当前位置:文档之家› 浅谈U形管式换热器设计

浅谈U形管式换热器设计

浅谈U形管式换热器设计
浅谈U形管式换热器设计

龙源期刊网 https://www.doczj.com/doc/6b10684368.html,

浅谈U形管式换热器设计

作者:吴成义张磊曹野

来源:《科学与财富》2017年第07期

摘要:管壳式换热器具有可靠性高、适应性广等特点,在各工业领域中得到最为广泛的

应用。近年来尽管受到了其他新型换热器的挑战,单反过来也促进的其自身的发展。在换热器向高参数大型化发展的今天,管壳式换热器仍占主导地位。根据管壳式换热器结构特点,可分为固定管板式、浮头式、U形管式、填料函式和釜式重沸器等,本文主要介绍U形管式换热器的设计优缺点和设计中需要注意的问题。

关键词:换热器;管壳式换热器;U形管式换热器

引言

U形管式换热器的典型结构如图所示。这种换热器的结构特点是,只有一块管板,管束由多根U形管组成,换热管的两端固定在同一块管板上,管子可以自由伸缩,当壳体与U形换热管有温差时,不会产生热应力。

但由于受弯管曲率半径的限制,其换热管排布较少,管束最内层管间距较大,管板的利用率较低;壳层流体易容易形成短路,对传热不利,当管子泄漏或损坏时,只有管束外围处的U 形管才便于更换,内层换热管坏了不易更换,最直接的办法就是堵死,这就相当于坏一根U

形管相当于坏两根直管;如若更换,在工作量上就相当巨大,就不如直接更换管束部件。

U形管式换热器的最大特点就是结构简单、价格便宜,承压能力强,适用于管、壳壁温差较大或壳程介质结垢需要去清洗,又不适于采用浮头式和固定管板的场合。特别适用于管内走清洁而不易结垢的高温、高压、腐蚀性强的物料。

一、设计中常见问题

1、材料方面

换热器千变万化,其使用材料也是各种各样,材料不同,其使用功能也有一定的差异,影响着换热器的换热效果,所以材料的选择在换热器的设计中非常重要。另一方面,在材料的选择上,需要考虑的因素比较多,比如客户的喜好、换热器运行的环境、使用人员的不同、工艺的要求、体型的差异等等。但是在实际设计的时候,仍然会出现各种的干扰因素,影响对换热器材料的选择。比如用户要求降低厚度,那么设计人员又要重新根据这一要求进行再次的计算,检验,然后重新做出设计方案;当然,也有客户认为壁厚不够要求增加的,这时候设计人员就应该对用材进行重新选择,既可以满足客户要求,又能达到受力及耐腐蚀条件,还可以节约成本。

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

毕业设计-换热器设计模版

毕业设计-换热器设计模版

一、 设计参数 过热蒸汽压力P 1:0.35Mpa ;入口温度T 1:250C ;出口温度T 2:138.89C (查水和水 蒸汽热力性质图表P11);传热量Q :375400kJ/h 。 冷却水压力P 2:0.7MPa ;入口温度t 1:70C ;出 口温度t 2(C );水流量m 2:45320kg/h 。 水蒸汽走管程,设计温度定为300C ,工作压力 为0.35Mpa (绝压);冷却水走壳程,设计温度定位100C ,工作压力为0.9Mpa (绝压)。 二、 工艺计算 1.根据给定的工艺条件进行热量衡算 )t t ()()T T (1 2 2 2 2 1 2 1 1 2 1 1 1 p p c m Q h h m c m Q 查水和水蒸汽热力性质图表得 0.3MPa ,140C ,2738.79kJ/kg 250C ,2967.88 kJ/kg 0.4MPa, 150C ,2752.00 kJ/kg 250C ,2964.50 kJ/kg 采用插值法得到:0.35MPa 水蒸汽从138.89C 到 250C 的焓变为:234.6 kJ/kg h kg h h Q m /16006.234/375400)/(1 211 由表得70C 时水的比热2 p c 为4.187C kg J /k (【1】《化

