当前位置:文档之家› 变频器功率等级表

变频器功率等级表

变频器功率等级表
变频器功率等级表

最新变频器节电率的计算整理

几种典型负载的节电率计算方法 (1)各种风机、泵类因为P∝n的三次方,节电效果显著,应首先应用变频器,具体值见表1。表1 应用变频器节电效果 计算时可用

式中P%——实际消耗功率百分值; s——实际转速百分值; K——系数,K=0.0001。 节电率N%=1-P% 举例,转速n为90%时,相应频率值为45Hz,则P%=0.0001×(90)3=73%。所以N%=1 -73%=27%。一般风机、泵类节电率在30%以上。 (2)空压机、挤出机、搅拌机因为P∝n,所以节电率与允许减速范围成正比,N%=n%。 (3)波动负载如破碎机、粉碎机、冲床、落料机、剪切机等9这种负载具有周期波动性,且波动功率较大,控制方式以闭环为好,相对节电率也大些,功率波动负载如图所示。

(4)阶梯负载如间歇工作有储气罐的空压机、定容积水箱、水池、水塔等,工作时间t1是满负载PH,一定压力后自动卸载,电动机空载Po时间为t1,采用降速降流量,用适当延长工作时间t1、缩短空载时间t2的方法来实现节电。经实际运行,约有15%~20%的节电率。而且t2

(5)间歇负载如高位水箱、水池、水塔等。工作时间t1为满负载,不工作时间为t2,且t2≥t1,现采用降速降流量,延长工作时间t1,缩短不工作时间t2,这样改变后节电效果也明显,约有20%~30%的节电率。间歇工作负载的功率变化情况(Po=0)如图所示。

(6)人为的负载转移来实现节电这种情况往往发生在中央空调系统的冷却泵、冷冻泵或其他同类地方。平常开一台泵,电动机 处于满负载或超负载,而且压力、流量也无富余度,使用变频器后没办法实现节电。但各用泵较多,一般是1:1(五星级宾馆大都如此),这时只有采用人为的负载转移方法来实现节电,见表2。

变频器逆变模块损坏故障处理技巧

变频器逆变模块损坏故障处理技巧 变频器逆变模块损坏多半是由于驱动电路损坏致使1个桥臂上的2个开关器件同一时间导通所造成的。变频器逆变功率模块损坏是不管在矢量变频器还是节能变频器等其他变频设备上常见到的故障,解决这种问题只有查到损坏的根本原因,并首先消除再次损坏的可能,才能更换逆变模块,否则换上去的新模块会再损坏。 一、判断 逆变功率模块主要有IGBT、IPM等,检查外观是否已炸开,端子与相连印制板是否有烧蚀痕迹。用万用表查C-E、G-C、G-E是否已通,或用万用表测P对U、V、W和N对U、V、W 电阻是否有不一致,以及各驱动功率器件控制极对U、V、W、P、N的电阻是否有不一致,以此判断是哪一功率器件损坏。 二、损坏原因查找 ⑴ 器件本身质量不好。 ⑵ 外部负载有严重过电流、不平衡,电动机某相绕阻对地短路,有一相绕阻内部短路,负载机械卡住,相间击穿,输出电线有短路或对地短路。 ⑶ 负载上接了电容,或因布线不当对地电容太大,使功率管有冲击电流。 ⑷ 用户电网电压太高,或有较强的瞬间过电压,造成过电压损坏。 ⑸ 机内功率开关管的过电压吸收电路有损坏,造成不能有效吸收过电压而使IGBT损坏,如下图所示。 ⑹滤波电容因日久老化,容量减少或内部电感变大,对母线的过压吸收能力下降,造成母线上过电压太高而损坏IGBT。正常运行时母线上的过电压是逆变开关器件脉冲关断时,母线回路的电感储能转变而来的。 ⑺IGBT或IPM功率器件的前级光电隔离器件因击穿导致功率器件也击穿,或因在印制板隔离器件部位有尘埃、潮湿造成打火击穿,导致IGBT、IPM损坏。 ⑻不适当的操作,或产品设计软件中有缺陷,在干扰和开机、关机等不稳定情况下引起上下两功率开关器件瞬间同时导通。 ⑼雷击、房屋漏水入侵,异物进入、检查人员误碰等意外。 ⑽经维修更换了滤波电容器,因该电容质量不好,或接到电容的线比原来长了,使电感量增加,造成母线过电压幅度明显升高。 ⑾前级整流桥损坏,由于主电源前级进入了交流电,造成IGBT、IPM损坏。 ⑿修理更换功率模块,因没有静电防护措施,在焊接操作时损坏了IGBT。或因修理中散热、紧固、绝缘等处理不好,导致短时使用而损坏。 ⒀并联使用IGBT,在更换时没有考虑型号、批号的一致性,导致各并联元件电流不

