当前位置:文档之家› 城市独柱墩桥梁结构体系非线性抗震研究

城市独柱墩桥梁结构体系非线性抗震研究

城市独柱墩桥梁结构体系非线性抗震研究
城市独柱墩桥梁结构体系非线性抗震研究

大跨度桥梁实用几何非线性分析.

大跨度桥梁实用几何非线性分析 一.引言.现代大跨度桥梁等工程结构的柔性特征已十分明显,对于这些结构考虑几何非线性的影响己必不可少。并且,计算机能力的大大提高也使得分析大型复杂结构的非线性问题成为可行。80年代国外对几何非线性问题的发展已相当完善[1,2],国内在这方面也做了不少的工作[4-6]在工程结构几何非线性分析中,按照参考构形的不同可分为TL(Total Lagranrian) 法和UL(Updated Lagrangian)法[1]。后来,引入随转坐标系后又分别得出 CR(Co-rotational)-TL法和CR-LU法[2,3],在工程中UL(或CR-UL)法应 用较多。以前的文献大都对结构的几何刚度矩阵进行了复杂而详细的推导。从文中的分析可以发现,结构几何刚度矩阵的精确与否并不实质性地影响迭代收敛的最终结果,求解几何非线性问题的关键在于如何由节点位移增量准确地计算出单元的内力增量,而这一点以前文献都没有提到过。因此,本文的重点放在论述单元内力增量的计算上。工程上很早就开始使用拖动坐标系来求解大跨度桥梁结构的大挠度问题,本文则把它应用到单元内力增量的计算中。从实质上说,这里的拖动坐标系与上面提到的随转坐标系没有区别。因此,在理论方法上,目前文中的方法可以归类到CR-UL法。但由于本文重点不在于详细介绍这种方法的理论体系,所以论述中均不再使用该名词。本文的目的主要是通过简化复杂的几何非线性分析方法,推广该方法在实际工程中的应用。二、非线性商限元求解过程对于工程结构的非线性问题,用有限元方法求解时的非线性平衡方程可写成以下的一般形式:Fs(δ)-P0(δ)=0 (l)其中,为节点的位移向量;Fs(δ)为结构的等效节点抗力向量,它随节点位移及单元内力而变化;PO(δ)为外荷载作用的等效节点荷载向量,为方便起见,这里暂时假定它不随节点位移而变化。由于式(l)中的等效节点抗力一般无法用节点位移显式表示,故不可能直接对非线性平衡方程进行求解。但实际结构的整体切向刚度容易得到,所以通常应用Newton-Raphson迭代方法求解该问题。结构的整体切向刚度矩阵KT可表示如下dPO=KTdδ (2)式中,KT= KE十KG,其中KE 为结构的整体弹性刚度矩阵,KG为几何刚度矩阵。用混合Newton-Raphson迭代方法求解结构非线性问题的基本过程如下:(1)将等效节点荷载PO分成n 步,ΔP0=PO/n,计算并组集结构的整体切向刚度矩阵,进入加载步循环;(2)求解节点位移增量;(3)计算各单元内力增量,修正单元内力;(4)更新节点坐标,计算节点不平衡力R;(5)判断节点不平衡力R是否小于允许值,如满足条件,则进入下一个加载步;如不满足条件,重新计算结构的整体切向刚度矩阵,用R代替ΔP0,回到第2步;(6)全部加载步完成之后,结束。从上述求解过程中可见,最为关键的一步是第3步,即由节点位移增量计算单元的内力增量。也可以说是由这一步决定了最终的收敛结果,以下将对此着重论述。其实结构的整体切向刚度矩阵对结果并无实质性的影响,修正的NetwRaphson方法正是利用这一点来节省迭代计算的时间。以前的文献对空间梁单元几何刚度矩阵的推导方面论述较多,都建立在一些假定的基础上,这里就不详细说明。考虑到结构的整体切向刚度矩阵精确与否并不改变最终结果,仅影响迭代收敛的速度,并且不是越精确的整体切向刚度矩阵迭代收敛越快。三、小应变时单元内力增百计算在一般情况下,工程结构的几何非线性都属于小应变大位移(大平移、大转动)问题。对于这类问题,单元内力增量的计算比较简单。平面梁单元是空间梁单元发展的基础,故这里先分析平面梁单元的情况。平面梁

