当前位置:文档之家› 砂浆特点

砂浆特点

砂浆特点
砂浆特点

砌筑砂浆:用于砌筑砖、石等各种砌块的砂浆。

产品优点:

a.具有优异的施工和易性和粘结能力

b.具有优异的保水性,使砂浆在更佳条件下胶凝的更为密实,并可在干燥砌块基面都能保证砂浆有效粘结

c.具有塑性收缩、干缩率低特性,最大限度保证墙体尺寸稳定性

d.胶凝后具有刚中带韧的力学性能

抹灰砂浆:涂抹在建筑物或建筑物构件表面的砂浆。

产品优点:

a.能承受一系列外部作用

b.有足够的抗水冲能力,可以用在浴室和其他潮湿的房间抹灰工程中

c.减少抹灰层数,提高工效

d.良好的和易性使施工好的基面光滑平整、均匀

e.具有良好的抗流挂性能、对抹灰工具的低黏性、易施工性

f.砂浆保水性能好,硬化后不产生裂缝

g.具有良好的水蒸气渗透性

h.更好的抗裂、抗渗性能

瓷砖粘结剂:用于粘贴陶瓷砖、抛光砖以及花岗岩之类的天然石材

产品优点:

a.施工先进,抗垂性,施工质量和效率得到大幅提高

b.节约材料用量,可实现薄层粘结

c.粘结力强,减少分层和剥落,避免空鼓、开裂

d.简单方便,质量容易控制

e.保护环境,无有毒添加物

保温砂浆:聚苯乙烯颗粒添加纤维素、胶粉、纤维等添加剂的具有保温隔热性能的砂浆

产品优点:

a.加水即可使用,施工方便

b.粘结强度高,不易空鼓、脱落

c.物理力学性能稳定、收缩率低、防止收缩开裂或龟裂

d.可在潮湿基面上施工

e.干燥硬化块,施工周期短

f.绿色环保,隔热效果卓越

g.密度小,减轻建筑自重,有利于结构设计

保温板配套砂浆:保温板的粘结剂和保护砂浆

产品优点:

a.对基底和聚苯乙烯板有良好的粘结力

b.有足够的变性能力(柔性)和良好的抗冲击性

c.表面可选择多种装饰饰面材料

d.自身重量轻,对墙体要求低,能直接对混凝土和砖墙上使用

e.环保无毒,节约大量能源

f.有极佳的粘结力和表面强度,薄涂既有足够的保护能力,配合加强网格,抵抗冲击震动

g.低收缩、不开裂、不起壳、长期的耐候性与稳定性

h.加水即用,避免现场搅拌砂浆的随意性,质量稳定

i.具有良好的保水性和匀质性,有良好的施工性能

j.耐碱、耐水、抗冻融

k.快干、早强,施工效率高

填缝剂:用来填满贴在墙壁或地板上的瓷砖或天然石料之间的接缝材料

产品优点:

a.与瓷砖边缘有良好的粘合性

b.低收缩率,减少裂纹形成

c.优质的柔性配方具有足够抗变性能力、高韧性和柔性

d.用于地面的高耐磨损性

e.低吸水率,良好的抗渗性能

f.有优良的施工性

界面砂浆:牢固粘结基层和表面材料的界面处理剂

产品优点:

a.封闭基材的空隙,减少基材的吸收性,保证表面上砂浆的胶凝

b.提高基材表面强度,保证砂浆的粘结力

c.起基材和表面层的粘结搭桥作用,保证基材和表面层结合成牢固的整体

d.具有长久粘结强度,不老化,不水化

e.免除抹灰前的二次浇水工序,避免墙体干缩

装饰砂浆与粉末涂料:可替代涂料和瓷砖用于建筑物的装饰,不需要光滑基层,可作最终装饰,无需在进行其他装饰处理

产品优点:

a.色彩质感自然,视觉柔和

b.成本较低,性价比高

c.易施工,有良好的涂抹性,施工快捷方便,方法多样

d.安全,环保

e.对基材有良好的粘结性

f.抗渗效果好,具有低吸水性、高疏水性及耐粘污能力

g.有良好的透气性

h.颜色多样性,内外墙面装饰更趣完美

i.耐水耐候、耐磨透气

j.具一定柔性,防止涂层开裂

k.表现力丰富,立体感强

自流平:用于各种地板材料的基层找平

产品优点:

a.不离析,具有良好的流动性,能在一定厚度内自动找平

b.有合理的可施工与自流平时间

c.有快速干固的特性

d.通过调整配方,符合不同设计要求的承载能力

e.有优良的粘结力,不分层空鼓

f.有适当的柔韧性(抗弯折力)

g.有良好的内聚力和耐磨性

h.低收缩,环保特性

地坪砂浆:地坪砂浆也称底层自流平,是直接与地面结构粘结在一起的地面砂浆产品优点:

a.加水搅拌即可泵送,简单易用

b.高抗压及耐压度

c.低收缩度

d.优良的粘结力(配合界面剂)

e.干伴产品,品质稳定

f.大面积施工,施工快速,节约人工

g.自动找平地面,表面光滑平整,减轻楼体荷载

h.快速凝固(快凝系统)

墙体找平腻子:用于建筑涂料基层找平

外墙水泥找平腻子的优点:

a.提供良好的基面,使得涂料用量减少,降低工程造价

b.有较强的粘结力,能很好的附着于基面上

c.具有一定的柔性,能很好的缓冲基材伸缩应力

d.良好的耐老化及抗渗性、防潮性

e.环保、无毒、安全

f.抗裂性好

g.具有透气性

h.耐候性佳,耐老化,耐用时间长,添加功能性添加剂可获得更多的优良功能

内墙石膏腻子的优点:

a.粘结力强

b.表面装饰性

c.防火性能

d.保温隔热性能

e.节省工期

f.施工方便

g.具有呼吸功能

h.轻质

石膏接缝砂浆:使用于纸面石膏板、水泥纤维板等薄板龙骨系统的接缝

产品优点:

a.良好的施工性,易于操作,刮涂方便

b.无毒五味,属绿色建材

c.不开裂,强度高

d.质感细腻平整光滑,易打磨

e.具有良好的抗裂性能,和易性好,容易搅拌,便于操作,易嵌填刮平;有足够的操作时间,干硬速度快,粘结效果好。处理后的板缝平整、密实、板缝处理工序少,腻子用量省,成本低。

防水干伴砂浆:使用于地下室、混凝土顶/低板、地道、隧道、泳池墙壁、污水处理池、饮用水池、浴室、阳台、和平台的墙壁和地板等的防水

产品优点:

a.涂层致密,透气不透水

b.涂层强度高,凝固期短(快干早强,只需24小时)

c.粘结力强,体积稳定,低收缩性,防止龟裂,涂层抗渗性能强,可长期泡水

d.无毒、无味、不然、环保、耐高低温、抗冻融,可直接在涂层上粘贴瓷砖/马赛克和装饰面板,可在潮湿基面施工,不受基面几何形状影响

e.加水即用,施工容易,易于保证工程质量

f.良好耐老化性能,防水耐用年限达到25年以上,属永久性、无老化防水材料

g.可用于饮用蓄水池、游泳池等要求严格的地方

h.强度高,省却保护找平层,施工快,工期短

i.抗水压强度大,能长期抵御高水压

j.有良好的透气性,能更好的预防空鼓及稳定结构

无收缩灌浆料:用于填充孔洞、基层和底板间,也用于螺栓、钢筋搭接、支座等的固定

产品优点:

a.工厂预拌,加水即用,无离析,质量稳定

b.高流动性,操作简单,减少施工误差,保证工程质量

c.具有补偿收缩性能,体积稳定,防水防裂,抗冻融

d.快硬,强度高,耐久性好,适用面广

e.使用方便,工作效率高,大量节省工期

f.使用安全,符合环保

修补砂浆:修补混凝土剥落,混凝土组件的瑕疵等

产品优点:

a.质量稳定

b.根据不同的修补部位,具有针对性的施工性能

c.低收缩率,体积稳定

d.优良的粘结力,确保修补质量

e.特殊的抗渗、抗腐蚀配方,可用于沿海建筑物修补

f.无毒,环保

g.加水即可使用,简单方便

h.公路修补配方具有耐磨性和防止除雪剂盐水的侵蚀

i.具有高抗应变能力

j.减低二氧化碳渗透,增加修补面的耐久性

k.特殊的早强配方能使修补砂浆在短期内拥有高强度,施工效率高

硬化地坪与艺术地坪:用于需耐磨且防尘的工业地面,如:仓库、码头、厂房、停车场、维修车间、车库等

产品优点:

a.耐磨性能优异,普通砂浆或混凝土的3-5倍

b.消除粉尘污染,维持空气清洁,较少污染

c.具有优异的抗冲击性

d.能使原来的基层承受更大的荷重

e.表面细腻,油、水不易渗透

f.通过工艺处理,可以提高防滑能力,提高地面使用安全性

g.无空鼓、起皮、剥落的问题

h.具有优异的防火性

i.具有导电功能,防止人或物品所发生的静电(导静电配方)j.颜色丰富,可通过模具进行多种的美化处理

k.施工速度快,凝固时间短,与基材连续施工,缩短施工工期l.具有理想的经济性和实用性

m.地坪耐用性高,使用寿命长

M20水泥砂浆配合比设计

G307吴堡至绥德改建工程 M20水泥砂浆配合比 设计说明书 榆林市天元路业有限公司试验检测中心G307吴堡至绥德改建工程试验段LJ1LJ2合同段工地试验室

目录 一.设计依据 (1) 二.设计要求 (1) 三.原材料情况 (1) 1.水泥 (1) 2.砂 (1) 3. 水 (2) 四.配合比设计过程 (2) 1.计算试配强度 (2) 2.计算每立方米砂浆的水泥用量 (2) 3.计算每立方米砂浆的砂用量 (2) 4. 确定用水量 (3) 五.调整试配 (3) 六.确定理论配合比 (3)

M20水泥砂浆配合比设计 一、设计依据: 1、JTG E30-2005《公路工程水泥混凝土试验规程》。 2、JTG E42-2005《公路工程集料试验规程》。 3、JTG/T F50-2011《公路桥涵施工技术规范》。 4、JGJ/T 98-2010《砌筑砂浆配合比设计规程》。 5、《G307吴堡至绥德改建工程施工图设计》。 二、设计要求: 1、强度:28d设计抗压强度标准值为20MPa, 28d配置强度为23.0MPa。 2、砂浆设计稠度为50-70mm。 3、使用部位:盖板砂浆填塞。 三、原材料情况 1、水泥:山西华润福龙水泥有限公司(润丰牌P.O42.5 普通硅酸盐水泥)。表一 2、砂:吴堡黄河三星砂厂,细度模数为2.62。表二 3、水:榆林市绥德县路家洼,本地饮用水。

四、配合比设计过程: 初步确定砂浆各组成材料用量: 1.计算试配强度(28d设计抗压强度标准值为20.0MPa) 由公式:f cu,o=f cu,kσ=20×1.15=12.0 f cu,o—砂浆配制强度(MPa) f cu,k—砂浆抗压强度标准值(MPa) σ—砂浆强度标准差σ=1.15 试配强度确定为23.0MPa。 2.计算每立方米砂浆的水泥用量 由公式 Qc=1000(R-β)/(α*f ce) αβ-砂浆的特征系数,根据设计规程分别取3.03、-15.09。 f ce-水泥28d抗压强度计算值42.5×1.0=42.5MPa。 R-砂浆试配强度(MPa) 将f ce、α、β代入上式中, Qc=1000×(23.0+15.09)/(3.03×42.5)=296kg 因工地现场实际情况,根据以往施工经验,确定每立方米砂浆的水泥用量为390kg。 3、计算每立方米砂浆的砂用量 依据规范要求,每立方米砂浆的砂用量应按砂在干燥状态的堆积密度值作为计算值,实测堆积密度为1630kg/m3,每立方米砂浆的砂用量1630kg。 4、确定用水量 根据砂浆稠度要求,选用每立方米砂浆的用水量为260kg。

水泥混凝土路面基层

水泥混凝土路面基层的作用是什么[工程施工技术]收藏转发 至天涯微博 悬赏点数10该提问已被关闭6个回答 匿名提问2009-01-06 23:22:10 水泥混凝土路面基层的作用是什么 防护加固作用,符: 水泥混凝土路面面层混凝土的施工工艺 混凝土板的施工工艺为安装模板、安设传力杆、混凝土拌和与运输、混凝土摊铺和振捣、表面修整、接缝处理、混凝土养护和填缝。 1、安装模板 模板宜采用钢模板,弯道等非标准部位以及小型工程也可采用木模板。模板应无损伤, 有足够的强度,内侧和顶、底面均应光洁、平整、顺直,局部变形不得大于3mm,振捣时模板横向最大挠曲应小于4mm,高度应与混凝土路面板厚度一致,误差不超过±mm,纵缝模板平缝的拉杆穿孔眼位应准确,企口缝则其企口舌部或凹槽的长度误差为钢模板±m m,木模板塑mm。 2、安设传力杆 当侧模安装完毕后,即在需要安装传力杆位置上安装传为杆。 当混凝土板连续浇筑时,可采用钢筋支架法安设传力杆。即在嵌缝板上预留园孔,以便传力杆穿过,嵌缝板上面设木制或铁制压缝板条,按传力杆位置和间距,在接缝模板下部做成倒U形槽,使传力杆由此通过,传力杆的两端固定在支架上,支架脚插入基层内。 当混凝土板不连续浇筑时,可采用顶头木模固定法安设传为杆。即在端模板外侧增加一块定位模板,板上按照传为杆的间距及杆径、钻孔眼,将传力杆穿过端模板孔眼,并直至外侧定位模板孔眼。两模板之间可用传力杆一半长度的横木固定。继续浇筑邻板混凝土时,拆除挡板、横木及定位模板,设置接缝板、木制压缝板条和传力杆套管。 3、摊铺和振捣

对于半干硬性现场拌制的混凝土一次摊铺容许达到的混凝土路面板最大板厚度为 22 24cm ;塑性的商品混凝土一次摊铺的最大厚度为26cm 。超过一次摊铺的最大厚度时, 应 分两次摊铺和振捣,两层铺筑的间隔时间不得超过3Omin ,下层厚度约大于上层,且下层厚度为 3/5 。每次混凝土的摊铺、振捣、整平、抹面应连续施工,如需中断,应设施工缝,其位置应在TRANBBS 设计规定的接缝位置。振捣时,可用平板式振捣器或插入式振捣器。 施工时,可采用真空吸水法施工。其特点是混凝土拌合物的水灰比比常用的增大5%?10% ,可易于摊铺、振捣,减轻劳动强度,加快施工进度,缩短混凝土抹面工序,改善混凝土的抗干缩性、抗渗性和抗冻性。施工中应注意以下几点: 1) 真空吸水深度不可超过30cm 。 2) 真空吸水时间宜为混凝土路面板厚度的1.5 倍(吸水时间以min 计,板厚以cm 计)。 3) 吸垫铺设,特别是周边应紧贴密致。开泵吸水一般控制真空表lmin 内逐步升高到4 00?500mmHg,最高值不宜大于650?700mgHg,计量出水量达到要求。关泵时,亦逐渐减少真空度,并略提起吸垫四角,继续抽吸10?15s,以脱尽作业表面及管路中残余水。 4) 真空吸水后,可用滚杠或振动梁以及抹石机进行复平,以保证表面平整和进一步增强板面强度的均匀性。 4、接缝施工 纵缝应根据设计文件的规定施工,一般纵缝为纵向施工缝。拉杆在立模后浇筑混凝土之前安设,纵向施工缝的拉杆则穿过模板的拉杆孔安设,纵缝槽宜在混凝土硬化后用锯缝机锯切;也可以在浇筑过程中埋人接缝板,待混凝土初凝后拔出即形成缝槽。 锯缝时,混凝土应达到5?10Mpa 强度后方可进行,也可由现场试锯确定。横缩缝宜在混凝土硬结后锯成,在条件不具备的情况下,也可在新浇混凝土中压缝而成。 锯缝必须及时,在夏季施工时,宜每隔3? 4 块板先锯一条,然后补齐;也允许每隔3?4块板先压一条缩缝,以防止混凝土板未锯先裂。 横胀缝应与路中心线成90°,缝壁必须竖直,缝隙宽度一致,缝中不得连浆,缝隙下部设胀缝板,上部灌封缝料。胀缝板应事先预制,常用的有油浸纤维板(或软木板)、海绵橡胶

