学会的统计杂志JRSS(Journal of the Royal Statistical Society)[1]等,几乎每期都有“贝叶斯统计”的论文。贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。托马斯·贝叶斯在18世纪上半叶群雄争霸的欧洲学术界可谓是个重要人物,他首先将归纳推理法应用于概率论,并创立了贝叶斯统计理论,对于统计决策函数、统计推理、统计估算等作出了贡献。贝叶斯所采用的许多概率术语被沿用至今。他的两篇遗作于逝世前4个月,寄给好友普莱斯(R.Price,1723~1791)分别于1764年、1765年刊于英国皇家学会的《哲学学报》。正是在第一篇题为“机会学说中的一个问题的解”(An essay towards solving a problem in the doctrine of chance)的论文中,贝叶斯创立了逆概率思想。统计学家巴纳德赞誉其为“科学史上最著名的论文之一”。 一、第一部分中给出了7个定义。 定义1 给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义2若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。

全概率公式和贝叶斯公式

单位代码:005 分类号:o1 西安创新学院本科毕业论文设计 题目:全概率公式和贝叶斯公式 专业名称:数学与应用数学 学生姓名:行一舟 学生学号:0703044138 指导教师:程值军 毕业时间:二0一一年六月

全概率公式和贝叶斯公式 摘要:对全概率公式和贝叶斯公式,探讨了寻找完备事件组的两个常用方法,和一些实际的应用.全概率公式是概率论中的一个重要的公式,它提供了计算复杂事件概率的一条有效的途径,使一个复杂事件的概率计算问题化繁就简.而贝叶斯公式则是在乘法公式和全概率公式的基础上得到的一个著名的公式. 关键词:全概率公式;贝叶斯公式;完备事件组

The Full Probability Formula and Bayes Formula Abstract:To the full probability formula and bayes formula for complete,discusses the two commonly used methods of events,and some practical applications.Full probability formula is one of the important full probability formula of calculation,it provides an effective complex events of the way the full probability of a complex events,full probability calculation problem change numerous will Jane.And the bayes formula is in full probability formula multiplication formula and the basis of a famous formula obtained. Key words:Full probability formula;Bayes formula;Complete event group;

贝叶斯决策模型与实例分析报告

贝叶斯决策模型及实例分析 一、贝叶斯决策的概念 贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。 风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。 二、贝叶斯决策模型的定义 贝叶斯决策应具有如下容 贝叶斯决策模型中的组成部分: ) ( ,θ θP S A a及 ∈ ∈。概率分布S P∈ θ θ) (表示决策 者在观察试验结果前对自然θ发生可能的估计。这一概率称为先验分布。 一个可能的试验集合E,E e∈,无情报试验e0通常包括在集合E之。 一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。 概率分布P(Z/e,θ),Z z∈表示在自然状态θ的条件下,进行e试验后发生z结果

的概率。这一概率分布称为似然分布。 c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。 一个可能的后果集合C,C 每一后果c=c(e,z,a,θ)取决于e,z,a和θ。.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。 三、贝叶斯决策的常用方法 3.1层次分析法(AHP) 在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。 3.1.1层次分析模型 最高层:表示解决问题的目的,即层次分析要达到的目标。 中间层:表示为实现目标所涉及的因素,准则和策略等中间层可分为若干子层,如准则层,约束层和策略层等。 最低层:表示事项目标而供选择的各种措施,方案和政策等。 3.1.2层次分析法的基本步骤 (l) 建立层次结构模型 在深入分析研究的问题后,将问题中所包括的因素分为不同层次,如目标层、指标层和措施层等并画出层次结构图表示层次的递阶结构和相邻两层因素的从属关系。 (2) 构造判断矩阵 判断矩阵元素的值表示人们对各因素关于目标的相对重要性的认识。在相邻的两个层次中,高层次为目标,低层次为因素。 (3) 层次单排序及其一致性检验 判断矩阵的特征向量W经过归一化后即为各因素关于目标的相对重要性的排序权值。利用判断矩阵的最大特征根,可求CI和CR值,当CR<0.1时,认为层次单排序的结果有满意的一致性;否则,需要调整判断矩阵的各元素的取值。 (4) 层次总排序 计算某一层次各因素相对上一层次所有因素的相对重要性的排序权值称为层次总排序。由于层次总排序过程是从最高层到最低层逐层进行的,而最高层是总目标,所以,层次总排序也是计算某一层次各因素相对最高层(总目标)的相对重要性的排序权值。 设上一层次A包含m个因素A1,A2,…,A m其层次总排序的权值分别为a1,a2,…,a m;下一层次B包含n个因素B1,B2,…,B n,它们对于因素A j(j=1,2,…,m)的层次单排序权值分别为:b1j,b2j,…,b nj(当B k与A j无联系时,b kj=0),则B层次总排序权值可按下表计算。 层次总排序权值计算表