200C 粘度0.136mPa/s ,导热系数 1.076C m W ,比热容4.505C kg kJ /【3】 得:194.45 C 时密度 3 16193.1m kg ,粘度 s 0.14m Pa 1 ,导热系数C m W 0699.11 ;比热容 C kg kJ c p /479.41 588 .00699 .100014 .044791 1 11 p r c P 0.7MPa ,70.99C 时水的物性参数:(【4】《化 工原理》P525页) 70C 密度977.83 m kg ,粘度0.406mPa/s ,导 热系数0.668C m W ,比热容4.187C kg kJ /[4] 80C 密度971.83 m kg ,粘度0.355mPa/s ,导 热系数0.675C m W ,比热容4.195C kg kJ /[4] 得:70.99 C 时密度 3 271.926m kg ,粘度 s 0.383m Pa 2 ,导热系数C m W 671.02 ;比热容 C kg kJ c p /329.42 393 .2667 .0000383 .043292 2 22r p c P 3.初定换热器尺寸 ①已知传热量Q

固定板管式换热器设计说明书

固定板管式换热器 设 计 说 明 书 系别: 班级: 姓名: 学号:

一、 设计任务和设计条件 某炼油厂拟用原有在列管式换热器中回收柴油的热量。已知原油 流量为40000kg/h ,进口温度70℃,要求其出口温度不高于110℃;柴油流量为30000kg/h ,进口温度为175℃。设计一适当型号的换热器,已知物性数据: 二、 确定设计方案 ① 初选换热器的规格 当不计热损失时,换热器的热负荷为: Q=W )(12t t c pc C =40000/3600×2.2×103×(110-70)=9.8×105W 逆流过程如图所示: T 2125℃ T 1175℃ t 170℃ t 2110℃ 逆流平均温度差: m t = 8.5970 125110175ln ) 70125()110175( ℃ 初估 值 R= 25.170110125 175 P= 381.070 17570 110 初步决定采用单壳程,偶数管程的固定板管式换热器。经查表得校

正系数 =0.9>0.8,可行。 ∴ 53.859.80.9 逆m m t t ℃ 初步估计传热系数K 估=200W/(㎡·℃), 则 A m 07.918 .53200108.9t 5 m 估估K Q ∴所设计换热器(固定板管式)的参数选择如下表: ② 计算(管、壳程的对流传热系数和压降): a. 管程: 流通面积 220175.04 222 002.044m N N d S P T i i 柴油流速 s m S W u i i h i /666.00175.0715360030000 3600 Re 4 3 1049.11064.0715666.002.0 i i i i du 柴油被冷却,所以 ) /(701)133 .01064.01048.2(1490002.0133.0023.0Pr Re 023 .023.0338 .03 .0C m W d i i i i i ?

换热器设计开题报告

毕业设计开题报告 论文题目: 抽余液塔底换热器设计 学院化工装备学院 专业:过程装备与控制工程 学生姓名:邓华 指导教师:翟英明(高级工程师) 开题时间:2015年3月16日 一、选题目的 1、通过毕业设计,练习综合运用课程和实践的基本知识,进行融会贯通的独立思考。 2、在规定的时间内完成指定的设计任务,从而得到化工换热器设计的主要程序和方法。 3、培养分析和解决工程实际问题的能力。 4、树立正确的设计思想,培养实事求是,严肃认真,高度负责的工作作风。 5、通过此次设计任务,学会换热器的结构及强度设计计算及制造、检修和维护方法。 二、选题意义 在不同温度的流体间传递热能的装置称为热交换器,简称换热器。在换热器中至少要有两种温度不同的流体,一种流体温度高,放热;另一种流体温度低,吸热。换热器是实现传热过程的基本设备。而此设备是比较典型的传热设备。 二十世纪20年代出现板式换热器,并应用于食品工业。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。 化工、石油等行业中广泛使用各种换热器,它们是化工,石油,动力,食品及其它许多工业部门的通用设备,在工业设备价值及作用方面占有十分重要的地位。随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一方面是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 三、国内现状 目前,我国换热器产业的市场规模大概为700亿人民币,主要集中于石油、化工、冶金、电力、船舶、集中供暖、制冷空调、机械、食品、制药等领域。其中,石油化工领域仍然是换热器产业最大的市场。基于石油、化工、电力、冶金、船舶、机械、食品、制药等行业对换热器稳定的需求增长,我国换热器产业在未来一段时期内将保持稳定增长。2010年至2020年期间,我国换热器产业将保持年均10~15%左右的速度增长。到2015年,我国换热器产

