当前位置:文档之家› 储油大罐牺牲阳极保护技术

储油大罐牺牲阳极保护技术

储油大罐牺牲阳极保护技术
储油大罐牺牲阳极保护技术

储油大罐牺牲阳极保护技术

摘要为防止原油罐底部积水部位腐蚀,提出采用铝基牺牲阳极进行保护,并进行防腐设计。

关键词原油罐牺牲阳极腐蚀防护

1 前言

随着我公司生产规模不断扩大,炼油能力也相应增加,原油储罐便随之增大与增加。目前,由于国产原油逐步变重,酸值升高,含硫增加,促使原油罐底部积水部位腐蚀加重。原油罐底部腐蚀特征为坑蚀与点蚀,腐蚀速率超过lmm/a。原油罐设计寿命一般为20年,但实际上原油罐底板往往经数年就穿孔,需要重新更换底板,因此对原油罐必须、采取有效防腐措施。现以我公司油品车间1#原油罐牺牲阳极保护为例进行讨论。

2 腐蚀原因

原油主要组成为各种烃类与沥青等,并不腐蚀钢材,故原油罐侧壁基本不腐蚀。但危害最大的部位是原油罐底。因罐底沉积水含有无机盐、氯化物、硫化物、有机酸与微生物等,会形成酸性电解质溶液,油罐底部钢板本身及焊缝部位有缺陷,存在大大小小的腐蚀电池,是促成腐蚀的外因与内因。另外底板沉积污垢,会造成垢下腐蚀形成蚀孔。还因原油罐均安置蒸汽加热器伴热,底部温度较高,由于自然对流,顶部氧气向下运动,底部水分向上运动,也加速了腐蚀。

3 原油罐防腐设计

根据国内兄弟企业的经验,对1#原油罐采用牺牲阳极保护,具体防腐设计如下。

3.1 原油罐规格

容积:20000m3

规格:φ40632mm×15895mm

3.2 防腐部位及保护面积

原油罐防腐部位为底部及第一圈钢板1m高处。即原油罐底沉积水接触的表面积,就是采用牺牲阳极保护的面积。

s=πR2+2πR.h

式中 S--原油罐牺牲阳极保护面积,m2;

R--原油罐半径,m;

h--油罐离底板高度取lm;

S=3.14×(40.632/2)2+2×3.14×40.632/2×l

=1421.28m2

3.3牺牲阳极材料选择

镁合金阳极在含无机盐的水溶液中电位较负,容易过保护,且不安全,因而不宜使用。锌合金阳极在>60℃介质中极化率较大,存在晶间腐蚀,有效电位低,可能出现电位逆转,也不宜采用。而铝合金阳极不存在上述问题,可以选用作原油罐底部防腐。

现选用Al-Zn-In-Cd,其化学成分为:Zn2.5%~4.5%,

In0.018%~0.05%,Cd 0.005%~0.020%,Si≤0.13%,Fe≤0.16%,Cu≤0.02%, Al约95%。该铝基阳极技术性能为:阳极开路电位(Cu/CuS04)-1.25V,对铁的有效电位差-0.45V,理论发生电流量2918A.h/kg,实际发生电流量>2400A.h/kg,阳极年消耗量3.8kg/A,相对密度2.83。

3.4 保护电流密度及总保护电流

牺牲阳极保护电流密度因环境及新选用阳极材料与表面状态不同而异。一般根据经验选取,对 Al-Zn-In-Cd阳极如与涂料联合保护采用10~30 mA/m2,而对不采用涂料,仅采用牺牲阳极的选用120mA/m2。

保护总电流I=i × S

式中 I--阳极总保护电流,A;

i--阳极保护电流密度,mA/m2;

S--保护总面积,m2。

I=120×1421.28=170.56A

3.5牺牲阳极重量与数量

牺牲阳极在输出保护电流过程中自身溶解,因此阳极重量还决定着使用年限。

W=8670 × I/Q×T

式中 W--所需牺牲阳极总重量,kg;

I--阳极总保护电流,A;

Q--阳极实际发电量,A.h/kg;

T--设计使用年限,取10年。

W=8670×170.56/2400×10=6161.48

N≥W/W1

式中 N--所需阳极总数量;

W--所需阳极总重量;

w1--单块阳极重,取30kg。

N≥6161.48/30=205.38

取206块。

3.6 阳极布置与施工

按计算得出的阳极数量,采用两个原则,即阳极布置均匀和阳极与罐板焊接要牢固,焊后将焊渣去除干净。

在第一层圈板上距底板40mm处布置阳极54块,油罐底部布置7圈,阳极以同心圆方式等角度、等距离布置,详见表1和图1。

4 使用效果与改进建议

1#原油罐采取铝基牺牲阳极保护已有3年时间,经开罐检查,罐底保护效果良好。

根据洛阳、镇海、上海等兄弟企业经验,最好采用牺牲阳极与

表1 牺牲阳极布置

图1 牺牲阳极布置示意图

涂料联合保护,牺牲阳极的保护电流密度可以选取得更小,则阳极数量可大大减少,以节约成本;另一方面,涂料与牺牲阳极作用可以得到互补,涂层如有微小空隙,牺牲阳极发出的电流可以对涂层空隙或缺陷处进行集中保护。

船舶阴极保护

船舶阴极保护 现代海船船体绝大部分由钢质材料焊装而成,船舶营运的特殊环境使船舶船体和机械设备的腐蚀破坏相当严重。据加拿大运输安全委员会(Transportation Safety Board of Canada)对1995年到2004年发生的事故原因统计,船体结构损害导致的事故平均约占总数的8%,而其中有相当一部分是由于船舶腐蚀造成船体强度降低引起的。一项由英国海洋工程营运公司BRITOIL所作的失效分析表明:在所有设施失效的例子中,33%是由腐蚀造成的。根据船舶具体情况,从防护效果、要求、施工难易程度以及经济性等各个方面出发,选择船舶防腐蚀方法,进行合理的防腐蚀设计,对于增强船舶抗腐蚀的能力,确保营运安全,具有重要的意义。 目前,国内外船舶防腐的主要方法是有机涂料、牺牲阳极及外加电流保护或者它们的组合等几种传统的方法。由于安全的原因,船舶上一般采用的是牺牲阳极阴极保护,外加电流阴极保护一般不被采用。安装较多阳极块会增大船舶航行阻力,造成过度保护,少了则保护不足,船体仍然遭受腐蚀。因此,必须安装适量的阳极,这就需要进行合理的设计。 根据阴极保护的原理,在对金属实施阴极保护的时候,为了到达最佳的保护效果,需要注意阴极保护的最小保护电位和最小保护电流密度两个主要参数。而在实际中考虑到其它因素的影响,还要选择合理的最大保护电位和最大保护电流密度。 1. 最小保护电位 为使腐蚀完全停止,必须使被保护的金属电极电位极化到活泼的阳极“平衡”电位,即保护电位,对于钢结构这一电位就是铁在给定电解质溶液中的平衡电位。保护电位有一定的范围,铁在海水中的保护电位在-0.80~-1.0V 之间,当电位大于-0.80V时,铁不能得到完全的保护,该值称为最小保护电位。选择保护电位需根据已有的实验数据和经验加以确定。 我国近年来规定钢船在海水中的保护电位为- 0.75~-0.95V( Ag/AgCl电极),最佳保护范围为-0.85~-1.0V,其保护情况如表1所示。 表1 钢船体在不同保护电位下的保护效果

