当前位置:文档之家› 消除电磁干扰的措施分析

消除电磁干扰的措施分析

消除电磁干扰的措施分析
消除电磁干扰的措施分析

消除电磁干扰的措施分析

摘要:1990年的海湾战争已经给人留下这样的印象:常规的硬杀伤武器在战争中已不再是唯一主角,电子战能力的大小已成为决定胜负的关键之一。绝对控制着电磁频谱的多国部队在伊拉克百万大军尚未找到攻击目标时就将其击溃。美军的E-3预警机、F-4G“野鼬鼠”干扰机、隐形轰炸机和反辐射导弹都给人留下了深刻的印象。电子战越来越重要已勿容置疑。这种始于二战的战斗方式在低功率(kW)范围内已发展得十分成熟,相应的装备和作战方式可进一步挖掘的潜力已不大。作者认为,未来电子战的发展方向应是射频武器(功率在100MW以上)。

关键词:电子战干扰机诱饵射频武器高功率微波电磁脉冲

1. 引言

电子战是一种控制电磁频谱的战斗。电子战科学可分为三大部分:电子支援(ESM)、电子干扰(ECM)和电子抗干扰(ECCM)。电子支援是指对敌方雷达和无线电进行侦听,典型装备有美军的ALR-XX系列。电子干扰是指扰乱、欺骗和致盲敌方电子设备,它又分为有源干扰(如噪声干扰和欺骗干扰)和无源干扰(如投放铝箔条带和拽光弹两大类),先进的电子干扰根据ESM收集到的情报采取对抗措施。电子抗干扰主要包括电子情报(ELINT)和信号情报(SIGINT)以及保持友邻部队继续使用电磁频谱的有关行动。

有源干扰电子干扰是电子战中最重要的部分,而又以有源干扰为主。有源干扰主要包括以下几种机制:1、调辐载波干扰,即对恒定周期的载波进行幅度调制,它对雷达的作用距离有非常明显的影响。2、角度干扰,当扫描火控雷达的方位和高度信息存在于回波脉冲的调制成分中时所采用的一种对抗技术。干扰这个脉冲的办法是发射一个和雷达脉冲类似,但其调制信息与回波目标角度调制信息反相的脉冲。3、异步脉冲干扰,被认为是最有效的一种干扰方式,干扰脉冲频率几乎和雷达脉冲重复频率完全匹配,而且,干扰机还能发射该频率的倍数频率,如果干扰脉冲宽度大于雷达脉冲宽度,干扰效果更好。4、阻塞干扰,即对各个波段同时进行干扰。5、欺骗性干扰,一种特殊的电子干扰,主要用于对付火控雷达和寻的系统,它不是消除目标信息,而是阻止敌方建立有益的目标信息。它又分为人为性欺骗和模仿欺骗两种形式,人为性欺骗包括改变或模拟己方的电磁辐射来进行欺骗,模仿性欺骗包括将电磁辐射引进敌人的信道,以模拟敌

人的发射波。6、插入,也是一种欺骗技术,即以任何一种方式在微波传输途径中插入额外的电磁成分,以欺骗操作人员或引起混乱。7、视频堵塞,指直接放大不含载频的白噪声,使雷达接收机的噪声电平达到饱和。

无源干扰无源干扰是另一种电磁干扰形式,通常有三种:箔条、伪目标(浮动角反射器)和红外曳光弹。无源干扰在过去曾单独发挥过重要作用,但现在一般把它作为有源干扰的有益补充。

射频武器在未来,由于武器装备的电子化程度越来越高,电子战中的各种干扰手段可能被射频武器取代。射频武器峰值功率比一般电磁干扰高几个量级,讲究对电子元件的“硬杀伤”,因此,它可能给电子战的作战概念带来革命性变化。

2. 常规(低功率)干扰机

电子战的作战平台可分为飞机、舰船和陆地车辆三种,各种装备的设计以及作战方式一般都受制于所属作战平台。因此,我们拟从作战平台的角度来介绍电子干扰装备,特别是干扰机的技术现状和发展趋势。

2.1 陆基干扰机

陆军对电子战的重视程度相对较弱,美陆军电子战投资仅占三军电子战投资的10%左右。但近来投资有所增加。陆军的干扰机有两个显著特点:1、趋于进攻性,不重视自我保护;2、重视通信资源,不看重非通信资源。因此也可用如下一句话来概括陆基电子战:中断敌方通信网络。装备主要有两类:车载高功率干扰机,如美国GTE-西尔范尼亚公司研制的MLQ-34 TACJAM干扰机;投掷式干扰机(遥控飞机),如美国AEL公司生产的“Appliqne”干扰机。陆基干扰机的技术发展方向在于系统的一体化设计,干扰技术本身不存在困难。

2.2 舰载干扰机

舰载电子战装备的根本目的就是实现军舰的自我保护,在整个电子战的投资中,海军占40%左右,可见舰载干扰的重要性。迄今仍在采用或即将采用的干扰技术主要有以下四种。

箔条这是一种十分古老的干扰方式,属无源干扰,其原理是投放割成敌方雷达信号波长的铝箔条带,以对付末制导为雷达制导的导弹。技术关键在于:增

大偶极子密度(如生产直径为20 m的铝箔丝);采用先进的箔条材料、先进的封装和布撒技术,从而延长箔条的有效滞空时间;优化箔条形状并产生最大的微波反射截面(RCS)。在目前及未来,箔条仍将是对付雷达制导威胁的主要软杀伤手段,北约海军普遍布署,但其性能也受到一定怀疑,新一代反舰导弹采用毫米波导引头,要切割如此小的偶极子相当困难,而得不到好的极化率将大大降低干扰效果。另外,美海军认为,先进的射频(RF)导弹寻的头不久将通过识别来区分金属箔片和真实目标。将箔条与下面所述的各种诱饵结合使用方可达到最佳干扰效果。

主动离舰诱饵一次性使用的主动诱饵正在研制中,尽管价格比箔条昂贵得多,但它具有如下几个重要特性:避免与军舰的其它自防御系统(如反导导弹和快速火炮)相互干扰;每次交战只需发射一个主动诱饵;无需强烈的规避机动;能够诱惑最先进的雷达导引头。主动离舰诱饵的工作方式是:在发射管中待命的诱饵通过电缆接收来自军舰电子支援措施(ESM)系统传来的威胁数据,然后选择最具威胁的方位发射,在离舰几百米处,火箭发动机熄灭,降落伞展开,诱饵可滞空几分钟,当它稳定飞行后,两个突伸天线激活,其中一个接收反舰导弹导引头的发射信号,然后,由另一个天线将其放大并辐射回去,以欺骗反舰导弹。这种形式的离舰诱饵有英GEC马可尼公司研制的“塞王”诱饵(原定于1998年装备部队)。另一些主动离舰诱饵可长达几小时地漂浮在海面上,如美利顿公司的AN/SSR-95(V)主动电子浮标。诱饵的工作波段一般为I/J波段。

浮动角反射器此类诱饵作为箔条的补充,可提供独特的持久干扰(几个小时)以对付雷达制导反舰导弹。这类诱饵中最著名的是Replica,它的关键之处是一个八面形反射器(可膨胀,一般由镀银网制造),它具备全方位反射能力,可模拟出中型军舰的雷达反射截面(RCS),是相当有效的伪目标,美军的SLQ-49也是这类诱饵。