水泥混凝土路面优缺点

水泥混凝土路面优缺点 近年来,高等级公路的发展十分迅速,随着公路的高等级化以及较大的交通密度,较多的超大吨位车辆和较高的行车速度势必对路面提出较高的设计标准和更严格的施工质量要求,尤其是水泥混凝土路面,往往造价较高,且维修养护比较困难。拟将水泥混凝土路面的优缺点发表一下个人的观点: 一、水泥混凝土路面的优点 一)刚度大,承载能力强 混凝土路面板弹性模量在(3~5)×104Mpa之间,标准10t轴载下,实测仅为0.04Mpa压力,这使其对基层的承载力要求相对较低,适应在稳定基层上的大交通量和重载交通的高速公路、国道、省道、机场、厂矿道路上使用。在土基承载力小的轻交通量的乡村道路、停车场可直接将水泥混凝土路面铺筑于土基上。 二)耐久性、耐高温性强 水泥混凝土路面的耐水性好,能够较好的使用在降雨量较大的地区和在短期浸水的过水路面上,在洪水短期淹没条件下,可照常通行。 水泥混凝土路面耐高温性强,不会像沥青路面那样,在持续高温下产生严重影响平整度和行车质量的车辙或壅包。 三)抗弯拉强度高、疲劳寿命长

弯拉强度≥5.5Mpa、抗压强度≥35Mpa的强度合格混凝土面板在标准轴载的应力强度比下,疲劳寿命长,可达到500~1000万次弯曲疲劳循环。 四)刚性路面耐候性、耐久性优良 在正确设计和保证施工质量条件下,水泥混凝土刚性路面的耐候性、抗冻性、抗滑性和耐磨性等耐久性优良。水泥水化产生的脱贝莫来石是自然自有的岩石品种之一,混凝土全部是无机材料,它仅有风化问题,但没有沥青等有机材料的老化问题,而风化是老化时间的100倍。 五)刚性路面平整度衰减慢、高平整度维持时间长 刚性路面只要施工平整度好,基层抗冲刷性高,其良好平整度的衰变很慢,优良平整度的保持年限将比柔性路面长得多。 六)粗集料磨光值和磨耗值的要求低、集料易得 除非建造表面裸石路面,水泥混凝土路面对粗集料的磨光值和磨耗值的要求相对较低。可使用的粗集料岩石种类范围广泛、集料易得。 七)水泥混凝土路面更环保 当水流经或渗透过水泥混凝土天然材料时,路面的水对周围土壤和地下水无污染,是环保型路面类型,同时,可在水泥混凝土路面中使用粉煤灰,具有良好的环保效益。 八)可不设路缘石

关于M15砌筑砂浆配合比设计报告

关于M15砌筑砂浆配合比设计报告 总监办、驻地办: 按照施工设计图纸、砌筑砂浆配合比设计规程及关于工程砂浆使用的材料配合比要求,结合我标段原材料产地的分布具体情况,进行砌筑砂浆配合比设计。砂浆配合比的室内试验在监理工程师的帮助指导下完成了砂浆室内各项物理性能试验,现将试验结果汇总上报,请审查: 一、引用主要标准、规程和规范 (1)J GJ98-2000《砌筑砂浆配合比设计规程》 (2)G B/T1346-2001标准,GB/T17671-1999标准,GB175-1999标准(3)J TJ058-2000《公路工程集料试验规程》 (4)J TJ041-2000《桥涵技术规范》 二、材料的选择 (1)水泥:采用河南省安阳湖波水泥有限责任公司生产的湖波牌P.032.5级水泥,其各项检测指标如下表: 以上试验项目均符合GB175-1999标准要求合格。厂家鉴定报告和

合格证见附表。 (2)砂:采用山东省东平县砂厂产的河砂,其各项技术性质试验如下表。 以上试验项目均符合规程、规范及标准要求合格,原始材料见附表。(3)水:采用饮用水。 三、砂浆配合比的设计过程 (1)试配强度(f m,0) f m,0=f2+0.645δ 当不具备有近期统计资料时,砂浆现场强度标准差δ按下表规定录用砂浆强度标准差δ选用值(Mpa) 通过查上表可知:f m,0=f2+0.645δ=15+0.645×4.5

=17.9MPa (2)砌筑砂浆的稠度应按下表规定选用 通过查上表根据结构部位和运输情况采用稠度为30~50mm (3)水泥实际强度:(f ce) f ce=r c×f ce,k=1.0×32.5=32.5MPa (4)水泥用量(Q c) Q c=1000·(f m,0-β)/a·f ce =1000×[17.9-(-15.09)]/3.03×32.5=335kg/m3 根据试拌情况水泥用量调整为385kg/m3 (5)每立方米砂浆中的砂子用量,应按燥状态(含水量小于0.5%)的堆积密度值作为计算值,通过试验采用1600kg/m3 (6)每立方米砂浆中的用水量,通过砂浆稠度试验调整为285kg/m3,由此可确立每立方米砂浆各材料理论用量(kg/m3) 水泥:砂:水=385:1600:285=1:3.99:0.68 四、配合比的试拌