U型管式换热器设计毕业设计说明书

摘要 换热器是化工生产过程中的重要设备,它能够实现介质之间热量交换。广泛应用于石油、化工、制药、食品、轻工、机械等领域。U型管式换热器是换热器的一种,它只有一个管板,结构简单,密封面少,且U形换热管可自由伸缩,不会产生温差应力,因此可用于高温高压的场合。一般高压、高温、有腐蚀介质走管程,这样可以减少高压空间,并能减少热量损失,节约材料,降低成本。 甲烷化换热器,是合成氨生产中的重要设备之一, 它能将27℃的H2N2混合气升温至274℃,同时将339℃的H2N2精制气降温至90℃。甲烷化换热器一般选用U型管换热器,它由一台Ⅰ型甲烷化换热器与一台Ⅱ型甲烷化换热器连接组成。其中Ⅰ型甲烷化换热器将27℃的H2N2混合气升温至150℃,同时将215℃的H2N2精制气降温至90℃;Ⅱ型甲烷化换热器能将150℃的H2N2混合气升温至274℃,同时将339℃的H2N2精制气降温至215℃。 本次设计主要根据GB150《钢制压力容器》及GB151《管壳式换热器》对设备的主要受压元件进行了设计及强度计算,又结合HG/T20615《钢制管法兰》、JB/T 4712《容器支座》等其它压力容器相关标准,对其它各部件进行设计,最终完成了Ⅱ型甲烷化换热器的设计。 关键词:换热器;甲烷化换热器

Abstract Heat exchanger is important in the process of chemical production equipment, which can be achieved between the heat exchange media. Widely used in petroleum, chemical, pharmaceutical, food, light industry, machinery and other fields. U-tube heat exchanger is a heat exchanger, it has only one tube plate, simple structure, less sealing surface, and the U-shaped tubes are free to stretch, no thermal stress, it can be used for high temperature and pressure of the occasion . General high-pressure, high temperature, corrosive media, take control process, thus reducing the pressure of space, and can reduce heat loss and saving materials and reduce costs. Methanation heat exchanger, ammonia production is one of the important equipment, it will be 27 ℃of H2N2 mixture heated to 274 ℃, 339 ℃while the H2N2 refined gas cooled to 90 ℃. Methanation heat exchanger is generally used in U-tube heat exchanger, which consists of Type Ⅰand type Ⅱmethanation methanation Heat exchanger connected to form a methanation type. Heat exchanger type Ⅰmethanation of H2N2 to 27 ℃heating the mixture to 150 ℃, 215 ℃while the H2N2 refined gas cooled to 90 ℃; Ⅱ-type heat exchanger can methanation 150 ℃, heating the mixture to the H2N2 274 ℃, 339 ℃while the H2N2 refined gas cooled to 215 ℃. This design mainly based on GB150 "steel pressure vessels"and GB151 "shell and tube heat exchangers, " the main pressure parts of the equipment was designed and strength calculation, but also with HG/T20615 "steel pipe flange", JB / T 4712 "containers bearing" pressure vessels and other relevant standards, the design of other components, he finally completed the methanation Ⅱtype heat exchanger design. Keywords: Heat exchanger;Methanation heat exchanger