红外诱饵目前许多反舰导弹都采用IR导引头,如冥河、蚕式、AGM-118和SASM-2导弹(日本)等。老式IR寻的“热点”是发动机废气(3-5微米),而新式导引头主要寻的舰壳体和上部结构产生的长波(8~14微米)辐射。

在常规的电子战中,为保护昂贵的水面舰艇,综合使用各种干扰手段是必要的,舰艇平台的承载力对干扰设备而言也是巨大的。相比之下,单纯的噪声干扰要落后一些,因为今天的雷达制导可通过切换成只接收和对准干扰寻的模式,有效地将电子对抗转换为电子引导,因此有源诱饵显然更具备前途,它很有效地遂行一个简单任务:如果干扰不了导弹,那么自己成为被攻击目标,把导弹引开。

2.3 机载干扰机

有3种干扰系统可用于保护作战飞机,即防区外干扰机,护航干扰机及自保护干扰机,前两种干扰机相对我们而言,功率大,成本高,技术也复杂,因此我们重点关心自保护干扰机。

2.3.1 机载干扰机的总体情况

干扰目标各种地基和机载雷达(远程监视雷达、捕获雷达、测高雷达、跟踪雷达)、雷达制导的导弹导引头、通信链路和询问敌友系统都属干扰目标。远程监视雷达工作频率较低,在大多数情况下,攻击方不力争干扰它们,而是采取规避行动。捕获雷达是一种近程监视雷达,工作在E、F或G波段,如有可能,应对其实施干扰,让跟踪雷达无法从捕获雷达获取定位信息。跟踪雷达应是最优先干扰的威胁目标,一般工作在H、I或J波段。雷达制导的导弹导引头与跟踪雷达类似(如果它们偏角大于2°至3°,一般就会迷失目标)。

干扰方式分噪声干扰和欺骗干扰两大类。有源噪声干扰对于那些天线波束特别宽,旁瓣较大的雷达很有效(前苏联的许多老式雷达都如此)。一般情况下,真实回波的功率只有几分之一瓦,而噪声干扰机轻而易举便可以产生十几瓦功率的噪声,当噪声信号通过主波束或旁瓣进入雷达接收系统后,将饱和雷达接收机,掩盖真正回波信号。撒布铝箔条带或红外曳光弹也属噪声干扰。欺骗干扰是对付跟踪雷达最通用的方法,它并不是产生大面积遮掩信号,而是发射功率较低的仿造或假造回波信号,促使受骗雷达得出虚假距离或虚假方位数据。虚假信号要想有效,必须非常严密地模仿真实雷达回波信号的包络、相位及其它特征。欺骗干扰机首先需接收存储并分析雷达发射信号,再模拟产生出虚假回波,因此,它们又被称之为“应答式干扰机”。欺骗式干扰可对付频率转换和频率捷变等反措施,还可对抗多卜勒脉冲雷达发射的复杂信号。

稠密信号环境在早期电子战中,一部雷达每秒只辐射500~1500个脉冲,而现在每秒脉冲数超过100万个。越战期间,雷达最高工作频率为12GHz,而现在一些军用系统的工作频率高达40GHz。今天,在北约成员国土上,1000km2约有360套信号发射装置,在一些高度设防区,信号密度可能高达每秒1000万个脉冲。80年代以来,出现了频率捷变雷达,并开始采用跳动或错脉冲重复频率,脉冲压缩或脉冲多卜勒等抗干扰技术,加之雷达的占空系数越来越大,峰值功率越来越低,使得电子战情景更加复杂,要使干扰机有效实施干扰,必须具备两项技术:一是正确识别威胁辐射装置,二是能有效地管理干扰功率。我们还应当具备以下两个概念,挂载干扰机需牺牲飞机的其它载荷量,因此电子战设备轻便有效十分重要;此外,挂载在飞机上的噪声干扰机,本身也向反辐射导弹暴露了目标。

2.3.2 美国现役状况

空军对电子战最为重视,三军电子战45%的投入来至空军,ALQ系列机载干扰机现已发展到了“ALQ~200”以上。由于各兵种及兵种内部重复装备和研制,导致机载干扰机过多过滥,美军正在对此做出调整。

此外,箔条弹和红外曳光弹在干扰中仍然起着重要作用,但是,单独使用这两种干扰方式的效果已大大降低,将它们与有源干扰机结合才能有效地发挥作用。

2.3.3 机载干扰机的发展趋势

纵观整个机载干扰机的发展状况,我们可得出以下一些结论。

第一大趋势是欺骗式干扰胜于噪声干扰投掷式有源诱饵无疑是美空军研制的重点项目。它的工作原理可用“应答式”来概括。有源诱饵有以下优点:与无源诱饵相比较,它产生的特征波形更为逼真,雷达截面更大。第一代有源诱饵代表是ALE-50,该诱饵主要有三个部件:发射器、接收机和电源,它仅仅做了一件事,将接收到的威胁雷达信号放大再发射出去,当然,有时也加上一个小的调制来模拟飞机引擎特征。雷达接收到两个信号,一个是从飞机反射的回波,一个是从诱饵来的强度更大且特性一样的信号。雷达或导弹寻的头不能区分这二个信号,就只能假设二者中强者为目标。

但当人出现在处理环路中时(man-in-the-loop),显然人的智慧是有可能区分诱饵和真实目标的。故而美空军正在积极发展第二代有源诱饵,即光纤诱饵,光纤诱饵十分小巧,仅有发射设备,其余工作由其平台(飞机)代替完成,光纤诱饵经光纤从飞机接收指示,除发射诱饵信号外,也生成一个覆盖脉冲,使飞机逃脱雷达的探测。正在研制的光纤诱饵型号为ALE-55,由于光纤诱饵体积小重量轻,意味着飞机可携代更多诱饵参加战斗。

除了自保护性有源诱饵外,还有一类防空压制用有源诱饵,如BQM-74无人驾驶飞机,它可能是一种多目标产生器。所谓多目标产生器是根据雷达脉冲重复频率、扫描速度和天线波瓣特征计算出应该发射的假目标信号,这些假目标在雷达屏幕上大量出现,使操作人员的处理能力超过极限。这种干扰表征为多目标的突然出现,它们或是静止不动,或处于不合理的运动方向,或以不合理的速度运动。在海湾战争中,这类有源诱饵不但欺骗和饱和了伊军防空系统,成为伊军防空雷达跟踪的目标,而且使美军得以精确定位这些雷达,然后用反辐射导弹摧毁它们。

第二大趋势是干扰机应尽量与其它电子战设备做到一体化主要表现为以下几点。一是飞机的运载能力要求将告警接收机、干扰机、箔条弹、曳光弹撒布器、导弹接近告警以及拖弋式或一次性诱饵组合在一起,安装在飞机内或吊舱式系统中。二是在未来的飞机上,大功率的射频干扰机可能和雷达及通信系统共同使用一个大功率主动阵天线,如休斯飞机公司一直在研究的“多功能孔径共享系统”方案就是这样。三是各种干扰手段配合使用。如飞机在自我保护时,先投放几轮箔条,暂时迷惑导弹寻的头,然后再投放有源诱饵,而当导弹重新截获目标时,实际上往往跟踪上了假目标。闪烁也是一种重要的电子对抗技术,应用于两架相距不远而在雷达系统中又处于同一方位角分辨率内的飞机,这两架飞机轮流地发出干扰,从而引起雷达系统中的目标信号来回振荡,使其不可能为火力控制提供准确的信息。