钢筋混凝土结构期末复习重点

徐变:在长期荷载作用下,混凝土的变形随时间而增加,亦即在应力不变的情况下,混凝土的应变随时间继续增长,这种现象称为混凝土的徐变。 收缩:在混凝土凝结和硬化的物理化学过程中体积随时间的推移而减小的现象称为收缩。 松弛:钢筋受力后长度保持不变,钢材的应力随时间增长而降低的现象称为松弛。 立方体抗压强度标准值(f cu,k);柱体混凝土抗压强度标准值(f ck);混凝土抗拉强度标准值(f tk)。规定以每边边长为150mm的立方体为标准试件,在20℃±2℃的温度和相对湿度为95%以上的潮湿空气中养护28d,依照标准制作方法和试验方法测得的抗压强度值(以MPa为单位)作为混凝土的立方体抗压强度。 结构的可靠性:结构的安全性、适用性和耐久性这三者总称为结构的可靠性。 结构的可靠度的是指结构在规定时间内,在规定的条件下,完成预定功能的概率。 极限状态:当整体结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态为该功能的极限状态。 混凝土结构的耐久性:是指结构对气候作用、化学侵蚀、物理作用或任何其他破坏过程的抵抗能力。 最小配筋率是少筋梁与适筋梁的界限。最大配筋率是适筋梁与超筋梁的界限配筋率。 界限破坏:当钢筋混凝土梁的受拉区钢筋达到屈服应变εy而开始屈服时,受压区混凝土边缘也同时达到其极限压应变εcu而破坏,此时被称为界限破坏。 张拉控制应力是指预应力钢筋锚固前张拉钢筋的千斤顶所显示的总拉力除以预应力钢筋截面积所求得的钢筋应力值。 预应力度:为由预加应力大小确定的消压弯矩Mo与外荷载产生的弯矩Ms的比值。 预应力混凝土:就是事先人为地在混凝土或钢筋混凝土中引入内部应力,且其数值和分布恰好能将使用荷载产生的应力抵消到一个合适程度的配筋混凝土。作用:使构件不致开裂或推迟开裂或减小裂缝开展的宽度。 换算截面:将整个截面换算为单一材料组成的混凝土截面(或钢截面),通常将这种换算后的截面称为换算截面。 纵向弯曲系数:把长柱失稳破坏时的临界压力与短柱压坏时的轴心压力的比值,叫纵向弯曲系数。 疲劳强度:对于桥梁结构,通常要求能承受200万次以上的反复荷载并不得产生破坏,以此作为混凝土疲劳强度的f f c标准,一般取f f c≈0.5f c。 作用的代表值是指结构或结构构件设计时,针对不同设计目的所采用的各种作用规定值,包括标准值、准永久值、频遇值。 作用是指使结构产生内力、变形、应力和应变的所用原因,它分为直接作用和间接作用。 公路桥涵结构上的作用分类:永久作用、可变作用、偶然作用。永久作用:在设计使用期内,其量值不随时间变化,或其变化与平均值相比可忽略不计的作用。 全梁承载力校核根据:弯矩包络图、承载能力图。 裂缝的种类分为:正常裂缝或荷载裂缝、非正常裂缝或非荷载裂缝。 锚具的分类:依靠摩阻力锚固的锚具、依靠承压锚固的锚具、依靠黏结力锚固的锚具。 混凝土的变形分为两类:一类是在荷载作用下的受力变形(单调短期荷载作用、重复荷载作用变形、长期荷载作用变形);另一类是不受力变形。 结构的功能:安全性、适用性、耐久性.。 极限状态分为:承载能力极限状态、正常使用极限状态。 加筋混凝土结构的分类按照预应力度分为:全预应力混凝土结构、部分预应力混凝土结构和钢筋混凝土结构等三种结构。 超筋截面应采取的措施:提高混凝土级别;修改截面尺寸;改用双筋截面等措施重新设计。 钢筋混凝土受弯构件正截面的工作分为:整体工作阶段、带裂缝工作阶段和破坏阶段三个阶段。 钢筋按加工方法分为:热轧钢筋、精轧螺纹钢筋、碳素钢丝。 钢筋的强度与变形:钢筋的拉伸应力应变曲线分为有明显流幅的和没有明显流幅的。 钢筋混凝土轴心受压构件按照箍筋的功能和配置方式的不同可分为两种:1)配有纵向钢筋和普通箍筋的轴心受压构件(普通箍筋柱)。2)配有纵向钢筋和螺旋箍筋的轴心受压构件(螺旋箍筋柱)。 普通箍筋柱设置纵向钢筋的目的:(1) 协助混凝土承受压力,可减少构件截面尺寸;(2) 承受可能存在的不大的弯矩;(3) 防止构件的突然脆性破坏. 钢筋混凝土受弯构件正截面破坏形态有哪些?有何特征?(1)适筋梁破坏——塑性破坏。特点是当荷载增加到一定程度后,受拉钢筋首先屈服,然后受压混凝土被压碎,属塑性破坏。(2)超筋梁破坏——脆性破坏。特点是裂缝一旦出现,即很快形成临界斜裂缝,并迅速延伸至梁顶,使混凝土裂通,梁被拉断而破坏,属脆性破坏。(3)少筋梁破坏——脆性破坏。特点是随着荷载的增加,受压混凝土首先被压碎,受拉钢筋未屈服,属脆性破坏。 钢筋和混凝土能够有效的结合在一起共同工作的主要是由于:(1)混凝土和钢筋之间有着良好的黏结力,使钢筋和混凝土能可靠的结合成一个整体,在荷载作用下能够很好的共同变形,完成其结构功能。(2)钢筋和混凝土的温度线膨胀系数也较为接近,因此当温度变化时不致产生较大的温度应力而破坏两者之间的黏结。(3)混凝土包围在钢筋的外围,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。 钢筋混凝土受弯构件斜截面的破坏形态有哪些?有何特征?(1)剪压破坏;特点是:当荷载增加到一定程度后,构件上先出现的垂直裂缝和细微的倾斜裂缝,发展形成一根主要的斜裂缝,称为“临界斜裂缝”,属塑性破坏。条件:多见于剪跨比为1≤m≤3的情况下。措施:按计算配腹筋。(2)斜拉破坏:特点是:斜裂缝一出现,即很快形成临界斜裂缝,并迅速延伸到集中荷载作用点处,使混凝土裂开,梁斜向倍拉断而破坏,属脆性破坏。条件:这种破坏发生在剪跨比较大(m>3)时。措施:控制腹筋最少用量。(3)斜压破坏;特点是:随着荷载的增加,梁腹被一系列平行的斜裂缝分割成许多倾斜的受压柱体,这些柱体最后在弯矩和剪力的复合作用下被压碎,属脆性破坏。条件:剪跨比较小(m<1)时。措施:控制最小截面。钢筋混凝土适筋梁正截面受力全过程可划分为几个阶 段?每个阶段受力主要特点是什么?答:钢筋混凝土 适筋梁正截面受力全过程可划分为三个阶段:(1.)第Ⅰ 阶段:整体工作阶段:梁混凝土全截面工作,混凝土 的压应力和拉应力都基本呈三角形分布。纵向钢筋承 受拉应力。混凝土处于弹性工作阶段,即应力与应变 成正比。第Ⅰ阶段末:混凝土的压应力基本上仍是三 角形分布。受拉边缘混凝土的拉应变临近抗拉极限应 变,拉应力达到混凝土抗拉强度,表示裂缝即将出现。 (2)第Ⅱ阶段:荷载作用弯矩达到开裂弯矩后,在梁 混凝土抗拉强度最弱截面上出现了第一条裂缝。这时 在有裂缝的截面上,拉区混凝土退出工作,把它原承 担的拉力转给了钢筋,发生了明显的应力重分布。钢 筋的拉应力随荷载的增加而增加;混凝土的压应力不 再是三角形分布,而形成微曲的曲线形,中性轴位置 向上升高。第Ⅱ阶段末:钢筋拉应变达到屈服时的应 变值,钢筋屈服。(3)第Ⅲ阶段:钢筋的拉应变增加 很快,但钢筋的拉应力一般仍维持在屈服强度不变。 这时,裂缝急剧开展,中性轴继续上升,混凝土受压 区不断缩小,压应力也不断增大,压应力图成为明显 的丰满曲线形。第Ⅲ阶段末:压区混凝土的抗压强度 耗尽,在临近裂缝两侧的一定区域内,压区混凝土出 现纵向水平裂缝,随即混凝土被压碎,梁截面破坏。 短柱的破坏是一种材料破坏,即混凝土压碎破坏。长 柱的破坏来得比较突然,导致失稳破坏。 影响受弯构件斜截面抗剪能力的主要因素:剪跨比、 混凝土抗压强度、纵向钢筋配筋率、配筋率和箍筋强 度。 钢筋混凝土受弯构件正截面承载力计算的基本假定有 哪些?答:受弯构件正截面承载力计算的基本假定有: (1)构件变形符合平截面假定(2)不考虑混凝土的 抗拉强度(3)材料应力-应变物理关系①混凝土的应 力-应变曲线,采用的是由一条二次抛物线及水平线组 成的曲线②钢筋的应力-应变曲线采用简化的理想弹 塑性应力-应变关系;(4)混凝土压应力的分布图形取 等效矩形应力图。 矩形截面偏心受压构件正截面强度计算的基本假定是 什么?(1)截面应变分布符合平截面假定(2)不考 虑混凝土抗拉强度(3)受压区混凝土的极限压应变, 强度等级C50及以下时取εcu=0.0033,C80时取0.003, 中间按内插法确定(4)混凝土压应力图形为矩形,应 力集度为f cd,矩形应力图高度x=βx0,受压较大的钢 筋应力取f’sd.(5)受拉边的钢筋应力。 正截面强度计算的基本假定?(1)截面应变分布符合 平截面假定(2)不考虑混凝土的抗拉强度(3)受压 区混凝土的极限压应变,强度等级C50及以下时取ε cu =0.0033,C80时取0.003,中间按内插法确定(4) 混凝土压应力图形为矩形,应力集度为fcd,矩形应力 图高度X=βX0(5)钢筋的应力视为理想的弹塑性体, 各根钢筋的应力根据应变确定。 斜截面抗剪承载力验算的截面位置的确定:(1)距支座 中心h/2处的截面(2)受拉区弯起钢筋起点处的截面, 以及锚于受拉区的纵向主筋开始不受力处的截面(3) 箍筋数量或间距改变处的截面(4)受弯构件腹板宽度 改变处的截面。 影响裂缝宽度的因素有哪些?(1)受拉钢筋应力:在 使用荷载作用下的受拉钢筋应力与最大裂缝宽度为线 性关系。(2)受拉钢筋直径:裂缝宽度随直径而变化, 最大裂缝宽度与直径近似于线性关系。(3)受拉钢筋 配筋率:裂缝宽度随受拉钢筋配筋率增加而减小,当 配筋率接近某一数值时,裂缝宽度接近不变。(4)混 凝土保护层厚度:保护层越厚,裂缝间距越大也越宽, 有害物质也越难入侵,钢筋越不容易被锈蚀。(5)受 拉钢筋粘结特征:钢筋与混凝土间的粘结力对裂缝开 展存在一定的影响。(6)长期或重复荷载的影响:构 件的平均及最大裂缝宽度随荷载作用时间的延续,以 逐渐减低的比率增加。(7)构件形状的影响:具有腹 板的受弯构件抗裂性能比板式受弯构件稍好。 试述钢筋混凝土梁内钢筋的种类、作用。答:(1) 纵向受力钢筋:承受拉力或压力;(2)箍筋:箍筋除 了帮助混凝土抗剪外,在构造上起着固定纵向钢筋位 置的作用,并与纵向钢筋、架立钢筋等组成钢筋骨架。 (3)弯起钢筋:抗剪;(4)架立钢筋:架立箍筋、固 定箍筋的位置,形成钢筋骨架。(5)水平纵向钢筋: 水平纵向钢筋的作用主要是在梁侧面发生裂缝后,减 小混凝土裂缝宽度。 简述钢筋预应力损失的估算?答:1)预应力筋与管道 壁间摩擦引起的应力损失(σl1)2)锚具变形、钢筋 回缩和接缝压缩引起的应力损失(σl2)3)钢筋与台 座间的温差引起的应力损失(σl3)4)混凝土弹性压 缩引起的应力损失(σl4)5)钢筋松弛引起的应力损 失(σl5)6)混凝土收缩和徐变引起的应力损失(σ l6)。先张法:23456 后张法:12456. 什么是先张法、后张法?简述其施工方法及主要设 备?(1)先张法,即先张拉钢筋,后浇筑构件混凝土 的方法。先在张拉台座上,按设计规定的拉力张拉预 应力钢筋,并进行临时锚固,再浇筑构建混凝土,待 混凝土达到要求强度后,放张,让预应力钢筋的回缩, 通过预应力钢筋与混凝土间的粘结作用,传递给混凝 土,使混凝土获得预应压力。(主要设备:张拉台座、 张拉千斤顶、临时锚具)。(2)后张法是先浇筑构件 混凝土,待混凝土结硬后,再张拉预应力钢筋并锚固 的方法。先浇筑构件混凝土,并在其中预留孔道,待 混凝土达到要求强度后,将预应力钢筋穿入预留的孔 道内,将千斤顶支承于混凝土构件端部,张拉预应力 钢筋,使构件也同时受到反力压缩。待张拉到控制拉 力后,即用特制的锚具将预应力钢筋锚固于混凝土构 件上,使混凝土获得并保持其预压应力。最后,在预 留孔道内压注水泥浆,以保护预应力钢筋不致锈蚀, 并使预应力钢筋与混凝土粘结成为整体。(主要设备: 制孔器、穿束机、千斤顶、锚具、压浆机)。后张法是 靠工作锚具来传递和保持预加应力的;先张法是靠粘 结力来传递并保持预加应力的。 结构的功能:所有工程结构在设计时,必须符合安全可 靠、适用耐久、经济合理的要求。 (1)安全性。在规定期限和正常状况下,结构能承受 可能出现的各种作用,在偶然事件发生时,结构发生 局部损坏但不至于整体破坏和连续倒塌,仍能整体稳 定。(2)适用性。在正常使用下,结构具有良好的工 作性能,结构不发生过大的变形或震动。(3)耐久性。 在正常维护状况下,材料性能随时间变化,但结构仍 能满足预订的功能要求。构件不出现过大的裂缝,在 生物和化学作用下,不导致失效。 混凝土加钢筋后结构性能变化:1.大大提高机构的承 载力2.结构的受力性显著改善 钢筋混凝土结合工作原因:1.钢筋和混凝土存在良好 的粘结力,荷载作用下,可以保证两种材料协调变形, 共同受力2.具有相同温度线膨胀系数,不会发生过大 的变形而导致两者间的粘黏性破坏 钢筋混凝土优点: 1承耐能力能力相对较高。省钢材 2.耐久性好,耐火 3.可模型好,便与结构形式的实现 4.整体性好,刚度大 5.就地性好经济性好 缺点:自重大,抗裂性差,施工工期长,工艺复杂, 受环境限制