斜拉桥结构体系

斜拉桥结构体系 一、结构体系的分类 1、按照塔、梁、墩相互结合方式,可划分为漂浮体系、半漂浮体系、塔梁固结体系和刚构体系。 2、按照主梁的连续方式,有连续体系和T构体系等。 3、按照斜拉桥的锚固方式,有自锚体系、部分地锚体系和地锚体系。 4、按照塔的高度不同,有常规斜拉桥和矮塔斜拉桥体系。 二、结构体系介绍 1、漂浮体系:漂浮体系的特点是塔墩固结、塔梁分离。主梁除两端有支承外,其余全部用拉索悬吊,属于一种在纵向可稍作浮动的多跨柔性支承类型梁。一般在塔柱和主梁之间设置一种用来限制侧向变位的板式活聚四氟乙烯盘式橡胶支座,简称侧向限位支座。 漂浮体系的优点:主跨满载时,塔柱处的主梁截面无负弯矩峰值;由于主梁可以随塔柱的缩短而下降,所以温度、收缩和徐变内力均较小。密索体系中主梁各截面的变形和内力的变化较平缓,受力较均匀;地震时允许全梁纵向摆荡,成为长周期运动,从而吸震消能。目前,大跨斜拉桥多采用此种体系。 漂浮体系的缺点:当采用悬臂施工时,塔柱处主梁需临时固结,以抵抗施工过程中的不平衡弯矩纵向剪力。由于施工不可能做到完全对称,成桥后解除临时固结时,主梁会发生纵向摆动。 2、半漂浮体系:半漂浮体系的特点是塔墩固结,主梁在塔墩上设置竖向支承,成为具有多点弹性支承的三跨连续梁。可以是一个固定支座,三个活动支座;也可以是四个活动支座,一般均设活动支座,以避免由于不对称约束而导致不均衡温度变化。水平位移将由斜拉索制约。 3、塔梁固结体系:塔梁固结体系的特点是将塔梁固结并支承在墩上,斜拉索变为弹性支承。主梁的内力与挠度直接同主梁与索塔的弯曲刚度比值有关。这种体系的主梁一般只在一个塔柱处设置固定支座,而其余均为纵向乐意活动的支座。 塔梁固结体系的优点是显著减少主梁中央段承受的轴向拉力,索塔和主梁的温度内力极小。缺点是中孔满载时,主梁在墩顶处转角位移导致塔柱倾斜,使塔顶产生较大的水平位移,从而显著地增大主梁跨中挠度和边跨负弯矩。 4、刚构体系:刚构体系的特点是塔梁墩相互固结,形成跨度内具有多点弹性支承的刚构。 种体系的优点是既免除了大型支座又能满足悬臂施工的稳定要求;结构的整体刚度比较好,主梁挠度又小。缺点是主梁固结处负弯矩大,使固结处附近截面需要加大;。再则,为消除温度应力,应用于双塔斜拉桥中时要求墩身具有一定的柔性,常用语高墩的场合,以避免出现过大的附加内力。

桥梁抗震构造措施

桥梁抗震构造措施 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

桥梁抗震的构造要求有哪些 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 ??? 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 ??? 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 ??? 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 ??? 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 ??? 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 ??? 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 ??? 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 ??? 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 ??? 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接 强度,对双曲拱桥应加强肋波间的连接。 ??? 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 ??? 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 ??? 13.拱桥宜尽量减轻拱上建筑的重量。 ??? 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以 及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

就某一结构体系桥梁施工技术

就某一结构体系浅谈桥梁施工技术摘要:纵观近几年我国公路上修建的高等级的大、中桥梁发现,几乎都采用先简支后连续结构体系。文章阐述了先简支后连续结构体系在实际工程中的优点和施工工艺要点,探讨了施工过程中采用的简便易行的工艺技术,最后提出先简支后连续桥梁施工的质量控制意见。 关键词:先简支后;连续桥梁施工;桥梁设计 abstract: according at the big bridge in the construction of high-grade highways in our country recent years, almost always uses simple supported-continuous system. the article elaborated the advantages of the simple supported-continuous system in practical engineering and main points of construction technique, discusses the construction process in a simple and convenient technology, finally put forward the simply supported continuous bridge construction quality control. key words: simply supported continuous bridge; construction; bridge design 中图分类号:tu74近几年,随着桥梁建设的飞速发展,国内来出现了一种新型梁桥结构一先简支后结构连续梁桥,它兼顾了简支梁桥和连续梁桥的优点,全国各省份特别是在高速公路桥梁设计中逐渐以先简支后结构连续梁桥代替了原来单一的简支梁桥或连续

桥梁抗震计算书

工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程 桥梁抗震计算书 设计人: 校核人: 审核人: 海口市市政工程设计研究院 HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE 2012年09月