换热器工作原理

管壳式换热器得三种分类 管壳式换热器按照应力补偿得方式不同,可以分为以下三个种类: 1、固定管板式换热器 固定管板式换热器就是结构最为简单得管壳式换热器,它得传热管束两端管板就是直接与壳体连成一体得,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。固定管板式换热器得热应力补偿较小,不能适应温差较大得工作。 2、浮头式换热器 浮头式换热器就是管壳式换热器中使用最广泛得一种,它得应力消除原理就是将传热管束一段得管板放开,任由其在一定得空间内自由浮动而消除热应力。浮头式换热器得传热管束可以从壳体中抽出,清洗与维修都较为方便,但就是由于结构复杂,因此浮头式换热器得价格较高。 3、U型管换热器 U型管换热器得换热器传热管束就是呈U形弯曲换热器,管束得两端固定在同一块管板得上下部位,再由管箱内得隔板将其分为进口与出口两个部分,而完全消除了热应力对管束得影响.U型管换热器得结构简单、应用方便,但很难拆卸与清洗。 管壳式换热器,管壳式换热器结构原理 管壳式换热器由一个壳体与包含许多管子得管束所构成,冷、热流体之间通过管壁进行换热得换热器.管壳式换热器作为一种传统得标准换热设备,在化工、炼油、石油化工、动力、核能与其她工业装置中得到普遍采用,特别就是在高温高压与大型换热器中得应用占据绝对优势。通常得工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高得压力与温度.一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长得. 工作原理与结构图 1 [固定管板式换热器]为固定管板式换热器得构

造.A流体从接管1流入壳体内,通过管间从接管2流出.B流体从接管3流入,通过管内从接管4流出。如果A流体得温度高于B流体,热量便通过管壁由A 流体传递给B流体;反之,则通过管壁由B流体传递给A流体.壳体以内、管子与管箱以外得区域称为壳程,通过壳程得流体称为壳程流体(A流体)。管子与管箱以内得区域称为管程,通过管程得流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体与折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器得传热效能,也可采用螺纹管、翅片管等。管子得布置有等边三角形、正方形、正方形斜转45°与同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径得壳体内可排列较多得管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板与管子得总体称为管束。管子端部与管板得连接有焊接与胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板得形状有弓形、圆形与矩形等。为减小壳程与管程流体得流通截面、加快流速,以提高传热效能,可在管箱与壳体内纵向设置分程隔板,将壳程分为2程与将管程分为2程、4程、6程与8程等.管壳式换热器得传热系数,在水—水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃). 特点管壳式换热器就是换热器得基本类型之一,19世纪80年代开始就已应用在工业上。这种换热器结构坚固,处理能力大、选材范围广,适应性强,易于制造,生产成本较低,清洗较方便,在高温高压下也能适用.但在传热效能、紧凑性与金属消耗量方面不及板式换热器、板翅式换热器与板壳式换热器等高效能换热器先进. 分类管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U 型管式换热器、双重管式换热器、填函式换热器与双管板换热器等.前3种应用比较普遍。

换热器毕业设计论文.doc

第1章 浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗,在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,即壳侧两程,管侧四程。首先,通过换热计算确定换热面积与管子的根数初步选定结构,然后按照设计的要求以及一系列国际标准进行结构设计,设计的前半部分是工艺计算部分,主要设根据设计传热系数、压强校核、壳程压降、管程压降的计算;设计的后半部分则是关于结构和强度的设计。主要是根据已经选定的换热器型式进行设备内各零部件(如壳体、折流板、管箱固定管板、分程隔板、拉杆、进出口管、浮头箱、浮头、支座、法兰、补强圈)的设计。 换热器是国民经济和工业生产领域中应用十分广泛的热量交换设备。随着现代新工艺、新技术、新材料的不断开发和能源问题的日趋严重,世界各国已普遍把石油化工深度加工和能源综合利用摆到十分重要的位置。换热器因而面临着新的挑战。换热器的性能对产品质量、能量利用率以及系统运行的经济性和可靠性起着重要的作用,有时甚至是决定性的作用。目前在发达的工业国家热回收率已达96%。换热设备在现代装置中约占设备总重30%左右,其中管壳式换热器仍然占绝对的优势,约70%。其余30%为各类高效紧凑式换热器、新型热管热泵和蓄热器等设备。其中板式、螺旋板式、板翅式以及各类高效传热元件的发展十分迅速。在继续提高设备热效率的同时,促进换热设备的结构紧凑性,产品系列化、标准化和专业化,并朝大型化的方向发展。浮头式换热器是管壳式换热器系列中的一种。换热管束包括换热管、管板、折流板、支持板、拉杆、定距管等。换热管可为普通光管,也可为带翅片的翅片管,翅片管有单金属整体轧制翅片管、双金属轧制翅片管、绕片式翅片管、叠片式翅片管等,材料有碳钢、低合金钢、不锈钢、铜材、铝材、钛材等。壳体一般为圆筒形,也可为方形。管箱有椭圆封头管箱、球形封头管箱和平盖管箱等。随着我国工业化和城镇化进程的加快,以及全球发展中国家经济的增长,国内市场和出口市场对换热器的需求量将会保持增长,客观上为我国换热器产业的快速发展提供了广阔的市场空间。从市场需求来看,在国家大力投资的刺激下,我国国民经济仍将保持较快发展。石油化工、能源电力、环境保护等行业仍然保持稳定增长,大型乙烯项目、大规模的核电站建设、大