变频器节能效率计算

概述 在许多情况下, 使用变频器的目的是调速, 尤其是对于在工业中大量使用的风扇、鼓风机和泵类负载来说, 设计选型往往以最大工况来选。与实际的工况存在较大的可调整空间。在运行中根据实际运行需要,按照流量、杨程等调节电动机的转速,从而改变电动机的输出转矩和输出功率,以代替传统上利用挡板和阀门进行的流量和扬程的控制, 节能效果非常明显。同时分析变频器在选型、应用中的注意事项。 1变频调速原理 三相异步电动机转速公式为: 式中:n-电动机转速,r/min; f-电源频率,Hz; p-电动机对数 s-转差率, 从上式可见交流电动机的调速可以概括为改变极对数,控制电源频率以及通过改变参数如定子电压、转子电压等使电机转差率发生变化等几种方式。变频器效率维持在94%~96%,变频调速是一种高效率、高效能的调速方式,使异步电动机在整个工作范围内保持正常的小转差率下运转,实现无极平滑调速。 1.1变频工作原理 异步电动机的额定频率称为基频,即电网的频率,在我国为50Hz。电机定子绕组内部感应电动势为 式中-定子绕组感应电动势,V; -气隙磁通,Wb; -定子每相绕组匝数; -基波绕组系数。

在变频调速时,如果只降低定子频率,而定子每相电压保持不变,则必然会造成增大。由于电机制造时,为提高效率减少损耗,通常在,时,电动机主磁路接近饱和,增大势必使主磁路过饱和,将导致励磁电流急剧增大,铁损增加,功率因素降低。 若在降低频率的同时降低电压使保持不变则可保持不变从而避免了 主磁路过饱和现象的发生。这种方式称为恒磁通控制方式。此时电动机转矩为 π 式中-电动机转矩,N.m; —电源极对数; —磁极对数; —转差率; —转子电阻; —转子电抗; 由于转差率较小,则有 其中 由此可知:若频率保持不变则;若转矩不变则; 电动机临界转差率其中 电动机最大转矩=常数 最大转速降=常数 由此可知:保持常数,最大转矩和最大转矩处的转速降落均等于常数, 与频率无关。因此不同频率的各条机械特性曲线是平行的,硬度相同。