目录 1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 - 8.1 动力分析模型 (5) 8.2 动力特性 (6) 9地震反应分析及结果 ....................................................................................... - 6 - 9.1 反应谱分析 (6) 9.1.1E1水准结构地震反应 ........................................................................................ - 6 - 9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 - 10.1 墩身延性验算 (10) 10.2 桩基延性验算 (10) 10.3 支座位移验算 (11) 11结论.............................................................................................................. - 11 - 12抗震构造措施.............................................................................................. - 11 - 12.1 墩柱构造措施 (12) 12.2 结点构造措施 (12)

(完整版)桥梁工程简答题

五、问答题 1)桥梁有哪些基本类型?按照结构体系分类,各种类型的受力特点是什么? 答:梁桥、拱桥、斜拉桥、悬索桥。按结构体系划分,有梁式桥、拱桥、钢架桥、缆索承重桥(即悬索桥、斜拉桥)等四种基本体系。梁式桥:梁作为承重结构是以它的抗弯能力来承受荷载的。拱桥:主要承重结构是拱肋或拱圈,以承压为主。刚架桥:由于梁与柱的刚性连接,梁因柱的抗弯刚度而得到卸载作用,整个体系是压弯构件,也是有推力的结构。缆索桥:它是以承压的塔、受拉的索与承弯的梁体组合起来的一种结构体系。 2)桥梁按哪两种指标划分桥梁的大小?具体有哪些规定? 答:按多孔跨径总L和单孔跨径划分。 3)各种体系桥梁的常用跨径范围是多少?各种桥梁目前最大跨径是多少,代表性的桥梁名称? 答:梁桥常用跨径在20米以下,采用预应力混凝土结构时跨度一般不超过40米。代表性的桥梁有丫髻沙。拱桥一般跨径在500米以内。目前最大跨径552米的重庆朝天门大桥。钢构桥一般跨径为40-50米之间。目前最大跨径为 4)桥梁的基本组成部分有哪些?各组成部分的作用如何? 答:有五大件和五小件组成。具体有桥跨结构、支座系统、桥墩、桥台、基础、桥面铺装、排水防水系统、栏杆、伸缩缝和灯光照明。桥跨结构是线路遇到障碍时,跨越这类障碍的主要承载结构。支座系统式支承上部结构并传递荷载于桥梁墩台上,应满足上部结构在荷载、温度或其他因素所预计的位移功能。桥墩是支承两侧桥跨上部结构的建筑物。桥台位于河道两岸,一端与路堤相接防止路堤滑塌,另一端支承桥跨上部结构。基础保证墩台安全并将荷载传至地基的结构部分。桥面铺装、排水防水系统、栏杆、伸缩缝、灯光照明与桥梁的服务功能有关。 5)桥梁规划设计的基本原则是什么? 答:桥梁工程建设必须遵照“安全、经济、适用、美观”的基本原则,设计时要充分考虑建造技术的先进性以及环境保护和可持续发展的要求。 6)桥梁设计必须考虑的基本要求有哪些?设计资料需勘测、调查哪些内容? 答:要考虑桥梁的具体任务,桥位,桥位附近的地形,桥位的地质情况,河流的水文情况。设计资料需勘测、调查河道性质,桥位处的河床断面,了解洪水位的多年历史资料,通过分析推算设计洪水位,测量河床比降,向航运部门了解和协商确定设计通航水位和通航净空,对于大型桥梁工程应调查桥址附近风向、风速,以及桥址附近有关的地震资料,调查了解当地的建筑材料来源情况。 7)大型桥梁的设计程序包括哪些内容? 答:分为前期工作及设计阶段。前期工作包括编制预可行性研究报告和可行性研究报告。设计阶段按“三阶段设计”,即初步设计、技术设计、与施工图设计。 8)桥梁的分孔考虑哪些因素?桥梁标高的确定要考虑哪些因素? 答:要考虑通航条件要求、地形和地质条件、水文情况以及经济技术和美观的要求。要考虑设计洪水位、桥下通航净空要求,结合桥型、跨径综合考虑,以确定合理的标高。 9)桥梁纵断面设计包括哪些内容? 答:包括桥梁总跨径的确定,桥梁额分孔、桥面标高与桥下净空、桥上及桥头的纵坡布置等。 10)桥梁横断面设计包括哪些内容? 答:桥梁的宽度,中间带宽度及路肩宽度,板上人行道和自行车道的设置桥梁的线性及桥头引道设置设计等。 11)为什么大、中跨桥梁的两端要设置桥头引道? 答:桥头引道起到连接道路与桥梁的结构,是道路与桥梁的显性协调。 12)什么是桥梁美学? 答:它是通过桥梁建筑实体与空间的形态美及相关因素的美学处理,形成一种实用与审美相结合的造型艺术。 13)桥梁墩台冲刷是一种什么现象?