贝叶斯公式应用案例

贝叶斯公式应用案例 贝叶斯公式的定义是: 若事件B1 ,B2 , …,Bn 是样本空间Ψ的一个划分, P(B i)>0 (i =1 ,2 , …, n ),A 是任一事件且P(A)>0 , 则有 P(B|A)= P(B j )P(A| B j ) / P(A) (j =1 ,2 , …, n ) 其中, P(A)可由全概率公式得到.即 n P(A)=∑P(B i)P(A|B i) i =1 在我们平时工作中,对于贝叶斯公式的实际运用在零件质量检测中有所体现。 假设某零件的次品率为0.1%,而现有的检测手段灵敏度为95%(即发现零件确实为次品的概率为95%),将好零件误判为次品零件的概率为1%。此时假如对零件进行随机抽样检查,检测结果显示该零件为次品。对我们来说,我们所要求的实际有用的检测结果,应当是仪器在检测次品后显示该零件为次品的几率。 现在让我们用贝叶斯公式分析一下该情况。 假设,A=【检查为次品】,B=【零件为次品】,即我们需要求得的概率为P(B|A) 则实际次品的概率P(B)=0.1%, 已知零件为次品的前提下显示该零件为次品的概率P(A|B)= 95%, P(B)=1-0.001=0.999 所以,P(A)=0.001X0.95+0.999X0.01=0.01094 P(B|A)=P(B)P(A|B)/P(A)=0.1%*95%/0.01094=0.0868 即仪器实际辨别出该次品并且实际显示该零件为次品的概率仅为8.68%。 这个数字看来非常荒谬且不切合实际,因为这样的结果告诉我们现有对于次品零件的检测手段极其不靠谱,误判的概率极大。 仔细分析,主要原因是由于实际零件的次品率很低,即实际送来的零件中绝大部分都是没有质量问题的,也就是说,1000个零件中,只有1个零件是次品,但是在检测中我们可以看到,仪器显示这1000个零件中存在着10.94个次品(1000*0.01094),结果相差了10倍。所以,这就告诉我们,在实际生产制造过程中,当一个零件被检测出是次品后,必须要通过再一次的复检,才能大概率确定该零件为次品。 假设,两次检测的准确率相同,令 A=【零件为次品】B=【第一次检测为次品】C=【第二次检测为次品】 则为了确定零件为次品,我们所需要的是P(A|BC)

浅谈风险决策中的贝叶斯方法.

科技信息2008年第33期 SCIENCE &TECHNOLOGY INFORMATION 所谓决策, 就是决策者为了解决当前或未来可能遇到的各种问题,在若干可供选择的行动方案中,选择一个在某种意义下的最佳方案的过程。决策的正确与否会给企业带来收益或损失。因此,决策者应学会合理的决策分析,避免产生重大损失。由于决策环境中存在大量不确定因素和统计信息的不充分,决策必然带有某种程度的风险。可利用的信息是减少风险的有力手段。一般而言,信息越充分,决策环境的不确定性越小,风险也越小。 贝叶斯统计方法的基本思想就是要充分利用模型信息(假设的数学模型)、数据信息(抽样信息)和先验信息(经验资料),将先验分布和抽样分布整合成后验分布,以后验分布为决策的出发点。如果有新的信息(数据),则更新后验分布,实现递归决策方案。本研究通过实例,详细讨论了风险决策中如何利用贝叶斯公式有效整合相关信息,选择最优策略,并就最优决策进行解释。 1. 贝叶斯决策模型 每个风险决策问题都包括三个要素:自然状态(各种自然状态形成状态集)、决策者采取的行动(构成行动集)、决策者采取某个行动的后果(用收益或损失函数描述)。从这三个要素出发,可以得到不同的风险情景空间。 在通常决策问题中,决策者对自然界(或社会)会积累很多的经验和资料,这些先验信息虽不足以确定自然界(或社会)会出现什么状态,但在很多场合可以在状态集上给出一个先验分布。从中得知各种状态出现的概率估计。这种先验信息在做决策时可以使用,即依据先验概率分布及期望值准则进行最优方案的选择。由于先验概率有较强的主观色彩,不能完全反映客观规律,为了更好地进行决策,就必须进一步补充新信息,取得新数据,从而修正先验概率,得到后验概率。后验概率是根据概率论中贝叶斯公式进行计算,所以称这种决策为贝叶斯决策模型。 2. 实例

