当前位置:文档之家› 铝合金焊后热处理

铝合金焊后热处理

铝合金焊后热处理
铝合金焊后热处理

铝及铝合金的焊后处理

2010-03-02 09:59:11来源:我的钢铁试用手机平台

一.清除残渣

焊件焊完后,如果是使用气焊或药皮焊条焊,在对焊缝进行外观检查和无损检测之前,需要对焊缝及两侧的残存熔剂和焊渣及时进行清除,以防止焊渣和残存焊剂腐蚀焊缝及其表面,避免造成不良后果。常用的焊后清理方法如下:

(1)在60℃~~80℃的热水中刷洗;

(2)放入重铬酸钾(K2Cr2O2)或质量分数为2%~3%的铬酐(Cr2O2);

(3)再在60℃~~80℃的热水中洗涤;

(4)放入干燥箱中烘干或风干。

为了检验残存熔剂去除的效果,可以在焊件的焊缝中滴上蒸馏水,然后再将蒸馏水收集起来,并滴入装有5%的硝酸溶液的小试管中,如有白色沉淀,则表示残存熔剂尚未清除彻底。

二、焊件的表面处理

通过适当的焊接工艺和正确的操作技术,焊接后的铝及铝合金焊缝表面,具有均匀的波纹光滑的外貌。阳极化处理,特别是抛光及染色技术配合使用时,可获得高质量的装饰表面。减小焊接热影响区,可使用阳极化处理导致不良的颜色变化减至最小。使用快速焊接工艺,可最大限度地减少焊接热影响区。因此闪光对焊的焊缝,阳极化处理质量良好。

特别是对退火状态下不能热处理强化的合金的焊接件,阳极化处理后,金属基本和焊接热影响区之间的颜色反差最小。炉中和浸渍钎焊不是局部加热的,所以金属颜色的外观是非常均匀的。可热处理强化的合金,常常用作建筑结构零件,它们在焊接以后,常常进行阳极化处理。在这类合金中,焊接加热会形成合金元素的析出,阳极化处理以后,热影响区和焊缝之间会出现差异。这些在焊接区附近的晕圈,使用快速焊接可使其减至最小,或者使用冷却垫块和压板也可使晕圈减到很小,这些晕圈在焊接后,阳极化处理前,进行固落处理可以消除。

在化学处理的焊接件中,有时会遇到焊缝金属和基全金属的颜色差别较大,这就必须他细地选择填充金属的成分,特别是合金成分中含有硅时,就会对颜色的配比有影响。

如有必要可以对焊进行机械抛光。常用的机械抛光有抛光、磨光、磨料喷击、喷丸等。机械抛光即通过研磨、去毛刺、滚光,抛光或砂光等物理方法改善铝工件的表面。它的目的是通过尽可能少的工序获得所需要的表面质量。然而,铝及铝合金属软金属,摩擦系数比较高,而且在研磨过程中如果发生过热,有可能使焊件变形,基至从晶界断裂的现象。这要求在抛光过程中有充分的润滑,对金属表面的压力应降低到最低。

三、焊后热处理

焊后热处理的目的就是为了改善焊接接头的组织和性能或消除残余应力。

可热处理强化铝合金在焊接以后,可以重新进行热处理,使基体金属热影响区的强度恢复到接近原来的强度。一般情况下,接头破坏处通常都是在焊缝的熔化区内。在重新进行焊后热处理后,焊缝金属所获得的强度,主要取决于使散的填充金属。填充金属与基体金属的成分不同时,强度将取决于填充金属对基体金属的稀释度。最好的强度与焊接金属所使用的热处理相适应。

一.清除残渣

焊件焊完后,如果是使用气焊或药皮焊条焊,在对焊缝进行外观检查和无损检测之前,需要对焊缝及两侧的残存熔剂和焊渣及时进行清除,以防止焊渣和残存焊剂腐蚀焊缝及其表面,避免造成不良后果。常用的焊后清理方法如下:

(1)在60℃~~80℃的热水中刷洗;

(2)放入重铬酸钾(K2Cr2O2)或质量分数为2%~3%的铬酐(Cr2O2);

(3)再在60℃~~80℃的热水中洗涤;

(4)放入干燥箱中烘干或风干。

为了检验残存熔剂去除的效果,可以在焊件的焊缝中滴上蒸馏水,然后再将蒸馏水收集起来,并滴入装有5%的硝酸溶液的小试管中,如有白色沉淀,则表示残存熔剂尚未清除彻底。

二、焊件的表面处理

通过适当的焊接工艺和正确的操作技术,焊接后的铝及铝合金焊缝表面,具有均匀的波纹光滑的外貌。阳极化处理,特别是抛光及染色技术配合使用时,可获得高质量的装饰表面。减小焊接热影响区,可使用阳极化处理导致不良的颜色变化减至最小。使用快速焊接工艺,可最大限度地减少焊接热影响区。因此闪光对焊的焊缝,阳极化处理质量良好。

特别是对退火状态下不能热处理强化的合金的焊接件,阳极化处理后,金属基本和焊接热影响区之间的颜色反差最小。炉中和浸渍钎焊不是局部加热的,所以金属颜色的外观是非常均匀的。可热处理强化的合金,常常用作建筑结构零件,它们在焊接以后,常常进行阳极化处理。在这类合金中,焊接加热会形成合金元素的析出,阳极化处理以后,热影响区和焊缝之间会出现差异。这些在焊接区附近的晕圈,使用快速焊接可使其减至最小,或者使用冷却垫块和压板也可使晕圈减到很小,这些晕圈在焊接后,阳极化处理前,进行固落处理可以消除。

