当前位置:文档之家› 船体结构强度大作业.

船体结构强度大作业.

船体结构强度大作业.
船体结构强度大作业.

船舶结构强度

第一次大作业

班级:船海1303班

姓名:王航

学号:U201312325 2015年3月11日

一、主要数据及原始资料 1、主要数据

计算船长 L=200m

海水密度 ρ=1.0253

/m t 重力加速度 g=9.802/s m 2、原始资料

(1)全船重量重心汇总表。

站号 重心坐标 (m ) 重量(t ) 0-1 -95 791.9 1-2 -85 810.6 2-3 -75 855.8 3-4 -65 900.0 4-5 -55 399.6 5-6 -45 488.1 6-7 -35 525.6 7-8 -25 410.1 8-9 -15 558.9 9-10 -5 750.1 10-11 5 710.5 11-12 15 670.8 12-13 25 540.9 13-14 35 650.0 14-15 45 558.6 15-16 55 610.2 16-17 65 496.5 17-18 75 580.0 18-19 85 520.4 19-20 95 419.3

总重量

12248.0

(2)邦戎曲线图。

i x

(3)静水中的有关参数

总重量 W=120030.4 kN

水线面面积 A=48002

m 纵稳性半径 R=220m 漂心纵向坐标 x f =-4.3m 平均吃水 d=3.9m (4)参数计算 由公式i

i

i P x P x ∑∑=

q 以及全船重量重心汇总表中的数据可以计算出重心:

q x =-6.786m

由邦戎曲线数据表中的数据绘制邦戎曲线,吃水为3.9m 的直线相交如下所示:

得到下表数据:

站号

浸水面积si A (2

m )

纵向坐标i x (m ) 0 4.32 -100 1 8.64 -90 2 21.52 -80 3 42.08 -70 4 70.64 -60 5 97.44 -50 6 111.84 -40 7 117.12 -30 8 117.68 -20 9 117.76 -10 10 117.76 0 11 117.68 10 12 115.2 20 13 108.32 30 14

95.28

40

15 76.64 50 16 56.48 60 17 37.44 70 18 23.12 80 19 0 90 20

13.6

100

由上表数据及公示si

i

si b A x A x ∑∑=

可算得浮心坐标:b x =-3.96m 。 二、船舶在静水中剪力和弯矩的计算。 1、船舶在静水中平衡位置的确定 (1)第一次近似计算

艏吃水 )2(q 1f b m f x L

R x x d d --+==2.579m 艉吃水 )2

(q 1a f b m x L

R x x d d +--==5.112m 浮力 1B =121547.01kN 浮心纵坐标 1b x =-9.06m (2)第二次近似计算 艏吃水 2/)2

(**1q 1

12f b f f x L R x x g B W d d --+A -+=ρ=3.35

艉吃水 2/)2

(**1q 1

12a f b a x L R x x g B W d d +--A -+=ρ=5.816

浮力 2B =120443.568kN

浮心纵坐标 2b x =-7.28m

精度检查

0.097% < 0.1 % 0.25%< 0.5 %

以上满足船舶平衡计算的精度要求。具体计算见下表:

理论站号力

第一次近似第二次近似各站浸

水面积

成对和

(2

m

理论站

距上的

浮力

)

(kN

距各站浸水面

F)

(2m

面积矩函

(2

m

各站浸

水面积

F)

(2

m

面积矩函

(2

m

0 -10 0 0 0 0 0 0 0

1 -9 7.27 -65.43 7.7

2 -69.48 7.72 387.7

3 0-1

2 -8 23.51 -188.08 21.1

3 -173.0

4 28.8

5 1448.99 1-2

3 -7 41.56 -290.92 38.2

4 -269.78 59.37 2981.86 2-3

4 -6 66.24 -397.44 63.19 -388.14 101.43 5094.32 3-4

5 -5 92.18 -460.9 89.27 -446.85 152.4

6 7657.30 4-5

6 -4 110.83 -443.32 102.18 -416.72 191.45 9615.58 5-6

7 -3 115.28 -345.84 115.1 -336.3 217.28 10912.88 6-7

8 -2 112.67 -225.34 112.17 -224.34 227.27 11414.64 7-8

9 -1 109.12 -109.12 106.23 -106.23 218.4 10969.14 8-9

10 0 104.51 0 103.56 0 209.79 10536.70 9-10

11 1 97.83 97.83 99.78 96.88 230.34 11568.83 10-11

12 2 87.54 175.08 87.54 175.08 187.32 9408.15 11-12

13 3 71.28 213.84 78.28 234.84 165.82 8328.31 12-13

14 4 64.8 259.2 68.89 275.56 147.17 6391.61 13-14

15 5 36.61 183.05 39.74 198.7 108.63 5455.94 14-15

16 6 27.35 164.1 31.39 188.34 101.13 3079.25 15-16

17 7 17.11 119.77 19.81 135.17 51.2 2573.06 16-17

18 8 8.67 69.36 9.45 75.6 29.26 1469.58 17-18

19 9 5.18 46.62 5.07 45.63 14.52 729.27 18-19

20 10 0.79 7.9 0.71 7.1 5.78 290.30 19-20

Σ1210.42 -1189.64 1199.45 -876.98

修正值-0.395 -3.95 -0.355 -3.55

修正后Σ1210.025 -1193.59 1199.04 -873.43

2、静水剪力N及弯矩M计算。

理论站距理论

站间

重量

)

(kN

理论

站距

上的

浮力

)

(kN

理论

站间

载荷

(2)

-(3)

)

(kN

(4)

列自

上而

下之

)

(kN

(5)

列积

分和

)

(kN

对第

(5)

列不

封闭

的修

正值

)

(kN

剪力

值N=

(5)-

(7)

)

(kN

2

L

6

?

?

(m

kN?

对第

(9)

列不

封闭

的修

正值

)

m

(?

kN

弯矩

M=

(9)-

(10)

)

m

(?

kN

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)

0 0 0 0 0 0 0 0

0-1

7761.08 387.73

7373.35 7373.35 7373.35 -20.93 7394.28

36866.7

5

-30408.9

5

67275.7

1

1-2

7943.88 1448.99

6494.89

13868.2

4

28614.9

4

-41.86

13910.1

143074.

7

-60817.9

203892.

6

2

2-3

8386.41 2981.86

4810.89

18679.1

3

61162.3

1

-62.79

18741.9

2

305811.