桥梁抗震复习题

复习题 1.地震动的三要素? 答:地震动强度(振幅、峰值),频谱特性,强震持续时间。 2. 什么是基本地震烈度?基本地震烈度和E1地震E2地震是什么关系? 答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到的最大地震烈度,即《中国地震烈度区划图》规定的烈度。 3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。 答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震 按照震源的深浅可分为:浅源地震、中源地震、深源地震 按照震中距的远近可分为:地方震、近震、远震 4. 地震波包含了哪几种波?它们的传播特点是什么?各种波的速度对比? 分为体波和面波。 体波 纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。 纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。 横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。 横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。 面波 瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。 振幅大,在地表以竖向运动为主。 乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。

5. 地震动、地震波的概念。 地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。 地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种波 就称为地震波。 6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放的能量之间 的关系。 地震震级:衡量一次地震大小的等级,用符号M表示。 比较通用的是里氏震级(用Ml表示),定义为: 在离震中100Km处用伍德-安德生式标准地震仪所记录到的最大水平 动位移(以微米计)的常用对数值,即 Ml=lgA 地震烈度:用来衡量地震破坏作用大小的一个指标。 联系与区别:对于一次地震而言,震级只有一个,烈度则随着地点的变化而有若干个。一般来说,震中的烈度最高,离震中越远,地震影响越小,烈度 越低。 关系:Ml=1.5+0.58I0(震中烈度) 7.影响地震动特性的因素。 答:包括震源、传播介质与途径、局部场地条件这三类。 8.地震烈度是按什么标准进行区分的? 答:按地震烈度表的标准进行区分 主要依据是建筑物的破坏程度、地貌变化特征、地震时人的感觉、家具器物的反 应等。 9.地震造成的地表破坏有哪些现象? 答:地裂缝、滑坡、砂土液化软土震陷。

大跨度网壳结构的稳定性分析

大跨度网壳结构的稳定性分析 xx xxxx 摘要:空间结构是一种倍受瞩目的结构形式,其中网壳结构是近半个世纪以来发展最快、应用最广的空间结构之一。随着大跨度单层网壳结构的不断涌现,其结构重要性不言而喻,结构的稳定性问题尤为突出。本文主要介绍了网壳结构的稳定性问题并以某大跨度球类馆为工程实例,采用非线性有限元法针对承载力计算时的11种工况进行整体稳定计算,考虑了材料和几何非线性,对实际工程进行了第一类和第二类稳定分析,结果表明:该网壳结构的第一类稳定符合相关规范的要求;其第二类稳定性较差。因此,第二类稳定分析应该受到重视。 关键词:网壳结构;稳定性;非线性有限元;大跨度;稳定系数 STABILITY ANALYSIS OF LONG-SPAN LATTICED SHELLS xxx Department of Civil Engineering ,xxx Abstract: Space structure is a very attractive structure system, and the latticed shell is one of the furthest development and the most widely applied space structure in the recent half century. The stability analysis is the key problem in the design of latticed shells, especially in single-layer latticed shells. This paper introduces the stability of latticed shells and a long-span ball gymnasium is adopted as a practical work, and it is analyzed by nonlinear finite element method under the first and the second kinds of stability problems. The holistic calculation aimed at 11 conditions in bearing capacity, material and geometric nonlinearity are considered. The results show that the first kind of stability of this latticed shells accords with the requirements of correlative specifications; the second kind of stability is poorer. Therefore, the analysis of the second kind of stability should be paid attention.. Keywords: latticed shells; stability; nonlinear finite element; long-span; stability factor 1 前言 自20世纪以来,大跨度、大空间的建筑在世界各地得到了迅猛发展。平面结构从技术经济方面讲,很难跨越很大的空间,也很难满足建筑平面、空间和造型方面的要求。解决大跨度建筑结构最具有竞争性的结构就是空间结构,即在荷载作用下,具有三维受力特性并呈空间工作地结构。网壳结构作为空间网格结构的优秀代表,在过去半个多世纪得到了快速发展和广泛应用。它构造简单、轻型化、受力合理、造型优美等优点,深受建筑与结构工作人员的喜爱。 网壳结构是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间构架,它兼具杆系和壳体的性质。其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。网壳结构除广泛用于工业与民用建筑的屋盖和楼层外,还用于形态新颖、功能各异的特种结构,如:塑像骨架、标志结构、各种用途的整个球面网壳结构、高耸塔架、网架墙体、网架桥梁、装饰网架等。 对于网壳结构,稳定性分析是非常重要的,特别是单层网壳结构。稳定性分析的目的是