全概率公式贝叶斯公式推导过程

全概率公式、贝叶斯公式推导过程 (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥ (1)条件概率公式 设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为: P(A|B)=P(AB)/P(B) (2)乘法公式 1.由条件概率公式得: P(AB)=P(A|B)P(B)=P(B|A)P(A) 上式即为乘法公式; 2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有: P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1) (3)全概率公式 1. 如果事件组B1,B2,.... 满足 ,B2....两两互斥,即 B i∩ B j= ,i≠j , i,j=1,2,....,且P(B i)>0,i=1,2,....; ∪B2∪....=Ω ,则称事件组 B1,B2,...是样本空间Ω的一个划分 设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则: 上式即为全概率公式(formula of total probability) 2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件

贝叶斯决策例题(精选.)

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。根据过去的经验,在计划实施工期天气好的可能性为30%。为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。问如何进行决策。 解:采用贝叶斯决策方法。 (1)先验分析 根据已有资料做出决策损益表。 根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8 (2)预验分析 完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)

=1.36(万元) 完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元) 即,完全信息价值大于信息成本,请气象中心进行预报是合算的。 (3)后验分析 ①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。 从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9 ②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。 预报天气好的概率 1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31 预报天气坏的概率 2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:

刘涛--全概率公式与贝叶斯公式--教学设计

概率论与数理统计教学设计

情感态度与价 值观通过介绍概率论与数理统计在实际生活中的运用,激发学生自主学习的兴趣,也培养了学生的创新意识和探索精神。 教学分析教学内容 1.“划分”定义 2.全概率公式 3.贝叶斯公式 教学重点全概率公式、贝叶斯公式的适用范围、基本步骤。教学难点全概率公式、贝叶斯公式的理解与应用。 教学方法 与策略 板书设计 教学时间设计1.引导课题…………3分钟 2.学生活动…………5分钟 3. 探索分析,引出“划分”定义和全概率公式 …………22分钟 4.贝叶斯公式及其应用…………18分钟 5.课堂小结…………2分钟 教学手段 多媒体播放教学视频、PPT演示与板书演练书写相结合。教学进程 教学意图教学内容教学理念

引出课题(3分钟)在日常生活当中,我们知道,在购买体育彩票的时候, 不论先买还是后买,中奖的机会都是均等的,但大家有 没有考虑过,这里的原因在哪里 激发学生的 兴趣,让学生 体会数学来 源于生活。 学生活动(5分钟)问题细化,让学生们具体考虑:在n张体育彩票中有一 张奖卷,第二个人摸到奖卷和第一个人摸到奖卷的概率 分别是多少 学生会讨论第二个人摸到奖卷的前提条件,教师给予引 导,为给出“划分”的定义做准备。 从日常生活 的经验和常 识入手,调动 学生的积极 性。 “划分”定义和全概率公 式 (22分钟)1.“划分”定义(完备事件组) 设S为试验E的样本空间,1,2,n B B B L为E 的一组事件,若 (i),,,1,2, i j B B i j i j n φ=≠=L (ii) 1 n i i B S = ?= 则称1,2,n B B B L为样本空间S的一个划分。 若1,2,n B B B L是样本空间的一个划分,那 么,对每次试验,事件1,2,n B B B L中必有一个且仅有 一个发生。 在新的结论下,划分(完备事件组)可以不这 样要求,只要满足如下即可: (1) 1 n i i B A = =U (2)B发生当且仅当B与1,2,...n A A A之一同时 发生,此处并不要求 1 n i i A S = = U 事实上,只要 1 n i i B A = ?U即可。 教师给予引 导,回归到刚 提出的问题 上,对日常生 活中买体育 彩票这个事 件的样本空 间进行划分。 为给出全概 率公式做准 备。

贝叶斯统计方法研究

贝叶斯方法 贝叶斯分类器是一种比较有潜力的数据挖掘工具,它本质上是一种分类手段,但是它的优势不仅仅在于高分类准确率,更重要的是,它会通过训练集学习一个因果关系图(有向无环图)。如在医学领域,贝叶斯分类器可以辅助医生判断病情,并给出各症状影响关系,这样医生就可以有重点的分析病情给出更全面的诊断。进一步来说,在面对未知问题的情况下,可以从该因果关系图入手分析,而贝叶斯分类器此时充当的是一种辅助分析问题领域的工具。如果我们能够提出一种准确率很高的分类模型,那么无论是辅助诊疗还是辅助分析的作用都会非常大甚至起主导作用,可见贝叶斯分类器的研究是非常有意义的。 与五花八门的贝叶斯分类器构造方法相比,其工作原理就相对简单很多。我们甚至可以把它归结为一个如下所示的公式: 选取其中后验概率最大的,即分类结果,可用如下公式表示