55

-91226.8

4

397038.

39

3

3-4

8820.00 5094.32

2978.88

21658.0

1

101499.

45

-83.71

21741.7

2

507497.

25

-121635.

79

629133.

04

4

4-5

3916.31 7657.30

-4348.21 17309.8

140467.

26

-104.6

4

17414.4

4

702336.

3

-152044.

74

854381.

04

5

5-6

4783.09 9615.58

-5491.94

11817.8

6

169594.

92

-125.5

7

11943.4

3

847974.

6

-182453.

69

1030428

.29

6

6-7

5151.36 10912.8

8

-6461.54 5356.32

186769.

1

-146.5

5502.82

933845.

5

-212862.

63

1146708

.13

7

7-8

4019.36 11414.6

4

-7322.8

-1966.4

8

190158.

94

-167.4

3

-1799.05

974794.

7

-243271.

58

1218066

.28

8

8-9

5477.44 10969.1

4

-5967.33

-7933.8

1

180258.

65

-188.3

6

-7745.45

901293.

25

-273680.

53

1174973

.78

9

9-10

7350.64 10536.7

-3526.59

-11460.

4

160864.

44

-209.2

9

-11251.1

804322.

2

-304089.

48

1108411

.68

10

10-11

6962.90 11568.8

3

-3257.64

-14718.

04

134686

-230.2

1

-14487.8

3

673430

-334498.

42

1007928

.42

11

11-12

6573.84 9408.15

-2949.66

-17667.

7

102300.

26

-251.1

4

-17416.5

6

511501.

3

-364907.

37

876408.

67

12

12-13

5300.82 8328.31

-2688.97

-20356.

67

64275.8

9

-272.0

7

-20084.6

321379.

45

-395316.

32

716695.

77

13

13-14

6370.00 6391.61

4.48

-20352.

19

23567.0

3

-293.0

-20059.1

9

117835.

15

-425725.

27

543560.

42

14

14-15

5474.28 5455.94

919.31

-19432.

88

-16218.

04

-313.9

3

-19118.9

5

-81090.2

-456134.

21

375044.

01

15

15-16

5979.96 3079.25

2973.49

-16459.

39

-52110.

31

-334.8

6

-16124.5

3

-260551.

55

-486543.

16

225991.

61

16

16-17

4865.45 2573.06

3081.31

-13378.

08

-81947.

78

-355.7

8

-13022.3

-409738.

9

-516952.

11

107213.

21

17

17-18

5684.00 1469.58

4670.1

-8707.9

8

-10403

3.84

-376.7

1

-8331.27

-520169.

2

-547361.

06

27191.8

6

18

18-19

5099.92 729.27

4470.28 -4237.7

-11697

9.52

-397.6

4

-3840.06

-584897.

6

-577770.

00

-7127.6

19

19-20

4109.43 290.30

3819.13 -418.57

-12163

5.79

-418.5

7

0.00

-60817.9

-60817.9 0.00

20

静水剪力图如下:

弯矩图如下

最大剪力kN 21741.72N max =,最大弯矩=max M 1218066.28 m kN ? 准确度

剪力 |N(20)/Nmax|=|-418.57 /21741.72 |=1.93%<5% 弯矩 |M(20)/Mmax|=|-60817.90/1218066.28|=4.992%<5%

船体结构与强度设计总结

1、结构的安全性是指结构能承受在正常施工和正常使用时可能出现的各种载荷和(或)载 荷效应,并且在偶然事件发生时及发生后,仍能保持必须的整体稳定性。此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。 2、船体强度计算包括: (1)确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷 (2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。响应 (3)确定合适的强度标准,并检验强度条件。衡准(结构的安全性衡准都普遍采用确定性的许用应力法) 3、通常将船体强度分为总强度和局部强度来研究。 4、结构的安全性是属于概率性的。 5、把船体当做一根漂浮的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏 的能力,通常成为总强度。总强度就是研究船体梁纵弯曲问题。从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。 6、作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷、局部性载荷。 按载荷随时间变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。 7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。 局部性载荷是指引起局部结构、构件变形或破坏的载荷。 冲击载荷,是指在非常短的时间内突然作用的载荷,例如砰击。 8、结构设计的基本任务是:选择合适的结构材料和结构型式,决定全部构件的尺寸和连接 方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。 9、船体结构设计,一般随全船设计过程分为三个阶段,即初步设计、详细设计和生产设计。 10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。 11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。但是,减小结构 尺寸、降低结构重量,往往会增加建造工作量,从而增加制造成本同时还会引起维护保养费用的增加。因此,应该研究怎样才能达到降低结构重量和降低初始成本这两个目标的最佳配合。 1、船体重量按分部情况来分可以分为:总体性重量、局部性重量。 按变动情况分可以分为:不变质量和变动质量。 2、对于船体总纵强度的计算状态,选取满载:出港、到港;压载:出港、到港;以及装载 手册中所规定的各种工况作为计算状态。 3、计算波浪弯矩的船体标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4、计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种, 直接法又称为麦卡尔法。 5、史密斯修正:计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对 浮力曲线所做作的修正,称为波浪浮力修正,或称史密斯修正。 6、船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船 体梁。 7、船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体抵抗总纵弯 曲的能力,成为总纵强度(简称纵强度)。 8、波浪附加剪力、波浪附加弯矩完全是由波浪产生的附加浮力(相对于静水状态的浮力增 量)引起的,简称波浪剪力和波浪弯矩。