牺牲阳极保护设计方案

牺牲阳极保护设计方案 1、概述 2、设计依据 1)标准规范 城镇燃气埋地钢质管道腐蚀控制技术规程 CJJ95-2003 埋地钢质管道牺牲阳极保护设计规范 SY/T0019-1997 钢质管道及储罐腐蚀控制工程设计规范 SY0007-1999 埋地钢质管道牺牲阳极阴极保护设计规范 SY/T0019-1999 埋地钢质管道阴极保护参数试验方法 SY/T0023-1997 铝-锌-铟系牺牲阳极 GB4948.4949-2002

阴极保护操作规程—陆上及海上 BS 7361 阴极保护工程手册 2)设计指标及设计参数 1保护对象:高压燃气管道 直径:457mm 壁厚:10.3mm 管道材质:L390钢管 2电流密度:0.2mA/m2; 3保护电位:-0.85~-1.40V(相对饱和铜/硫酸铜参比电极)4保护年限:16年 3、方案设计

1)设计参数 管道涂层: 3PE 保护面积: S=12419.75m2 保护电流密度:i=0.2mA/m2 本方案采用镁合金牺牲阳极(Mg-Al-Zn-Mn,14Kg/支)对管道外护钢管实施牺牲阳极阴极保护。2)设计计算 1保护电流: I1=i×S1=0.0002×13661.7=2.73(A) 阳极数量: N= 式中If:阳极发生电流,单位为 A, 总保护电流为2.73A, ②阳极数量: N= 式中IMg:镁阳极发生电流,单位为 A, 单支镁阳极发生电流计算: IMg=150000fy/ρ=0.063A 式中f取、y为系数,ρ为土壤电阻率。 代入数据得出,N=≈44支。 考虑道施工时的不可预见因素,牺牲阳极数量增加10%的裕留量: 阳极数量N实=44×110%≈49支

长输管道牺牲阳极法阴极保护施工方案

司 材 长输管道牺牲阳极 阴 极 保 护 施 工 方 案 河南汇龙合金材料有限公司 项目部

目录 一、概述- ----------------------------------------------------------- 2 (一)原理----------------------------------------------------- 2 (二)牺牲阳极法阴极保护的优点--------------------------------- 2 (三)牺牲阳极材料--------------------------------------------- 2 (四)阳极安装方式--------------------------------------------- 6 (五)测试系统------------------------------------------------- 7 (六)应用标准和规范------------------------------------------- 7 (七)主要测试设备和工具--------------------------------------- 8 二、该项目管道牺牲阳极保护法的设计- --------------------------------- 8 三、施工方法- ------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 9 2、牺牲阳极法的施工: ------------------------------------------ 9

牺牲阳极式阴极保护施工工艺

牺牲阳极式阴极保护施工工艺 1、牺牲阳极式阴极保护主要施工工序流程 施工准备→依据设计图纸部署开挖阳极坑→将阳极装入填料包、填充化学填料→在阳极坑里安装阳极组、浇水→埋置测试桩及测量组元→阳极、电缆连接并做好密封→阴极保护数据测试→回填土、压实→质量验收并填写单位单项工程验收记录。 施工流程图: 2、施工准备 2.1 施工作业依据(技术资料准备): 工程施工前,项目经理部人员至少要熟练掌握以下施工技术资料: 《埋地预应力钢筒混凝土管道的阴极保护》GB/T 28725-2012 《预应力钢筒混凝土管的阴极保护》 NACE RP 0100-2000 《埋地钢质管道阴极保护技术规范》GB/T 21448-2008

《锌-铝-镉系合金牺牲阳极》GB/T 4950-2002 《镁合金牺牲阳极》GB/T 17731-2009 《***工程阴极保护工程招标文件》 《***工程阴极保护工程招标文件》 设计方案及图纸 2.2 阴极保护材料的准备及验收 2.2.1 材料准备 牺牲阳极组(包括锌、镁合金牺牲阳极)、电缆、测试桩、防腐涂料。 2.2.2 材料验收 材料使用前,会同业主、监理、质检人员对材料进行核对验收,合格签字后,方可使用。验收规范如下: a. 材料出厂合格证,或产品检验报告的各项指标,符合设计要求。特别是阳极化学分析报告和阳极电化学性能检测报告必须符合设计要求的相关指标,并且该报告是由国家认可的、具有材料试验检验资格的第三方验证试验机构出具。 b. 根据订货合同核对材料品种、型号、规格、颜色、数量、有效期等。 c. 外观检查。阳极的表面质量应达到下列规定。 ●缩孔的深度不得超过阳极厚度的10%。 ●冷隔深度不得超过10mm,总长度不得超过150mm。 ●非金属夹渣不得超过阳极表面的1%。 ●阳极表面不得存在以下类型的裂纹:宽度大于3mm的裂纹;纵向长度大 于阳极长度的50%的裂纹;不得存在扩展到铁芯或贯穿整个阳极的裂纹。 ●阳极表面没有毛刺、飞边等对人员安全有危害的突出物。 ●阳极工作表面应保持干净,不得沾有油漆和油污。 d. 抽检阳极纯度、化学成分情况。参照下列标准的有关条款执行: 铝纯度不低于GB/T1196-2002中A199.70A的规定。 锌纯度不低于GB/T470-1997中Zn99.99的规定。 镉纯度不低于YS/T72-1994中Cd99.99的规定。 2.3 设备准备 施工车辆、搅拌机械、浇水设备(容器及水管等)、挖掘机或人力挖掘工具、铝