贝叶斯统计的应用范围很广,如计算机科学中的“统计模式识别”、勘探专家所采用的概率推理、计量经济中的贝叶斯推断、经济理论中的贝叶斯模型等。 上述公式本质上是由两部分构成的:贝叶斯分类模型和贝叶斯公式。下面介绍贝叶斯分类器工作流程: 1.学习训练集,存储计算条件概率所需的属性组合个数。 2.使用中存储的数据,计算构造模型所需的互信息和条件互信息。3.使用种计算的互信息和条件互信息,按照定义的构造规则,逐步构建出贝叶斯分类模型。 4.传入测试实例 .根据贝叶斯分类模型的结构和贝叶斯公式计算后验概率分布。.选取其中后验概率最大的类,即预测结果。 一、第一部分中给出了个定义。 定义给定事件组,若其中一个事件发生,而其他事件不发生,则称这些事件互不相容。 定义若两个事件不能同时发生,且每次试验必有一个发生,则称这些事件相互对立。 定义若定某事件未发生,而其对立事件发生,则称该事件失败

贝叶斯定理及应用

贝叶斯定理及应用 中央民族大学 孙媛

一贝叶斯定理 一、贝叶斯定理 贝叶斯定理(Bayes‘ theorem)由英国数学家托马斯贝叶斯(Thomas Bayes) ·Thomas Bayes 在1763年发表的一篇论文中,首先提出了这个定理。用来描述两个条件概率之间的这个定理 关系,比如P(A|B) 和P(B|A)。

一、贝叶斯定理 一贝叶斯定理 所谓的贝叶斯定理源于他生前为解决一个“逆概”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,如假设袋子里面有N 个白球,M 个黑球,你伸手进去摸一如“假设袋子里面有N个白球M个黑球你伸手进去摸一把,摸出黑球的概率是多大”。而一个自然而然的问题是反过来:“如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测。这个问题,就是所谓的逆向概率问题。 样的推测”。这个问题就是所谓的逆向概率问题。

一、贝叶斯定理 一贝叶斯定理 ←实际上就是计算"条件概率"的公式。 p y, ←所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。 的先验概率之所以称为先验是因为它不考虑任何←P(A)是A的先验概率,之所以称为先验是因为它不考虑任何B 的因素。 ←P(A|B)是在B发生时A发生的条件概率,称作A的后验概率。←P(B)是B的先验概率。 ←P(B|A)是在A发生时B发生的条件概率,称作B的后验概率。

对贝叶斯估计的理解

对贝叶斯定理及其在信号处理中的应用的理解 信号估计中的贝叶斯方法是对贝叶斯定理的应用,要理解贝叶斯估计首先要理解贝叶斯定理。 一、 贝叶斯定理: 1. 贝叶斯定理的简单推导过程 贝叶斯定理就是条件概率公式(贝叶斯公式),所谓条件概率就是在事件A 发生的条件下事件B 发生的概率,常用(/)P B A 表示。一般情况下(/)P B A 与 (/)P A B 是不相等的。容易得到: (/)P B A = ()()P A B P A ,(/)P A B =() () P A B P B 所以 (/)P B A ()P A =(/)P A B ()P B , 对上式变形得贝叶斯公式: (/) P A B =(/)() () P B A P A P B (1) 若',A A 为样本空间的一个划分,可得全概率公式: ()P B =''(/)()(/)()P B A P A P B A P A + 所以(1)式可以改写为: '' (/)() (/)(/)()(/)() P B A P A P A B P B A P A P B A P A = + (2) 如果12n A A A ,,...,为样本空间的一个划分,由(2)式可得条件概率(/)j P A B 1 (/)() (/)(/)() j j j n i i i P B A P A P A B P B A P A == ∑ (3) (3)式就是当样本空间的划分为n 时的贝叶斯公式即贝叶斯定理。我们把其中的()(1,...)i P A i n =称为先验概率,即在B 事件发生之前我们对i A 事件概率的一个判断。(/)j P A B 称为后验概率,即在B 事件发生之后我们对i A 事件概率的重新评估。 2. 贝叶斯公式的事件形式

浅谈贝叶斯公式及其应用.