第三大趋势是飞机自我保护系统(ASPJ)和压制敌防空系统 (SEAD)并重飞机自保护系统过去重点装备造价昂贵的轰炸机,如B-1或B-2轰炸机。如今,F-15或F-16等也对自保护系统十分重视,并从悬挂箱式向内装式发展。SEAD分为干扰性和杀伤性两种,现阶段,杀伤性SEAD(主要由威胁告警装置和反辐射导弹构成)更符合公众胃口。

3. 射频(RF)武器对电子战的影响

以上论述仅局限于常规的电子战,而在未来,随着射频武器的出现,电子战的许多概念可能都会更新。

现役的干扰机的功率一般都在千瓦(KW)量级或以下,而杀伤性的定向能微波武器峰值功率应在吉瓦(GW)以上,介于二者之间的是兆瓦量级的强力干扰。在这里我们暂时将后二者都称为射频武器(RF武器在功率上很难严格定义,作者认为,一般而言,应在100MW以上)。

射频武器对将军们有着极大的诱惑力,想象中的对电子设备的强大杀伤力正源源不断地吸引着投资。如果把现代高科技设备比着瓷器店,其中的电子元件是瓷器,那么,射频武器完全是一头撞进店内的公牛。美国、俄罗斯、英国、法国和瑞典等国都在从事这方面的研究。下面我们从技术基础、射频武器分类和射频武器效应三方面扼要介绍一下射频武器的研制发展情况。

3.1 技术基础

从技术角度看,RF武器涉及到如下几方面问题:功率源、微波发生器、发射天线和开关技术。目前,每个方面都未完全达到武器化要求。

脉冲功率源若采用可重复使用的脉冲功率源,现有的电容器、变压器和脉冲形成线的指标都要大大提高,如现有电容器最高储能密度为1焦耳/立方厘米,而高功率微波(HPM)要求为20焦耳/立方厘米。一次性使用的脉冲功率源比较有前途的有两种:爆炸驱动磁通量压缩发生器和磁流体动力学装置,它们都是将炸药和推进剂(储能密度为8000焦耳/立方厘米量级)的化学能转换为强大的电能。如假设1千克的TNT在10微秒内释放5兆焦耳的能量,一台爆炸驱动磁通量压缩发生器装置的转换效率为15%,则输出的电能为0.75MJ,输出功率为75GW,这和典型的闪电产生的电流指标不相上下,而估计真正使用在武器上的一次性脉冲功率源的指标比典型的闪电至少要大10倍。

高功率微波(HPM)发生器常见的高功率微波发生器有相对论磁控管、相对论速调管、Reltron、虚阴极振荡器、多波契伦柯夫发生器和磁绝缘线性振荡器(MILO,一种类似磁控管的器件,但不需要外部磁场)等,其中,Reltron、MILO 和虚阴极振荡器等都是很有前途的高功率微波器件。上述高功率微波源频带窄,重复使用频率目前仍很低,有的不到1次/秒(如相对论速调管),但输出峰值功率普遍在100MW以上,有的达10GW。高功率微波源将来要解决的问题是:单次使用源应当小型化和紧凑化;重复使用源应当尽可能提高重复频率;提高电能和微波能之间的转换效率;在提高峰值功率的同时,应当注意提高平均功率,以提高整个输出能量。此外,还有一类特殊的名叫超宽带的高功率微波源,它紧凑轻便,峰值功率极高(目前已达100GW,但平均功率低),脉冲重复频率也很高(目前为1MHz),更为重要的是所含频谱极其丰富,因此,特别受到军方关注。

发射天线和开关技术无论窄带还是超宽带源,都希望天线增益大,辐射能量相对集中,脉冲重复频率大,如此可大大提高杀伤效果。但是,天线增益受制于辐射微波波长和有效孔径的尺寸,在增大天线尺寸仍然无法提高增益的情况下,只能想办法尽量提高发射功率。至于能量聚焦,目前美军设计的一种类似圆盘反射器的天线已经可以把输出能量汇集在30 范围内。开发超高速开关也格外受美军方的重视。

3.2 射频武器的分类

分析目前的研究情况,作者认为有三类射频武器在技术特征和武器效应上有比较明显的区别,因此,暂时分别将它们称为电磁脉冲武器、高功率微波武器和超宽带干扰机。

电磁脉冲(EMP)武器电磁脉冲是一个辐射持续时间很短的宽带信号,可来源于核爆(NEMP,核电磁脉冲),也可由上述的磁通量压缩发生器和磁流体力学发生器等装置产生(NNEMP,非核电磁脉冲)。电磁脉冲的特点是:场强高,核电磁脉冲大约是10KV/m至100KV/m(空气的击穿电压大约为30KV/m);频域宽,从极低频到超高频,其中大部分能量集中在100KHz以下,主频在10 KHz至20KHz之间(波长几百米)。电磁脉冲武器很可能以炸弹形式存在(直接用通量发生器产生电磁脉冲),由火炮发射或用巡航导弹装载。是否有以车辆为平台可重复使用的电磁脉冲发射机暂不肯定,因为对电磁脉冲输出的能量进行聚焦不是一个简单问题,而没有好的聚焦,既不能提高攻击效果,又难以保障自身系统的安全。电磁脉冲武器可主动攻击敌方C4I系统,也可拦截来袭导弹。

高功率微波武器高功率微波武器的输出频带远没有电磁脉冲宽,但其主频可落在几百兆赫兹至几十吉赫兹范围内(波长可达米甚至毫米),而且频带窄,能量相对集中。因此,高功率微波武器对雷达等系统的打击效果更佳,波长短的另一优点是,它比电磁脉冲更容易从后门耦合到系统内部,这带来更大的杀伤几率。高功率微波武器可能以微波弹和强力干扰机两种形式存在。微波弹由磁通量压缩发生器或磁流体力学发生器向虚阴极振荡器供电产生吉瓦量级的微波,再由天线向外定向发射,属典型的窄带,打击目标相对固定,如专门攻击导弹寻的头或某种雷达,因此作者认为用火炮发射微波弹拦截导弹很诱人,而用于攻击雷达,除无需精确瞄准外,看不出比反辐射导弹有什么特殊优点。强力干扰机以车辆、飞机和军舰为平台,可能采用相对论速调管等微波器件,由电容器或炸药提供能源,问题的关键应解决提高重复发射率等问题。强力干扰机显然是一种很好的自保护武器,国外认为可用它攻击反辐射导弹。

超宽带(UWB)干扰机这类射频武器的最大优点是可做得小型、紧凑和轻便,而且所含频谱丰富。和微波弹一样,它的主频在微波段,但频带又相当宽,有的达吉赫兹,因此,超宽带干扰机作为飞机的自保护装置是很有前途的。现有的超宽带源峰值功率已达几十吉瓦,脉冲重复频率为兆赫兹。但是,超宽带源的平均功率并不高,因此频带不宜过宽,否则能量太分散。

3.3 射频武器效应

射频武器辐射功率强大,无需精确瞄准,并且大气对于微波几乎是“透明”的(大气击穿例外),这些优点使得射频武器具备过去的电子战武器无法想象的效应。

攻击效果一般分三个等级:硬杀伤(destroy,burnout)、扰乱(degrade,upset)和干扰(interference)。硬杀伤彻底毁坏电子元件,甚至导致导弹和飞机等武器的自毁;扰乱也许称为“失效”更好(也有人称其为“反转”),是指电子元件在未损坏的情况下,整个系统处于混乱状态,无法或暂时无法恢复正常状态,虽然射频武器攻击已停止。