船体牺牲阳极阴极保护设计指南

Q/DNS 大连新船重工有限责任公司企业标准 Q/DNS.J0×.×××-2002 船体保护设计指南 Guide for cathodic protection design (审查稿) 2002- - 发布 2002- - 实施

目次 前言 (1) 1 范围 (1) 2 定义 (1) 3 设计依据 (1) 4 设计内容 (1) 5 设计方法 (2) 参考文献 (6)

前言 为规范牺牲阳极阴极保护的布置设计过程中应遵循的技术准则﹑方法和要求,并为设计工作和控制设计质量提供依据,特制定本标准。 本标准中的设计方法是公司多年来大中型散货船﹑油船以及集装箱船的牺牲阳极阴极保护的布置经验的总结。 本标准按Q/DNS.J01.007.1-2002《设计规范编制规定》的要求编制。 本标准由大连新船重工有限责任公司标准化委员会提出。 本标准由船研所标准室归口。 本标准起草单位:船研所标准室 本标准起草人:×××校对:×××审定:×××批准:××× 本标准标审、编辑:×××编校:×××编审:××× 本标准由船研所标准室负责解释。

牺牲阳极阴极保护设计指南 1.范围 本标准规定了船体保护设计布置以及设计时的依据﹑保护参数﹑布置原则和设计方法。 本标准适用于各种大中型船舶(散货﹑油船以及集装箱船)的牺牲阳极阴极保护设计。 1定义 2.1牺牲阳极保护法: 是采用一种比被保护金属电位更负(化学性更活泼)的金属或合金和被保护的金属连接在一起,依靠该金属或合金不断地腐蚀融解所产生的电流使其他金属获得阴极极化而受到保护的方法。而这种自身被腐蚀的金属或合金,称为牺牲阳极。 目前世界各国生产的牺牲阳极主要是锌基合金阳极和铝基合金阳极两大类。 2.2外加电流阴极保护: 采用外加电流使船体处于保护电位而不至于被腐蚀的方法。 2.3保护电流密度: 使被保护结构达到最小保护电位所必须的极化电流密度。单位mA/m2 2.4牺牲阳极使用寿命: 牺牲阳极的消耗率达到利用系数1/K时的使用时间。也就是被保护结构安装一次牺牲阳极后的有效保护时间。 2.设计依据 4.1 合同建造技术说明书及其指定的建造规范 4.2 主要图纸和文件 a) 总布置图 b) 相关船体结构图纸 c) 螺旋桨﹑舵图纸

牺牲阳极法阴极保护方案

牺牲阳极法阴极保护方案 一、将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。 二、牺牲阳极法阴极保护的优点: (1)不需要外部电源; (2)对邻近金属构筑物无干扰或很小; (3)电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。(4)调试后,可不需日常管理; (5)保护电流分布均匀,利用率高; 三、牺牲阳极材料 1 作为牺牲阳极材料,必须满足以下条件: 1.1有足够负且稳定的电位,不仅要有足够负的开路电位,而且要有足够的闭路电位(或称工作电位,即在电解质介质中与金属结构连接时牺牲阳极的电位)。 1.2腐蚀率小,且腐蚀均匀,要具有高而稳定的电流效率。牺牲阳极的电流效率是指实际电容量与理论电容量的百分比,以%表示。1.3电化学当量高,即单位重量产生的电流量大。 1.4工作中阳极的极化率要小,溶解均匀,产物易脱落。 1.5腐蚀产物不污染环境、无公害。 1.6材料来源广泛,加工容易并价格低廉。

2、镁 2.1镁阳极的特点是比重小、电位很负、对铁的驱动加压很大,且单位发生的电量大。 2.2镁作为牺牲阳极,有较快的溶解速度,镁在电解质中溶液中的腐蚀行为是由本身很负的电位和表面上保护膜的性质所决定。 2.3镁的标准电极电位为-2.37V(SHE);非平衡电极电位则随腐蚀性介质的性质而变,例如:镁在海水中的电位为-1.5V(SCE),镁在土壤之中的电位为 1.5V至-1.6(SCE),镁在碱溶液中的电位约为-0.84V(SCE)。镁的电极电位与介质的PH值有密切关系,PH值在酸性范围内,电位较负,因为生成的腐蚀产物氢氧化镁在碱性介质中是难溶的。 正因为镁在酸性及中性介质中的电位较负和保护膜的不稳定性,所以镁在酸性和中性介质中的腐蚀速度较大。而在碱性介质中,镁的表面保护膜稳定,电位较正,腐蚀速度则因此而降低。 镁作为牺牲阳极使用时,与电位较正的金属相接触,这时,镁产生阳极化,会引起负的差异效应,即在阳极极化的影响下,金属的自溶大为增强。与其他牺牲阳极相比,镁的自溶倾向最大,这是镁阳极的电流效北较低的原因之一。 杂质及合金元素对镁的腐蚀速度有很大的影响,镁合金通常比镁的腐蚀速度大。镁阳极中的杂质主要成分是铁、镍、铜、钴,其中特别是铁的含量,由于这些金属有较正的电位,引起额外的腐蚀(寄生腐蚀)而使镁的阳极效率降低。添加锰可以抑制铁的影响,因为锰可

储罐内壁牺牲阳极阴极保护方法

储罐内壁牺牲阳极阴极保护方法 由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S-2、Cl-、HCO-3、Na+、Ca+2等)和较高的温度,因此其腐蚀性较强。目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。 牺牲阳极保护法特点: ①施工快速、简便,不会产生腐蚀干扰。 ②投入成本较低,经济性强。 ③安全可靠,无需专人管理。 ④保护效果显著。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。 根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。

针对储罐内壁牺牲阳极的设计步骤: ①计算阴极保护面积(罐内浸水面积) 罐底内壁保护面积计算:S=πr2 S-保护面积r-储罐半径 ②选定保护电流密度,计算保护电流 保护电流计算:I=SIa S-保护面积Ia-保护电流密度 ③确定保护年限,计算所需阳极总量 阳极使用寿命:T=0.85W/ωI T-阳极工作寿命a W-阳极净质量,kgω-阳极消耗率kg/(A.a) ④根据阳极单支数量,计算阳极支数 阳极数量:N=f.IA/Ia N-阳极数量IA-所需保护电流A Ia-单支阳极输出电流A F-备用系数,取2-3倍 牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。