M10水泥砂浆配合比设计

M10砌筑水泥砂浆配合比设计说明一、设计说明 M10水泥砂浆用于砌筑,稠度50-70mm 二、设计依据 1.《砌筑砂浆配合比设计规程》JGT/T98-2010 2.《建筑砂浆基本性能试验方法标准》JTG/T70-2009 3.《公路工程水泥及水泥混凝土试验规程》JTG E30-2005 4.《公路工程集料试验规程》JTG E42-2005 5.《公路桥涵施工技术规范》JTG/T F50-2011 6.《设计文件》 三、原材料 1.水泥:辽源市金刚水泥厂P.O42.5 2.砂:梅河口市龙河采砂场,中砂 3.拌合水:饮用水 四、计算步骤 1.砂浆试配强度计算:?m,0=κ?2 表1 砂浆强度标准差及σ及κ值 ?m,0=κ?2= 1.20*10 = 12 MPa

2.水泥用量计算 QC=1000(?m,0-β)/( α·?ce) =1000*(12+15.09)/(3.03*49) =183Kg 根据经验适当调整,初步确定水泥用量为310Kg。 式中?ce-水泥实测强度(MPa),精确至0.1 Mpa;此处取 49 MPa α、β-为砂浆的特征系数,其中α取3.03,β取-15.09 3.每立方米砂浆中的砂用量,按干燥状态(含水率小于0.5%),的堆积密度作为计算值;砂的实测自然堆积密度值1550 kg/m3 4.每立方米砂浆中的水用量,可根据砂浆稠度等要求选用270~330kg;此处根据砂浆细度模数及石粉含量取270kg。 五、经初步计算和调整水泥用量后的每方材料用量 表2 M10砌筑水泥砂浆材料用量(kg/m3)