耦合途径分为前门(front-door)耦合和后门(back-door)耦合两种。前门就是电子系统的工作通道,如天线,天线包括发射器和接收器两大部分,但RF武器主要攻击接收系统,因为发射系统本身能忍受很大的功率(几百瓦),而接收信号往往只有毫瓦量级,因而接收系统要脆弱得多。后门是电子系统的非工作通道,如一些裸露的电缆,外壳上的一些缝隙等。从前门攻击需知道靶的更多信息,从后门虽无需了解过多的靶信息,但攻击确定性太差。

杀伤机制射频武器的真正杀手是在靶中产生的感生电流和感生电压。电磁脉冲的能量主要集中在低频部分,由于波长长,主要在靶外壳上产生感生电流和感生电压;微波弹波长在厘米或毫米量级,可从靶外部的缝隙耦合到系统内部破坏电子元件。对电子元件的破坏机理分热效应和场效应两种,热效应主要由毫秒量级的长脉冲造成,电子元件上累积的热量有一个可传递过程;场效应为纳秒量级的短脉冲造成,在高场强短时间作用下,元件上热量无法向外散发,破坏能量阈值比热效应低。无论长脉冲还是短脉冲,重复频率越高,杀伤概率越大。

攻击目标射频武器攻击的最佳目标之一是军用和民用电子中心(削弱敌方军事基地的运作能力),如指挥部、军舰、通信大楼和政府要地等。这些目标要做到很好的电磁屏蔽是不可能的,后门特别易进入。射频武器的攻击目标之二是敌防空系统(压制敌防空系统,简称SEAD)。攻击目标之三是战术导弹(武器平台的自我保护),地空、空空和舰空导弹都在主要打击目标之列,摧毁更好,但使其迷失目标或偏航即达到目的。

3.4 装备情况

目前可确定的是,美军曾经进行过电磁脉冲炸弹实验(当时靶未受破坏,但在离靶三百多米远的地方,一些私人汽车的点火装置和发动机电子控制装置却被毁坏,这说明未加固系统在射频武器的攻击下十分脆弱,也说明微波耦合存在严重不确定性),并将在未来几年内演示几项关键技术。军方尚未正式采购任何装备。至于俄罗斯研制出微波弹或向澳大利亚出售微波弹等报道,作者认为,不过是一些前期基础技术,远没有达到武器化的水平。

4. 总结

在短期之内,现有的干扰技术是不会退出战争舞台的,但是,从军方的角度来看,干扰始终存在不确定性,因此对电子系统的硬杀伤的诱惑力更大。而且,随着研究的进一步深入,射频武器的成本越来越低,而对它的防范却很难做到完善,且耗资庞大(相较射频武器的研制费更是如此),射频武器的这一特点比常规的电子干扰要优越得多。当然,射频武器的不确定因素还很多,例如,在压制敌防空系统中采用超宽带干扰对老式的主束宽旁瓣大的雷达效果明显,但对如今一些先进的抗干扰雷达是否有效则是疑问。此外,在技术上和作战方式上还存在一些其它问题。但我们可以肯定,未来电子战的方向还是在于大力发展射频武器。

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

抗干扰措施

抗干扰技术 在电路设计当中,抗干扰占有一个特别重要的地位。在一切的电子技术当中,都是重点。(或许你会说你是玩单片机的,感觉没这方面的必要,其实是因为数字电路就两种信号,一个高电平,一个低电平,本身就有一定的抗干扰性能,而模拟信号是连续的,容易被干扰,这也是现在的产品都数字化的原因之一,但是玩单片机的就不玩模拟信号?加点抗干扰技术以防万一也没错吧!)举个例子来说,如果要放大一个微弱的信号,当电源不是很好,有较大的纹波,经常4.5V到6V之间跳,工频信号又很强,你的电路有没有什么防护措施,你想想,当这个信号到最后,还是你想要的信号吗?打个比方,如果唐僧身边没有那么多能干的徒弟,菩萨,神仙,他到得了西天吗?那些妖精就是干扰源,徒弟什么的就是抗干扰措施,当然唐僧自身也有一定的抗干扰能力。这就是我们要讲的抗干扰技术。(请各位懒人直接跳到最后的总结) 理论上来说,抗干扰分为3个方面:1、干扰源。2、传输途径。3、敏感原件。也就是我们需要下功夫的地方。按照优先考虑的顺序,也是如上的1、2、3。你要是能把干扰抑制在源头,扼杀在摇篮里,那就不用其他的措施了。但是干扰源来自四面八方,说不定自己后院还起火(比如运放的自激振荡),所以3个方面都是需要加强的。 一般来说,电源的干扰时最普遍的,所以电源做得好就是一切的基础,尽量降低电源的纹波系数,电容可以滤去交流信号,因此在一些用运放的地方电源和地端可以并联10uF、1uF、0.1uF的电容,以滤去不同频率的波。小电容通低频,大电容通高频,但注意电解电容不要正负极接反了,那样也会产生噪声。再就是布线时,电源线和地线要尽量粗点(减小导线的电阻),避免90°折线;模拟电路和数字电路用不同的电源,;数字电路与模拟电路避免使用公共地线;最多模拟地与数字地仅有一点相连,信号连接时,可用光电隔离,防止互相干扰。接地线越短越好,避免地线形成环路。 在传输途径上下功夫,各模块之间连接线尽量短,远离干扰;高频信号传输可使用同轴电缆或多芯屏蔽电缆,对可能的干扰源输出线进行滤波,产生噪声的导线与地线绞合,信号地线、其它可能造成干扰的电路的地线分开,敏感电路加屏蔽罩(屏蔽罩是要接地才有用的),把干扰源围闭在屏蔽罩内也是允许的。隔离也是常用的,隔离分变压器隔离,继电器隔离,光电隔离,光电隔离比较常用。 有的继承电路 而加强自身的抗干扰性能,大部分是靠原件本省的性质和所用的材料等等,我们自己难以决定。 总而言之,想要抗干扰,可采取以下措施: 1、提高电源的稳定性,减小纹波。各个模块的电源可以和地之间用不同的电容 相连。 2、在信号线容易受到干扰的地方,使用滤波电路。 3、各级模块相连的信号线尽量短,也可以用同轴电缆相连。 4、使用屏蔽盒屏蔽各个模块,或者干扰源。 5、模拟电路与数字电路使用不同的电源,信号之间使用光电隔离。 6、布线时,避免地线成环状,接线尽量短,但避免交叉、飞线。各种模块布局 时分开,模拟电路与数字电路分开。电源线与地线要尽量粗一点。原件排列