牺牲阳极阴极保护施工方案

珠海粤裕丰钢厂干散货码头钢桩牺牲阳极阴极保护工程 施工组织设计方案 濮阳市豫安防腐有限公司吉林分公司 2011年10月

目录 第一章工程概况 (2) 第二章施工方案 (3) 第三章施工组织机构和人员配置 (10) 第四章主要施工设备、检测仪器表 (16) 第五章质量保证措施和施工安全措施 (18)

第一章工程概况 1.工程概述 珠海粤裕丰钢厂干散货码头为防止钢管桩的腐蚀设计采用环氧粉末全涂加牺牲阳极阴极保护的方法。材质为Q345、尺寸为Φ****×*****的钢管桩共计408根,每根钢管桩上布置1支高效铝阳极,共计安装铝合金牺牲阳极408支;安装阴极保护电位测试系统6套。 2.施工计划周期 开工日期:2011年9月10日 竣工日期:2011年11月30日 3.施工作业总体安排 牺牲阳极水下安装施工,采用两个作业班;阴保电位测试系统的安装选用一个作业班进行施工安装。三个作业班可根据工程进度安排采取同时作业或交叉作业的方式,最大程度的提高工效保证本工程按时竣工。 4.阴极保护施工及验收规范 4.1 JTS 153-3-2007 《海港工程钢结构防腐蚀技术规范》 4.2 GJB156A-2008 《港工设施牺牲阳极保护设计和安装》 4.3 GB/T 4948-2002 《铝-锌-铟系合金牺牲阳极》 4.4 GB/T 4949-2007 《铝-锌-铟系合金牺牲阳极化学分析方法》 4.5 GB/T 17848-1999《牺牲阳极电化学性能试验方法》

第二章、施工方案 1.牺牲阳极水下焊接 1.1牺牲阳极水下焊接方式的比较 1.1.1 根据钢管桩码头建造特点,打桩前,钢管桩表面不能焊接较大构件,以免影响打桩施工。牺牲阳极只能在钢管桩完成打桩工程后进行水下安装。 1.1.2牺牲阳极的水下安装方法主要有以下几种:螺栓固定法、捆扎法和水下焊接法。 1.1.3螺栓固定法是将牺牲阳极通过固定在焊在钢管桩上的钢制固定架上,达到阳极安装固定的目的。螺栓固定法的缺点是工艺复杂、安装困难,尤其是牺牲阳极在长期使用中受海水冲击、海流推动,螺帽容易产生松动,造成牺牲阳极与钢管桩之间接触电阻增大,降低阳极发生电流量和工作性能,影响钢管桩的保护效果。 1.1.4捆扎法是采用钢制卡环或钢带将牺牲阳极捆扎在钢管桩上,达到牺牲阳极安装固定的目的。捆扎法的缺点是由于海浪冲击,海流扭动,牺牲阳极的不断溶解,造成牺牲阳极与捆扎带之间产生松动,使阳极与钢管桩之间接触电阻增大,影响牺牲阳极发生电流和使用效果,严重者阳极脱落,造成保护工程失败。 通过以上比较,螺栓法固定法和捆扎法一般不宜采用。 1.1.5水下焊接安装法是采用水下焊接设备和水下焊条通过电焊方法把牺牲阳极安装固定在钢管桩上。水下电焊方法具有技术成熟、牢固可靠,牺牲阳极与钢管桩接触电阻小、导电性能好、使用寿命长等特点。水下焊接法又分自动CO2气体局部排水干法焊和普通湿法焊两种。半自动CO2气体局部排水干法焊技术难度大、造价高,主要用于水下高强钢结构材料的焊接。本工程钢管状材质为Q345钢,采用水下SRE TS 208湿法焊条焊接工艺完全满足工程技术要求。 1.2牺牲阳极水下焊接设备 1.2.1 牺牲阳极水下焊接安装设备采用ZX-500直流弧焊机,ZX-500焊机的特点是电压调节范围大,工作电流稳定,起弧电压稳定,水下操作不易断弧,连续性强,焊缝质量好。 1.2.2空压机 施工用空压机型号为V-0.67/14-1型。该机排气量0.67/min,工作压力1.4MPa,

(完整版)牺牲阳极法阴极保护方案

长输管道牺牲阳极法 阴极保护方案 项目名称: 建设单位: 施工单位: 编制日期:2010年10月4日

目录 一、概述------------------------------------------------------------ 2 (一)原理 ----------------------------------------------------- 2(二)牺牲阳极法阴极保护的优点 --------------------------------- 2(三)牺牲阳极材料 --------------------------------------------- 2(四)阳极安装方式 --------------------------------------------- 6(五)测试系统 ------------------------------------------------- 7(六)应用标准和规范 ------------------------------------------- 7(七)主要测试设备和工具 --------------------------------------- 7 二、该项目管道牺牲阳极保护法的设计---------------------------------- 8 三、施工方法-------------------------------------------------------- 8 1、牺牲阳极法阴极保护施工安装程序简述如下: -------------------- 8 2、牺牲阳极法的施工: ------------------------------------------ 9