浅谈贝叶斯公式及其应用 摘要 贝叶斯公式是概率论中很重要的公式,在概率论的计算中起到很重要的作用。本文通过对贝叶斯公式进行分析研究,同时也探讨贝叶斯公式在医学、市场预测、信号估计、概率推理以及工厂产品检查等方面的一些实例,阐述了贝叶斯公式在医学、市场、信号估计、推理以及产品检查中的应用。为了解决更多的实际问题,我们对贝叶斯公式进行了推广,举例说明了推广后的公式在实际应用中所适用的概型比原来的公式更广。从而使我们更好地了解到贝叶斯公式存在于我们生活的各个方面、贝叶斯公式在我们的日常生活中非常重要。 关键词:贝叶斯公式应用概率推广

第一章引言 贝叶斯公式是概率论中重要的公式,主要用于计算比较复杂事件的概率,它实质上是加法公式和乘法公式的综合运用。贝叶斯公式出现于17世纪,从发现到现在,已经深入到科学与社会的许多个方面。它是在观察到事件B已发生的条件下,寻找导致B发生的每个原因的概率.贝叶斯公式在实际中生活中有广泛的应用,它可以帮助人们确定某结果(事件B)发生的最可能原因。 目前,社会在飞速发展,市场竞争日趋激烈,决策者必须综合考察已往的信息及现状从而作出综合判断,决策概率分析越来越显示其重要性。其中贝叶斯公式主要用于处理先验概率与后验概率,是进行决策的重要工具。 贝叶斯公式可以用来解决医学、市场预测、信号估计、概率推理以及产品检查等一系列不确定的问题。本文首先分析了贝叶斯公式的概念,再用贝叶斯公式来解决实际中的一些问题。然后将贝叶斯公式推广,举例说明推广后的贝叶斯公式在实际应用中所适用的概型。

第二章 叶斯公式的定义及其应用 2.1贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反 过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现, 这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2.1.1定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且 1n i i B ==Ω,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 证明 由条件概率的定义(所谓条件概率,它是指在某事件B 发生的条件下,求另一事件A 的概率,记为(/)P A B ) ()(/)() i i P AB P B A P A = 对上式的分子用乘法公式、分母用全概率公式, ()()(/)i i i P AB P B P A B = 1()()(/)n i i j P A P B P A B ==∑ 1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑ 结论的证。

最新全概率公式和贝叶斯公式练习题

1.设某工厂有两个车间生产同型号家用电器,第一车间的次品率为0.15,第二车间的次品率为0.12,两个车间的成品都混合堆放在一个仓库,假设第1,2车间生产的成品比例为2:3,今有一客户从成品仓库中随机提一台产品,求该产品合格的概率。 解:设B={从仓库中随机提出的一台是合格品} A i ={提出的一台是第i 车间生产的},i=1,2 则有分解B=A 1B ∪A 2B 由题意P(A1)=2/5,P(A2)=3/5,P(B|A1)=0.85,P(B|A2)=0.88 由全概率公式P(B)= P(A 1) P(B|A 1)+ P(A 2) P(B|A 2)=0.4*0.85+0.6*0.88=0.868. 2. 盒中有a 个红球,b 个黑球,今随机地从中取出一个,观察其颜色后放回,并加上同色球c 个,再从盒中第二次抽取一球,求第二次抽出的是黑球的概率。 解:设A={第一次抽出的是黑球},B={第二次抽出的是黑球},则B AB AB =+, 由全概率公式()()()()()P B P A P B A P A P B A =+, 由题意(),(|),(),(|)b b c a b P A P B A P A P B A a b a b c a b a b c +====++++++ 所以()()()()()()b b c ab b P B a b a b c a b a b c a b +=+=+++++++ 3. 设某公路上经过的货车与客车的数量之比为2:1,货车中途停车修理的概率为0.02,客车为0.01,今有一辆汽车中途停车修理,求该汽车是货车的概率。 解:设B={中途停车修理},A1={经过的是货车},A2={经过的是客车},则B=A 1B ∪A 2B ,由贝叶斯公式有 111112220.02()()3()0.80.21()()()()0.020.0133P A P B A P A B P A P B A P A P B A ?===+?+? 4.已知甲袋中有6只红球,4只白球;乙袋中有8只红球,6只白球。求下列事件的概率: (1) 随机取一只袋,再从该袋中随机取一球,该球是红球; (2) 合并两只袋,从中随机取一球,该球是红球。 解 (1) 记=B {该球是红球},=1A {取自甲袋},=2A {取自乙袋},已知10/6)|(1=A B P ,14/8)|(2=A B P ,所以

案例1 贝叶斯方法

案例1 贝叶斯方法

(一)贝叶斯方法介绍 由贝果叶斯朔因公式,可以解决的推理问题. (|)j P B A 这个概率就是,可由贝叶斯公式给出. 12,,...,n j n B B B A A A B A 假设共有种两两互斥的原因会导致发生.当结果发生时,我们就会追朔发生的原因,需要计算由于原因导致发生的概率是多大?