变频器一体化功率模块的局部修复

变频器一体化功率模块的局部修复 一、概述: 一体化功率模块,又称为集成式模块,通常是指小功率(15kW 以下)变频器机型中,其整流与逆变主电路,常采用模块形式封装的功率模块。变频器的主电路,是由一只功率模块构成的。 这类模块就造价昂贵,动辄几百元,有的甚至上千元,如智能化IPM 功率模块。但一般损坏后,虽只是损坏了其中的部分电路,但往往以整体更换为多。在电路发生局部损坏后,将模块废弃确实有些可惜。进行局部修复与代换,显然会大大降低维修成本。本人在数年前即从事过这类一体化模块的局部性修复,有几例是较为成功的,但也有数例是失败的——最终还是又更换了一体化模块。 这种修复方法,我又称之为“省钱的修理方法”,乍看来,确实是大幅度降低了维修成本,形成了较大的利润空间。但实际操作起来,牵扯到方方面面的问题,具有一定的操作难度,也就是我说过的,只能将其作为应急修复手段,并不积极提倡与推广的原因。 降低元件性能指标下的“省钱”的修理,只图一时的低成本,但埋下了更大的故障隐患,是要不得的。储能电容器,单、双管式逆变、整流模块的损坏,坏一只,换一只,也谈不到省钱。CPU 主板尤其是CPU 本身局部引脚电路的损坏,采取变通手段应急修复之,最好是在不降低电路性能的前提下进行修复,则也不失为“省钱修复”的好方法。整流或逆变电路的局部性损坏,是不是可用分立元件取代,达到降低维修成本的要求?以我个人的维修经验来看,尚不能给出一个明确的结论。 修复损坏严重(模块坏掉)的机器,须事先与用户沟通,最好还是用原器件来修复。如出于维修成本考虑,用分立元件来代用模块,必须先与用户达成共识。 想到用省钱的方法修复集成型模块,是在几年前阅读一本电磁炉维修的书籍时联想到的。用于电磁炉的一些集成整流器件和IGBT 管子,其高耐压、大电流特性完全可应用于对变频器集成模块局部损坏的修复。此后,我购买了一些整流桥和IGBT 管子等元件,将变频器15kW 以下的机型做了几例修复试验,发现7.5kW 以下变频器的修复成功率较高,较大功率机型,可能由于购买的IGBT 的参数一致性较差,尤其是导通内阻较大。修复后,变频器空、轻载运转正常,但带载时会出现输出偏相、电动机跳动和易跳OC 故障等现象。所以此类修复以1.5—7.5kW 小功率机型为宜。电磁炉的配件中,整流桥IS2510,额定电流25A ,反向耐压1000V ,全塑封,可涂覆导热硅脂后,直接攻丝(或用¢2。5mm 的钻头打孔,用¢3mm 的螺纹钉直接旋入)固定在模块散热器上;IGBT 管子25N120,额定电流25A ,反向耐压1200V 。安装时须在管子与散热器之间加装绝缘片。整流器与IGBT 管子引脚图如下: + -AC AC IS2510 25N120 G D S + -G 图1 电磁炉功率配件引脚图 说明一下,本文只是提出这样一个模块修复方法,供维修中的参考,并不积极提倡集成模块的局部修复,因其有一定的操作难度和较高的返修率,因模块局部损坏,是否会牵连到其它电路,模块内部是