桥梁的分类及其优缺点

按结构分类,按结构体系分类是以桥梁结构的力学特征为基本着眼点,对桥梁进行分类,以利于把握各种桥梁的基本特点,也是桥梁工程学习的重点之一。以主要的受力构件为基本依据,可分为梁式桥、拱式桥、刚架桥、斜拉桥、悬索桥五大类。 1.梁式桥 主梁为主要承重构件,受力特点为主梁受弯。主要材料为钢筋混凝土、预应力混凝土,多用于中小跨径桥梁。简支梁桥合理最大跨径约20米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70米。 优点:采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。 缺点:结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显着增大,大大限制了其跨越能力。 2.拱式桥 拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。主要材料是圬工、钢筋砼,适用范围视材料而定。跨径从几十米到三百多米都有,目前我国最大跨径钢筋砼拱桥为170米。 优点:跨越能力较大;与钢桥及钢筋砼梁桥相比,可以节省大量钢材和水泥;能耐久,且养护、维修费用少;外型美观;构造较简单,有利于广泛采用。 缺点:由于它是一种推力结构,对地基要求较高;对多孔连续拱桥,为防止一孔破坏而影. 响全桥,要采取特殊措施或设置单向推力墩以承受不平衡的推力,增加了工程造价;在平原区修拱桥,由于建筑高度较大,使两头的接线工程和桥面纵坡量增大,对行车极为不利。 3.钢架桥 是一种桥跨结构和吨台结构整体相连的桥梁,支柱与主梁共同受力,受力特点为支柱与主梁刚性连接,在主梁端部产生负弯矩,减少了跨中截面正弯矩,而支座不仅提供竖向力还承受弯矩。主要材料为钢筋砼,适宜于中小跨度,常用于需要较大的桥下净空和建筑高度受到限制的情况,如立交桥、高架桥等。 优点:外形尺寸小,桥下净空大,桥下视野开阔,混凝土用量少。 缺点:基础造价较高,钢筋的用量较大,且为超静定结构,会产生次内力。 4.斜拉桥 梁、索、塔为主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩而增大了跨径。受力特点为外荷载从梁传递到索,再到索塔。主要材料为预应力钢索、混凝土、钢材。适宜于中等或大型桥梁。 优点:梁体尺寸较小,使桥梁的跨越能力增大;受桥下净空和桥面标高的限制小;抗风稳定性优于悬索桥,且不需要集中锚锭构造;便于无支架施工。 缺点:由于是多次超静定结构,计算复杂;索与梁或塔的连接构造比较复杂;施工中高空作业较多,且技术要求严格。 悬索桥5. 主缆为主要承重构件,受力特点为外荷载从梁经过系杆传递到主缆,再到两端锚锭。主要材料为预应力钢索、混凝土、钢材,适宜于大型及超大型桥梁。 优点:由于主缆采用高强钢材,受力均匀,具有很大的跨越能力。 缺点:整体钢度小,抗风稳定性不佳;需要极大的两端锚锭,费用高,难度大。