12(|)(|),(|)...,(|).. j j n B P B A P B A P B A P B A 通常,我们会找那个最有可能发生的原因,也就是找,使得是中最大的一个这个推断方贝叶称之为斯方法法12,,,n B B B S ???: 称为的定义一个划分,若 12(),n i B B B S ??????= 不漏(),.i j ii B B i j =?≠ 不重1 B 2B 3B 4 B S n B

12,,,()0.()0 n i B B B S P B P A ???>>B s aye 设为的一个划分且对有公式:1()(|)(|)()(|)i i i n j j j P B P A B P B A P B P A B ==∑(),(|),1,2,...,. j j j j P B p P A B q j n ===设1q 1B ???S A 1 p 2 p n p 2q n q 2 B n B ()(|)i i P B P B A 先验概率后验概率 1 i i n j j j p q p q =∑=

(1702-1762) · 贝叶斯公式由英国数学家托马斯贝叶斯 提出.不过贝叶斯在世时并没有公开发表这一重大发现.而是他去世后两年才由他的朋友理查德普莱斯整理遗稿时发现并帮助发表的.

贝叶斯预测方法

贝叶斯预测模型的概述 贝叶斯预测模型是运用贝叶斯统计进行的一种预测。贝叶斯统计不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。 托马斯·贝叶斯(Thomas Bayes)的统计预测方法是一种以动态模型为研究对象的时间序列预测方法。在做统计推断时,一般模式是: 先验信息+总体分布信息+样本信息→后验分布信息 可以看出贝叶斯模型不仅利用了前期的数据信息,还加入了决策者的经验和判断等信息,并将客观因素和主观因素结合起来,对异常情况的发生具有较多的灵活性。这里以美国1960—2005年的出口额数据为例,探讨贝叶斯统计预测方法的应用。 Bayes预测模型及其计算步骤 此处使用常均值折扣模型,这种模型应用广泛而且简单,它体现了动态现行模型的许多基本概念和分析特性。 常均值折扣模型 对每一时刻t常均值折模型记为DLM{1,1,V,δ},折扣因子δ,O<δ

推论2:μt的后验分布()~N [m t,C t],其中f t = m t? 1,Q t = R t + V。 由于Rt=Ct-1+Wt=Ct-1/δ,故有W?t = C t? 1(δ? 1? 1) W 其计算步骤为: (1)R t = C?t / δ; (2)Q t = R t + V; (3)A t = R t / Q t; (4)f t? 1 = m t? 1; (5)e t?y t?f t? 1; (6)C t = A t V; (7)m t?m t? 1 + A t e t 计算实例 根据The SAS System for Windows 9.0所编程序,对美国出口额(单位:十亿元)变化进行了预测。选取常均值折扣模型和抛物线回归模型。 美国出口额的预测,预测模型的初始信息为m0=304,Co=72,V=0。Ol,δ=0。8得到的1960—2006年的预测结果。见表2中给出了预测的部分信息(1980—2006年的预测信息)。 通过The SAS System for Windows 9.0软件回归分析得到抛物线预测方程: 表示年份见表3给出了1980-2006年的预测信息。 计算结果分析 对预测结果的准确度采用平均绝对百分误差(MAPE)分析。公式如下: 根据表l和表2对1980-2005年出口额的预测结果可知,常均值折扣模型所得结果的平均绝对百分误差MAPE=8。1745%,而由抛物线回归模型所得结果的平均绝对百分误差为9。5077%。由此可见这组数据中,使用贝叶斯模型预测的结果更为精确。