电磁干扰的屏蔽方法知识

电磁干扰的屏蔽方法 EMC问题常常是制约中国电子产品出口的一个原因,本文主要论述EMI的来源及一些非常具体的抑制方法。 电磁兼容性(EMC)是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其他设备产生强烈电磁干扰(IEEEC63.12-1987)。”对于无线收发设备来说,采用非连续频谱可部分实现EMC 性能,但是很多有关的例子也表明EMC并不总是能够做到。例如在笔记本电脑和测试设备之间、打印机和台式电脑之间以及蜂窝电话和医疗仪器之间等都具有高频干扰,我们把这种干扰称为电磁干扰(EMI)。 EMC问题来源 所有电器和电子设备工作时都会有间歇或连续性电压电流变化,有时变化速率还相当快,这样会导致在不同频率内或一个频带间产生电磁能量,而相应的电路则会将这种能量发射到周围的环境中。 EMI有两条途径离开或进入一个电路:辐射和传导。信号辐射是通过外壳的缝、槽、开孔或其他缺口泄漏出去;而信号传导则通过耦合到电源、信号和控制线上离开外壳,在开放的空间中自由辐射,从而产生干扰。 很多EMI抑制都采用外壳屏蔽和缝隙屏蔽结合的方式来实现,大多数时候下面这些简单原则可以有助于实现EMI屏蔽:从源头处降低干扰;通过屏蔽、过滤或接地将干扰产生电路隔离以及增强敏感电路的抗干扰能力等。EMI抑制性、隔离性和低敏感性应该作为所有电路设计人员的目标,这些性能在设计阶段的早期就应完成。 对设计工程师而言,采用屏蔽材料是一种有效降低EMI的方法。如今已有多种外壳屏蔽材料得到广泛使用,从金属罐、薄金属片和箔带到在导电织物或卷带上喷射涂层及镀层(如导电漆及锌线喷涂等)。无论是金属还是涂有导电层的塑料,一旦设计人员确定作为外壳材料之后,就可着手开始选择衬垫。 金属屏蔽效率

电梯检验中电磁干扰的分析及预防措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.电梯检验中电磁干扰的分析及预防措施正式版

电梯检验中电磁干扰的分析及预防措 施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 随着电梯的广泛应用,电梯的安全运行也日益成为相关单位所关注的重点。电梯的控制系统是电梯运行的核心,但是控制系统很容易受到电磁干扰的影响而发生故障或是事故,所以必须要对电梯采取措施以消除所受到的电磁干扰。 电梯的控制系统采用变频器等电力电子器件,尤其是高频开关器件的应用,这些电力电子装置在工作时,因为其电压和电流的波形都是在非常短的时间内上升和下降的,这些具有陡变沿的脉冲信号会产生很强的电磁干扰。电力电子装置的高频

化和在容量化不仅导致器件所承受到的电应力增加和开关损耗增加,而且会产生难以抑制的宽带电磁干扰,威胁到电梯安全运行本身及至与其相关的其他电子设备的正常工作。 电梯控制系统中的电磁干扰 当前的电梯控制系统通常都是采用调压调频控制,具有运行性能好、节约能源,调速性能好的优点。归纳起来通常有以下4种情况的电磁干扰: (1)工频谐波干扰。变频器的功能是将工频电流通过整流电路转换成直流电流,然后通过逆变电路,把整流后的直流电逆变为频率和电压可变的交流电。由于变频器中大量使用了三极管、智能模块等

电磁干扰和抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。 1.1 EMI特性分析

在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5·√P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰 设备到设备辐射辐射干扰

现场总线抗干扰措施

根据国际电工委员会IEC1158定义,安装在制造或过程区域的现场装置与控制室内的动控制装置之间的数字式、串行、多点通信的数据总线称为现场总线。当今全球最流行的现总线有FF总线(FieldbusFoundation)、Profibus、Modbus等,在造纸行业,ABB公司AF100应用也很多。但是无论哪一种现场总线,都是数字信号,当在介质上传输时,由于干扰噪音的原因,使得“1”变成了“0”,“0”变成了“1”,从而影响现场总线性能,以至于不能正常工作。因此研究现场总线的抗干扰问题并提高现场总线的抗干扰能力非常重要。 1 纸机车间存在的干扰源 (1)纸机传动系统是纸机车间最大的干扰源。纸机传动系统的总负荷约占造纸车间总负荷的1/3以上,在系统的整流和逆变中,大功率电力电子元器件(IGBT等)高速开和关转换,产生大量的高频电磁波,污染整个车间,并且产生大量高次谐波,污染工频电网。 (2)变压器、MCC柜、电力电缆和动力设备。这些设备均为工频,频率较低,干扰一般发生在近场,而近场中随着干扰源的特性不同,电场分量和磁场分量有很大差别。特别是动力设备启动时,瞬间电流能够达到额定电流的6~1倍,会产生大电流冲击的暂态干扰。 (3)来自工频电源的干扰。工频电源波形畸变和高次谐波若未加隔离或滤波,便会通过向纸机控制系统供电而进入控制系统,影响现场总线的信号。 (4)导线接触不良产生的火花、电弧等。 (5)三相供电不平衡产生的地电流、屏蔽层不共地产生的接地环流。 2 干扰的传播途径 (1)由导线传输,称为传导干扰。在现场总线中,主要表现为地线阻抗干扰和来自工频电源的干扰。 (2)通过空间以辐射的形式传输,称为辐射干扰。 3 现场总线的抗干扰措施 (1)远离干扰源动力设备和电力电缆对现场总线的干扰,与距离的平方成反比,即随距离的增大,干扰衰减非常快。所以,现场总线设备远离用电设备,现场总线电缆与动力缆分层桥架布置,都能起到很好的防干扰作用。远离干扰源,是防止辐射干扰的重要措施。 (2)现场总线设备和电缆的屏蔽现场总线屏蔽的机理,一是外来电磁波在金属表面产生涡流,从而抵消原来的磁场;二是电磁波在金属表面产生反射损耗,另一部分透射波在金属屏蔽层内传播过程中,衰减产生吸收损耗。现场总线的屏蔽是利用由导电材料制成的屏蔽并结合接地,来切断干扰源。 (3)采用UPS电源或隔离变压器可防止来自工频电源的干扰。 (4)采用光缆传输信号在现场总线传输速度高!传输距离远干扰大的情况下,尽可能地采用光缆。采用光缆后,有效解决了辐射扰和传导干扰的众多问题。若在不共地两点之间,或者在

浅谈电磁辐射的防护技术与措施

浅谈电磁辐射的防护技术与措施 摘要:电磁辐射对人体具有不同程度的危害,本文阐述了电磁辐射的防护技术、设备和措施。 关键词:电磁辐射防护技术措施 电磁辐射又称电子烟雾,是一种复合的电磁波,以相互垂直的电场和磁场随时间的变化而传递能量。人体生命活动包含一系列的生物电活动,这些生物电对环境的电磁波非常敏感,因此,电磁辐射可以对人体造成影响和损害,如头晕、失眠、健忘等,严重者甚至导致心血管疾病、糖尿病、癌突变等,同时,还会影响通讯信号、破坏建筑物和电器设备以及植物的生存等,必须采取措施进行防护。 电磁辐射防护的出发点就是要减低电磁辐射对人们的正常生活的影响,更重要的是,要减少其对人们身体健康的危害。 一、电磁辐射的防护技术 屏蔽防护技术 屏蔽防护技术的目的是采用一定的技术手段,将电磁辐射的作用和影响限制在指定的空间之内,屏蔽防护技术是目前使用最为广泛的电磁辐射防护技术。 电磁辐射的屏蔽防护技术须采用合适的屏蔽材料,一般认为,铜、铝等金属材料宜用作屏蔽体以隔离磁场和屏蔽电场。专家的研究表明,铝箔纸及铝箔纸加太空棉对高频电磁场的电场分量和磁场分量之屏蔽效果十分显著。 吸收防护技术 吸收防护技术是将根据匹配原理与谐振原理制造的吸收材料,置于电磁场中,用以吸收电磁波的能量并转化为热能或者其他能量,从而达到防护目的的技术。采用吸收材料对高频段的电磁辐射,特别是微波辐射与泄露抑制,效果良好。 接地防护技术 接地防护技术的作用就是将在屏蔽体内由于应生成的射频电流迅速导入大地,使屏蔽体本身不致再成为射频的二次辐射源,从而保证屏蔽作用的高效率。射频防护接地情况的好坏,直接关系到防护效果。射频接地的技术要求有:①射频接地电阻要最小;②接地极一般埋设在接地井内;③接地线与接地极以用铜材为好;④接地极的环境条件要适当。