变频器维修之一体化功率模块修理方法

变频器维修之一体化功率模块修理方法 一、概述: 一体化功率模块,又称为集成式模块,通常是指小功率(15kW以下)变频器机型中,其整流与逆变主电路,常采用模块形式封装的功率模块。变频器的主电路,是由一只功率模块构成的。 这类模块就造价昂贵,动辄几百元,有的甚至上千元,如智能化IPM功率模块。但一般损坏后,虽只是损坏了其中的部分电路,但往往以整体更换为多。在电路发生局部损坏后,将模块废弃确实有些可惜。进行局部修复与代换,显然会大大降低维修成本。本人在数年前即从事过这类一体化模块的局部性修复,有几例是较为成功的,但也有数例是失败的——最终还是又更换了一体化模块。 这种修复方法,我又称之为“省钱的修理方法”,乍看来,确实是大幅度降低了维修成本,形成了较大的利润空间。但实际操作起来,牵扯到方方面面的问题,具有一定的操作难度,也就是我说过的,只能将其作为应急修复手段,并不积极提倡与推广的原因。 降低元件性能指标下的“省钱”的修理,只图一时的低成本,但埋下了更大的故障隐患,是要不得的。储能电容器,单、双管式逆变、整流模块的损坏,坏一只,换一只,也谈不到省钱。CPU主板尤其是CPU本身局部引脚电路的损坏,采取变通手段应急修复之,最好是在不降低电路性能的前提下进行修复,则也不失为“省钱修复”的好方法。整流或逆变电路的局部性损坏,是不是可用分立元件取代,达到降低维修成本的要求?以我个人的维修经验来看,尚不能给出一个明确的结论。 修复损坏严重(模块坏掉)的机器,须事先与用户沟通,最好还是用原器件来修复。如出于维修成本考虑,用分立元件来代用模块,必须先与用户达成共识。 想到用省钱的方法修复集成型模块,是在几年前阅读一本电磁炉维修的书籍时联想到的。用于电磁炉的一些集成整流器件和IGBT管子,其高耐压、大电流特性完全可应用于对变频器集成模块局部损坏的修复。此后,我购买了一些整流桥和IGBT管子等元件,将变频器15kW以下的机型做了几例修复试验,发现7.5kW以下变频器的修复成功率较高,较大功率机型,可能由于购买的IGBT的参数一致性较差,尤其是导通内阻较大。修复后,变频器空、轻载运转正常,但带载时会出现输出偏相、电动机跳动和易跳OC故障等现象。所以此类修复以1.5—7.5kW小功率机型为宜。电磁炉的配件中,整流桥IS2510,额定电流25A,反向耐压1000V,全塑封,可涂覆导热硅脂后,直接攻丝(或用¢2。5mm的钻头打孔,用¢3mm的螺纹钉直接旋入)固定在模块散热器上;IGBT管子25N120,额定电流25A,反向耐压1200V。安装时须在管子与散热器之间加装绝缘片。整流器与IGBT管子引脚图如下: 图1电磁炉功率配件引脚图 说明一下,本文只是提出这样一个模块修复方法,供维修中的参考,并不积极提倡集成模块的局部

变频器节能计算方法

变频调速节能量的计算方法 一、概述 据统计,全世界的用电量中约有60%是通过电动机来消耗的。由于考虑起动、过载、安全系统等原因,高效的电动机经常在低效状态下运行, 采用变频器对交流异步电动机进行调速控制,可使电动机重新回到高效的 运行状态,这样可节省大量的电能。生产机械中电动机的负载种类千差万别,为便于分析研究,将负载分为平方转矩、恒转矩和恒功率等几类机械 特性,本文仅对平方转矩、恒转矩负载的节能进行估算。所谓估算,即在 变频器投运前,对使用了变频器后的节能效果进行的计算预测。变频器一 旦投运后,用电工仪表测量系统的节能量更为准确。现假定,电动机系统 在使用变频器调速前后的功率因数基本相同,且变频器的效率为95%在设计过程中过多考虑建设前,后长期工艺要求的差异,使裕量过大。如火电设计规程SDJ-79规定,燃煤锅炉的鼓风机,引风机的风量裕度分别为5%和5~10%风压裕度为10°%^ 10%~15%设计过程中很难计算管网的阻力,并考虑长期运行过程中可能发生的各种问题,通常总把系统的最大风量和风压裕量作为选型的依据,但风机的系列是有限的,往往选不到合适的风机型号就往上靠,大20%~30的比较常见。生产中实际操作时,对于离心风机、泵类负载常用阀门、挡板进行节流调节,则增加了管路系统的阻尼,造成电能的浪费;对于恒转矩负载常用电磁调速器、液力耦合器进行调节,这两种调速方式效率较低,而且,转速越低,效率也越低。由于电机的电流的大小随负载的轻重而改变,也即电机消耗的功率也是随负载的大小而改变,因此要想精确地计算系统的节能是困难的,在一定程度上影响了变频调速节能的实施。本文介绍用以下的公式来进行节能的估算。 二、节能的估算 1、风机、泵类平方转矩负载的变频调速节能风机、泵类通用设备的用电占电动机用电的50%左右,那就意味着占全国用电量的30%采用电动机变频调速来调节流量,比用挡板、阀门之类来调节,可节电20%~50%如果平均按30%+算,节省的电量为全国总用电量的9%这将产生巨大的社会效益和经济效益。生产中,对风机、水泵常用阀门、挡板进行节流调节,增加 了管路的阻尼,电机仍旧以额定速度运行,这时能量消耗较大。如果用变 频器对风机、泵类设备进行调速控制,不需要再用阀门、挡板进行节流调节,将阀门、挡板开到最大,管路阻尼最小,能耗也大为减少。节能量可 用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即: 能量可用GB12497《三相异步电动机经济运行》强制性国家标准实施监督指南中的计算公式,即:

变频器功率单元基本原理及常见故障分

功率单元基本原理及常见故障分析 第一部分 功率单元基础知识及基本原理 一、功率单元基础知识 1.什么是功率单元 功率单元是使用功率电力电子器件进行整流、滤波、逆变的高压变频器部件。 功率单元是构成高压变频器主回路的主要部分。 2.我公司功率单元的型号定义 PC ××× 罗马数字: IGBT 的额定电流值 功率单元(英文Power Cell 的简写 ) 例如:PC100表示配置IGBT 额定电流为100A 的功率单元。 3. 功率单元上主要电力电子器件简介 1)整流桥 其作用是整流(将交流变成直流)。我公司使用的整流桥内部封装形式有以下两种,图1所示的封装内部有6只整流二极管,用在功率单元的三相输入端;图2所示的封装内部有2只整流二极管,用在功率单元的三相输入端以及旁通回路中。 目前我公司使用的整流桥品牌有: Semikron 、Eupec ; 使用的整流桥电压等级有:1400V 、1800V ; 例如:SKD62/18、SKKD260/14。 2)可控硅 图2 封装2只整流二极管的整流桥模块 图1 封装6只整流二极管的整流桥模块

可控硅使用在充电电路和旁通回路上,均起“开关”作用。我公司使用的可控硅内部封装形式如图3所示: 目前我公司使用的可控硅品牌有:Semikron ; 使用的可控硅电压等级有:1400V 、1800V ; 例如:SKKH57/18E 、SKKT210/14E 。 3)电解电容 其作用是对整流桥整流后的直流进行滤波。 目前我公司使用的电解电容品牌有:NICHICON (日本)、BHC (英国)、CDE (美国)。 使用的电压等级有: 400V 。 使用的容量有3300uF 、6800uF 、10000uF 。 4) IGBT 其作用是逆变(将直流变为交流)。我公司目前使用的IGBT 大部分为“双管”(内部封装了两组IGBT 模块),内部封装示意图如图4所示: 目前我公司使用的IGBT 品牌有:Eupec 、Semikron ; 使用的IGBT 电压等级有:1200V 、1700V ; 使用的IGBT 电流等级有:75A 、100A 、150A 、200A 、300A 、400A 等; 例如:BSM100GB170DLC 、FF400R12KE3。 二、功率单元拓扑结构 1.主回路拓扑结构 如图5所示。 图4 IGBT 模块封装示意图 图3 可控硅模块

ABB变频器功率容量参数修改

ABB变频器功率容量修改指导 1. 将控制板安装到模块上。 2. 上电。 3. 操作控制盘,打开参数表,进入参数最底层,比如0102,同时按下UP(向上)键,Down (向下)键和软键1,持续至少4秒钟,直到屏幕顶行显示PARAMETERS+。 4. 重新进入参数组(顶行显示PAR GROUPS+)。 5. 查找105组参数。 6. 修改相关传动容量步骤: ●将10509调整为所要的功率等级,并确认。 ●将10502设置为1,并确认。 ●将10511设置为4012,并确认。 注意:该顺序不能颠倒。 7. 再次进入参数表,检查参数3304(传动容量)是否正确。 Updating Power Rating Instruction 1.Assemble OMIO-01 board on to the module carefully. 2.Power on 3.Operate control panel, and press soft Key 2 till paramet er bottom. For example, parameter 0102, press UP key, DOWN button a nd Soft Key 1 simultaneously for at least 4 seconds, till top line displays PARAMETERS+ 4.Re-enter into Parameter Group. 5.Find Parameter Group 105. 6.Set power rating: ●Set Para.10509 -> right drive rating, press Enter Key. ●Set Para.10502->1, press Enter Key. ●Set Para. 10511->4012, press Enter key. Notes: Setting sequence cannot be changed. 7. Re-enter into Parameter, and check 3304(Drive Rating)if it is correct.