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

U型管换热器课程设计说明书2

U型管换热器课程设计 说明书 设计题目 U型管换热器设计 专业班级建环1001 学生姓名xxxxx 学号xxxxxx 指导教师xxxxx 日期2013.5.4

一、化工原理课程设计任务书 (换热器的设计) (一)设计题目:煤油冷却器的设计 (二)设计任务及操作条件: 1.处理能力:15万吨/年煤油 2.设备型式:列管式换热器 3.操作条件: (1)煤油入口温度125℃,出口温度40℃; (2)冷却介质循环水,入口温度25℃,出口温度45℃; (3)允许压强降不大于105Pa; (4)煤油定性温度下的物性数据:密度为825kg/m3;粘度为: 7.15×10-4Pa.S;比热容为:2.22kJ/(kg. ℃);导热系数为: 0.14W/(m. ℃) (5)每年按330天计,每天24小时连续运行。 (三)设计项目 1传热计算 2管、壳程数的确定及管、壳程流体阻力计算 3管板厚度计算 4 U形膨胀节计算(浮头式换热器除外) 5管壳式换热器零部件结构 (四)绘制换热器装配图(A2图纸)

二、换热器的选用 换热器的选用(即选型) 的过程大体如下, 具体计算可参看列管式换热器设计中有关内容。 ①根据设计任务要求计算换热器的热负荷Q。 ②按所选定的流动方式, 计算出平均温度差( 推动力)Δtm 及查出温差校正系数ψ。若ψ< 0 . 8 , 应考虑采用多壳程结构的换热器或用多台换热器串联。 ③依所处理流体介质的性质, 凭经验初选一总传热系数K0 ( , 并由总传 估) 热速率方程计算传热面积S'0 : S'0 =Q/K0 估Δtm ———凭经验选取的总传热系数,W /(m2·K) ; 式中Q———热负荷,W; K0 ( 估) Δtm ———平均温度差, ℃。 ④根根据计算出的S’0 值, 查有关换热器系列标准, 确定型号规格并列出各结构主要基本参数。 ⑤利用总传热系数关联式计算K0 ( 计) , 再由总传热速率方程式求出S0 ( 计) 。考虑到所用传热计算式的准确程度及其他未可预料的因素, 应使得所选用换热器具有的传热面积S0留有的裕度10%~25% , 即[ ( S0 - S0 ( 计) ) /S0 ( 计) ] = ( 10% ~25% )。否则需重新估计一个K0 ( 估) , 重复以上计算。也可依所选用换热器具有的传热面积S0 , 通过总传热速率方程式求出K0 ( 选) , 然后比较K0 ( 选) /K0 ( 计) 之值是否在1 . 15~1 . 25 范围。 ⑥计算出管、壳程压力降, 验算是否满足要求。