485通信中干扰抑制方法

485通信中干扰抑制方法 RS-485匹配电阻 RS-485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。 RS-485接地 RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。 还有,就就是采用隔离措施 变频器应用中的干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。 避免变频器的动力线与信号线平行布线与集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。 信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰的其它设备的信号线,应远离变频器与她的输入输出线。 如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输与利用的效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 滤除中频炉系统谐波的传统方法就是LC滤波器,LC滤波器就是传统的无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能的漏洞。 谐波抑制的另一个比较新的方法就是采用有源电力滤波器(Active Power Filter--APF)。它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率与幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。 MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

抗干扰措施

提高变电所自动化系统可靠性的措施 一、概述 变电所综合自动化系统具有功能强、自动化水平高、可节约占地面积、减轻值班员操作及监视的工作量、缩短维修周期以及可实现无人值班等优越性。这已为越来越多的电力部门的专家和技术人员所共识。但一方面,由于它是高技术在变电所的应用,是一种新生事物,很多人对它还不够了解,因此也不放心。特别是目前不少工作在变电所第一线的技术人员与运行人员,对综合自动化系统的技术和系统结构还不了解,对其可靠性问题比较担心。另一方面,变电所综合自动化系统内部各个子系统都为低电平的弱电系统,但它们的工作环境是电磁干扰极其严重的强电场所,在研制综合自动化系统的过程中,如果不充分考虑可靠性问题,没有采取必要的措施,这样的综合自动化系统在强电磁场干扰下,也确实很容易不能正工作,甚至损坏元器件。因此,综合自动化系统的可靠性是个很重要的问题。 可靠性是指综合自动化系统内部各子系统的部件、元器件在规定的条件下、规定的时间内,完成规定功能的能力。不同功能的自动装置有不同的反映其可靠性的指标和术语。例如,保护子系统的可靠性通常是指在严重干扰情况下,不误动、不拒动。远动子系统的可靠性通常以平均无故障间隔时间MTBF来表示。 提高综合自动化系统可靠性的措施涉及的内容和方面较多,本章将从电磁兼容性、抗电磁干扰的措施和自动化系统本身的自纠错和故障自诊断等方面讨论提高变电所综合自动化系统的可靠性措施问题。 二、变电所内的电磁兼容 (一)电磁兼容意义 变电所内高压电器设备的操作、低压交、直流回路内电气设备的操作、雷电引起的浪涌电压、电气设备周围静电场、电磁波辐射和输电线路或设备短路故障所产生的瞬变过程等都会产生电磁干扰。这些电磁干扰进入变电所内的综合自动化系统或其他电子设备,就可能引起自动化系统工作不正常,甚至损坏某些部件或元器件。 电磁兼容的意义是,电气或电子设备或系统能够在规定的电磁环境下不因电磁干扰而降低工作性能,它们本身所发射的电磁能量不影响其他设备或系统的正常工作,从而达到互不干扰,在共同的电磁环境下一起执行各自功能的共存状态。

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

关于自动化装置受干扰及抗干扰措施的分析(精)

关于自动化装置受干扰及抗干扰措施的分析 摘要:电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 关键词:自动化装置干扰抗干扰措施分析 电磁兼容是现代自动化装置抗电磁干扰能力方面非常关注的目标。许多同行专业人士已作了大量的工作,制定了相关的标准和试验方法。在抗电磁干扰方面,也有许多论文发表,大家从理论到实践提出了许多提高产品抗电磁干扰能力的措施。 本文先以一台同期装置作为被试产品,对其干扰及抗干扰措施进行分析,随后提出一系列在设计实践中的经验抗干扰措施。干扰源是一个简单的电磁式的中间继电器。 干扰源分析:在上面简单的电路中可能会存在以下三种干扰源。 1、如图(一)中操作电源带有一个电感性负载(即许继中间继电器),当切断电感性负载时,在电感线圈上产生很高的感生电动势,一般在5~10倍电源电压,高达几千伏,我在试验中测得大于1千伏。该高电压使得断开接点击穿,产生火花或电弧,而火花或电弧是一个发射高频噪声的干扰源,该干扰直接串入电源中,形成串模干扰,该干扰是本线路中试验发现最明显的。 火花或电弧熄灭时间很短,又将产生感应电压,所以在不断地“通断”的瞬变过程中电源上串入了很大的高频干扰信号和浪涌电流。而自动装置内部的电子元件尤其IC片都是弱

电工作元器件,该干扰信号和浪涌流对继电器造成逻辑紊乱,以致误动,实际上对继电器内部元器件也具有很大的伤害性。尤其是静态的继电器产品表现更为严重,对于同期继电器,内部回路复杂,电源(稳压管)负载较重,在此重负荷下受干扰就会显得影响很大。 对于这种干扰实际上最有效的办法是在电感负载上并接一个吸收回路即可,但是电感负载是多种不同设备,且有很多是在运行中的产品,这样就自然的把问题踢给了新产品(被试产品)。 在试验中本人启用了图(二)接线的抑制回路,作用是用以抑制高频干扰,试验效果明显。 2、直流电压纹波引起的工频干扰,该种干扰在一般的产品设计中都有措施抑制,在试验中很少发现这种干扰。对于这种干扰,在试验中采用了以下图三的电路,该电路具有消除低频干扰和高频干扰双重作用,但对于电容耐压要求较高。 3、线间串扰,该干扰是因信号线(电源、交流等)靠近和平行放置在一起而引起,虽在电压不高时显示不出来,但在受冲击电压时难免会引起干扰,这就是该干扰最难预测和最难控制的因素之一。这一点要求在布线方面注意干扰。 以上仅是一个简单的电路,旨在只说明干扰存在的普遍性,根据电力系统的运行环境和自动化装置发展的实际情况,现在很多产品在“静电放电干扰、快速瞬变干扰和辐射电磁场干扰”方面实际上都没有很好办法,有些产品对电磁干扰还非常敏感,拒动、误动、死机、改变定值等现象都有发生。因此,自动化装置抗电磁干扰能力的提高,仍然需各位专业人士艰苦努力。以下是根据我在多年的产品设计中,针对“静电放电干扰、快速瞬变干扰和辐射电磁场干扰电磁干扰”采取的一些措施和方法,供大家参考,不当之处请批评指正。 一、抗静电放电干扰