在化学处理的焊接件中,有时会遇到焊缝金属和基全金属的颜色差别较大,这就必须他细地选择填充金属的成分,特别是合金成分中含有硅时,就会对颜色的配比有影响。

如有必要可以对焊进行机械抛光。常用的机械抛光有抛光、磨光、磨料喷击、喷丸等。机械抛光即通过研磨、去毛刺、滚光,抛光或砂光等物理方法改善铝工件的表面。它的目的是通过尽可能少的工序获得所需要的表面质量。然而,铝及铝合金属软金属,摩擦系数比较高,而且在研磨过程中如果发生过热,有可能使焊件变形,基至从晶界断裂的现象。这要求在抛光过程中有充分的润滑,对金属表面的压力应降低到最低。

三、焊后热处理

焊后热处理的目的就是为了改善焊接接头的组织和性能或消除残余应力。

可热处理强化铝合金在焊接以后,可以重新进行热处理,使基体金属热影响区的强度恢复到接近原来的强度。一般情况下,接头破坏处通常都是在焊缝的熔化区内。在重新进行焊后热处理后,焊缝金属所获得的强度,主要取决于使散的填充金属。填充金属与基体

铝及铝合金的焊接特点

(1)铝在空气中及焊接时极易氧化,生成的氧化铝(Al2O3)熔点高、非常稳定,不易去除。阻碍母材的熔化和熔合,氧化膜的比重大,不易浮出表面,易生成夹渣、未熔合、未焊透等缺欠。铝材的表面氧化膜和吸附大量的水分,易使焊缝产生气孔。焊接前应采用化学或机械方法进行严格表面清理,清除其表面氧化膜。在焊接过程加强保护,防止其氧化。钨极氩弧焊时,选用交流电源,通过“阴极清理”作用,去除氧化膜。气焊时,采用去除氧化膜的焊剂。在厚板焊接时,可加大焊接热量,例如,氦弧热量大,利用氦气或氩氦混合气体保护,或者采用大规范的熔化极气体保护焊,在直流正接情况下,可不需要“阴极清理”。

(2)铝及铝合金的热导率和比热容均约为碳素钢和低合金钢的两倍多。铝的热导率则是奥氏体不锈钢的十几倍。在焊接过程中,大量的热量能被迅速传导到基体金属内部,因而焊接铝及铝合金时,能量除消耗于熔化金属熔池外,还要有更多的热量无谓消耗于金属其他部位,这种无用能量的消耗要比钢的焊接更为显著,为了获得高质量的焊接接头,应当尽量采用能量集中、功率大的能源,有时也可采用预热等工艺措施。

(3)铝及铝合金的线膨胀系数约为碳素钢和低合金钢的两倍。铝凝固时的体积收缩率较大,焊件的变形和应力较大,因此,需采取预防焊接变形的措施。铝焊接熔池凝固时容易产生缩孔、缩松、热裂纹及较高的内应力。生产中可采用调整焊丝成分与焊接工艺的措施防止热裂纹的产生。在耐蚀性允许的情况下,可采用铝硅合金焊丝焊接除铝镁合金之外的铝合金。在铝硅合金中含硅0.5%时热裂倾向较大,随着硅含量增加,合金结晶温度范围变小,流动性显著提高,收缩率下降,热裂倾向也相应减小。根据生产经验,当含硅5%~6%时可不产生热裂,因而采用SAlSi條(硅含量4.5%~6%)焊丝会有更好的抗裂性。

(4)铝对光、热的反射能力较强,固、液转态时,没有明显的色泽变化,焊接操作时判断难。高温铝强度很低,支撑熔池困难,容易焊穿。

(5)铝及铝合金在液态能溶解大量的氢,固态几乎不溶解氢。在焊接熔池凝固和快速冷却的过程中,氢来不及溢出,极易形成氢气孔。弧柱气氛中的水分、焊接材料及母材表面氧化膜吸附的水分,都是焊缝中氢气的重要来源。因此,对氢的来源要严格控制,以防止气孔的形成。

(6)合金元素易蒸发、烧损,使焊缝性能下降。

(7)母材基体金属如为变形强化或固溶时效强化时,焊接热会使热影响区的强度下降。(8)铝为面心立方晶格,没有同素异构体,加热与冷却过程中没有相变,焊缝晶粒易粗大,不能通过相变来细化晶粒。

2. 焊接方法

几乎各种焊接方法都可以用于焊接铝及铝合金,但是铝及铝合金对各种焊接方法的适应性不同,各种焊接方法有其各自的应用场合。气焊和焊条电弧焊方法,设备简单、操作方便。气焊可用于对焊接质量要求不高的铝薄板及铸件的补焊。焊条电弧焊可用于铝合金铸件的补焊。惰性气体保护焊(TIG或MIG)方法是应用最广泛的铝及铝合金焊接方法。铝及铝合金薄板可采用钨极交流氩弧焊或钨极脉冲氩弧焊。铝及铝合金厚板可采用钨极氦弧焊、氩氦混合钨极气体保护焊、熔化极气体保护焊、脉冲熔化极气体保护焊。熔化极气体保护焊、脉冲熔化极气体保护焊应用越来越广泛(氩气或氩/氦混合气)

3.焊接材料

(1)焊丝

铝及铝合金焊丝的选用除考虑良好的焊接工艺性能外,按容器要求应使对接接头的抗拉强度、塑性(通过弯曲试验)达到规定要求,对含镁量超过3%的铝镁合金应满足冲击韧性的要求,对有耐蚀要求的容器,焊接接头的耐蚀性还应达到或接近母材的水平。因而焊丝的选用主要按照?strong>铝性 颍?br />