桥梁抗震构造措施

桥梁抗震的构造要求有哪些? 1.对简支梁,连续梁等梁式体系,必须设置阻止梁墩横桥向相对位移的构造,阻止梁的横向位移。 2.对悬臂梁和T型刚构除采取上述措施外,还应采取阻止上部结构与上部结构之间出现横向相对位移的构造措施。 3.对活动支座,均应采取限制其位移、防止其歪斜的措施。 4.对简支梁应采取措施防止地震中落梁,如采用螺栓连接,钢夹板连接,以及将基础置于可液化层一定深度等措施。 5.对于桩式墩和柱式墩,桩(柱)与盖梁,承台联接处的配筋不应少于桩或柱身的最大配筋。 6.对于砖石混凝土墩台,应考虑提高墩台帽与墩台本身以及基础连接处,截面突变处的抗剪强度。 7.桥台胸墙应予加强。在胸墙与梁端部之间,宜填充缓冲材料,如沥青、油毛毡等。 8.砖石、混凝土墩台和拱圈的最低砂浆强度等级应按现行《公路桥涵设计规范》的要求提高一级使用。 9.不论为梁式桥、拱桥尽量避免在不稳定的河岸修建,并应合理布置桥孔,避免将墩台布设于在地震时可能滑动的岸坡上的突变处。 10.大跨径拱桥的主拱圈,宜采用抗扭刚度较大整体性较好的断面型式,如箱形拱,板拱等。当主拱圈采用组合断面时,应加强组合截面的连接强度,对双曲拱桥应加强肋波间的连接。 11.大跨径拱桥不宜采用二铰和三铰拱。当小跨径拱桥采用二铰板拱时,应采取防止落拱构造措施。 12.砖石、混凝土腹拱的拱上建筑,除靠近墩台的腹拱采用三铰或二铰外,其余铰拱宜采用连续结构。 13.拱桥宜尽量减轻拱上建筑的重量。 14.刚性地基烈度为9度时,或非刚性地基烈度为7度时的单孔及连拱桥与端腹孔,均应采取防止落拱构造,包括加长拱座斜面,设置防落牛腿以及将主拱钢筋伸入墩台帽内。 桥梁结构抗震措施 【提要:措施,抗震,结构,桥梁,】 桥梁结构抗震措施 为防止或减轻震害,提高结构抗震能力,对结构构造所作的改善和加强处理,通常称为抗震措施。各国的工程结构抗震规范对此都有明确的规定。对于桥梁结构,这些措施可归纳为:①对结构抗震的薄弱环节在构造上予以加强;②对结构各部加强整体联结;③对梁式桥,要在墩台上设置防止落梁的纵、横向挡块,以及上部结构之间的连接件;④加强桥梁支座的锚固;⑤加强墩台及基础结构的整体性,增强配筋,提高结构的延性;⑥对桥位处的不良土质应采取必要的土层加固措施;⑦须特别重视施工质量,如施工接缝处的强度保证等;⑧在重要的大桥上,必要时需采用减震消能装置,如橡胶垫块,特制的消能支座等。

网壳非线性分析安全系数

3D3S\sap200\midas gen 都可以做单层网壳的特征值屈曲分析,ANSYS 还可以做更加接近工程实际情况的非线性屈曲分析,来考虑初始缺陷请问各位老师, 网壳规程要求其承载力大于第一屈曲模态下力的5 倍,即k=5。 那么ansys 和3d3s 分析时如何查询这个K 值? A: 1、过去k=5,如今的新规程已将k 取为4.2 。具体说明如下:确定系数K 时考虑到下列因素: (1) 荷载等外部作用和结构抗力的不确定性可能带来的不利影响; (2) 复杂结构稳定性分析中可能的不精确性和结构工作条件中的其他不利因素。 对于一般条件下的钢结构,第一个因素可用系数1.64 来考虑;第二个因素暂设用系数1.2 来考虑,则对于按弹塑性全过程分析求得的极限承载力,系数K 应取为1.64*1.2=2.0 。 对于按弹性全过程分析求得的极限承载力,系数K 中尚应考虑由于计算中未考虑材料弹塑性而带来的误差; 对单层球面网壳、柱面网壳和双曲扁网壳的系统分析表明,塑性折减系数cp(即弹塑性极限荷载与弹性极限荷载之比)从统计意义上可取为0.47 ,则系数K应取为1.64*1.2/0.47=4.2 。 对其它形状更为复杂的网壳无法作系统分析,对这类网壳和一些大型或特大

型网壳,宜进行弹塑性全过程分析。 2、假定设计载荷为2kN/m2,可给网壳施加约12kN/m2的载荷,通过载荷- 位移全过程曲线判断临界载荷,假如得出为10kN/m2,则其k=10/2=5。 ①单层网壳以及厚度小于跨度1/50 的双层网壳均应进行稳定性计算; ②网壳的稳定性可按考虑几何非线性的有限元法(荷载—位移全过程分析)进行计算,分析中可假定材料保持为弹性,也可考虑材料的弹塑性。对于大型和形状复杂的网壳结构宜采用考虑弹塑性的全过程分析方法; ③球面网壳的全过程分析可按满跨均布荷载进行,圆柱面网壳和椭圆抛物面网壳除考虑满跨均布荷载外,宜补充考虑半跨活荷载分布的情况。进行网壳全过程分析时应考虑初始曲面形状的安装偏差的影响,可采用结构的最低阶屈曲模态作为初始几何缺陷分布模态,其缺陷最大计算值可按网壳跨度的 1/300 取值;④按以上②和③条进行网壳结构全过程分析求得的第一个临界点处的荷载值,可作为该网壳的极限承载力。将极限承载力除以系数K 后, 即为按网壳稳定性确定的容许承载力(标准值)。对于按弹塑性全过程分析求得的极限承载力,系数K可取为2.0 。对于常见的单层球面网壳、柱面网壳和椭圆抛物面网壳按弹性全过程分析求得的极限承载力,系数K可取为 4.2 ; 首先请关注一下以上四条。 Q:用ansys 进行稳定性分析,一个是特征值屈曲分析,一个是非线性屈曲