汽车电子电器电磁干扰的产生及解决方案

汽车电子电器电磁干扰的产生及解决方案 随着电子技术的飞速发展,越来越多的电器设备应用到汽车上,提升了汽车的整体性能,但同时也带来了一个新的问题,由于采用大量电子设备而产生的电磁干扰。针对汽车电子电器电磁干扰的产生及解决方案这一问题,本文系统分析了汽车内部的点火系统、电机、电源、线路以及静电等引起的电磁干扰,并提出一些措施来防止电磁干扰。 只要是带电的物体都会对周围产生辐射或受到其它磁场辐射的作用,那么对于应用大量电子设备的车辆而言,电磁辐射干扰对于车辆电气系统的正常运行就会带来很大的影响。随着汽车工业日新月异的发展和汽车电子电器设备的大量应用,汽车电磁干扰的特点及其产生的影响也有了巨大的变化。本文就汽车电子电器电磁干扰的产生及解决方案进行探讨。 1 汽车电器电磁干扰概念及分类: 1.1汽车电器电磁干扰:是指任何能中断、阻碍、降低或限制汽车电气、电子设备有效性能的电磁能量,对有用电磁信号的接收产生不良影响,导致设备、传输信道和系统性能劣化的电磁骚扰。根据电磁干扰所产生的特点,将干扰源、传播途径和敏感设备称为电磁干扰三要素,在汽车电磁干扰形成的过程中,电磁干扰源为汽车启动或运行时电压瞬时变化较大的设备:如高压点火系统、各种感性负载(电机类电器部件)、各种开关类部件(如闪光继电器)、各种电子控制单元以及各种灯具、无线电设备等;电磁干扰途径主要分为传导干扰和辐射干扰,如在汽车启动瞬间点火机构所产生的扰动为传导干扰,而无线电干扰即为辐射干扰。敏感设备主要为汽车电子设备,如发动机控制单元(ECU)、ABS、安全气囊及各种电子模块等。 1.2汽车电子设备工作在行驶环境不断变化的汽车上,由于汽车电子设备形成以蓄电池和交流发电机为核心电源以及车体为公共地的电气网络,各部分线束都会通过电源和地线彼此传导干扰,而不相邻导线间也因天线效应而辐射干扰,干扰组成较多,环境中电磁能量构成的复杂性和多变性,意味着系统所受到的电磁干扰来源比较广泛。按照电磁干扰的来源可分为汽车内部电磁干扰、汽车外部电磁干扰、无线电干扰和车体静电干扰。 2针对不同的干扰源,下面对汽车电磁干扰现象作以分析: 2.1 汽车内部电磁干扰 2.1.1点火系统的电磁干扰 点火系统中的点火线圈、火花塞、分电器、高压线等都是干扰源,尤其是火花塞是引起高频电磁干扰的主要部件。当点火线圈初级电路被切断以后,交流发电机励磁绕组与蓄电池断开,但与其它负载仍有电的联系,这时在励磁绕组上仍有自感电动势,为一负向脉冲,脉冲幅度取决于断开瞬时的负载和调节器的状态。在初级电路所发生的是一种衰减振荡,初级电压的最大振幅值一般为300-500V,此瞬变电压若无有效的抑制措施,势必对初级电路中的电子器件构成威胁,甚至通过导线对其它电子装置产生严重的干扰。同时,在次级线圈中所感应的次级电压最大值一般为20000~30000V,足以击穿火花塞的电极间隙,产生电火花放电。火花放电将产生约0.15~1000 MHz的宽带电磁波向周围的空间辐射;如果在初级点火电路断开时打开点火开关,则产生最强的瞬时过电压,对汽车内部的电子设备产生强烈的辐射干扰。 2.1.2汽车内部过电压干扰 在汽车电器系统工作过程中,当电器的开关接通或断开、负载的电流和电压变化以及磁场发生变化时,都容易产生高频干扰信号,同时感性负载产生沿电源线传导的干扰。 2.1.2.1负载突变过电压 交流发电机与蓄电池是并联工作的。行驶过程中,若交流发电机处于额定负载下工作,一旦将交流发电机与蓄电池间的连线断开,将产生负载突变过电压。所谓负载突变过电压,即脉冲电

浅谈电子设备的电磁干扰与防护

浅谈电子设备的电磁干扰与防护措施 摘要:本文从电子产品的各种电磁干扰、馈线地线干扰及静电几个方面进行分析讨论,进而得出如何对电子产品进行电磁干扰的屏蔽、抑制等防护措施。从而保证电子产品正常地工作。 关键词:电磁干扰危害屏蔽抑制防护 引言 电子设备工作时,常会受到来自各种因素的电磁干扰。这样就使得电磁干扰日趋严重,而由此带来了电磁干扰的防护问题也变的尤其重要。 一、电子产品电磁干扰分类及危害 在电子产品的外部和内部存在着各种电磁干扰。外部干扰是指除电子产品所要接收的信号以外的外部电磁波对产品的影响。干扰会影响或破坏产品的正常工作。它带来的危害很多,比如:破坏无线电通信的正常工作,影响电声和电视系统。如在许多大型机场,由于手机发射台等大功率电磁信号的干扰,而影响飞机的正常起降等。为了保证电子产品正常地工作,就需要防止来自产品外部和内部的各种电磁干扰。 那么抑制电磁干扰的措施就是:屏蔽。屏蔽就是用导电或导磁材料制成的用以抑制电场、磁场及电磁场干扰的盒、壳、板和栅、管等称为屏蔽。屏蔽可分为:电屏蔽、磁屏蔽、电磁屏蔽。 二、电场的屏蔽 电场的屏蔽是为了抑制寄生电容耦合(电场耦合),隔离静电或电场干扰。寄生电容耦合:由于产品内的各种元件和导线都具有一定电位,高电位导线相对的低电位导线有电场存在,也即两导线之间形成了寄生电容耦合。通常把造成影响的高电位叫感应源,而被影响的低电 位叫受感器。实际上凡是能幅射电磁能量并影响其它电路工作的都称为感应源(或干扰源),而受到外界电磁干扰的电路都称为受感器。电场屏蔽的最简单的方法,就是在感应源与受感器之间加一块接地良好的金属板,就可以把感应源与受感器之间的寄生电容短接到地,达到屏蔽的目的。 三、磁场的屏蔽 磁场的屏蔽主要是为了抑制寄生电感耦合(也叫磁耦合)。磁场屏蔽随着工作频率不同所采用的磁屏蔽材料和磁屏蔽原理也不同。恒定磁场和低频磁场的屏蔽。对于恒定磁场和低频(低于100kHZ)磁场采用导磁率高的铁磁性材料做屏蔽物。其原理是利用铁磁材料的高导磁率对干扰磁场进行分路。四、电磁场的屏蔽 除了静电场和恒定磁场外,电场和磁场总是同时出现的。电磁场的屏蔽就是对高频交变电磁场的屏蔽。从上面电场屏蔽和高频磁场屏蔽的讨论中可以看出,只要将高频磁场的屏蔽物良好地接地,就能同时达到电场屏蔽的要求,即达到电场和磁场同时屏蔽的目的。使用导电良好的屏蔽材料,如铝板、铜板、铜箔或在塑料上镀镍或铜,利用它们对干扰电磁波的反射、吸收和多次反射作用,衰减干扰电磁场的能量,达到屏蔽效果。 五、屏蔽的结构形式与安装 1.线圈的屏蔽,圈屏蔽罩的结构。线圈屏蔽罩的结构既要满足屏蔽要求,又要尽量减小对线圈参数的影响,并且还应在允许的体积范围之内。为了使屏蔽线圈的品质因数下降不超过10%,电感量减小不超过15-20%,圆形屏蔽罩的直径和高度应足够大。在同样的空间位置上安装方形屏蔽罩的效果比圆形的为好。屏蔽罩上缝隙、切口的方向,必须注意不切断涡流的方向,最好是避免有缝隙和切口。 2.变压器的屏蔽。(1)变压器的屏蔽结构。因为铁芯起着集中磁通的作用,所以变压器的铁芯本身就是一个磁屏蔽物。若要进一步减小漏磁通的影响,则应采取屏蔽措施。(2)电源变压器。电子产品常用交流市电供电,由于电源变压器的初、次级绕组之间存在着寄生电容,因此其它产品在供电电网中产生高频感应电压,就会通过此寄生电容而带进本产品中来产生干扰。为了抑制寄生耦合,往往在初、次级绕组之间垫上一层接地的铜箔作静电屏蔽。但是,此铜箔不应阻碍磁场耦合。因此,铜箔本身不能短路。(3)变压器的安装。①变压器远离放大器。②电源变压器的线圈轴线应与底座垂直放置。③在安装变压器时,不要让硅钢片紧贴底座,应该用非导磁材料将变压器铁芯与底座隔开,以减少铁芯内的