船体强度与结构设计复习材料

船体强度与结构设计复习材料 绪论 1.船体强度:是研究船体结构安全性的科学。 2.结构设计的基本任务:选择合适的结构材料和结构型式,决定全部构建的尺寸和连接方式,在保证具有充足的强度和安全性等要求下,使结构具有最佳的技术经济性能。 3.全船设计过程:分为初步设计、详细设计、生产设计三个阶段。 4.结构设计应考虑的方面:①安全性;②营运适合性;③船舶的整体配合性;④耐久性;⑤工艺性;⑥经济性。 5.极限状态:是指在一个或几个载荷的作用下,一个结构或一个构件已失去了它应起的各种作用中任何一种作用的状态。 引起船体梁总纵弯曲的外力计算 船体梁:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁。 总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。 总纵强度:船体梁抵抗总纵弯曲的能力。 引起船体梁总纵弯曲的主要外力:重力与浮力。 船体梁所受到的剪力和弯矩的计算步骤: ①计算重量分布曲线平p(x); ②计算静水浮力曲线bs(x); ③计算静水载荷曲线qs(x)=p(x)-bs(x); ④计算静水剪力及弯矩:对③积分、二重积分; ⑤计算静波浪剪力及弯矩: ⑥计算总纵剪力及弯矩:④+⑤。 重量的分类: ①按变动情况来分:不变重量(空船重量)、变动重量(装载重量); ②按分布情况来分:总体性重量(沿船体梁全场分布)、局部性重量(沿船长某一区段分布)。静力等效原则: ①保持重量的大小不变;②保持重心的纵向坐标不变; ③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线。 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。载荷、剪力和弯矩之间的关系: ①零载荷点与剪力的极值相对应、零剪力点与弯矩的极值相对应; ②载荷在船中前后大致相等,故剪力曲线大致是反对成的,零点靠近船中,在首尾端约船长的1/4处具有最大正、负值; ③两端的剪力为零,弯矩曲线在两端的斜率为零(与坐标轴相切)。 计算状态:指在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态,一般包括满载、压载、空载等和按装载方案可能出现的最为不利以及其它正常营运时可能出现的更为不利的装载状态。 挠度及货物分布对静水弯矩的影响: ①挠度:船体挠度对静水弯矩的影响是有利的;

船舶强度与结构设计_授课教案_第四章应力集中模块

第四章应力集中模块 一、应力集中及应力集中系数 在船体结构中,构件的间断往往是不可避免的。间断构件在其剖面形状与尺寸突变处的应力,在局部范围内会产生急剧增大的现象,这种现象称为应力集中。 由于船体在波浪上的总纵弯曲具有交弯的特性,应力集中又具有三向应力特性,严重的应力集中更易于引起局部裂纹和促进裂纹的逐渐扩展。第二次世界大战中和大战后,由于结构开口引起应力集中从而产生裂缝导致船体折断的事故占整个船体结构海损事故总数中的极大部分。因此,在第二次世界大战后,关于船体结构的应力集中问题,曾引起了造船界的普遍重视,开展了大量的研究工作。现在,对这个问题已经有了比较清楚地了解。 由于应力集中是导致结构损坏的一个重要原因,结构设计工作者在设计中必须始终注意这个问题。再进一步对船体结构中比较突出的几个应力集中问题及该区域的结构设计作一些介绍。 通常,用应力集中系数来表示应力集中的程度。应力集中区的最大应力m ax σ或m ax τ分别与所选基准应务0σ或0τ之比值,即 0max 0max ττσσ==k k 或 (1)

称为应力集中系数。基准应力不同,应力集中系数也不同。所以,给定应力集中系数时,应指明基准应力的取法。 间断构件的应力变化规律以及应力集中系数的大小很大程度上决定于这些构件的形状。目前,已经能够确定各种形状的间断构件的应力集中系数。 二、开口的应力集中及降低角隅处应力集中的措施 在大型船舶上,强力甲板上的货舱口、机舱口等大开口,都严重地破坏了船体结构的连续性。当船舶总纵弯曲时,在甲板开口角隅外的应力梯度急剧升高,引起严重的应力集中,造成船体结构的薄弱环节。关于舱口角隅处应力集中的确定,导致去除方角而采用圆弧形角隅,并在角隅处采用加复板或厚板进行加强,同时要采用IV 级或V 级的材料。 1.开口的应力集中 关于孔边的应力集中,可用具有小椭圆开孔的无限宽板受位抻的情况来说明(见下图)。应用弹性理论可求得A 、B 两点的应力分别为: ?????-=+=σσσσB A p a )21( (2) 式中σ为无限远处的拉伸应力; a b /2=ρ为椭圆孔在A 点的曲率半径;

华科船舶结构强度第二次大作业

船体强度与结构设计 ------第二次大作业 班级: 姓名: 学号:

题目:图示为某船舶横剖面结构示意图。请计算当船舶船舯为波谷,且弯矩值为×107N ·m ,考虑折减系数计算总纵弯矩应力。 解答: 一、计算依据 1、计算载荷 计算弯矩 7 9.010m M N =?? 2、船体材料 计算剖面的所有构件均采用低碳钢,屈服极限=235a Y MP σ 3、许用应力 (1)总纵弯曲许用应力 []0.5Y σσ= (2)总纵弯曲与板架局部玩去合成应力的许用应力: 在板架跨中 12[+]0.65Y σσσ= 在横仓壁处 12[+]Y σσσ=

二、总纵弯曲正应力计算 1、总纵弯曲正应力第一次近似计算 肋骨剖面计算简图如题图所示。将图中个强力构件编号并将其尺寸填入表中。船体剖面要素及第一次近似总纵弯曲应力的计算在下表中完成。

在计算中,参考轴取在基线处。利用上表中的数据可得第一次近似中和轴距参考轴的距离为: =2748.361702.81=1.614m ?÷ 所以,第一次近似中和轴距基线的距离为 船体剖面对水平中和轴的惯性矩为: 222=2(9951.42138.512748.361702.81)11308.1cm m I ?+-÷=? 剖面上各构件的应力为: ' i i = /100M Z I σ 式中'i i Z Z =-? 2、临界压力计算 由于该计算中船舶船舯处于波谷中,即船舶处于中垂状态,所以下面只列出中和轴以上部分受压板的临界应力。 纵骨架式板格(四边自由支持)按下式计算: 2 10076( )cr t b σ= 3、船体总纵弯曲应力第二次近似计算 (1)剖面折减系数计算 已知本船体结构为纵骨架势,因此对于只参加抵抗总纵弯曲的构件 cr i σ?βσ= 式中 cr σ——板格的临界应力