各种桥梁结构特点及优缺点

经典文 简支梁桥: 简支梁桥,以孔为单元,相邻桥孔各自单独受力,属静定结构,适用于中小跨度。它的优点是结构简单,架设方便,可减低造价,缩短工期,同时最易设计成各种标准跨径的装配式构件,它是梁式桥中应用最早、使用最广泛的一种桥形。其构造简单,结构内力不受地基变形,温度改变的影响。缺点:相邻两跨之间存在异向转角,路面有折角,影响行车平顺。 连续梁桥: 两跨或两跨以上连续的梁桥,属于超静定体系。连续梁在恒活载作用下,产生的支点负弯矩对跨中正弯矩有卸载的作用,使内力状态比较均匀合理,因而梁高可以减小,由此可以增大桥下净空,节省材料,且刚度大,整体性好,超载能力大,安全度大,桥面伸缩缝少,行车平顺舒适并且因为跨中截面的弯矩减小,使得桥跨可以增大。 拱桥: 以承受轴向压力为主的拱圈或拱肋作为主要承重构件的桥梁,拱结构由拱圈(拱肋)及其支座组成。按拱圈的静力体系分为无铰拱、双铰拱、三铰拱。前二者为超静定结构,后者为静定结构。拱桥在竖向荷载作用下,支承处不仅产生竖向反力,而且还产生水平推力。由于这个水平推力的存在,拱的弯矩将比相同跨径的梁的弯矩小很多,而使整个拱主要承受压力。这样,拱桥可充分利用抗压性能较好而抗拉性能较差的圬工材料(石料、混凝土、砖等)来修建。 斜拉桥: 由梁、斜拉索和塔柱三部分组成。斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受。梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。 悬索桥: 悬索桥是以承受拉力的缆索或链索作为主要承重构件的桥梁,由悬索、索塔、锚碇、吊杆、桥面系等部分组成。悬索桥比较灵活,因此它适合大风和地震区的需要,比较稳定的桥在这些地区必须更加坚固和沉重。悬索桥的坚固性不强,在大风情况下交通必须暂时被中断悬索桥不宜作为重型铁路桥梁,悬索桥的塔架对地面施加非常大的力,因此假如地面本身比较软的话,塔架的地基必须非常大和相当昂贵。悬索桥的悬索锈蚀后不容易更换。 下载可复制编辑

桥梁抗震体系

桥梁抗震体系 内容摘要:在桥梁设计中,现行的通常做法是仅对桥粱进行简单抗震设防,桥粱结构设计工程师应努力掌握更多的结构抗震知识,提高抗震设防意识。本文分析了桥梁的震害特征和原因,阐述了桥梁抗震设计的具体原则和方法。 关键词:抗震设计;桥梁;地基与基础 一.概述 我国是世界上地震活动最为强烈的国家之一,今年5月份的四川汶川大地震造成了令人触目惊心的损失,作为结构设计工程师,必须充分认识到自己的职责所在,尽可能得利用自己掌握的专业知识,合理提高结构物的抗震能力。尽量减少地震带来的灾害。 二.桥梁的震害及特征 对国内外震害的调查表明,在过去的地震中,有许多桥梁遭受了不同程度的破坏,其主要震害有以下几点。 1.桥台震害 桥台的震害主要表现为桥台与路基一起向河心滑移,导致桩柱式桥台的桩柱倾斜、折断和开裂:霞力式桥台胸墙开裂,台体移动、下沉和转动;桥头引道沉降,翼墙损坏、开裂,施工缝错工、开裂以及因与主梁相撞而损坏。桥台的滑移与倾斜会进一步使主梁受压破坏,甚至使主梁坍毁。 2.桥墩震害 桥墩震害主要表现为桥墩沉降、倾斜、移位,墩身开裂、剪断,受压缘混凝土崩溃。钢筋裸露屈曲,桥墩与基础连接处开裂、折断等。 3.支座震害 在地震力的作用下,由于支座设计没有充分考虑抗震的要求,构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等.并由此导致结构力f专递形式的变化,进而对结构的其他部位产生不利的影响。 4.梁的震害