1)纯铝焊丝的纯度一般不低于母材;

2)铝合金焊丝的化学成分一般与母材相应或相近;

3)铝合金焊丝中的耐蚀元素(镁、锰、硅等)的含量一般不低于母材;

4)异种铝材焊接时应按耐蚀较高、强度高的母材选择焊丝;

5)不要求耐蚀性的高强度铝合金(热处理强化铝合金)可采用异种成分的焊丝,如抗裂性好的铝硅合金焊丝SAlSi一1等(注意强度可能低于母材)。

(2)保护气体

保护气体为氩气、氦气或其混合气。交流加高频TIG焊时,采用大于99.9%纯氩气,直流正极性焊接宜用氦气。MIG焊时,板厚75 mm时推荐采用添加50%~75%氦气的氩气。氩气应符合GB/T 4842?995《纯氩》的要求。氩气瓶压低于0.5 MPa后压力不足,不能使用。

(3)钨极

氩弧焊用的钨极材料有纯钨、钍钨、铈钨、锆钨四种。纯钨极的熔点和沸点高,不易熔化挥发,电极烧损及尖端的污染较少,但电子发射能力较差。在纯钨中加入1%~2%氧化钍的电极为钍钨极,电子发射能力强,允许的电流密度高,电弧燃烧较稳定,但钍元素具有一定的放射性,使用时应采取适当的防护措施。在纯钨中加入1.8%~2.2%的氧化铈(杂质≤0.1%)的电极为铈钨极。铈钨极电子逸出功低,化学稳定性高,允许电流密度大,无放射性,是目前普遍采用的电极。锆钨极可防止电极污染基体金属,尖端易保持半球形,适用于交流焊接。(4)焊剂气焊用焊剂为钾、钠、锂、钙等元素的氯化物和氟化物,可去除氧化膜。

4. 焊前准备

(1)焊前清理

铝及铝合金焊接时,焊前应严格清除工件焊口及焊丝表面的氧化膜和油污,清除质量直接影响焊接工艺与接头质量,如焊缝气孔产生的倾向和力学性能等。常采用化学清洗和机械清理两种方法。

1)化学清洗

化学清洗效率高,质量稳定,适用于清理焊丝及尺寸不大、成批生产的工件。可用浸洗法和擦洗法两种。可用丙酮、汽油、煤油等有机溶剂表面去油,用40℃~70℃的5%~10%NaOH 溶液碱洗3 min~7 min(纯铝时间稍长但不超过20 min),流动清水冲洗,接着用室温至60℃的30%HNO3溶液酸洗1 min~3 min,流动清水冲洗,风干或低温干燥。

2)机械清理

在工件尺寸较大、生产周期较长、多层焊或化学清洗后又沾污时,常采用机械清理。先用丙酮、汽油等有机溶剂擦试表面以除油,随后直接用直径为0.15mm~0.2mm的铜丝刷或不锈钢丝刷子刷,刷到露出金属光泽为止。一般不宜用砂轮或普通砂纸打磨,以免砂粒留在金属表面,焊接时进入熔池产生夹渣等缺陷。另外也可用刮刀、锉刀等清理待焊表面。

工件和焊丝经过清洗和清理后,在存放过程中会重新产生氧化膜,特别是在潮湿环境下,在被酸、碱等蒸气污染的环境中,氧化膜成长得更快。因此,工件和焊丝清洗和清理后到焊接前的存放时间应尽量缩短,在气候潮湿的情况下,一般应在清理后4 h内施焊。清理后如存放时间过长(如超过24 h)应当重新处理。

(2)垫板

铝及铝合金在高温时强度很低,液态铝的流动性能好,在焊接时焊缝金属容易产生下塌现象。为了保证焊透而又不致塌陷,焊接时常采用垫板来托住熔池及附近金属。垫板可采用石墨板、不锈钢板、碳素钢板、铜板或铜棒等。垫板表面开一个圆弧形槽,以保证焊缝反面成型。也可以不加垫板单面焊双面成型,但要求焊接操作熟练或采取对电弧施焊能量严格自动反馈控制等先进工艺措施。

(3)焊前预热薄、小铝件一般不用预热,厚度10 mm~15 mm时可进行焊前预热,根据不同

类型的铝合金预热温度可为100℃~200℃,可用氧一乙炔焰、电炉或喷灯等加热。预热可使焊件减小变形、减少气孔等缺陷。

5.焊后处理

(1)焊后清理

焊后留在焊缝及附近的残存焊剂和焊渣等会破坏铝表面的钝化膜,有时还会腐蚀铝件,应清理干净。形状简单、要求一般的工件可以用热水冲刷或蒸气吹刷等简单方法清理。要求高而形状复杂的铝件,在热水中用硬毛刷刷洗后,再在60℃~80℃左右、浓度为2%~3%的铬酐水溶液或重铬酸钾溶液中浸洗5 min~10 min,并用硬毛刷洗刷,然后在热水中冲刷洗涤,用烘箱烘干,或用热空气吹干,也可自然干燥。

(2)焊后热处理

铝容器一般焊后不要求热处理。如果所用铝材在容器接触的介质条件下确有明显的应力腐蚀敏感性,需要通过焊后热处理以消除较高的焊接应力,来使容器上的应力降低到产生应力腐蚀开裂的临界应力以下,这时应由容器设计文件提出特别要求,才进行焊后消除应力热处理。如需焊后退火热处理,对于纯铝、5052、5086、5154、5454、5A02、5A03、5A06等,推荐温度为345℃;对于2014、2024、3003、3004、5056、5083、5456、6061、6063、2A12、2A24、3A21等,推荐温度为415℃;对于2017、2A11、6A02等,推荐温度为360℃,根据工件大小与要求,退火温度可正向或负向各调20℃~30℃,保温时间可在0.5 h~2 h之间。