六、计算试6L水泥砂浆的材料用量 表3 6L水泥砂浆拌合物的材料用量 七、经试配后水泥砂浆拌合物性能 表4 试配砂浆的基本性能 八、水泥砂浆力学性能试验 表5 砂浆的抗压强度(MPa)

一建【市政】03水泥混凝土路面结构组成特点

1K411013水泥混凝土路面的构造 水泥混凝土路面结构的组成包括路基(详见1K411012条)、垫层、基层以及面层。 城镇沥青路面道路结构由面层、基层和路基组成。 一、构造特点 (一)垫层 在温度和湿度状况不良的环境下,水泥混凝土道路应设置垫层,以改善路面的使用性能。(1)在季节性冰冻地区,道路结构设计总厚度小于最小防冻厚度要求时,根据路基干湿类型和路基填料的特点设置垫层;其差值即是垫层的厚度。水文地质条件不良的土质路堑,路基土湿度较大时,宜设置排水垫层。路基可能产生不均匀沉降或不均匀变形时,宜加设半刚性垫层。 (2)垫层的宽度应与路基宽度相同,其最小厚度为150mm。 (3)防冻垫层和排水垫层宜采用砂、砂砾等颗粒材料。半刚性垫层宜采用低剂量水泥、石灰等无机结合稳定粒料或土类材料。 (二)基层 ※(1)水泥混凝土道路基层作用:防止或减轻由于唧泥产生板底脱空和错台等病害;与垫层共同作用,可控制或减少路基不均匀冻胀或体积变形对混凝土面层产生的不利影响;为混凝土面层提供稳定而坚实的基础,并改善接缝的传荷能力。 ※(2)基层材料的选用原则:根据道路交通等级和路基抗冲刷能力来选择基层材料。特重交通宜选用贫混凝土、碾压混凝土或沥青混凝土;重交通道路宜选用水泥稳定粒料或沥青稳定碎石;中、轻交通道路宜选择水泥或石灰粉煤灰稳定粒料或级配粒料。湿润和多雨地区,繁重交通路段宜采用排水基层。 (3)基层的宽度应根据混凝土面层施工方式的不同,比混凝土面层每侧至少宽出300mm(小型机具施工时)或500mm(轨模式摊铺机施工时)或650mm(滑模式摊铺机施工时)。 小白龙口诀:小3鬼5滑65。 (4)各类基层结构性能、施工或排水要求不同,厚度也不同。 (6)碾压混凝土基层应设置与混凝土面层相对应的接缝。 (三)面层 (1)面层混凝土通常分为普通(素)混凝土、钢筋混凝土、连续配筋混凝土、预应力混凝土等。目前我国多采用普通(素)混凝土。水泥混凝土面层应具有足够的强度、耐久性(抗冻性),表面抗滑、耐磨、平整。 小白龙口决:李玉刚去苏联。 (2)混凝土面层在温度变化影响下会产生胀缩。为防止胀缩作用导致裂缝或翘曲,混凝土面层设有垂直相交的纵向和横向接缝,形成一块块矩形板。一般相邻的接缝对齐,不错缝。每块矩形板的板长按面层类型、厚度并由应力计算确定。 (3)纵向接缝是根据路面宽度和施工铺筑宽度设置。一次铺筑宽度小于路面宽度时,应设置带拉杆的平缝形式的纵向施工缝。一次铺筑宽度大于4.5m时,应设置带拉杆的假缝形式的纵向缩缝,纵缝应与线路中线平行。 横向接缝可分为横向缩缝、胀缝和横向施工缝,横向施工缝尽可能选在缩缝或胀缝处。快速路、主干路的横向胀缝应加设传力杆;在邻近桥梁或其他固定构筑物处、板厚改变处、小半径平曲线等处,应设置胀缝。

砂浆配合比报告

S217旌德段路面大中修工程 砂浆配合比设计报告 (M7.5) 批准: 校核: 试验: S217蔡雄路旌德段路面大中修项目工地临时试验室 二0一五年八月 S217蔡雄路旌德段路面大中修 M7.5砂浆配合比设计 该工程挡土墙M7.5砂浆进行配合比设计。其原材料采用宁国中砂,海螺P·C32.5级水泥。M7.5砂浆配合比设计如下: 一、试验依据 1、《砌筑砂浆配合比设计规程》JGJ/T98-2010 2、《公路工程水泥硂及水泥硂试验规程》JTG E30-2005 3、《公路工程集料试验规程》JTG E42-2005 4、《通用硅酸盐水泥》GB 175-2007 5、《公路桥涵施工技术规范》JTG/T F50-2011 二、原材料试验 原材料均由委托方送样。根据委托方要求,水泥原材料只进行标准稠度用水量、初,终凝时间、安定性、胶砂强度四项指标试验;砂只进行筛分、容量、含泥量试

验。 <1>水泥:按《通用硅酸盐水泥》GB 175-2007进行标准稠度用水量、初、终凝时间、安定性、胶砂强度四项指标试验,结果见下表: 海螺P·C32.5级水泥检测结果表 <2>砂:Array按 《公路工程集料试验规程》JTG E42- 2005进行筛分、容重、含泥量试验,结果见下表: 砂筛分结果

砂容重、含泥量试验结果表 三、配合比设计计算 根据《砌筑砂浆配合比设计规范》JGJ/T 98—2010 (1)其参数计算选择如下: K=1.2 f m,0=9.0 m c0=245k g/m3 m w0=240k g/m3 m s0=1468k g/m3 (2)经过计算得初步配合比为(kg/m3): C : S : W=245:1468:240 四、砂浆试块制作及试压 经过理论计算及试拌,将配合比调整如下(kg/m3): M7.5 : C : S :W = 270:1468:240 根据上述配比,经过人工拌和,人工成型的砂浆试件在标准养护条件下养护28天其抗压强度见下表 五、建议配合比(kg/m3): C : S : W = 270:1468:240 施工过程中,应按配合比设计要求,严格控制原材料质量,进行浆砌边沟施工。

钢筋混凝土的特点及应用

钢筋混凝土的特点及应用 一、钢筋混凝土的基本原理 钢筋混凝土之所以可以共同工作是由它自身的材料性质决定的。首先钢筋与混凝土有着近似相同的线膨胀系数,不会由环境不同产生过大的应力。其次钢筋与混凝土之间有良好的粘结力,有时钢筋的表面也被加工成有间隔的肋条(称为变形钢筋)来提高混凝土与钢筋之间的机械咬合,当此仍不足以传递钢筋与混凝土之间的拉力时,通常将钢筋的端部弯起180 度弯钩。此外混凝土中的氢氧化钙提供的碱性环境,在钢筋表面形成了一层钝化保护膜,使钢筋相对于中性与酸性环境下更不易腐蚀。为保证钢筋与混凝土之间的可靠粘结和防止钢筋被锈蚀,钢筋周围须具有15~30毫米厚的混凝土保护层。若结构处于有侵蚀性介质的环境,保护层厚度还要加大。 由于混凝土的抗拉强度远低于抗压强度,因而素混凝土结构不能用于受有拉应力的梁和板。如果在混凝土梁、板的受拉区内配置钢筋,则混凝土开裂后的拉力即可由钢筋承担,这样就可充分发挥混凝土抗压强度较高和钢筋抗拉强度较高的优势,共同抵抗外力的作用,提高混凝土梁、板的承载能力。 二、钢筋混凝土的特性 混凝土的收缩和徐变(蠕变)对钢筋混凝土结构具有重要意义。由于钢筋会阻碍混凝土硬化时的自由收缩,在混凝土中会引起拉应力,在钢筋中会产生压应力。混凝土的徐变会在受压构件中引起钢筋与混凝土之间的应力重分配,在受弯构件中引起挠度增大,在超静定