船舶结构物强度

思考题 1.依据“建造规范”与依据“强度规范”设计船体结构的方法有什么不同?它们各有何优缺点 答:建造规范:根据规范确定最小尺寸,设计尺寸不应小于最小尺寸 优点:安全、简便。缺点:不易反应具体船舶的特点及新技术成果。 强度规范:又分直接设计和间接设计,前者是依据]/[max σM W =来确定构件尺寸,后者参考母型取定构件尺寸,再计算max σ与][σ相比较,修改尺寸。 优点:合理,反映具体的船舶特点。缺点:计算工作量大 2.为什么要将船体强度分为“总强度”和“局部强度”?其中“局部强度”与“局部弯曲”的含义有何不同? 答:总强度是把整个船体看做一个整体来研究其强度,局部强度是研究组成船体的某些部分结构、节点及其组成构件的强度问题,一般在总强度校核已进行的前提下,对局部强度进行分析,以确定结构布置原则和决定构件尺寸。局部弯曲是考虑将总纵弯曲应力计入的总应力,而局部强度还得将总应力与][σ相比较,进行强度校核。 3.如何获得实际船舶的重量分布曲线? 答:通常将船舶重量按20个理论站距分布(民船尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 4.说明计算船舶静水剪力、弯矩的原理及主要步骤。 答:原理:认为船是在重力、浮力作用下平衡于波浪上一根梁 步骤:(1)确定平衡水线位置(2)根据梯形法、围长法等得出船舶重量分布曲线w(x),根据邦戎曲线得出某一吃水下的浮力曲线b (x ),计算载荷曲线q(x)=w(x)-b(x),根据∫=x dx x q x N 0)()(计算船舶静水剪力,∫∫=x x dxdx x q x M 00)()(计算静水弯矩 5.“静置法”对计算波浪的波型、波长、波高以及与船舶的相对位置作了怎样的规定? 答:对于“静置法”,标准波浪的波形取为坦谷波,计算波长等于船长,波高则随波长变化。波船相对位置:中拱(波峰在船舯)和中垂(波谷在船舯)两种典型状态。 6.按照“静置法”所确定的载荷来校核船体总纵强度,是否反映船体的真实强度,为什么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L 较大时载荷被夸大,但具有相互比较的意义 7.依据q-N-M关系解释在中拱和中垂波浪状态下,通常船体波浪弯矩总是舯剖面附近最大,这一结论是否适用于静水弯矩? 答:适用于静水弯矩,将船近似为自由-自由梁,受垂向载荷作用,易知船体弯矩是舯剖面附近最大 8.在初步设计阶段,如何应用“弯矩系数法”来决定船体的最大波浪弯矩和剪力? 答:在初步设计阶段,通过参考母型船,估计一个主尺度D 、L ,在中拱、中垂两种情况下,由max )/(w M DL K =,得出K DL M w /)(max =其中中垂K ,中拱K 的值约15-35,而max )(w N 由max )(w N =L M w /)(5.3max 得出

《船体结构与强度设计》习题题目练习

《船体结构与强度设计》复习题 一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 6、在材料力学中,多数是根据剪力方程与弯矩方程或根据载荷、剪力与弯矩三者之间的微积分关系来画剪力图与弯矩图,在结构力学中也是一样。(×) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行计算。(√) 9、求解静不定梁往往是利用弯曲要素表,并通过变形协调条件来进行,而不能利用“初参数法”。(×) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 14、在船体结构计算中,常将甲板纵骨与船底纵骨视作连续梁,而甲板横梁与船底肋板作为它们的弹性支座。(×) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 16、位移法中关于弯曲要素正负号的规定与力法中的规定一样。(×) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 18、在弯矩分配法基本结构下,连接于节点的各杆杆端的固端弯矩一般来说相互平衡,即作用于节点上的固端弯矩之和等于零。(×) 19、和位移法相比,弯矩分配法可以使问题简单化,因为绕过了求节点转角这一步而直接求出杆端弯矩。(×) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 22、最小变形能定理,又称最小功原理,是莫尔定理的特殊情况。(×) 23、广义位移应理解为杆件在变形中广义力作用点处沿力作用方向的位移,广义力与广义位移永远成线性关系。(×) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 25、若杆件横断面对于两个主对称轴的惯性矩不同,则杆在失稳时总是在刚度最大的平面中弯曲。(×) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以区别弹性范围内失稳的欧拉力。(√) 27、对于高强度钢与普通钢,虽然具有相同的弹性模量,但具有不同的屈服极限,因此用这两种材料做成的杆件,尽管其断面形式相同、跨度相同、固定情况相同,他们的欧拉力是不同的。(×) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨单独时的欧拉力。(√)

最新大工17秋《船舶与海洋结构物结构强度》在线作业2

大工17秋《船舶与海洋结构物结构强 度》在线作业2

1: 单选题(5分) 钻井平台结构一般都采用()的空间钢架形式,各种梁元的最大受力状态并不对应于同一波浪状态。 A: 管状 B: 板状 2: 单选题(5分) 中垂状态下,()中的应力首先达到屈服极限。 A: 船首 B: 船尾 C: 船底 D: 甲板 3: 单选题(5分) 剖面模数的物理意义是体结构抵抗()能力的一种几何特性 A: 扭转变形 B: 弯曲变形 C: 剪切变形 D: 拉伸变形 4: 单选题(5分) 半潜式平台刚架计算的主要问题是() A: 确定各梁元的应力 B: 确定各梁元的挠度 C: 确定各梁元的位移 D: 确定各梁元的应变 5: 单选题(5分) 剪切挠度一般在弯曲挠度的()左右,所以通常不计算。 6: 多选题(5分) 下列关于极限弯矩的说法,正确的有()。 A: 极限弯矩表征船体能承受的最小载荷。 B: 极限弯矩表征船体能承受的最大载荷。 C: 用极限弯矩来估计船体所具有的过载能力。 D: 极限弯矩值越大越好。 ,C 7: 多选题(5分)

扭转强度计算假定有() A: 船体前后对称与中剖面的 B: 在静水水线和波浪水线间的范围内的船侧是直臂型的 C: 波形是余弦性的 D: 船体在波浪上斜置时没有横纵倾角了 ,B,C,D 8: 多选题(5分) 桩腿除了受到风、浪、流等的环境载荷、自身的重量和浮力外还受到()。 A: 船体对桩腿的作用力矩 B: 船体对桩腿的水平剪力 C: 船体对桩腿的轴向力 D: 桩腿底部的垂直反力与水平反力 ,B,C,D 9: 多选题(5分) 海底基础对自升式平台的桩腿的转动约束可用一个转动弹簧来表示,此转动弹簧的刚度系数的确定取决于()? A: 海域的海况 B: 海底土壤的特性 C: 插桩深度 D: 桩腿箱的形状 ,C,D 10: 多选题(5分) 挠度过大的时候,可能造成的影响有哪些?() A: 影响主机、轴系的运转。 B: 影响到舾装件的安装。 C: 影响到仪表的使用。 D: 影响到上层建筑端部由于应力集中而破坏。 ,B,C,D 11: 判断题(5分) 单位长度扭角即扭率。 A: 错误 B: 正确 12: 判断题(5分) 在实际上,许用应力标准是根据舰船设计、建造和营运的经验,以及积累的实船静载测量和航行试验结果,根据安全和经济的原则而确定的。 A: 错误 B: 正确