阴极保护与阳极保护

阴极保护法 一、腐蚀的定义:金属与环境间的物理-化学的相互作用,造成金属性能的改变,导致金属、环境或由其构成的一部分技术体系功能的损坏。 二、腐蚀的分类: 以腐蚀外貌看: 1、全面腐蚀:(均匀腐蚀)金属表面以近似相同的速率变薄,重量减轻。 2、局部腐蚀: ⑴点蚀:发生局部,造成洞、坑甚至穿孔。典型代表铝和不锈钢在含氯化物的水溶液中发生腐蚀。 ⑵缝隙腐蚀:同种或异种金属接触,缝隙中氧的缺乏、酸度的变化、某种离子的累积造成。如法兰联接面、螺母紧压面、搭接面、焊缝气孔、锈层下以及沉积在金属表面的淤泥、积垢、杂质等都会形成缝隙。 ⑶浓差腐蚀电池:靠近电极表面腐蚀剂浓度差异导致,推动力是溶液中某一处与另一处氧含量不同导致电极电位不同构成。氧浓低的部位为阳极区,腐蚀加速。 ⑷电偶腐蚀:一种不太活泼的金属(阴极)和一种比较活泼的金属(阳极)在同一环境相接触时,组成电偶并引起电流的流动。 ⑸晶间腐蚀:晶粒或晶体本身未受明显侵蚀,发生在金属或合金晶界处的一种选择性腐蚀。如锌含量在黄铜的晶界处比较高,或不锈钢在晶界处贫铬时引起晶间腐蚀。 ⑹应力腐蚀:拉应力和特定腐蚀共存时引起。包括外加应力和残余应力。残余应力可能产生于加工制造时的形变,升温后冷却时降温不均匀,内部结构改变引起的体积变化。铆合、螺栓紧固、压入配合、冷缩配合引起的应力也属于残余应力。 ⑺选择性腐蚀:合金中某一组分由于腐蚀作用而被脱除。如黄铜脱锌。 ⑻磨损腐蚀:金属受到液流或气流(有无固体悬浮物均包括在内)的磨耗与腐蚀共同作用而产生的破坏。包括高速流体冲刷引起的冲击腐蚀;金属间彼此有滑移引起的磨振腐蚀;流体中瞬时形成的气穴在金属表面爆裂时导致的空泡腐蚀。 ⑼氢腐蚀:由于化学或电化学反应所产生的原子态扩散到金属内部的各种破坏。包括以下几种: ①氢鼓泡:由于原子态氢扩散到金属内部,并在金属内部的微孔中形成分子氢,分子氢不能扩散,就在微孔中积累而形成的巨大的内压,使金属鼓泡,甚至破裂。 ②氢脆:由于原子氢进入金属内部后,使金属晶格产生高度变形,因而降低了金属的韧性和延性,导致金属脆化。 ③氢蚀:由于原子氢进入金属内部后与金属中的组分或元素反应,如氢渗入碳钢并与钢中的碳反应生成甲烷,使钢的韧性下降,而钢中碳的脱除,又导致强度的下降。 以腐蚀反应机理划分: 1、化学腐蚀:金属与非电解质直接发生纯化学作用而引起的金属损耗,如金属高温氧化。 2、电化学腐蚀:金属与电解质发生电化学作用而引起的金属损耗。存在阴极反应与阳极反 应,并有电流产生。如钢铁在水溶液的腐蚀。 按腐蚀环境分类: 1、大气腐蚀: 2、海水腐蚀: 3、土壤腐蚀: 4、化学介质腐蚀: 在天然水体和土壤腐蚀中的生物腐蚀要引起重视,微生物代谢作用引起: ⑴产生腐蚀环境 ⑵在金属表面上造成电解液浓差电池 ⑶改变表面膜的耐蚀性

储罐内壁牺牲阳极阴极保护

储罐内壁牺牲阳极阴极保护 由于原油储罐、污水罐罐底内壁的腐蚀主要是缘于原油沉积污水引起的电化学腐蚀、细菌腐蚀,且罐底的原油沉积污水有着较高的含盐量(主要是S-2、Cl -、HCO-3、Na+、Ca+2等)和较高的温度,因此其腐蚀性较强。目前普遍采用牺牲阳极法对储罐底板内壁进行阴极保护,这种方法对储罐安全可靠,无需专人管理,且保护效果好。通常用作牺牲阳极的材料有镁和镁合金、锌合金、铝合金等。阳极块在储罐内壁上均匀布置,钢板与阳极块直接焊接连接。 牺牲阳极保护法特点: ①施工快速、简便,不会产生腐蚀干扰。 ②投入成本较低,经济性强。 ③安全可靠,无需专人管理。 ④保护效果显著。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。 根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。 针对储罐内壁牺牲阳极的设计步骤: ①计算阴极保护面积(罐内浸水面积) 罐底内壁保护面积计算:S=πr2 S-保护面积 r-储罐半径 ②选定保护电流密度,计算保护电流 保护电流计算:I= SIa S-保护面积 Ia-保护电流密度 ③确定保护年限,计算所需阳极总量 阳极使用寿命:T=0.85 W/ωI T-阳极工作寿命a W-阳极净质量,kg ω-阳极消耗率kg/(A.a)

④根据阳极单支数量,计算阳极支数 阳极数量:N=f.IA/Ia N-阳极数量 IA-所需保护电流A Ia-单支阳极输出电流A F-备用系数,取2-3倍 牺牲阳极法是储罐内常用的阴极保护方法,它可以任意布置不必担心电源连接,它的电位有限,没有必要担心过保护为先,牺牲阳极可以做成任意形状。 根据内壁介质的情况,阳极可以选用铝合金阳极或镁合金阳极。内壁采用牺牲阳极保护时,要注意温度的影响。对40~70℃的水介质环境中,镁阳极因为腐蚀率太高而不适用。 根据保护面积、保护年限、介质电阻率计算所需的阳极数量,选择阳极规格形状。阳极在罐底板上呈环状均匀分布,阳极支架与底板焊接。牺牲阳极易于安装,而且当阳极消耗为初始重量的85%时,可以利用清罐机会进行更换。 钢质容器在做阴极保护时通常也可采用外加电流和牺牲阳极两种方法;强制电流法适用于大型水罐,如高架水罐、海水储罐、锅炉供水罐、电站的河水罐等,辅助阳极可选择硅铁、镀铂钛、石墨或铅(饮用水不适用),由罐顶适当位置悬挂下去,也可通过罐壁钻孔,固定阳极。在高电阻率水中,应选用铜芯连续式镀铂钛线形阳极,以获得均匀的电流分布。 采用牺牲阳极保护时,阳极应直接固定到罐内壁上,位于最低水位线以下600mm,尽可能均匀分布。 牺牲阳极施工需要注意以下事项: 1、清罐除锈,达到涂料施工标准; 2、将阳极块焊接到罐底内侧及内壁下部800mm的壁板上,焊接牢固,清除残渣。 3、涂覆施工,内底板及1m 以下壁板采用绝缘型油罐涂料,其他部位采用导电涂料。施工中,阳极块只要求暴露本体,焊接引线,焊点及阳极块下表面及罐底板均需涂覆。

阳极保护浓硫酸冷却器技术操作规程

阳极保护浓硫酸冷却器技术操作规程 1、阳极保护原理 当某种金属浸入电解质溶液中时,金属表面与溶液之间会建立一个电位,叫自然腐蚀电位,同一种金属由于其各部位间存在着电化学的不均匀性,从而造成不同部位间产生一定的电位差值,它导致了金属在电解质溶液中的电化学腐蚀。向浸在电解质溶液中的金属施加直流电流,金属的电极电位会发生变化,这种现象叫极化。电位与电流密度之间的关系曲线叫做极化曲线,具有钝化性倾向的金属在进行阳极极化时,如果电流达到足够的数值,金属呈钝化状态,继续给以较小的电流,就可以维持这种状态,从而减缓金属的腐蚀,这就是阳极保护的原理。 I(A/M2) I M I P E A E B E C E D 阳极钝化曲线示意图 活化区 活化—钝化过渡区 钝化区 过钝化区 A B C D E 电位 2、工艺参数及控制指标 设备名称 控制指标 保护电位(mv)监测电位交限报警低限报警酸浓度酸温度 (mv)(mv)(mv)93%酸冷器98%酸冷器+100 — +150-50 — +550 +600-100≥92.5%≤60℃ +200 — +2500 — +550+600-100≥98%<100℃ 3、开车运行准备工作 3.1 恒电位仪检查:检查各接线准确无误;必须在开车前通上220V-50HZ 交流电,进行调试,设定监控上限,控制上限,控制下限数据,各数据必须符合恒电位使用说明书上给定的有关