焊接热处理技术要求【大全】

不锈钢焊接热处理技术要求 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 不锈钢在进行激光焊接的过程中,一般需要进行焊后热处理,特别是马氏体、铁素体不锈钢,选择正确的焊前预热和焊后处理是保证激光焊接机焊接质量的必要条件。那么到底不锈钢焊后热处理工艺是怎样的? 焊后热处理对不锈钢抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热处理对不锈钢冲击韧性的影响随钢种不同而不同,一般不锈钢焊后热处理工艺选用单一高温回火或正火加高温回火处理: 1、正火加高温回火 对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。 2、单一高温回火 然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和

去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 焊后热处理能够消除不锈钢松弛焊接残余应力;稳定结构的形状和尺寸,减少畸变;提高焊缝金属的塑性;改善疲劳强度;提高抗应力腐蚀的能力;防止延迟裂纹的发生等等,因此不锈钢焊后热处理是非常重要的。 (1)麻田散铁类不锈钢:此类不锈钢体心立方之结构(BCC)可将磁铁吸引,将其从奥斯田温度急冷而得,此之耐蚀性能最好,但材质硬则脆,接著加以回火可以增加延展性,但耐蚀性会降低,特别是在摄氏450度到650度之间回火,会使在结晶格间隙内之碳原子扩散析出与铬形成网状之碳化铬造成临近区域铬元素之消耗使铬成份降低,无法形成保护膜,而丧失耐蚀性,故需特别注意。以下是各种麻田散铁类不锈钢材之热处理温度。(a)403,410,416se之温度在650-750℃。 (b)414之温度在650-730℃。 (c)431之温度在6.(d)440-A,440-B,440-C,420之温度在680-750℃。(2)肥粒铁类不锈钢:此种不锈钢体心立方结构(BCC)可将磁铁吸引通常用在汽车工业或化学工业上,强度不会因热处理而改变,但可以冷加工方式增加强度。 (3)奥斯田铁类不锈钢:此种不锈钢面心立方结构(FCC)对磁铁不起作用,如前面所论此类材料易加工,故其加工后消除材料之残应力而可施予不同之热处理。 (4)析出硬化型不锈钢:此种不锈钢由高温淬火后在低温热处理,由於材料中含之铝,或铜元素析出沿著差排之滑面或晶界形成化合物(inter-metalliccompounds)而可以提高

铝合金及热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。

二、热处理方法1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3

焊后热处理基本知识

焊接接头焊后热处理基本知识培训 一、焊后热处理的概念 1.1后热处理(消氢处理):焊接完成后对冷裂纹敏感性较大的低合金钢和拘束度较大的焊件加热至200℃~350℃保温缓冷的措施。 目的、作用:减小焊缝中氢的有害影响、降低焊接残余应力、避免焊缝接头中出现马氏体组织,从而防止氢致裂纹的产生。 后热温度:200℃~350℃ 保温时间:即焊缝在200℃~350℃温度区间的维持时间,与后热温度、焊缝厚度有关,一般不少于30min 加热方法:火焰加热、电加热 保温后的措施:用保温棉覆盖让其缓慢冷却至室温 NB/T47015-2011关于后热的规定: 1.2焊后热处理(PWHT):广义上:焊后热处理就是在工件焊完之后对焊接区域或焊接构件进行的热处理,内容包括消除应力退火、完全退火、固熔、正火、正火加回火、回火、低温消除应力等。狭义上:焊后热处理仅指消除应力退火,即为了改善焊接区的性能和消除焊接残余应力等有害影响。 1.3压力容器及压力管道焊接中所说的焊后热处理是指焊后消除应力的热处理。焊后消除应力热处理过程:将焊件缓慢均匀加热至一定温度后保温一定的时间,然后缓慢降温冷却至室温。

目的、作用: (1)降低或消除由于焊接而产生的残余焊接应力。 (2)降低焊缝、热影响区硬度。 (3)降低焊缝中的扩散氢含量。 (4)提高焊接接头的塑性。 (5)提高焊接接头冲击韧性和断裂韧性。 (6)提高抗应力腐蚀能力。 (7)提高组织稳定性。 热处理的方式:整体热处理、局部热处理 1.4焊接应力的危害和降低焊接应力的措施 焊接应力是在焊接过程中由于温度场的变化(热涨冷缩)及焊件间的约束而产生的滞留在焊件中的残余应力。 1.4.1焊接应力只能降低,不可能完全消除,焊接残余应力形成的的危害:1)影响构件承受静载的能力;2)会造成构件的脆性断裂;3)影响结构的疲劳强度;4)影响构件的刚度和稳定性;5)应力区易产生应力腐蚀开裂;6)影响构件的精度和尺寸的稳定性。 1.4.2降低焊接应力的措施 1)设计措施: (1)构件设计时经量减少焊缝的尺寸和数量,可减少焊接变形,同时降低焊接应力 (2)构件设计时避免焊缝过于集中,从而避免焊接应力叠加 (3)优化结构设计,例将如容器的接管口设计成翻边式,少用承插式 2)工艺措施

铝合金热处理工艺

铝合金热处理工艺 铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G?P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(Ⅰ)区。G?P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化-形成G?P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G?P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G?P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时