船舶强度与结构设计的复习题

复习题 第一章(重点复习局部载荷分配、静水剪力弯矩的计算绘制) 1、局部载荷是如何分配的? (2理论站法、3理论站法以及首尾理论站外的局部重力分布计算) P P P =+21 a P L P P ?=?+)(2 121 由此可得: ?? ? ?? ?? ?-=?+=)5.0()5.0(21L a P P L a P P 分布在两个理论站距内的重力 2、浮力曲线是如何绘制的? 浮力曲线通常按邦戎曲线求得,下图表示某计算状态下水线为W-L 时,通常 根据邦戎曲线来绘制浮力曲线。为此,首先应进行静水平衡浮态计算,以确定船舶在静水中的艏、艉吃水。

帮戎曲线确定浮力曲线 3、M、N曲线有何特点? (1) M曲线:由于船体两端是完全自由的,因此艏、艉端点处的弯矩应为零,亦即弯矩曲线在端点处是封闭的。此外,由于两端的剪力为零,即弯矩曲线在两端的斜率为零,所以弯矩曲线在两端与纵坐标轴相切。 (2) N曲线:由于船体两端是完全自由的,因此艏、艉端点处的剪力应为零,亦即剪力曲线在端点处是封闭的。在大多数情况下,载荷在船舯前和舯后大致上是差不多的,所以剪力曲线大致是反对称的,零点在靠近船舯的某处,而在离艏、艉端约船长的1/4处具有最大正值或负值。 5、计算波的参数是如何确定的? 计算波为坦谷波,计算波长等于船长,波峰在船舯和波谷在船舯。 采用的军标GJB64.1A中波高h按下列公式确定: 当λ≥120m时, 当60m≤λ≤120m时,当λ≤60m时, 20 λ = h(m) 2 30 + = λ h(m) 1 20 + = λ h(m) 6、船由静水到波浪中,其状态是如何调整的? 船舶由静水进入波浪,其浮态会发生变化。若以静水线作为坦谷波的轴线,当船舯位于波谷时,由于坦谷波在波轴线以上的剖面积比在轴线以下的剖面积小,同时船体中部又较两端丰满,所以船在此位置时的浮力要比在静水中小, 因而不能处于平衡,船舶将下沉ξ值;而当船舯在波峰时,一般船舶要上浮一些。 另外,由于船体艏、艉线型不对称,船舶还将发生纵倾变化。 7、麦卡尔假设的含义。 麦卡尔方法是利用邦戎曲线来调整船舶在波浪上的平衡位置。因此,在计算 时,要求船舶在水线附近为直壁式,同时船舶无横倾发生。根据实践经验,麦 卡尔法适用于大型运输船舶。 第二章 (重点复习计算剖面的惯性矩、最小剖面模数是如何的计算、折减系数、极限弯矩的计算)1、危险剖面的确定。 危险剖面: 可能出现最大弯曲应力的剖面,由总纵弯曲力矩曲线可知,最大弯矩一般在 船中0.4倍船长范围的,所以计算剖面一般应是此范围内的最弱剖面—既有最大

船舶强度与设计名词解释

船舶强度与设计名词解释 引起船体梁总纵弯曲的外力计算 总纵弯曲:船体梁在外力的作用下沿其纵向铅垂面内所发生的弯曲 总纵强度:船体梁抵抗总纵弯曲的能力 波浪剪力:完全是由波浪产生的附加浮力引起的附加剪力 重量曲线:船舶在某一计算状态下,描述船体重量沿船长分布的曲线 不变重量:即空船重量,包括船体结构、舾装设备、机电设备等各项固定重量 变动重量:即装载重量,包括货物、燃油、淡水、旅客压载等各项可变重量 总体性重量:即沿船体梁全长分布的重量,包括主体结构、油漆、索具等 局部性重量:沿船长某一区段分布的重量,包括货物、燃油、机电设备等 浮力曲线:船舶在某一装载时,描述浮力沿船长分布状况的曲线 载荷曲线:引起船体梁总纵弯曲的载荷沿船长分布状况的曲线 静水剪力曲线:船体梁在静水中所受到的剪力沿船长分布状况的曲线 计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态 波浪要素:包括波形、波长与波高 坦谷波:波峰陡峭、波谷平坦,波浪轴线上下的剖面积不相等的波 史密斯修正:考虑波浪动力压力影响对浮力曲线所做的修正 总纵弯矩:船舶在同一计算状态下,静水弯矩和静波浪弯矩的代数和 重量的分布原则:遵循静力等效原则。保持重量的大小不变;保持重量的重心的纵向坐标不变;近似分布曲线的范围与该项重量的实际分布范围相同或大体相同 重量曲线绘制的方法与原理? 梯形法:船舶往往中部丰满,两端尖瘦,可以将平行中体部分用均匀的重量分布,两端部分用两个梯形分布,根据重量分布原则确定梯形要素 围长法:假设船体结构单位长度的重量与该横剖面围长(包括甲板)成比例。该方法适用于船舶主体结构重量的分布 库尔求莫夫法:用特定的阶梯型分布曲线来表示船体重量的分布 装载曲线、剪力曲线、弯矩曲线的特征: 首尾端点处的剪力和弯矩为零,亦即剪力和弯矩曲线在端点处封闭 零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应