换热器的壳体设计毕业设计

换热器的壳体设计毕业设计 目录 第一章换热器概述1 1.1换热器的应用 (1) 1.2换热器的主要分类 (1) 1.2.1换热器的分类及特点 (1) 1.2.2 管壳式换热器的分类及特点 (2) 1.3管壳式换热器特殊结构 (5) 1.4换热管简介 (5) 第二章工艺计算7 2.1设计条件 (7) 2.2换热器传热面积与换热器规格: (8) 2.2.1 流动空间的确定 (8) 2.2.2 初算换热器传热面积'A (8) 2.2.3 传热管数及管程的确定 (9) 2.2.4管心距的计算 (9) 2.2.5换热器型号、参数的确定 (9) 2.2.6壳体径计算 (9) 2.2.7折流板的计算 (10) 2.3换热器核算 (10) 2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13) 2.3.3换热器的选型 (14) 第三章 换热器的结构计算和强度计算 15 3.1换热器的壳体设计 (15) 3.2筒体材料及壁厚 (15) 3.3封头的材料及壁厚 (16) 3.4管箱材料的选择及壁厚的计算 (16) 3.5开孔补强计算 (17) 3.6水压试验及壳体强度的校核 (19) 3.7 换热管 (20) 3.7.1 换热管的排列方式 (20) 3.7.2 布管限定圆L D (20) 3.7.3 排管 (21) 3.7.4 换热管束的分程 (21) 3.8 管板设计 (22) 3.8.1 管板与壳体的连接 (22) 3.8.2 管板计算 (22) 3.8.3 管板重量计算 (26) 3.9 折流板 (26) 3.9.1 折流板的型式和尺寸 (27) 3.9.2 折流板排列 (27) 3.9.3 折流板的布置 (27)

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

板式换热器设计毕业论文

板式换热器设计毕业论文 目录 前言 (1) 1章标题 (2) 1.1节标题 (3) 1.1.1小节标题 (4) 1.1.1.1小节子标题 (5) 1.2节标题 (6) 1.2.1小节标题 (7) 1.2.1.1小节子标题 (8) 2章标题 (9) 2.1节标题 (10) 2.1.1小节标题 (11) 2.1.1.1小节子标题 (12) 1绪论 1.1 板式换热器的学术背景及意义 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中,它的发展已有一百多年的历史。 1878年德国人发明了半片式换热器,现在通常都称作板式换热器,它经过了50余年的发展,至20世纪30年代,由薄金属板压制的板片组装而成的板式换热器间世,并将该换热器应用于工业中,显示出了优异的性能,从此就迅速地得到了广泛的推广应用,成为紧凑、高效的换热设备之一。 板式换热器是以波纹板的新型高效换热器。国外早在20世纪20年代就作为工艺设备引入食品工业,40—50年代初开始用于化工领域。近十年来,板式换热器发展很迅速,现已广泛用于食品、制药、合成纤维、石油化工、动力机械、船舶、动力、供热等各行业。目前我国的板式换热器工厂,可制造单板传热面积从0.042m2至1.32m2,波纹形式为水平平直波纹、人字形波纹、球形波纹、锯齿形波纹、竖直形波纹的板式换热器。

由于板式换热器在制造上和使用上都有一些独特之处,所以在工业上一经使用成功之后就发展很快。到本世纪四十年代,已经有几个国家好几个厂生产出许多种不同形状和不同尺寸的板片。至于现在,世界上能生产板式换热器的工厂已经很多了,主要的生产厂不下三、四十个。几个主要生产厂一般都有该厂独特的板片波形。一般一个厂只生产有限几种尺寸的板片。然后组装成换热面积大小不同的换热器。因为从设计到制造成功一定波形的板片需要有较大的投资和较长的时间,所以一般生产工厂不轻易改变板片的波形。 早期的板式换热器大都用于食品工业,如牛奶、蛋液、啤酒等的加工过程中。这是由于早期扳片的单板面积较小,不能组成单台面积较大的换热器,所以只能用于处理物料流量较小的场合,随着单板面积的增大,能组成的单台板式换热器的面积也相应增大。现在各制造厂竞相增大单板面积和组成大型的板式换热器。 板式换热器今后的发展趋势是:提高操作温度和操作压力,加大处理量,扩大使用范围,研制采用新的结构材料的制造工业,而研制新的垫片材料易提高其使用温度和使用压力,将是其中的重点。 虽然板式换热器有很多优点,而其现在发展很快,但它们在结构与制造上尚存在问题。随着科学技术的飞速发展,板式换热器正不断完善,应用也日趋广泛。 21世纪我国的能源形势是紧张的,我国和世界的能源消耗随着人口的增长和工业化的进展将会快速增长;现在我们利用的主要一次能源(煤炭、石油、天然气和核能)之中,除煤炭之外,其余三项已逐渐枯竭,其价格不可避免将持续增长;目前尚没有发现能替代石油、天然气、核能的一次能源,作为有效替补的能源有太阳能和热核反应,但前者成本费高,后者尚有许多实质的问题没有解决,尚不能达到实用阶段;为了控制地球温室效应,化石燃料的使用受到了各国舆论的强烈反对。综上所述,在21世纪的上半个世纪之间,作为解决我国能源和环境问题的重要措施之一是如何有效地利用好一次能源,其中主要研究的内容是从一次能源转移至二次能源、三次能源的高效率化;各阶段利用技术的先进性和效率的提高;需求的平衡和能源的供给、消耗系统的改善等。上述所说内容的实质是热技术,当分析各项技术时,我们将发现,换热技术是关键工艺之一。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片; 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层; 3:研究提高使用压力和使用温度; 4:发展大型板式换热器; 5:研究板式换热器的传热和流体阻力; 6:研究板式换热器提高换热综合效率的可能途径。 1.2 我国设计制造应用情况 我国板式换热器的研究、设计、制造,开始于六十年代。1965年,兰州石油化工机器