关于不锈钢复合钢制压力容器的焊后热处理问题

关于不锈钢复合钢板制容器的焊后热处理研究 王当杰 一、SH/T 3527-2009《石油化工不锈钢复合钢焊接规程》 1、6.6 焊后热处理解析中说明如下: ★★★据美日等相究氏体不后理效果分析,其安全性及晶格定国关研奥锈钢焊热处认为对稳 性,目前不一,因此在范中氏体不件的后理要求,在准范中不作还认识规对奥锈钢焊焊热处标规 强制性定。 规 ★★★不合板的后理一般避免行,其主要原因是: 对锈钢复钢焊热处应进 ①基系不一; 复层与层热胀数 ②合界面因受高影生附加余力; 复温响产残应 ③影削弱不合板的剪切强度; 响与锈钢复钢 化物,降低的耐性能; ④可能析出Cr碳复层蚀 ⑤素体不合在理程中,易形成δ相,引起脆化,降低了合板的性。 铁锈钢复钢热处过复层组织复钢韧 如定需要行后理,重理,因此定了6.1.1条。 设计规认为进焊热处时应慎处规 6.6.1 焊后热处理应按设计文件要求进行。 6.6.2 用不锈钢复合钢板制造的设备、管道或部件,当其基层需要进行焊后热处理时,应按基层 要求选择热处理加热温度,其他参数按不锈钢复合钢板总厚度进行计算。常用不锈钢复合钢焊后热处理参数见表8。热处理的加热速度、恒温时间及冷却速度应符合下列要求: a) 加热升温到400 ℃后,升温速度最大不得超过5000/δ ℃/h,且不得超过200℃/h; 最小不得低于50 ℃/h; b) 恒温时间应按δ/25h,且不小于1/4h,在各恒温点的温度均应在热处理温度规定的范 围内,温间 各恒点的温度其差值不得大于65℃; c) 降温时的冷却速度不得超过6500/δ ℃/h,其不得超过260 ℃/h,最小不得低于50 ℃ /h,温度降至400℃后可自然冷却;

钢制管道焊后热处理工艺规程完整

锅炉管焊接热处理工艺规程 1 总则 本工艺规程适用于低碳和低合金钢锅炉管道焊接接头消除残余应力的焊后热处理,不涉及发生相变和改变金相组织的其他热处理方法。 2 、引用标准及参考文献 NB/T47015—2011 《压力容器焊接规程》 SH3501—2011 《石油化工有毒可燃介质管道工程施工及验收规》 GB50236—2011 《现场设备、工业管道焊接工程施工及验收规程》 3、焊前预热 3.1材料性能分析 部分锅炉管道采用低合金耐热钢,材料具有良好的热稳定性能,是高温热管道的常用材料,由于材料中存在铬、钼合金成分,材料的淬硬倾向大,施工中采用焊前预热、焊后热处理的工艺措施,来获得性能合格的焊接接头。 3.2管道组成件焊前预热应按表1的规定进行,中断焊接后需要继续焊接时,应重新预热,焊接是保持层间温度不小于150℃。 3.3 当环境温度低于10℃时,在始焊处100mm围,应预热到50℃以上。 表1 管道组成件焊接前预热要求

4 设备和器材 4.1焊后热处理必须采用自动控制记录的“热处理控制柜”控制温度。4.2“热处理控制柜”需满足下列要求: 4.2.1能自动控制、记录热处理温度。 4.2.2控制柜、热电偶和补偿导线组合后的温度误差≤±10℃。 4.2.3柜所有仪表、仪器需经法定计量单位校验合格,使用时校验合格证须在有效期。 4.3热电偶 4.3.1焊接接头焊后热处理须采用热电偶测温控温。 4.3.2热电偶需满足如下要求: 4.3.2.1量程为热处理最高温度的1.5倍,精度等级为1.0;控温柜和补偿导线的组合温差波动围≤±10℃。 4.3.2.1按校验周期进行强制校验,使用时校验合格证须在有效期。 4.4加热器 4.4.1焊后热处理必须采用可实现自动指示控制记录的电加热绳或履带加热板加热。 4.4.2管壁厚大于25mm的焊接接头宜采用感应法加热。 4.5热处理设备由经培训合格的专人管理和调试,使用时应放置在防雨防潮的台架上。 4.6保温材料 热处理所用保温材料应为绝缘无碱超细玻璃棉或复合硅酸盐毡,且应有质量证明及合格证。

焊后热处理(PWHT)和焊后消除应力热处理的区别

焊后热处理(PWHT)和焊后消除应力热处理的区别 内容来源网络,由深圳机械展收集整理! 后热处理(PWHT)工艺是指焊接工作完成后,将焊件加热到一定的温度,保温一定的时间,使焊件缓慢冷却下来,以改善焊接接头的金相组织和性能或消除残余应力的一种焊接热处理工艺。焊后热处理工艺一般包括加热、保温、冷却三个过程,这些过程相互衔接,不可间断。广义的焊后热处理包括下列各类热处理:消除应力;完全退火;固溶强化热处理;正火;正火加回火;淬火加回火;回火;低温消除应力;析出热处理等;另外,在避免焊接区急速冷却或者是去氢的处理方法中,采取后热处理也是焊后热处理的一种。 焊后热处理可采取炉内热处理,整体炉外热处理或局部热处理的方法进行。 焊后热处理 1、焊接残余应力是由于焊接引起焊件不均匀的温度分布,焊缝金属的热胀冷缩等原因造成的,所以伴随焊接施工必然会产生残余应力。 消除残余应力的最通用的方法是高温回火,即将焊件放在热处理炉内加热到一定温度和保温一定时间,利用材料在高温下屈服极限的降低,使内应力高的地方产生塑性流动,弹性变形逐渐减少,塑性变形逐渐增加而使应力降低。焊后热处理对金属抗拉强度、蠕变极限的影响与热处理的温度和保温时间有关。焊后热