结构中引起内力重分布等。混凝土的这些特性在设计钢筋混凝土结构时须加以考虑。 由于混凝土的极限拉应变值较低(约为0.15毫米/米)和混凝土的收缩,导致在使用荷载条件下构件的受拉区容易出现裂缝。为避免混凝土开裂和减小裂缝宽度,可采用预加应力的方法;对混凝土预先施加压力。实践证明,在正常条件下,宽度在0.3毫米以内的裂缝不会降低钢筋混凝土的承载能力和耐久性。 在从-40~60°C的温度范围内,混凝土和钢筋的物理力学性能都不会有明显的改变。因此,钢筋混凝土结构可以在各种气候条件下应用。当温度高于60°C时,混凝土材料的内部结构会遭到损坏,其强度会有明显降低。当温度达到200°C时,混凝土强度降低30~40%。因此,钢筋混凝土结构不宜在温度高于200°C的条件下应用:当温度超过200°C时,必须采用耐热混凝土。 三、钢筋混凝土的分类及强度划分 1、按密度分类:混凝土按密度大小不同可分为三类: 重混凝土:它是指干密度大于2600kg/m的混凝土,通常是采用高密度集料(如重晶石、铁矿石、钢屑等)或同时采用重水泥(如钡水泥、锶水泥等)制成的混凝土。因为它主要用作核能工程的辐射屏蔽结构材料,又称为防辐射混凝土。 普通混凝土:它是指干密度为2000~2600kg/㎡的混凝土,通常是以常用水泥为胶凝材料,且以天然砂、石为集料配制而成的混凝土。它是目前土木工程中最常用的水泥混凝土。

M10水泥砂浆配合比设计

M10水泥砂浆配合比设计报告 (一)设计概况 设计水泥砂浆强度等级为M10,无强度统计资料,用于普通混凝土砌体,砂浆稠度为50-70㎜,全部采用本地原材料。 1、水泥 水泥采用南京三龙天宝山牌P.C32.5级水泥,水泥技术指标如表1: 表1 2、砂 砂采用河定桥中(粗)砂。其指标如表2: 筛分结果如表3: 细度模数为2.70,属Ⅱ区中砂。 3、水 水采用人畜饮用水。 (二)确定初步配合比 1)确定砂浆试配强度(f m,o) 设计水泥砂浆强度等级为M10,f2 =10 MPa。无强度统计资料,施工水平优良,κ=1.15。砂浆试配强度: f m,o=κf2 =1.15×10=11.5(MPa) 2)选用每立方米砂浆水泥用量(Q c) Q c=280kg 3)选用每立方米砂浆用水量(Q w) Q w=320kg 4)计算每立方米砂浆砂用量(Q s) 根据砂的堆积密度ρs=1.66g/cm3,Q s=1660kg 5)确定初步配合比 初步配合比为: Q c:Q w:Q s=280:320:1660 (三)提出基准配合比 该水泥砂浆采用砂浆搅拌机搅拌,搅拌量为10L。试拌拌合物稠度为58mm,保水率为

85.6%。基准配合比为: Q c :Q w :Q s =280:320:1660 (四)确定设计配合比 在基准配合比的基础上,再分别增加和减少10%水泥用量,通过试拌、调整、确定三种不同配合比,并以此三种配合比拌制砂浆进行抗压强度试验,结果如表4: 表4 绘制水泥用量—抗压强度关系图如下: M10水泥沙浆水泥用量—抗压强度关系图 910 11 12 13 14 240 260 280 300 320 水泥用量(kg/m 3) 抗压强度(M P a ) 图中求得试配强度对应水泥用量为285kg 。确定每立方米砂浆用水量Q w =320kg ,砂用量Q s =1660kg 。拌合物表观密度理论值ρt =2260 kg/m 3,实测值ρc =2240 kg/m 3,砂浆配合比校正系数δ=ρc /ρt =0.99。设计配合比为: Q c :Q w :Q s =285:320:1660

水泥混凝土路面做法

水泥混凝土路面施工做法 水泥混凝土路面是一种刚性高级路面,它由水泥、水、粗集料、细集料和外加剂按一定级拌和成水泥混凝土混合料铺筑而成的路面,具有强度高、承载能力强、稳定性好、抗滑等优点。所以,我国对水泥混凝土路面铺筑都非常重视,对路面的修筑施工技术进行了不断研究,使水泥混凝土路面得到了较快的发展。特别是在高等级交通道路上,水泥混凝土路面得到了更广泛的应用。 1、水泥混凝土路面特点分析 1.1水泥混凝土路面概念 (1)常规混凝土路面。我国于20世纪80年代末从国外引进,而且抗冲击、抗冻、抗裂等性能也大大提高,有利于延长路面使用寿命、减小路面截面厚度。 (2)碾压混凝土路面。我国于20世纪80年代末从国外引进,收效较大,目前主要用于低速和重荷载道路、重型汽车停放场等的铺筑。 (3)钢纤维混凝土路面。钢纤维能提高路面强度和韧性,而且抗冲击、抗冻、抗裂等性能也大大提高,有利于延长路面使用寿命、减小路面截面厚度。 (4)接缝钢筋混凝土路面。该种路面的横向接缝的间距较常规混凝土路面大,可大大减少接缝数量,但造价较高。 1.2水泥混凝土路面结构特征 水泥混凝土路面具有良好的使用特性,具体说明如下: (1)刚度大。水泥混凝土具有较高的抗压、抗弯、抗拉和抗磨等力学强度。混凝土路面的抗弯强度达4.0MPa~5.5MPa,抗压力强度达30MPa~40MPa,具有较高的承载力和扩散荷载能力。 (2)稳定性好。水泥混凝土路面的水稳定性好、热稳定性好,特别是其强度能随时间而增长,因而,水泥混凝土路面用于气倏条件急剧变化地区时,不易出现沥青路面的某些稳定性不足的损坏。 (3)耐久性好。由于水泥混凝土路面的强度和稳定性好,无需很多的养护和维修,使用耐久。 (4)抗侵蚀能力强。水泥混凝土对油和大多化学物质不敏感,具有较强的抗侵蚀能力。 (5)养护费用少。在正常设计和施工养护的条件小,水泥混凝土路面的养护工作量和养护费用仅约为沥青路面的1/3~1/4.当然,水泥混凝土路面也存在一些不足之处,具体说明如下: ①筑初期投资大; ②水泥和水的用量大; ③水泥混凝土路面接缝是水泥混凝土路面的薄弱点,一方面增加了施工的复杂性,另一方面在施工和养护不当时易于导致错台和断裂等操作的出现,影响路面平整度; ④修筑时养生时间长(14~21天); ⑤修补困难。水泥混凝土路面的不足之处需要通过良好的施工工艺、合理的管理措施以及高效的资金利用率来逐步解决,而其具有的显著特点,能适应现代汽车运输载重量大、速度高且密度大的要求,决定了水泥混凝土路面具有良好的应用前景。 2、水泥混凝土路面的施工技术 2.1施工前准备 (1)材料准备。 在施工前按设计要求分批备好所需要的各种材料,并按规范要求进行送样试验,满足要求后方可使用。 (2)基层检验。 检查基层的宽度、路拱与标高、表面平整度、厚度和压实度等是否符合规范要求,如有不符之处,应予整修。 2.2测量放样和安设模板