船舶结构强度有限元计算分析中的技巧

船舶结构强度有限元计算分析中的技巧 陈有芳、章伟星 中国船级社北京科研所

船舶结构强度有限元计算分析中的技巧 Skills of Ship Structural Strength Analysis By FEM 陈有芳、章伟星 (中国船级社北京科研所) 摘要:在对船舶结构进行有限元计算分析和评估中,一般采用的是舱段板梁模型,不可避免要面临应力的选取问题。对于弯曲板单元,有限元计算输出的应力包括上下表面的应力,我们在评估中一般采用中面应力作为工作应力,中面应力应该是上下表面应力的平均,如果在实际操作中采用上下表面应力的平均的方法来得到中面应力,将比较麻烦,也不直观。本文对在船舶结构有限元分析评估中采用中面应力作为工作应力的原理、方法以及如何在MSC.Patran中如何得到中面应力的技巧做一介绍,供船舶结构分析工程师参考使用。并做了一些测试和分析。 关键词:船舶结构有限元强度中面应力 MSC.Patran Abstract: In analyzing and evaluating of ship structures by FEM, a plate-beam FE model within holds is generally used and it is unavoidable to solve how to select the stress used. For bending plate, the output stresses include the stresses of up-surface and lower-surface, but in ship structure strength analysis, the mid-surface stress is used as applied stress in general. As we know, the mid-surface stress is the average value of up-surface stress and the lower-surface stress. It is discommodious to obtain the mid-surface stress by the up-surface stress and lower-surface stress in practice. The paper introduces the theory and method of using the mid-surface stress as the applying stress in ship structure strength analysis, and the skills about how to obtain the mid-surface stress in MSC/PATRAN. Some tests and analysis have also been carried in this paper. Keys:Ship Structure Finite Element Strength Mid-surface Stress MSC.patran 1 概述 一般来讲,对承受面外压力的板进行强度校核时,应对板的上下表面应力进行校核,相应的强度标准也是对应的上下表面应力,这些均应该建立在能对板的应力精确计算的基础上。在工程应用上,强度标准建立在相对假设的基础上的,即所谓的相对强度标准,所采用的强度标准也应该根据所采用的强度理论和采用的有限元模型简化程度来选取对应的应力。

船体强度与结构设计 复习精选.

绪论 一.填空 1. 作用在船体结构上的载荷,按其对结构的影响可分为:总体性载荷和局部性载荷。 2. 作用在船休结构上的载荷,按载荷随时间变化的性质,可分为;不变载荷、静变载荷、动变载荷和冲击载荷。 二.概念题: 1. 静变载荷等等 三.简答题: 1.船体强度研究的内容有哪些?2.作用在船体结构上的载荷如何进行分类?试说明。3.为什么要对作用在船体结构上的载荷进行分类? 4.结构设计的基本任务和内容是什么? 第一章: 一、填空题 1. 船体重量按分布情况来分可以分为:总体性重量、局部性重量。 2. 对于计算船体总纵强度的计算状态,我国《钢质海船入级和建造规范》中规定,选取满载:出港、到港;压载:出港、到港;以及装载手册中所规定的各种工况作为计算状态。 3. 计算波浪弯矩的传统标准计算方法是以二维坦谷波作为标准波形的,计算波长等于船长。 4. 计算波浪弯矩时,确定船舶在波浪上平衡位置的方法一般有逐步近似法和直接法两种,直接法又称为麦卡尔法。 5. 计及波浪水质点运动所产生的惯性力的影响,即考虑波浪动水压力影响对浮力曲线所作的修正,称为波浪浮力修正,或称史密斯修正。 二、概念题: 1. 船体梁 2. 总纵弯曲 3. 总纵弯曲强度 4. 重量曲线 5. 浮力曲线 6. 荷载曲线 7. 静水浮力曲线8. 静水剪力、弯矩曲线9. 波浪附加浮力10. 波浪剪力11. 波浪弯矩 12. 静波浪剪力13. 静波浪弯矩14. 静置法15. 静力等效原则16. 史密斯修正 二、简答题: 1. 在船体总纵弯曲计算中,计算总纵剪力及弯矩的步骤和基本公式是什么? 2. 在船体总纵弯曲计算中重量的分类及分布原则是什么? 3. 试推导在两个及三个站距内如何分布局部重量。 4. 空船重量曲线有哪几种计算绘制方法?试推导梯形重量分布的计算公式。 5. 教材中,静水剪力、静水弯矩的计算采用的是什么方法?静波浪剪力、静波浪弯矩的计算采用的是什么方法?两种方法可以通用吗(计算方法唯一吗)? 6. 波浪浮力曲线需要史密斯修正吗?为什么? 第二章: 一、填空题 1. 纵向连续并能有效传递总纵弯曲应力的构件称为纵向强力构件。 2. 构成船体梁上冀板的最上层连续甲板通常称为强力甲板。 3. 在确定板的临界应力时,通常不考虑材料不服从虎克定律对稳定性的影响。 4. 在船体构件的稳定性检验和总纵弯曲应力的第二次近似计算中,需要对失稳的船体板进行剖面面积折减,折减时首先需要将纵向强力构件分为刚性构件和柔性构件两类。 5. 外板同时承受总纵弯曲、板架弯曲、纵骨弯曲及板的弯曲的纵向强力构件称为第四类构件。 6. 船体总纵弯曲时的挠度,可分为弯曲挠度和剪切挠度两部分来计算。 7. 为了按极限弯矩检验船体强度,须将所得的极限弯矩Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M≥n,n称为强度储备系数。

船舶结构强度作业

作 业 1. 长方形浮码头,长25m, 宽5m, 深3m, 空载时吃水1m (淡水)。当中部10m 范围内承受均布载 荷时,吃水增加到2m 。假定船体质量沿船长均匀分布,试作出该载荷条件下的浮力曲线、载荷曲线、静水剪力和弯矩曲线,并求出最大剪力和最大弯矩值。 2. 某型深为3.5m 的横骨架式船舶,第一次近似计算船中剖面要素时,参考轴选在基线上 1.4m 处, 不小于0.5, 该船底板的最小厚度至少应为多少(肋距为600mm, 船底板的临界应力 2 )100( 6.19s t cr =σ, N/mm 2, s 为肋距, t 为板厚)。 3. 某方形驳船L=90m, 空船质量W=450t, 沿 全船均布,载矿砂500t 分布于船中部70m 。设矿砂沿船长均布,但沿船宽方向呈图1所示分布且前后反对称,试画出扭矩曲线。 4. 试计算图2所示横骨架式内河驳船在甲板和船底处的总纵 弯曲应力及中和轴处的剪应力(不计初挠度和横荷重的影响,不考虑板的折减)。已知: 型深 D =3.2m , 船宽B =6.0m , 吃水 d=2.0m , 肋距 S =500mm; 甲板厚度 t 1=3.5mm ;船底、舷侧板厚度t 0=4.0mm; 甲 板纵桁 ,中内龙骨 ,中垂弯矩 M =1250 kNm , 剪力V = 1125kN 。 图1 200×5 60×6 250×5 80×6 图2