参数,电源必须双回路供电,确保恒电位仪始终有电。 3.2 检查水路、酸路,安装是否正确无误;检查各电极绝缘和密封以及阴极可靠绝缘。 4、开车及日常维护操作规定 4.1 将冷却水进、出口阀打开,让冷却水通过酸冷器。 4.2 通入常温93%酸或98%酸,使其保持循环。 4.3 按阳极保护酸冷器电气技术操作规程进行通电,常温致钝到升温致钝。随着系统温度正常后,电流逐渐降低并趋于稳定,阳极保护系统投入正常运行,操作工对水进出、酸进出温度,保护电位、输出电压、电流一小时记录一次。吸收阳极保护进口酸温小于100℃。 4.5 任何情况下,只要酸冷器充满浓硫酸,无论循环与否,恒电位仪均应处于正常工作状态。若需排放硫酸检修时,应先关闭恒电位仪,然后再排放硫酸,严禁空腔送电。 4.6 每小时测定酸冷器进出口水的PH值。 4.7 电位、电流发生异常时,操作工应立即通知仪表工检查,并汇报工段及分厂,以便及时查明原因,排除故障。严格按阳极保护酸冷器电气技术操作规程进行电位、电流的调节。5、停车操作 5.1 关闭酸进口阀门,确保酸冷器壳侧充满酸。 5.2 待酸温降至50℃以下时,关闭进、出口水阀。 5.3 恒电位保持正常工作状态。 5.4 冬天停车时,应考虑酸浓度和结晶温度的关系,注意保温,防止结晶。 6.5 大检修期间停车,除检查或更换阴极、化学清洗及其它必要的维修,需将硫酸排尽并暂停阳极保护外,一般按上述停车,阳极保护继续运行。设备排空期间,严格防止进水和吸潮,避免稀酸腐蚀。 6、阴极的检修及更换 不论是干燥酸还是吸收酸冷器的阴极,尽量利用停车的时机对阴极进行检查。步骤如下:6.1 排尽酸冷器内硫酸。 6.2 拆卸阴极密封内压盖。 6.3 将阴极缓慢抽出,不要用水清洗,适当的扭动有利于阴极的抽出。检查阴极表面腐蚀及聚四氟乙烯套变形情况。 6.4 若阴极腐蚀轻微,套管没有或轻微变形,则重新插入阴极;若腐蚀严重,套管管孔处深度大于5mm,套管局部变形或浸泡,则更换阴极。 6.5 检查阴、阳极间是否短路。

埋地钢质管道牺牲阳极阴极保护方案

埋地钢质管道牺牲阳极法阴极保护技术 技术支持单位:甘肃拓维地理信息工程有限公司 示范案例:银川某燃气公司埋地钢质管道牺牲阳极阴极保护系统安装 时间:2016年6月18日 (一)原理: 埋地钢质管道牺牲阳极法阴极保护技术是将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。 (二)牺牲阳极法阴极保护的优点 1、不需要外部电源; 2、对邻近金属构筑物无干扰或很小; 3、电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。 4、调试后,可不需日常管理; 5、保护电流分布均匀,利用率高。 (三)阳极包的选材 牺牲阳极选择镁阳极包的特点是比重小、电位很负、对铁的驱动加压很大,且单位发生的电量大。镁的标准电极电位为(SHE);非平衡电极电位则随腐蚀性介质的性质而变,例如:镁在海水中的电位为(SCE),镁在土壤之中的电位为至(SCE),镁在碱溶液中的电位约为(SCE)。镁的电极电位与介质的PH值有密切关系,PH值在酸性范围内,电位较负,因为生成的腐蚀产物氢氧化镁在碱性介质中是难溶的。 (四)主要应用的规范

1、《埋地钢质管道阴极保护电参数测试方法》SY/T0023-97 2、《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T0019-97 3、《钢质管道及储罐防腐工程设计规范》SY0007-99 4、《阴极保护管道的电绝缘标准》SY/T0086-95 5、《埋地钢质管道直流排流保护技术标准》SY/T0017-96。 (五)施工方法 1、牺牲阳极法阴极保护施工安装程序简述如下: 袋装阳极制作→阳极床定位→阳极床开挖→阳极埋设→阳极浇水浸透饱和及各参数测试→阳极通电点处理及焊接→通电点导通测试→通电点补口防腐(补口处防腐材料与管体防腐材料是匹配的)→阳极回填→标记记录。 图1 阳极床定位