处理对焊缝金属冲击韧性的影响随钢种不同而不同。 2、热处理方法的选择焊后热处理一般选用单一高温回火或正火加高温回火处理。对于气焊焊口采用正火加高温回火热处理。这是因为气焊的焊缝及热影响区的晶粒粗大,需要细化晶粒,故采用正火处理。然而单一的正火不能消除残余应力,故需再加高温回火以消除应力。单一的中温回火只适用于工地拼装的大型普通低碳钢容器的组装焊接,其目的是为了达到部分消除残余应力和去氢。绝大多数场合是选用单一的高温回火。热处理的加热和冷却不宜过快,力求内外壁均匀。 3、焊后热处理的加热方法⑴感应加热。钢材在交变磁场中产生感应电势,因涡流和磁滞的作用使钢材发热,即感应加热。现在工程上多采用设备简单的工频感应加热。 ⑵辐射加热。辐射加热由热源把热量辐射到金属表面,再由金属表面把热量向其他方向传导。所以,辐射加热时金属内外壁温度差别大,其加热效果较感应加热为差。辐射加热常用火焰加热法、电阻炉加热法、红外线加热法。 焊后消除应力处理: 1、整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。另外还有爆炸消除应力。

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。

焊接、热处理工艺卡

焊接热处理工艺卡 精品

工艺曲线图: 注意事项: 1. 在加热范围内任意两点的温差应小于 50℃; 2. 保温厚度以40~60mm 为宜; 3. 升、降温时,300℃以下可不控温; 4. 焊后热处理必须在焊接完毕后24h 内进行。 编制 日期 审批 日期 焊接施工工艺卡 企业名称:安徽电力建设第二工程公司 设计卡编号:APCC-GD-WPS-001 产品名称:P91中大口径管焊接工艺卡 所依据的工艺评定报告编号:APCC-PQR-115 焊接位置:2G 、5G 、6G 自动化程度:手工焊 母 材 坡 口 简 类号 B 级号 Ⅲ 与 类号 B 级号 Ⅲ 钢号 SA335-P91 与 母材厚度范围:√对接接头 角接接头 70mm 焊缝金属厚度范围:δ≤h ≤δ+4mm 管子直径范围:√对接接头 角接接头 φ406 其 他: / 坡口检查 √外观检查VT √着色PT 磁粉MT 装配点焊 √手工焊Ds 氩弧焊Ws 二氧化碳气体焊Rb 焊材要求 √焊丝清洁 √焊条烘焙 焊剂温度 焊前预热: 火焰预热 √电阻预热 预热温度:150~200℃ 层间温度:200~300℃ 焊嘴尺寸: M10×L65×φ6 钨极型号/尺寸: Wce-20,φ2.5 焊接技术: 导电嘴与工件距离: / 清理方法: 机械法清理 无摆动或摆动焊: 略摆动 焊接方向: 由左至右、由下至上 工 艺 参 数 层 道 次 焊接方法 焊材 极 性 焊接参数 焊剂或 气体 保护气体流量L/Min 背面保护气体流 量L/Min 气体后拖 保护时间S 牌号 规 格 (mm ) 电流(A ) A 电压 (V ) 焊速 mm/Min 150~250 200~300 ≤300℃ 温度(℃) 时间 6(h ) 80~100℃/2 ≤90℃/h ≤90℃/h 750~770℃

焊前预热与焊后热处理的重要性

焊前预热与焊后热处理的重要性 焊前预热 焊前预热及焊后热处理对于保证焊接质量非常重要。重要构件的焊接、合金钢的焊接及厚部件的焊接,都要求在焊前必须预热。焊前预热的主要作用如下:(1)预热能减缓焊后的冷却速度,有利于焊缝金属中扩散氢的逸出,避免产生氢致裂纹。同时也减少焊缝及热影响区的淬硬程度,提高了焊接接头的抗裂性。 (2)预热可降低焊接应力。均匀地局部预热或整体预热,可以减少焊接区域被焊工件之间的温度差(也称为温度梯度)。这样,一方面降低了焊接应力,另一方面,降低了焊接应变速率,有利于避免产生焊接裂纹。 (3)预热可以降低焊接结构的拘束度,对降低角接接头的拘束度尤为明显,随着预热温度的提高,裂纹发生率下降。 预热温度和层间温度的选择不仅与钢材和焊条的化学成分有关,还与焊接结构的刚性、焊接方法、环境温度等有关,应综合考虑这些因素后确定。另外,预热温度在钢材板厚方向的均匀性和在焊缝区域的均匀性,对降低焊接应力有着重要的影响。局部预热的宽度,应根据被焊工件的拘束度情况而定,一般应为焊缝区周围各三倍壁厚,且不得少于150-200毫米。如果预热不均匀,不但不减少焊接应力,反而会出现增大焊接应力的情况。 2焊后热处理 焊后热处理的目的有三个:消氢、消除焊接应力、改善焊缝组织和综合性能。