5. A ship with length 90 m, floats in still fresh water at a draft of 5.8 m when loaded. The weight curve of the loaded ship may be regarded as linear, from zero at the two ends to a maximum at the mid-length. The simplified cross-section of the hull with a superstructure is shown in Figure 3. The cross-sectional dimensions are also shown in Figure 2. The hull girder is made of steel and the superstructure of aluminium. The modulus of elasticity of the steel steel E is 2.1×105 MPa and that of the aluminium alu E is 0.7×105 MPa. (a) Draw the shear force and bending moment curves respectively. (b) Compute the normal stresses at top deck house and at the bottom shell of the mid-section respectively. 6. Analyze strength computational model of a typical deck grillage, ones of stability and strength analyses of a longitudinal at deck, and one of a longitudinal at bottom for its strength analysis. Briefly explain the reasons. Figure 3

船舶结构强度第二次课程大作业——朱老师+程老师

船舶结构强度第二次课程大作业 院系班级:*********** 姓名:*********** 学号:*********** 指导老师:*********** 日期:*********

图示为某船舶横剖面结构示意图。请计算当船舶船舯为波谷,且弯矩值为9.0×107N·m,考虑折减系数计算总纵弯曲应力。

解:计算过程如下面所示: 1.计算载荷 计算弯矩M=9.0*107 N·m 2.船体材料 计算剖面的所有构件均采用低碳钢,屈服极限σY= 235Mpa。 3.许用应力 (1)总纵弯曲应力[σ]= 0.5σY (2)总纵弯曲与板架局部弯曲合成应力的许用应力: 在板架跨中[σ 1+ σ 2 ]=0.65σ Y 在横舱壁处 [σ1+σ2]=σY 4、总纵弯曲正应力第一次计算 (1) 根据图示肋骨剖面计算简图,对其中构件进行编号。然后将与图中编号对应的各强力构件尺寸填入下表中。船体剖面要素及第一近似总纵弯曲应力的计算在下表中完成。 构 件编号构件 名称 构件 尺寸 构建 剖面 积Ai 距参考 轴距离 Z i (m) 静力矩 A i ·Z i 惯性矩 A i ·Z i 2 构件 自身 惯性 矩 距中 和轴 距离 (m) 总纵弯 曲应力 (N/mm2) 1 甲板 纵桁 1//2 18.4 4.26 78.384 333.91 584 0.073 2 2.646 347.392 89807 2 上甲 板 5x28 00 140 4.4 616 2710.4 不计 2.786 358.809 56609 3 上甲 板纵 骨 (80 x22x 5) x11 64.2 4 4.4 282.65 6 1243.6 864 0.028 853 2.786 358.809 56609 4 上甲 板纵 桁 8x28 0/12 x120 36.8 4.26 156.76 8 667.83 168 0.146 3 2.645 98449 215.773 76062

船体结构强度

1.极限弯矩:是指在船体剖面内离中和轴最远点的刚性构件中引起的应力达到结构材料屈服极限(在受拉伸时)或构件的临界应力(在受压缩时)的总纵弯曲力矩。 2.总强度:从整体上研究船体梁变形规律和抵抗破坏的能力,通常称为总强度。 3.计算状态:在总纵强度计算中为确定最大弯矩所选取的船舶典型装载状态。 4.剖面模数:W=I/Z,表征船体结构抵抗弯曲变形能力。 5.纵向强力构件:纵向连续并能够有效地传递总纵弯曲应力的构件习惯上被称为纵向强力构件。 6.安全系数:是考虑强度计算中的许多不确定性,为保证设计结构必要的安全度而引入的强度储备。 7.许用应力:是指在结构设计预计的各种工况下,船体结构构件所容许承受的最大应力值。 8.强度储备系数:Mj与在波谷上和波峰上的相应计算弯矩M进行比较,即应满足Mj/M>n, n称为强度储备系数,Mj/M也表明船体结构所具有的承受过载的能力的大小。 9.局部强度:从局部上研究船体梁变形规律和抵抗破坏的能力,通常称为局部强度。 10.带板:为估算骨架的承载能力,把一定宽度的板计算在骨架剖面中,即作为它的组成部分来计算骨架梁的剖面积、惯性矩和剖面模数等几何要素,这部分板称为带板。 11.剖面利用系数:实际剖面模数与理想剖面模数的比值,表明了材料在剖面中分布的合理程度。 12.剖面模数比面积:产生单位剖面模数(W2/3)所需的剖面积。Cw=F/W2/3

13.计算剖面:可能出现最大弯曲应力的剖面。 14.甲板室:上层建筑中宽度与船宽相差较大的围蔽建筑物。 1.集装箱船为什么要进行扭转强度计算,产生扭矩的原因是什么? 集装箱船具有大开口的技术特征,舱口宽度一般达到甚至超过船宽的85%,舱口长度可以达到舱壁间距的约90%,使得扭转强度的重要性上升到与总纵强度同等的地位。船舶在斜浪中航行、船舶倾斜、船舶横摇 2.船体强度计算应包括下述内容: (1)确定作用在船体和各个结构上的载荷的大小及性质,即所谓外力问题。(2)确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各个作用中的任何一种作用时的载荷,即结构的极限状态分析(亦称求载荷效应的极限值),即所谓内力问题。 (3)确定合适的强度标准,并检验强度条件。 3.简述计算船体梁所受剪力弯矩的步骤。P10 (1)计算重量分布曲线; (2)计算静水浮力曲线; (3)计算静水载荷曲线; (4)计算静水剪力及弯矩; (5)计算静波浪剪力及弯矩; (6)将静水剪力及弯矩和静波浪剪力及弯矩叠加,即得总纵弯矩和剪力 4.简述坦谷波绘制步骤。P23 5.纵向强力构件分为四类: (1)只承受总纵弯曲的纵向强力构件,称为第一类构件,如不计甲板横荷重

船体结构强度第一次大作业

船舶结构强度第一次大作业 学生姓名:李聪洲 班级:船海1103 学号:U201112258 2014年4月8日

一、主要数据及原始资料 1、主要数据 垂线间长 p L =200m 海水密度 ρ=1.0253 /m t 重力加速度 g=9.802/s m 2、原始资料 (1)全船重量重心汇总表。 站号 重心坐标 (m ) 重量(t ) 0-1 -95 791.9 1-2 -85 810.6 2-3 -75 855.8 3-4 -65 900.0 4-5 -55 399.6 5-6 -45 488.1 6-7 -35 525.6 7-8 -25 410.1 8-9 -15 558.9 9-10 -5 750.1 10-11 5 710.5 11-12 15 670.8 12-13 25 540.9 13-14 35 650.0 14-15 45 558.6 15-16 55 610.2 16-17 65 496.5 17-18 75 580.0 18-19 85 520.4 19-20 95 419.3 总重量 12248.0 (2)邦戎曲线图。 i x