牺牲阳极保护设计与施工的经验建议

随着城市建设事业的飞速发展,埋地管道的数量剧增。这些管道多采用碳钢材质,为了延长管道的使用寿命,采取相应的防护措施尤为重要,其中涂层防腐和牺牲阳极保护联合防护取得了良好的效果。本文结合一些建设案例,针对牺牲阳极保护设计和施工中的问题提出一些建议。 管道防腐通常采用涂层加牺牲阳极保护,常规阴极保护有两种方法:外加电流法和牺牲阳极法。土壤电阻率约20Ω·m,保护电流密度为0.2mA/m2,自然电位为-0.4~-0.6V,管道保护电位(参比电极Cu/Cu-SO4)低于-0.95V。经过技术经济比较,牺牲阳极保护采用牺牲阳极法较适宜,该法施工简单,安全可靠,对邻近金属管道电干扰少,不用专人管理,可延长管道寿命1倍以上。 ②带状镁阳极的使用 带状镁阳极由纯镁或镁锰合金冷轧压制而成,开路电位(参比电极Cu/CuSO4)为-1.7V,单位长度质量为0.37kg/m,宜在电阻率≥100Ω·m的环境中使用。镁带在电阻率为50Ω·m的土壤中输出电流为10mA/m,在电阻率为150Ω·m的淡水中输出电流为3mA/m。同等质量带状镁阳极比锭状镁阳极表面积大很多,如11kg 镁锭表面积为0.27m2,而11 kg镁带长度为30m,表面积为1.9m2,是前者的7倍。阳极输出电流与表面积成正比,与电阻率成反比。阳极质量决定阳极寿命。设计上应考虑当地土壤电阻率,在穿越段或套管内管道上缠绕镁带要考虑它的使用寿命应该与管道寿命相当。如果设计寿命为20年,而当地土壤电阻率较低,就不宜采用镁带,而应采用锭状镁阳极。 常规设计穿越段或套管内管道通常采用镁带缠绕安装方法。绍兴天然气利用工程中采用的带状镁阳极断面尺寸为(19±0.5)mm×(9.5±0.5)mm,每根钢管缠绕2条带状镁阳极,缠绕方式为对称分布于管道两侧,每隔1~2m设一处捆绑带,其材料为尼龙带。电缆与镁阳极采用灌锡焊。绝缘层采用复合绝缘结构,从内向外为环氧树脂、电工胶布、塑料胶布、热缩套、防腐胶布,各层胶布缠绕时搭接。电缆与管道采用双点铝热焊连接,电缆蛇行并留有余量,两焊点间距>10cm,涂层破口尺寸为3cm×3cm,补口尺寸大于5cm×5cm。但在实际施工中这种镁带缠绕安装方法操作起来有困难,尤其是穿越段管道回拖时,缠绕的镁带会增加回拖阻力,且镁带容易脱落和断裂。因此,对于穿越段管道,建议不采用镁带,而是在出、入土点两处增设锭状镁阳极,并设置测试桩,定时检测阳极消耗量。对套管内管道,建议镁带的安装方法不采用缠绕,而是在不减少镁带量的前提下和管道平行安装,这样便于管道进入套管内而不损伤镁带。 ③三层PE涂层的优越性 在当前管道防腐涂层中,三层PE是诸多涂层中性能较优的一种,它不但有良好的机械性能,而且有良好的抗腐蚀性能和抗阴极剥离性能。三层PE涂层与阴极保护配合使用,大大降低阴极保护电流密度,从而降低阴极保护的造价。众多实例证实,新建PE涂层陆地管道所需保护电流密度约1~20μA/m2,海水管道所需保护电流密度约500μA/m2大大低于其他防腐层。但在当前设计中,由于缺乏对三层PE性能及使用寿命的认识,往往设计过于保守,造成牺牲阳极材料使用量过大。 ④绝缘装置的安装 阴极保护管道上的绝缘装置有多种形式,主要是绝缘法兰和绝缘接头。绝缘法兰必须架空,绝缘接头可直埋入地。安装绝缘装置会出现两个问题:a.如何保护绝缘装置不受强电电涌的破坏。目前绝缘接头有整体自放电型和无自放电型两种。整体自放电型绝缘接头由于内部有释放高压的装置,可省去具有相同功能的

牺牲阳极阴极保护施工方案

珠海粤裕丰钢厂干散货码头钢桩牺牲 阳极阴极保护工程 施工组织设计方案 濮阳市豫安防腐有限公司吉林分公司 2011年10月

目录 第一章工程概况 (2) 第二章施工方案 (3) 第三章施工组织机构和人员配置 (10) 第四章主要施工设备、检测仪器表 (16) 第五章质量保证措施和施工安全措施 (18)

第一章工程概况 1.工程概述 珠海粤裕丰钢厂干散货码头为防止钢管桩的腐蚀设计采用环氧粉末全涂加牺牲阳极阴极保护的方法。材质为Q345、尺寸为Φ****×*****的钢管桩共计408根,每根钢管桩上布置1支高效铝阳极,共计安装铝合金牺牲阳极408支;安装阴极保护电位测试系统6套。 2.施工计划周期 开工日期:2011年9月10日 竣工日期:2011年11月30日 3.施工作业总体安排 牺牲阳极水下安装施工,采用两个作业班;阴保电位测试系统的安装选用一个作业班进行施工安装。三个作业班可根据工程进度安排采取同时作业或交叉作业的方式,最大程度的提高工效保证本工程按时竣工。 4.阴极保护施工及验收规范 4.1 JTS 153-3-2007 《海港工程钢结构防腐蚀技术规范》 4.2 GJB156A-2008 《港工设施牺牲阳极保护设计和安装》 4.3 GB/T 4948-2002 《铝-锌-铟系合金牺牲阳极》 4.4 GB/T 4949-2007 《铝-锌-铟系合金牺牲阳极化学分析方法》 4.5 GB/T 17848-1999《牺牲阳极电化学性能试验方法》

第二章、施工方案 1.牺牲阳极水下焊接 1.1牺牲阳极水下焊接方式的比较 1.1.1 根据钢管桩码头建造特点,打桩前,钢管桩表面不能焊接较大构件,以免影响打桩施工。牺牲阳极只能在钢管桩完成打桩工程后进行水下安装。 1.1.2牺牲阳极的水下安装方法主要有以下几种:螺栓固定法、捆扎法和水下焊接法。 1.1.3螺栓固定法是将牺牲阳极通过固定在焊在钢管桩上的钢制固定架上,达到阳极安装固定的目的。螺栓固定法的缺点是工艺复杂、安装困难,尤其是牺牲阳极在长期使用中受海水冲击、海流推动,螺帽容易产生松动,造成牺牲阳极与钢管桩之间接触电阻增大,降低阳极发生电流量和工作性能,影响钢管桩的保护效果。 1.1.4捆扎法是采用钢制卡环或钢带将牺牲阳极捆扎在钢管桩上,达到牺牲阳极安装固定的目的。捆扎法的缺点是由于海浪冲击,海流扭动,牺牲阳极的不断溶解,造成牺牲阳极与捆扎带之间产生松动,使阳极与钢管桩之间接触电阻增大,影响牺牲阳极发生电流和使用效果,严重者阳极脱落,造成保护工程失败。 通过以上比较,螺栓法固定法和捆扎法一般不宜采用。 1.1.5水下焊接安装法是采用水下焊接设备和水下焊条通过电焊方法把牺牲阳极安装固定在钢管桩上。水下电焊方法具有技术成熟、牢固可靠,牺牲阳极与钢 气管桩接触电阻小、导电性能好、使用寿命长等特点。水下焊接法又分自动CO 2 气体局部排水干法焊技术难度体局部排水干法焊和普通湿法焊两种。半自动CO 2 大、造价高,主要用于水下高强钢结构材料的焊接。本工程钢管状材质为Q345钢,采用水下SRE TS 208湿法焊条焊接工艺完全满足工程技术要求。 1.2牺牲阳极水下焊接设备 1.2.1 牺牲阳极水下焊接安装设备采用ZX-500直流弧焊机,ZX-500焊机的特点是电压调节范围大,工作电流稳定,起弧电压稳定,水下操作不易断弧,连续性强,焊缝质量好。 1.2.2空压机 施工用空压机型号为V-0.67/14-1型。该机排气量0.67/min,工作压力1.4MPa,