贝叶斯公式的经验之谈

贝叶斯公式的经验之谈-CAL-FENGHAI.-(YICAI)-Company One1

贝叶斯公式的经验之谈 一、综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下从几个的例子来说明贝叶斯公式的应用。 文【1】主要应用贝叶斯公式的简单情形,从“疾病诊断”,“说谎了吗”,“企业资质评判”,“诉讼”四个方面讨论其具体应用。文【2】用市场预测的实例,介绍了贝叶斯公式在市场预测中的应用。贝叶斯市场预测能对信息的价值是否需要采集新的信息做出科学的判断。文【3】、文【4】介绍贝叶斯过滤技术的工作原理及技术原理,讨论了邮件过滤模块,通过分析研究该模块中垃圾邮件关键词的统计概率分布,提出了基于贝叶斯概率模型的邮件过滤算法,并对该算法的合理性和复杂度进行了分析。可以根据垃圾邮件内容的特征,建立贝叶斯概率模型,计算出一封邮件是垃圾邮件的概率,从而判断其是否为垃圾邮件。文【5】基于贝叶斯公式中概率统计的重要性与在日常生活中应用的广泛性,概述了贝叶斯统计的基本思想及其与其他统计学派的争论,并对作为贝叶斯统计基石的贝叶斯公式进行了归纳。 二.内容 1.疾病诊断. 资料显示, 某项艾滋病血液检测的灵敏度( 即真有病的人检查为阳性) 为95%, 而对没有得病的人,种检测的准确率( 即没有病的人检查为阴性) 为99%. 美国是一个艾滋病比较流行的国家, 估计大约有千分之一的人患有这种病. 为了能有效地控制、减缓艾滋病的传播, 几年前有人建议对申请新婚登记的新婚夫妇进行这种血液检查. 该计划提出后, 征询专家意见, 遭到专家的强烈反对, 计划没有被通过.

贝叶斯决策分析文献综述

管理决策分析 贝叶斯决策分析文献综述 单位:数信学院管理07 小组成员:0711200209 王双 0711200215 韦海霞 0711200217 覃慧 完成日期:2010年5月31日

有关贝叶斯决策方法文献综述 0. 引言 决策分析就是应用管理决策理论,对管理决策问题,抽象出系统模型,提出一套解决方法,指导决策主体作出理想的决策。由于市场环境中存在着许多不确定因素 ,使决策者的决策带有某种程度的风险。而要做出理想的抉择,在决策的过程中不仅要意识到风险的存在,还必须增加决策的可靠性。在风险决策中,给出了很多如何确定信息的价值以及如何提高风险决策可靠性的方法。根据不同的风险情况,要采取不同的风险决策分析的方法。贝叶斯决策分析就是其中的一种。 1.贝叶斯决策分析的思想及步骤 从信息价值的经济效用的角度,讨论贝叶斯公式在风险决策中的应用。首先根据期望值原则,以先验概率为基础,找到最优方案及其期望损益值和风险系数,然后用决策信息修正先验分布,得到状态变量的后验分布,并用后验分布概率计算各方案的期望损益值,找出最满意方案,并计算其风险系数(这里计算的风险系数应比仅有先验条件下计算的风险系数要小),最后求出掌握了全部决策信息值的期望损益值。用全部决策信息值的期望损益值减去没有考虑决策信息时的期望收益,就得到了决策信息的价值。 步骤如下: (1)已知可供选择的方案,方案的各状态概率,及各方案在各状态下的收益值。 (2)计算方案的期望收益值,按照期望收益值选择方案。 (3)计算方案的期望损益标准差和风险系数。运用方案的风险系数来测度其风险度,即得到每个方案每一单位期望收益的离散程度指标。该指标越大,决策风险就越大。期望损益标准差公式: ∑=-= n 12A )()(i i Ai x P EMA CP δ 风险系数: )() (1i i u E u D V =δ (4)利用贝叶斯公式对各种状态的概率进行修正。先算出各个状态下的后验概率,计算掌握了决策信息后的最满意方案的期望收益值和风险系数,最后算出信息的价值。 2. 贝叶斯决策分析的应用领域 2.1 港口规划等问题 港口吞吐量()i s 与其预测出现的现象()j z 为相互独立的事件。事件,i j s z 发生的概率分别是()i P s 、()j P z 。在事件j z 发生的条件下,事件i s 发生的概率为(/)i j P s z 。运用贝叶斯公式进行事件的原因分析和决策。根据贝叶斯定理可求得