(3)静水中的有关参数 总重量 W=120030.4 kN 水线面面积 A=48002 m 纵稳性半径 R=220m 漂心纵向坐标 x f =-4.3m 平均吃水 d=3.9m (4)参数计算 由公式i i i g P x P x ∑∑= 以及全船重量重心汇总表中的数据可以计算出全船重心: g x =-6.786m 由邦戎曲线数据表中的数据绘制邦戎曲线,并与吃水为3.9m 的直线相交如下所示: 得到下表数据: 站号 浸水面积si A (2 m ) 纵向坐标i x (m ) 0 3.22 -100 1 5.58 -90 2 18.21 -80 3 31.31 -70 4 50.91 -60 5 74.46 -50 6 93.82 -40 7 105 -30 8 109.73 -20 9 110.19 -10 10 110.16 0 11 107.82 10 12 101.22 20 13 90.23 30 14 74.36 40 15 55.95 50

船体强度与结构答案

船体强度与结构答案 【篇一:《船体结构与强度设计》复习题】 txt>一、判断题 1、长期以来,总强度一直是船体结构强度校核的主要方面。(√) 2、强度标准设计又称为计算设计方法,是目前应用比较广泛的方法。(√) 3、船舶除具有一定的强度外,还必须具有一定的刚度。(√) 4、对那些抗扭刚度较低的船体来说,扭转强度的研究就显得十分必要。(√) 5、在单跨梁的弯曲理论中,我们规定弯矩在梁的左断面逆时针为正,在梁的右断面顺时针为正,反之为负。(√) 7、通过在方程中引入初始点的弯曲要素值来求解梁挠度曲线方程的 方法叫做“初参数法”。(√) 8、如果梁上受到几个载荷共同作用时,就可以用“叠加原理”来进行 计算。(√) 10、在船体结构中,除了少数的桁架结构外,大多数的结构都是以 弯曲变形为主的静不定杆系,例如连续梁、刚架及板架等属于这类 杆系。(√) 11、变形连续条件就是变形协调条件。(√) 12、交叉梁系中不受任何外载荷作用的杆系称为无载杆。(√) 13、从原则上讲,力法可以解一切静不定结构。(√) 15、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 17、节点平衡方程又叫位移法方法,且此方程为正则方程。(√) 20、正则方程就是力的互等定理的反应。(√) 21、所谓“位移法”就是以杆系节点处的位移为基本未知数的方法。(√) 24、运用能量法能够解决结构的位移问题,也能解决静不定问题。(√) 26、在造船界,通常把杆件在弹性范围外失稳的力叫做临界力,以 区别弹性范围内失稳的欧拉力。(√) 28、对于任意多跨连续梁,只要其每个跨度是等距、等断面的,并 且两端是自由支持的,这时不论跨度有多少,其欧拉力都等于每跨 单独时的欧拉力。(√)

船体强度与结构设计复习教案资料

船体强度与结构设计 复习

绪论 1.总纵强度:在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简 称船体梁。船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。船体梁抵抗总纵弯曲的能力,称为总纵强度。 2.船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力和弯 曲力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。 3.评价结构设计的质量标准:安全性,营运合适性,船舶的整体配合性,耐久性,工艺 性,经济性。 4.按照静置法所确定的载荷来校核船体的总纵强度,是否反映船体的真实强度,为什 么?答:按照静置法所确定的载荷来校核船体总强度,不反映船体的真实强度,因为海浪是随机的,载荷是动态的,而且当L较大时载荷被夸大,但具有相互比较的意义。 第一章引起船体梁总纵弯曲的外力计算 5.总纵弯曲:船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲。(中拱:船体梁中 部向上拱起,首、尾两端向下垂。中垂:船中部下垂,首、尾两端向上翘起。) 6.重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。绘制重量 曲线的方法:静力等效原则。 7.浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线 8.载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲 线。 9.静水剪力:船体梁在静水中所受到的剪力沿船长分布状况的曲线。 10.弯矩曲线:船体梁在静水中所受到的弯矩沿船长分布状况的曲线。 (重量的分类:按变动情况来分:①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。按分布情况来分:①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。②局部性重量,即沿船长某一区段分布的重量。) 11.局部重量的分配原则(P12):重量的分布原则:静力等效原则。①保持重量的大小 不变,这就是说要使近似分布曲线所围成的面积等于该项实际重量。②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。③近似分布曲线的范围(分配到理论站的范围)与该项重量的实际分布范围相同或大体相同。 12.如何获得实际船舶重量分布曲线:答:通常将船舶重量按20个理论站距分布(民船 尾-首,军船首-尾编排),用每段理论站距间的重量作出阶梯形曲线,并以此来代替重量曲线。作梯形重量曲线时,应使每一项重量的重心在船长方向坐标不变,其重量分布范围与实际占据的范围应大致对应,而每一项理论站距内的重量则当做是均匀的。最终,重量曲线下所包含的面积应等于船体重量,该面积的形心纵向坐标应与船体重心的纵向坐标相同。 13.静水力浮力曲线的绘制:浮力曲线的垂向坐标表示作用在船体梁上单位长度的浮力 值,其与纵向坐标轴所围的面积等于作用在船体上的浮力,该面积的形心的纵向坐标即为浮心的纵向位置。浮力曲线通常根据邦戎曲线来求得。 14.用于总纵强度计算的剪力曲线和弯矩曲线的特点:①首尾端点处的剪力和弯矩为零, 亦即剪力和弯矩曲线在端点处封闭②零载荷点与剪力的极值相对应,零剪力点与弯矩的极值相对应③剪力曲线大致是反对称的,零点在靠近船中的某处,在离首尾约船长的1/4处具有最大正值或负值④弯矩曲线在两端的斜率为零,最大弯矩一般在船中 0.4倍船长范围内。 15.波浪剪力:完全由波浪产生的附加浮力引起的附加剪力。

相关主题
文本预览
相关文档 最新文档