桥梁最严重的震害现象是主梁坠落。落梁主要是由于桥台、桥墩倾斜、倒塌,支座破坏.梁体碰撞,相邻墩间发生过大相对位移等引起的。 5.地基与基础震害 地基与基础的严重破坏是导致桥梁倒塌。并在震后难以修复使用的蕈要原因。地基破坏主要是指因砂土液化、不均匀沉降及稳定性不够等因数导致的地层水平滑移、下沉、断裂。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,主要表现为移位、倾斜、下沉、折断和屈曲失稳。 6.另外桥梁结构的震害还表现在:结构构。造及连接不当所造成的破坏、桥台台后填土位移过大造成的桥台沉降或斜度过大而造成墩台承受过大的扭矩引起的破坏。 三.桥梁的震害原因 国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重,分析其破坏原因主要表现在以下几个方面: 1.地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互碰撞引起的破坏。而对拱式结构则主要表现在拱上建筑和腹拱的破坏,拱圈在拱顶、拱脚产生的破损裂缝,甚至整个隆起变形。 2.地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支粱桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜.下沉等严重变形,进而导致结构物的破坏,震害较重。 3.支座破坏,在地震力的作用下,由于支座设计没有克分考虑抗震要求。构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等,并由此导致结构力的传递形式的变化,进而对结构的其他部位产生不利的影响。 4.软弱的下部结构破坏。即由于桥梁下部结构不足以抵抗其自身的惯性力和支座传递的主梁的地震力,导致结构下部的开裂、变形和失效,甚至倾覆,并

桥梁抗震规范

桥梁抗震规范 当前主要国家桥梁抗展设计规范的基本思想和设计准则是:设计地展作用基本地震工程与工程振动上分为两个等级,都可归纳为功能设计地震和安全设计地震。虽然各规范使用的名词不同,但其思想是基本一致的。 功能设计地震具有较大的发生概率,安全设计地震具有很小的发生概率。在功能设计地震作用下,桥梁结构只允许发生十分轻微的破坏,不影响正常的交通,不经修复也可以继续使用;在安全设计地震的作用下,允许桥梁结构发生较大的破坏,但不允许发生整体破坏,如倒塌、落梁等欧洲规范对此规定得最为清楚、具体。比较起来,我国公路工程抗震设计规范仍在使用烈度概念,而几关于抗震设计的指导思想对于桥梁来说过于笼统。各国桥梁抗震设计规范中虽然设定了两个水准,但在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足。这种情况可能发生变化,TC一32和日本即将出版的新的桥梁抗震设计规范都建议对两个设计地震动水准进行直接设计。这代表了桥梁结构抗震设计具体程序上的一个变动方向。 除了我国现行区划图外,其它主要地震国家均采用了地震动参数区划。采用烈度进行桥梁结构抗震设计无论是在概念上,还是在数值方面都存在很多问题闭,因此我国正在编制的第四代区划图已经使用了地震动参数区划。日本规范确定设计地震动的方法比较独特,设计地震动

的概率特征十分不明显。第一级设计地震虽有统计意义,但仍是确定性成分较多;第二级设计地震以确定性方法规定。第一类主要参考了1923年关东地震(大陆边缘地震)第二类主要参考了1995年阪神地震(都市直下型地震)I,这与日本地域狭小和地震类型相对比较清楚有关。我国城市桥梁抗震设计规范的建议 〔1)l抗震设防标准。这是桥梁结构抗震设计的最基本问题。过去的几十年的时间里,研究者和工程2期范立础等:桥梁抗震设计规范的现状与发展趋势师都提出分级抗震设防的原则:即小震不坏,中震发生有限的结构或非结构构件的破坏,大震发生严重的结构和非结构构件的破坏但不产生严重的人员伤亡。而在可能袭击工程场地最严重的地震作用下,结构不倒塌。这些基本的结构性能目标今天被大多数的设计规程所采用。但传统的作法是,只针对单一的地震作用水平进行结构的抗展设计。现在的问题是针对每一个目标都给出相应的具体设计程序,这样一来,就需要对目前实际上还是单一水准强度抗震设计原则进行修订,采用多水准、多设防目标和多阶段的抗震设计原则。(2)延性和位移设计。传统的桥梁抗震设计采用强度设计方法,即使考虑到延性和位移,也是通过强度指标间接地实现。现在人们越来越认识到了位移在桥梁结构抗震设计中的重要性,很多研究者和工程师建议在抗震设计中直接使用位移为设计参数,这样就将形成多参数抗震设计方法。在这方面,各种非弹性反应谱的研究和应用工作一直在进行。一些建筑结构抗震设计指南和准则已经引人了位移设计的概念和

相关主题
文本预览
相关文档 最新文档