贝叶斯公式的应用教学教材

贝叶斯公式的应用

贝叶斯公式的应用 1综述 在日常生活中,我们会遇到许多由因求果的问题,也会遇到许多由果溯因的问题。比如某种传染疾病已经出现.寻找传染源;机械发生了故障,寻找故障源就是典型的南果溯因问题等。在一定条件下,这类由果溯因问题可通过贝叶斯公式来求解。以下的例子来说明贝叶斯公式的应用。 贝叶斯公式的定义 给出了事件B 随着两两互斥的事件12,,...,n A A A 中某一个出现而出现的概率。如果反过来知道事件B 已出现,但不知道它由于12,,...,n A A A 中那一个事件出现而与之同时出现,这样,便产生了在事件B 已经出现出现的条件下,求事件(1,2,...)i A i n =出现的条件概率的问题,解决这类问题有如下公式: 2定义 设12,...,n B B B 为Ω 的一个分割,即12,...,n B B B 互不相容,且1n i i B ==ΩU ,如果 P( A ) > 0 ,()0i P B = (1,2,...,)i n = ,则1()(/) (/),1,2,...,()(/)i i i n j j j P B P A B P B A i n P B P A B ===∑。 贝叶斯公式在市场预测中的应用 我们知道,国外的旧车市场很多。出国留学或访问的人有时花很少的钱就可以买一辆相当不错的车,开上几年也没问题。但运气不好时,开不了几天就这儿坏那儿坏的,修车的钱是买车钱的好几倍,经常出毛病带来的烦恼就更别提了。 为了帮助买旧车的人了解各种旧车的质量和性能,国外出版一种专门介绍各品牌旧车以及各年代不同车型各主要部件质量数据的旧车杂志。比如有个买主想买某种型号的旧车,他从旧车杂志上可发现这种旧车平均有30%的传动装置有质量问题。除了从旧车杂志上寻找有关旧车质量的信息外,在旧车市场上买旧车时还需要有懂车的内行来帮忙。比如可以找会修车的朋友帮助开一开,检查各主要部件的质量。因为旧车杂志上给出的是某种车辆质量的平均信息,就要买的某一辆来讲可能是好的传动装置,也可能会有问题。比较常见的方法是花一点钱请个汽车修理工帮助开几圈,请他帮助判断一下传动装置和其他部件的质量。当然,尽管汽车修理工很有经验,也难免有判断不准的时

教学大纲_贝叶斯统计(双语)

《贝叶斯统计(双语)》教学大纲 课程编号:120872B 课程类型:□通识教育必修课□通识教育选修课 □专业必修课□√专业选修课 □学科基础课 总学时:32 讲课学时:32实验(上机)学时:0 学分:2 适用对象:经济统计学 先修课程:微积分、概率论与数理统计学 毕业要求: 1.应用专业知识,解决数据分析问题 2.可以建立统计模型,获得有效结论 3.掌握统计软件及常用数据库工具的使用 4.关注国际统计应用的新进展 5.基于数据结论,提出决策咨询建议 6.具有不断学习的意识 一、课程的教学目标 贝叶斯统计是上世纪50年代后,才迅速发展起来的一门统计理论。目前,在欧美等西方国家,贝叶斯统计已经成为了与经典统计学派并驾齐驱的当今两大统计学派之一;随着贝叶斯理论和方法的不断发展和完善,以及相应的计算软件的研制,贝叶斯方法在实践中获得了日趋广泛的应用;特别是,贝叶斯决策问题在统计应用中占有越来越重要的地位。在商业经济预测、政府宏观经济管理、国防工业中对武器装备系统可靠性评估、生物医学研究;知识发现和数据挖掘技术等都获得了广泛应用。

本课程通过贝叶斯统计的教学使学习过传统的数理统计课程的学生了解贝叶斯统计的基本思想和基本观点,了解贝叶斯统计与传统的数理统计在理论和处理方法上的区别,了解贝叶斯统计的最新进展,能够系统的掌握贝叶斯统计的基本理论、基本方法,特别是贝叶斯统计极具特色的一些处理方法,引进一个效用函数(utility function)并选择使期望效用最大的最优决策,这样就把贝叶斯的统计思想扩展到在不确定时的决策问题。很好的将统计学与最优化的思想方法和技术很好的进行了结合。贝叶斯统计理论和方法技术的学习,不仅能够提高学生分析和解决实际问题的能力,还能够更进一步提高对经典数理统计的深入理解。 二、教学基本要求 根据贝叶斯统计课程的教学内容,本课程将重点介绍贝叶斯统计推断理论,贝叶斯决策理论。并且注重贝叶斯统计处理方法和基本观点与传统数理统计相应内容对比的讲授方式。注重案例教学,安排学生课后查阅文献资料,以及课堂研讨等方式,了解贝叶斯统计理论和应用最新成果及前沿研究进展。对最新贝叶斯网络和贝叶斯统计的方法除了传统讲授方式外,适当的安排上机实验,了解贝叶斯统计相关软件的使用方法。课程的考核方式:期末开卷+ 论文方式,卷面60%,平时和论文40%。 三、各教学环节学时分配 以表格方式表现各章节的学时分配,表格如下: 教学课时分配

相关主题
文本预览
相关文档 最新文档