焊后消氢处理,是指在焊接完成以后,焊缝尚未冷却至100℃以下时,进行的低温热处理。一般规范为加热到200~350℃,保温2-6小时。焊后消氢处理的主要作用是加快焊缝及热影响区中氢的逸出,对于防止低合金钢焊接时产生焊接裂纹的效果极为显著。 在焊接过程中,由于加热和冷却的不均匀性,以及构件本身产生拘束或外加拘束,在焊接工作结束后,在构件中总会产生焊接应力。焊接应力在构件中的存在,会降低焊接接头区的实际承载能力,产生塑性变形,严重时,还会导致构件的破坏。 消应力热处理是使焊好的工件在高温状态下,其屈服强度下降,来达到松弛焊接应力的目的。常用的方法有两种:一是整体高温回火,即把焊件整体放入加热炉内,缓慢加热到一定温度,然后保温一段时间,最后在空气中或炉内冷却。用这种方法可以消除80%-90%的焊接应力。另一种方法是局部高温回火,即只对焊缝及其附近区域进行加热,然后缓慢冷却,降低焊接应力的峰值,使应力分布比较平缓,起到部分消除焊接应力的目的。 有些合金钢材料在焊接以后,其焊接接头会出现淬硬组织,使材料的机械性能变坏。此外,这种淬硬组织在焊接应力及氢的作用下,可能导致接头的破坏。如果经过热处理以后,接头的金相组织得到改善,提高了焊接接头的塑性、韧性,从而改善了焊接接头的综合机械性能。

不锈钢管道焊后稳定化热处理作业指导书

不锈钢管道焊后稳定化热处理作业指导书 QDICC/QB110-2002 1、适用范围 本工艺标准适用于不锈钢管道焊缝焊后稳定化热处理。 2、施工准备 2.1 施工用材料及机具要求: 2.1.1 热处理所用保温材料应为无碱超细玻璃棉,其氯离子含量不得超过25PPm。且应有质量证明书或合格证,捆扎热电隅的材料必须用不锈钢丝。 2.1.2 热处理设备为可自动控制温度的固定盘柜式控制柜或手提式控制箱,并应配有自动打点记录仪,加热器采用绳式红外线加热器,热电偶为K型,其连接线为补偿导线。 2.1.3 热处理设备应经检查合格,温度指示仪表及热电偶校验准确。 2.1.4 挡雨、雪的遮盖物准备齐全。 2.2 作业条件 2.2.1 热处理操作者应熟悉专业标准以及工艺、设备、测量仪表的使用。 2.2.2 热处理前应对焊缝进行确认,确认项目包括: a)焊接工作已完成。 b)焊缝外观符合质量标准。 c)其它要求检验项目已检验合格,并取得检验合格通知。

2.2.3 热处理设备及指示仪表检查合格。 3、操作工艺 3.1 工艺流程: 施工准备→热电偶及加热器安装→热处理→铁素体含量检测→资料整理 3.2 热电偶及加热安装 3.2.1 每道焊口对称安装两只热电偶,热电偶安装在靠近焊缝边缘的30mm内,管材与热电偶端部接触处应用砂轮机打磨露出金属光泽,热电偶安装采用不锈钢丝捆扎,为保证所测温度为管材实际温度,在热电偶与加热器之间垫小块保温玻璃布以进行隔离。 3.2.2 电加热缠绕宽度为焊缝两侧各100-125mm,一根加热器缠绕多道焊缝时,必须保证热处理部位的相似性,即:同材质,同规格,缠绕的圈数及宽度相同。 3.2.3 加热器安装完毕后用无碱超细玻璃棉进行保温,保温厚度100-150mm,为降低温度梯度,加热器外部100mm范围内应予以保温。 3.3 热处理工艺 3.3.1 300℃以下不控制升温速度,300℃以上升温速度为5125/δ℃/h,且不大于220℃/h。(δ为管壁厚度,单位mm) 3.3.2 热处理温度见下表:

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

1、范围本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺

1、范围本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺。 本标准适用于锅炉、压力容器的碳钢、低合金钢产品,以改善接头性能,降低焊接残余应力为主要目的而实施的焊后热处理。其他产品的焊后热处理亦可参照执行。 2、引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB9452-1988 热处理炉有效区测定方法。 3、要求 3.1 人员及职责 3.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 3.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 3.1.3 热处理工应严格按焊后热处理工艺进行操作,并认真填写原始操作记录。 3.1.4 热处理责任工程师负责审查焊后热处理原始操作记录(含时间-温度自动记录曲线),核实是否符合焊后热处理工艺要求,确认后签字盖章。 3.2 设备 3.2.1 各种焊后热处理及装置应符合以下要求: a)能满足焊后热处理工艺要求; b)在焊后热处理过程中,对被加热件无有害的影响; c)能保证被加热件加热部分均匀热透; d)能够准确地测量和控制温度; e)被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3.2.2 焊后热处理设备可以是以下几种之一: a)电加热炉; b)罩式煤气炉; c)红外线高温陶瓷电加热器; d)能满足焊后热处理工艺要求的其他加热装? 3.3 焊后热处理方法 3.3.1 炉内热处理 a)焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。在积累了炉温与被加热件的对应关系值的情况下,炉内热处理时,一般允许利用炉温推算被加热件的温度,但对特殊或重要的焊接产品,温度测量应以安置在被加热件上的热电偶为准。 b)被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 c)为了防止拘束应力及变形的产生,应合理安置被加热件的支座,对大型薄壁件和结构、几何尺寸变化悬殊者应附加必要的支撑等工装以增加刚性和平衡稳定性。 3.3.2 分段热处理焊后热处理允许在炉内分段进行。被加热件分段进行热处理时,其重复加热长度不小于1500mm.被加热件的炉外部分,应采取合适的保温措施,使温度梯度不致影响材料的组织和性能。 3.3.3 整体炉外热处理进行整体炉外热处理时,在满足 3.2.1的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.3.4 局部热处理B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺

(热处理及焊后 热处理程序)