钢筋混凝土的基本原理特点及应用

钢筋混凝土的基本原理特点及应用 钢筋混凝土之所以可以共同工作是由它自身的材料性质决定的。首先钢筋与混凝土有着近似相同的线膨胀系数,不会由环境不同产生过大的应力。其次钢筋与混凝土之间有良好的粘结力,有时钢筋的表面也被加工成有间隔的肋条(称为变形钢筋)来提高混凝土与钢筋之间的机械咬合,当此仍不足以传递钢筋与混凝土之间的拉力时,通常将钢筋的端部弯起180 度弯钩。此外混凝土中的氢氧化钙提供的碱性环境,在钢筋表面形成了一层钝化保护膜,使钢筋相对于中性与酸性环境下更不易腐蚀。为保证钢筋与混凝土之间的可靠粘结和防止钢筋被锈蚀,钢筋周围须具有15~30毫米厚的混凝土保护层。若结构处于有侵蚀性介质的环境,保护层厚度还要加大。 由于混凝土的抗拉强度远低于抗压强度,因而素混凝土结构不能用于受有拉应力的梁和板。如果在混凝土梁、板的受拉区内配置钢筋,则混凝土开裂后的拉力即可由钢筋承担,这样就可充分发挥混凝土抗压强度较高和钢筋抗拉强度较高的优势,共同抵抗外力的作用,提高混凝土梁、板的承载能力。 钢筋混凝土的特性 混凝土的收缩和徐变(蠕变)对钢筋混凝土结构具有重要意义。由于钢筋会阻碍混凝土硬化时的自由收缩,在混凝土中会引起拉应力,在钢筋中会产生压应力。混凝土的徐变会在受压构件中引起钢筋与混凝土之

间的应力重分配,在受弯构件中引起挠度增大,在超静定结构中引起内力重分布等。混凝土的这些特性在设计钢筋混凝土结构时须加以考虑。由于混凝土的极限拉应变值较低(约为0.15毫米/米)和混凝土的收缩,导致在使用荷载条件下构件的受拉区容易出现裂缝。为避免混凝土开裂和减小裂缝宽度,可采用预加应力的方法;对混凝土预先施加压力。实践证明,在正常条件下,宽度在0.3毫米以内的裂缝不会降低钢筋混凝土的承载能力和耐久性。 在从-40~60°C的温度范围内,混凝土和钢筋的物理力学性能都不会有明显的改变。因此,钢筋混凝土结构可以在各种气候条件下应用。当温度高于60°C时,混凝土材料的内部结构会遭到损坏,其强度会有明显降低。当温度达到200°C时,混凝土强度降低30~40%。因此,钢筋混凝土结构不宜在温度高于200°C的条件下应用:当温度超过200°C 时,必须采用耐热混凝土。 钢筋混凝土的分类及强度划分 1、按密度分类:混凝土按密度大小不同可分为三类: 重混凝土:它是指干密度大于2600kg/m的混凝土,通常是采用高密度集料(如重晶石、铁矿石、钢屑等)或同时采用重水泥(如钡水泥、锶水泥等)制成的混凝土。因为它主要用作核能工程的辐射屏蔽结构材料,又称为防辐射混凝土。

M5砂浆配合比设计报告

M5砂浆配合比设计 一、设计依据 1.1《砌筑砂浆配合比设计规程》(JGJ98-2000(J65-2000)); 1.2《公路桥函施工技术规范》(JTJ041-2000); 1.3《公路工程集料试验规程》(JTG E42—2005) 1.4 常德市路网改项目招标文件及设计图纸 二、材料来源 2.1水泥:湖南石门特种水泥有限责任公司,壩道P.C32.5水泥。 2.2细骨料:河砂,属中砂,其各项指标详见下表 表1 2.3水:饮用水 三、砂浆配合比设计计算 3.1基本参数(稠度)的选择,根据检测规范及施工要求,选择砂浆设计稠度为30~50mm。 3.2 水泥用量 由公式:Qc=(fm,o-β)×1000/(α×fce) 其中fm,o-砂浆试配强度,取fm,o=f2+0.645σ=5+0.645×1.25=5.8MPa fce-水泥实际强度,取32.5MPa α、β-砂浆特征系数,取α=3.03、β=-15.09 由此通过计算得M5砂浆所用水泥重量为:212kg

3.3 砂用量确定 采用砂的堆积密度1522kg/m3 3.4 选取用水量 根据附表查得,取用水量为275kg/m3 水泥:砂:水=212:1522:275 四、砂浆配合比的试配、选择与确定 根据规范及经验,调整配合比时,增加及减少水泥用量10%,即水泥用量分别为191kg,233kg,配合比见(表-1) 根据以上表统计数据,综合考虑工地施工条件等情况,选用03组配合比见(表-2) 表-2 此配合比为实验室配合比,工地配合比施工应根据材料的含水量作相应的调整。 计算:试验:复核:监理: 第 1 页共2页 1

钢筋混凝土结构的特点

一、 钢筋混凝土结构的特点? 优点1.钢筋混凝土结构的耐久性好。2.钢筋混凝土结构可以整体浇筑也可以预制配置,施工灵活。3.沙石比重大可以就地取材降低工程造价。 缺点1.钢筋混凝土结构的抗裂性能差,带裂缝工作。2.钢筋混凝土结构的界面尺寸大,自重大。3.钢筋混凝土结构受气候影响大。 二、什么是立方体抗压强度标准值? 采用按标准低方法制作、养护28d龄期的边长为150mm立方体试件,以标准试验方法测得具有95%保证率的抗压强度。 三、什么是轴心抗压强度? 采用150mm*150mm*450mm的棱柱体作为混凝土的轴心抗压实验的标准试件,按标准低方法制作、养护28d龄期,以标准试验方法测得具有95%保证率的抗压强度。 四、什么是条件屈服强度? 一般取残余应变为0.2%所对应的应力&0.2为无明显屈服的强度限值。 五、钢筋的塑形性能?延伸率和冷弯性 六、松弛:钢筋受力长度保持不变的情况下,应力随着时间的增长而降低的现象。 七、冷拉硬化:钢筋经冷拉后,屈服强度提高,但塑形降低。 八、钢筋的接头:焊接、机械连接、邦扎连接.。 九、黏结力的构成:摩擦力、胶着力、咬合力。 十、结构的可靠性是:安全性、适用性、耐久性。 十一、结构的可靠度:度量结构可靠性的数量指标。 十二、结构可靠度的定义(〉95%):结构在规定的时间内,在规定的条件下,完成预定功能的概率。 十三、极限状态分为:承载能力极限状态和正常使用极限状态。 十四、承载能力极限状态:对应于结构构件达到最大的承载能力或者出现不适于持续承载的变形或位移。(已破坏,安全性) 十五、正常使用极限状态:对应于结构或者构件达到正常使用或者耐久性能的某规定的限值。(适用性) 十六、裂缝宽度应小于规范的某一限值(0.1----0.2mm) 十七、行车道板:跨间厚度不应小于120mm,悬臂端厚度不应小于100mm 人行道板:就地浇筑的混凝土板不应小于80mm,预制的混凝土板不应小于60mm 空心板梁:底板和顶板厚度不应小于80mm 十八、板的钢筋由主钢筋和分布钢筋组成 主钢筋布置在板的受拉区,行车道板内的主筋直径不应小于10mm,人行道板内的主筋直径不应小于8mm,板内主筋的间距不应大于200mm。 十九、矩形梁的高度比一般为2.5----3.0。T形简支梁桥的梁高与跨径之比约为1/20--1/10。腹板宽度与配筋有关:当采用焊接骨架配筋时,腹板宽度不应小于140mm,一般取160--220mm; 二十、荷载-挠度的关系:1.弹性2.弹塑性3.塑形4.破坏 二十一、正截面的破坏形式:适筋梁塑形破坏,超筋梁脆性破坏,少筋梁脆性破坏。 二十二、适筋梁塑形破坏:受拉钢筋的应力首先达到屈服强度,受压区混凝土应力随之增大达到抗压强度而出现塑形,当压应变达到极限压应变梁宣告破坏。 超筋梁脆性破坏:受拉钢筋应力尚未达到屈服强度之前,受压区混凝土边缘纤维的压应变达到混凝土抗压应变的极限值,由于混凝土局部压碎而导致梁的破坏。

相关主题
文本预览
相关文档 最新文档