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

列管式换热器结构设计毕业设计论文

列管式换热器结构设计毕业设计论文 第一章换热器概述 过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。在化工厂中,换热设备的投资约占总投资的10%~20%;在炼油厂,约占总投资的35%~40%。 1.1 换热器的应用 在工业生产中,换热器的主要作用是将能量由温度较高的流体传递给温度较低的流体,是流体温度达到工艺流程规定的指标,以满足工艺流程上的需要。此外,换热器也是回收余热、废热特别是低位热能的有效装置。例如,高炉炉气(约1500℃)的余热,通过余热锅炉可生产压力蒸汽,作为供汽、供热等的辅助能源,从而提高热能的总利用率,降低燃料消耗,提高工业生产经济效益。 随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热极力的研究十分活跃,一些新型高效换热器相继面世。 1.2 换热器的主要分类 在工业生产中,由于用途、工作条件和物料特性的不同,出现了不同形式和结构的换热器。 1.2.1 换热器的分类及特点 按照传热方式的不同,换热器可分为三类: 1.直接接触式换热器 又称混合式换热器,它是利用冷、热流体直接接触与混合的作用进行热量的交换。这类换热器的结构简单、价格便宜,常做成塔状,但仅适用于工艺上允许两

种流体混合的场合。 2.蓄热式换热器 在这类换热器中,热量传递是通过格子砖或填料等蓄热体来完成的。首先让热流体通过,把热量积蓄在蓄热体中,然后再让冷流体通过,把热量带走。由于两种流体交变转换输入,因此不可避免地存在着一小部分流体相互掺和的现象,造成流体的“污染”。 蓄热式换热器结构紧凑、价格便宜,单位体积传热面比较大,故较适合用于气--气热交换的场合。 3.间壁式换热器 这是工业中最为广泛使用的一类换热器。冷、热流体被一固体壁面隔开,通过壁面进行传热。按照传热面的形状与结构特点它又可分为: (1)管式换热器:如套管式、螺旋管式、管壳式、热管式等; (2)板面式换热器:如板式、螺旋板式、板壳式等; (3)扩展表面式换热器:如板翅式、管翅式、强化的传热管等。 1.2.2 管壳式换热器的分类及特点 由于设计题目是浮头式换热器的设计,而浮头式又属于管壳式换热器,故特此介绍管壳式换热器的主要类型以及结构特点。 管壳式换热器是目前用得最为广泛的一种换热器,主要是由壳体、传热管束、管板、折流板和管箱等部件组成,其具体结构如下图所示。壳体多为圆筒形,内部放置了由许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为了增加壳程流体的速度以改善传热,在壳体内安装了折流板。折流板可以提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。 流体每通过管束一次称为一个管程;每通过壳体一次就称为一个壳程,而图1-2-1所示为最简单的单壳程单管程换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分为若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程;同样。为提高管外流速,也可以在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可以配合使用。

相关主题
文本预览
相关文档 最新文档