Heat Treatment and PWHT Procedures 热处理及焊后热处理程序

TABLE OF CONTENTS 目录 1.0SCOPE范围 (1) 2.0REFERENCES参考文件 (1) 3.0EQUIPMENT设备 (1) 4.0HEATING METHODS加热方法 (1) 5.0HEATING AND COOLING RATES加热和冷却速率 (1) 6.0HOLDING TEMPERATURES AND ALLOWABLE RANGES保温温度和容许范围 (2) 7.0INTERRUPTED POSTWELD HEAT TREATMENTS不规则的焊后热处理 (2) 8.0TEMPERATURE CONTROL AND RECORDING温度控制和记录 (3) 9.0RECORDING POSTWELD HEAT TREATMENT CYCLE焊后热处理记录周期 (4) 10.0HARDNESS TESTED REQUIRMENTS AFTER PWHT热处理后的硬度测试要求 (5) 11.0PRETECT DEFORMATION DURING HEAT TREATMENT热处理期间的防变形 (5) 12.0RECORDS记录 (5) Attachment and Appendix List 附件附录清单 ATTACHMENT1:PWHT REPORT附件1:焊后热处理报告 (5)

1.0S C O P E范围 1.1This procedure specifies detailed requirements for performing post weld heat treatment(PWHT) 该程序规定了进行焊后热处理的详细要求。 1.2This procedure was written to meet the requirements of ASME B31.3for heat treat temperatures,holding times,heating and cooling rates,and permissible heat treating methods when PWHT is required. 该程序是根据ASME B31.3中针对焊后热处理的处理温度、保温时间、加热和冷却速率以及允许的加热方法来拟写的。 2.0R E F E R E N C E S参考文件 Doc.No.Document Title ASME B31.3-2012Process Piping工艺管道 3.0E Q U I P M E N T设备 3.1Certification of equipment shall be provided upon request. 应当根据需要提供设备的证书。 3.2Calibration certificate of temperature indicator shall be submitted and approved before use. 使用温度指示器之前应当提交校准证书并获得批准。 3.3Recalibration reference paragraph9.2. 参考段落9.2中关于重校的内容。 4.0H E A T I N G M E T H O D S加热方法 4.1Gas heating method be utilized to perform PWHT 利用燃气加热法来进行焊后热处理。 4.2Any other PWHT method requires prior approval of customer before use. 使用任何其它焊后热处理方法之前都要客户的批准。 5.0H E A T I N G A N D C O O L I N G R A T E S加热和冷却速率 5.1.The rate of the heating at the temperature above300Deg.C(572°F)shall not exceed220Deg.C(428°F)/Hr.for pipe wall thickness up to and including25mm(0.984in)/T maximum.For maximum pipe wall thickness more than25mm(0.984in)/T,the heating rate shall be(5588/T Where T=pipe wall thickness in mm). 对于最大壁厚为25mm(0.984in)的管道,300℃(572°F)之后的加热速度不应超过220℃(428°F)/小时。对于最大壁厚超过25mm(0.984in)的管道,加热速度为5588/T(T=管道壁厚mm数)。 5.2The rate of Cooling from the Soak temperature to a temperature above300Deg.C(572°F)shall not exceed275Deg.C(527°F)/ Hr.For pipe wall thickness up to and including25mm(0.984in)/T in maximum.For maximum pipe wall thickness over than25mm (0.984in)/T,the Cooling shall be(6985/T Where T=pipe wall thickness in mm).

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

不锈钢管焊接工艺及热处理模板

不锈钢管焊接工艺及热处 理模板 1

不锈钢管焊接工艺及热处理 [我的钢铁] -02-03 15:10:20 不锈钢管热处理 不锈钢管热处理国外普遍采用带保护气体的无氧化连续热处 理炉, 进行生产过程中的中间热处理和最终的成品热处理, 由于能够获得无氧化的光亮表面, 从而取消了传统的酸洗工序。这一热处理工艺的采用, 既改进了钢管的质量, 又克服了酸洗对环境的污染。 根据当前世界发展的趋势, 光亮连续炉基本分为三种类型: ( 1) 辊底式光亮热处理炉。这种炉型适用于大规格、大批量钢管热处理, 小时产量为1.0吨以上。可使用的保护气体为高纯度氢气、分解氨及其它保护气体。能够配备有对流冷却系统, 以便较快地冷却钢管。 ( 2) 网带式光亮热处理炉。这种炉型适合于小直径薄壁精密钢管, 小时产量约为0.3-1.0吨, 处理钢管长度可达40米, 也能够处理成卷的毛细管。 2

( 3) 马弗式光亮热处理炉。钢管装在连续的把架上, 在马弗管 内运行加热, 能以较低的成本处理优质小直径薄壁钢管, 小时产量 约在0.3吨以上。 不锈钢焊管工艺技术——氩弧焊 不锈钢焊管要求熔深焊透, 不含氧化物夹杂, 热影响区尽可能小, 钨极惰性气体保护的氩弧焊具有较好的适应性, 焊接质量高、 焊透性能好, 其产品在化工、核工业和食品等工业中得到广泛应用。 焊接速度不高是氩弧焊的不足之处, 为提高焊接速度, 国外研 究开发了多种方法。其中由单电极单焊炬发展采用多电极多焊炬 的焊接方法在生产中应用。70年代德国首先采用多焊炬沿焊缝方向直线排列, 形成长形热流分布, 明显提高焊速。一般采用三电极 焊炬的氩弧焊, 焊接钢管壁厚S≥2mm, 焊接速度比单焊炬提高3-4倍, 焊接质量也得以改进。氩弧焊与等离子焊组合能够焊接更大壁厚的钢管, 另外, 在氩气中5-10%的氢气, 再采用高频脉冲焊接电源, 也可提高焊接速度。 多焊炬氩弧焊适用于奥氏体和铁素体不锈钢管的焊接。 不锈钢焊管工艺技术——高频焊 3

相关主题
文本预览
相关文档 最新文档