牺牲阳极法阴极保护方案

目录 一、概述 (1) (一)工程概况 (1) (二)保护原理 (1) (三)牺牲阳极法阴极保护的优点 (1) (四)应用标准和规范 (1) 二、本工程管道牺牲阳极保护法的设计 (1) 三、施工方法 (2) 1、牺牲阳极法阴极保护施工安装程序简述: (2) 2、牺牲阳极法的施工: (2)

一、概述 (一)工程概况 本保护管段范围为北河路(天华路至体育场段)工业水管线。管径为DN500,管道敷设在北河路南侧,单管保护长度为约2.6km。本工程采用牺牲阳极法。 (二)保护原理 将被保护的金属结构连接一种比其电位更负的金属或合金,该金属或合金为阳极,依靠它的优先溶解所释放出的电流使金属结构阴极极化到所需的电位而实现保护,这种方法称为牺牲阳极法阴极保护。(三)牺牲阳极法阴极保护的优点 1、不需要外部电源; 2、对邻近金属构筑物无干扰或很小; 3、电流输出虽不能控制,但有自动调节倾向,且覆盖层不易损坏。 4、调试后,可不需日常管理; 5、保护电流分布均匀,利用率高。 (四)应用标准和规范 1、《埋地钢质管道阴极保护电参数测试方法》SY/T0023-97 2、《埋地钢质管道牺牲阳极阴极保护设计规范》SY/T0019-97 3、《钢质管道及储罐防腐工程设计规范》SY0007-99 4、《阴极保护管道的电绝缘标准》SY/T0086-95 5、《埋地钢质管道直流排流保护技术标准》SY/T0017-96 二、本工程管道牺牲阳极保护法的设计 该管道为工业水管道,管径500㎜,设计采用如下牺牲阳极保护法。

牺牲阳极选用镁阳极,每240米设1组,每组由3支22kg的镁阳极组成。 共埋设镁阳极48支,距管道垂直距离>1.5m,阳极周边用填料包围以减少接地电阻及促进腐蚀产物的溶解。汇流点及中间点设测试桩3支,测试桩按照1支/km的原则埋设。 三、施工方法 1、牺牲阳极法阴极保护施工安装程序简述: 袋装阳极制作→阳极床定位→阳极床开挖→阳极埋设→阳极浇水浸透饱和及各参数测试→阳极通电点处理及焊接→通电点导通测试→通电点补口防腐(补口处防腐材料与管体防腐材料是匹配的) →阳极回填→标记记录。 2、牺牲阳极法的施工: 2.1镁阳极安装 2.1.1牺牲阳极的施工:牺牲阳极土壤中的施工,包括埋设前的组装、阳极的填充和埋高。 2.1.2镁阳极与阳极电缆的组装 阳极与电缆之间的联接采用锡焊。在焊接点上涂覆环氧涂料,加缠电工胶布和绝缘胶带,再包覆热收缩套,并再缠胶带保护。必须保证焊接牢固并且绝缘性能良好。 2.1.3阳极安装前准备 在组装牺牲阳极之前,应检验阳极表面是否有油污和氧化物。牺牲阳极表面的油污和氧化物能降低阳极的活性,影响阳极电流的发生,所以阳极表面如存在油污和氧化物,应采用砂纸将阳极表面打磨干净。 填料包的组装可在室内或现场进行,应保证阳极四周的填料厚度一致、密实,各边厚度不小于50mm。填料应调拌均匀,不得混入石块、泥土、杂草等。每支阳极需用填料约50Kg。

船舶阴极保护系统介绍

船舶阴极保护系统详述 简要:详细介绍船体电化学腐蚀原理,阴极保护方法,并结合实际应用详细阐述外加电流的阴极保护的工作原理与衡量标准。 一、电化学腐蚀原理 铁制成的船体接触海水时会产生电位,发生电腐蚀现象。所以,为了尽量减少船体与海水接触,采用防锈蚀的油漆隔离船体和海水。但是船尾轴系,推进器或者因为船体损伤导致的与海水接触是无法完全避免的。所以接触到海水的一部分船体会发生电化学腐蚀,根据电解情况的不同,腐蚀程度不同。 原电池电解反应: 当两种金属或含杂质的金属被置于电解液中,金属活动性强容易失去电子,被氧化,发生氧化反应,为阳极,从而带正电荷(生成金属氧化物,所谓被腐蚀),使电势升高,可以作为正极(正极是针对外部电解质中游离电荷而言,正极吸引负电荷,而正电荷则流向负极,可以被认为是电流的方向)。 金属活动性弱者得电子,被还原,发生还原反应,为阴极(该电极积累金属),电势降低,成为负极,吸引正电荷聚集。 图1 电化学腐蚀原理图 二、阴极保护 阴极保护则使上述过程逆转,根据提供阴极电流的方式不同,阴极保护又分为牺牲阳极法和外加电流法两种,前者是将一种电位更负的金属(如镁、铝、锌等。注:金属活动性更强,更活跃,更易失电子)与被保护的金属结构物电性连接,通过电负性金属或合金的不断溶解消耗,向被保护物提供保护电流,使金属结构物获得保护。后者是将外部交流电转变成低压直流电,对被保护的金属表面施加一定的直流电流,使其产生阴极极化,当金属的电位负于某一电位值时,腐蚀的阳极溶解过程就会得到有效抑制。 牺牲阳极阴极保护法一般用锌块合金,布置没有具体要求,只要沿着舭龙骨流线平均分布,具体数量则要根据船只钢材数量(面积)进行计算后得出。也可用铝合金的,效果更好,但在机舱及货油舱等区域禁止使用(因电位差过高存在引发火星的可能性)。一般设计使用寿命2-3年,采用焊接或铆接方式固定于船体外壳之上,铆接的话到了使用后期可以方便更换,并且有各种型号可选。其中双层底和双壁舱室内部区域(bottom; double hull inner area)也应当设有牺牲阳极保护装置。 下面将详细介绍外加电流的阴极保护过程原理及方法。

相关主题
文本预览
相关文档 最新文档