电磁抗干扰来源及电路与软件抗干扰(EMC)措施

电磁抗干扰来源及电路与软件抗干扰(EMC)措施 概述 可靠性是用电设备的基木要求之一,也是所有控制单元最基木的要求。它包括两方面的含义:故障时不拒动和正常时不误动。之所以会存在这两个方面的隐患是因为电磁干扰的存在。因此为了保障控制单元可靠的工作,除了采用合适的保护原理外,本章主要考虑抗干扰设计。 电磁干扰的传播方式主要有两种:(1)辐射:电磁干扰的能量通过空间的磁场、电场或者电磁波的形式使干扰源与受干扰体之间产生藕合。(2)传导:电磁干扰的能量可以通过电源线和信号电缆以电压或电流的方式进行传播。电磁干扰的频率包括(1)低频干扰(DC10~20Hz);(2)高频干扰(几百兆赫,辐射干扰和达几千兆赫):(3)瞬变干扰(持续周期从几毫秒到几纳秒)。 造成电力系统中形成电磁干扰的原因有诸多方面,我们知道,同一电力系统中的各种电力设备通过电和磁紧密的联系起来,相互影响,由于运行方式的改变、故障、开关设备的操作等引起的电磁振荡会对智能控制单元产生影响:另外,软起动工作在环境恶劣的煤矿井下,空气非常潮湿,到处充满着煤尘,电磁干扰尤为严重。控制单元在工作时不仅要受到从电网上传来的“噪声”干扰,其木身也是一个很强的干扰源,比如负载上电流的频繁变化和通过导线空间进入单片机系统内部,造成程序跑飞,使系统工作不正常,甚至损坏系统。所以对控制单元各个部分的抗干扰性能提出了较高的要求,尤其是单片机系统的抗干扰问题。因此,在整个单片机应用系统的研发过程中,始终将抗干扰性能作为系统设计时首先考虑的问题之一。 电磁干扰的来源 所谓干扰,简单来说就是指电磁干扰(Electro-Magnetic Interference 简称EMI),它在一定条件下干扰电子设备、通信电路的正常工作。 电源干扰 电源干扰是单片机应用系统的主要干扰源,据统计,实时系统的干扰约70%来自

2021年电梯检验中电磁干扰的分析及预防措施

2021年电梯检验中电磁干扰的分析及预防措施 Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0918

2021年电梯检验中电磁干扰的分析及预防 措施 随着电梯的广泛应用,电梯的安全运行也日益成为相关单位所关注的重点。电梯的控制系统是电梯运行的核心,但是控制系统很容易受到电磁干扰的影响而发生故障或是事故,所以必须要对电梯采取措施以消除所受到的电磁干扰。 电梯的控制系统采用变频器等电力电子器件,尤其是高频开关器件的应用,这些电力电子装置在工作时,因为其电压和电流的波形都是在非常短的时间内上升和下降的,这些具有陡变沿的脉冲信号会产生很强的电磁干扰。电力电子装置的高频化和在容量化不仅导致器件所承受到的电应力增加和开关损耗增加,而且会产生难以抑制的宽带电磁干扰,威胁到电梯安全运行本身及至与其相关的其他电子设备的正常工作。

电梯控制系统中的电磁干扰 当前的电梯控制系统通常都是采用调压调频控制,具有运行性能好、节约能源,调速性能好的优点。归纳起来通常有以下4种情况的电磁干扰: (1)工频谐波干扰。变频器的功能是将工频电流通过整流电路转换成直流电流,然后通过逆变电路,把整流后的直流电逆变为频率和电压可变的交流电。由于变频器中大量使用了三极管、智能模块等电力电子器件,变频器以断续的脉冲方式从电网吸收连续的正统波能量。这种脉冲电流在电网阻抗上形成了脉动的压降叠加在工频电压上,造成了电网电压产生畸变。对于同一供电系统的其他用电设备,特别是对电梯的控制系统来说是很强的干扰源。 (2)浪涌干扰。当有感应电或是雷电进入到电梯系统,或者与电梯共用电源系统的其他大型设备的接通和断开瞬间,都有可能在电梯的电源系统中形成浪涌干扰。这是一种能量比较大的干扰,具有较高的幅度和较陡的电压上升速率。这种高能量的浪涌干扰,对电梯的控制系统有着极大的威胁,会使电梯的控制系统出现指令性

模拟传感器的主要干扰源及抗干扰措施

模拟传感器的主要干扰源及抗干扰措施 本文由https://www.doczj.com/doc/691206460.html,提供 主要干扰源: 1)静电感应 静电感应是由于两条支电路或元件之间存在着寄生电容,使一条支路上的电荷通过寄生电容传送到另一条支路上去,因此又称电容性耦合。 (2)电磁感应 当两个电路之间有互感存在时,一个电路中电流的变化就会通过磁场耦合到另一个电路,这一现象称为电磁感应。例如变压器及线圈的漏磁、通电平行导线等。 (3)漏电流感应 由于电子线路内部的元件支架、接线柱、印刷电路板、电容内部介质或外壳等绝缘不良,特别是传感器的应用环境湿度较大,绝缘体的绝缘电阻下降,导致漏电电流增加就会引起干扰。尤其当漏电流流入测量电路的输入级时,其影响就特别严重。 (4)射频干扰 主要是大型动力设备的启动、操作停止的干扰和高次谐波干扰。如可控硅整流系统的干扰等。 (5)其他干扰 现场安全生产监控系统除了易受以上干扰外,由于系统工作环境较差,还容易受到机械干扰、热干扰及化学干扰等。 模拟传感器抗干扰的措施: 1、供电系统的抗干扰设计对传感器、仪器仪表正常工作危害最严重的是电网尖峰脉冲干扰,产生尖峰干扰的用电设备有:电焊机、大电机、可控机、继电接触器、带镇流器的充气照明灯,甚至电烙铁等。尖峰干扰可用硬件、软件结合的办法来抑制。 (1)用硬件线路抑制尖峰干扰的影响 常用办法主要有三种: ①在仪器交流电源输入端串入按频谱均衡的原理设计的干扰控制器,将尖峰电压集中的能量分配到不同的频段上,从而减弱其破坏性; ②在仪器交流电源输入端加超级隔离变压器,利用铁磁共振原理抑制尖峰脉冲; ③在仪器交流电源的输入端并联压敏电阻,利用尖峰脉冲到来时电阻值减小以降低仪器从电源分得的电压,从而削弱干扰的影响。 (2)利用软件方法抑制尖峰干扰

相关主题
文本预览
相关文档 最新文档