变频器功率计算

3、电磁调速系统 电磁调速系统由鼠笼异步电机、转差离合器、测速电机和控制装置组成,通过改变转差离合器的激磁电流来实现调速。转差离合器的本身的损耗是由主动部分的风阻?磨擦损耗及从动部分的机械磨擦损所产生的。如果考虑这些损耗与转差离合器的激磁功率相平衡,且忽略不计的话,转差离合器的输入?输出功率可由下式计算: 电动机轴输出功率 式中:T2—转差离合器的输出转矩 n2 –-转差离合器的输出轴转速 电动机的输出功率,即为转差离合器的输入功率。对于恒转矩负载,T= T1 = T2=常数,所以,转差离合器的效率: 电磁调速电机为鼠笼式电机,由于输入功率和转矩均保持不变,鼠笼式电机的功率保持不变。损耗以有功的形式表达出来,损耗功率通过转差离合器涡流发热并由电枢上的风叶散发出去。 由损耗功率公式(10)可以清楚看到,电磁调速电机的转速越低,浪费能源越大,然而生产机械的转速通常不在最大转速下运行,变频调速是一种改变旋转磁场同步速度的方法,是不耗能的高效调速方式,因此改用变频调速的方式会有非常好的节能效果,节省的能量直接可用(10)式计算。 4?液力偶合器调速系统 液力偶合器是通过控制工作腔内工作油液的动量矩变化,来传递电动机能量,电动机通过液力偶合器的输入轴拖动其主动工作轮,对工作油进行加速,被加速的工作油再带动液力偶合器的从动工作涡轮,把能量传递到输出轴和负载。液力偶合器有调速型和限矩型之分,前者用于电气传动的调速,后者用于电机的起动,系统中的液力偶合器在电机起动时起缓冲作用。由于液力偶合器的结构与电磁转差离合器类似,仿照电磁调速器效率的计算方法,可得: 同样,用(12)式可计算将液力耦合器调速改造为变频调速后的节能量。 5?绕线式电机串电阻调速系统 绕线式电机最常用改变转子电路的串接电阻的方法调速,随着转子串接电阻的增大,不但可以方便地改变电机的正向转速,在位能负载时,还可使电机反向旋转和改变电机的反向转速,因此这种调速方式在起重﹑冶金行业应用较多。 对于绕线式电机,无论在起动?制动还是调速中,采用转子串电阻方式均会带来电能损耗。这种损耗随着转速的降低,转差率S的增大而增大,另外,随着串接电阻的增大,机械特性变软,难以达到调速的静态指标。

变频器常见故障及处理

变频器常见故障? (1)?变频器驱动电机抖动? ??在接修一台安川616PC5-5.5kW变频器时,客户送修时标明电机行抖动,此时第一反应是输出电压不平衡.在检查功率器件后发现无损坏,给变频器通电显示正常,运行变频器,测量三相输出电压确实不平衡,测试六路数出波形,发现W相下桥波形不正常,依次测量该路电阻,二极管,光耦。发现提供反压的一二极管击穿,更换后,重新上电运行,三相输出电压平衡,修复。? ??(2)?变频器频率上不去? ?? ,由此?? 变频器?? 缘不良问题,再仔细检查,发现直流母线回路端子P-P1与N之间的塑料绝缘端子有炭化迹象,拆开端子查看,果然发现端子碳化已相当严重,从安全角度考虑,更换损坏端子,变频器恢复正常运 行,正常运行已有半年多。?????? (5)?变频器小电容炸裂? ??在接修一台三肯SVF7.5kW变频器时,检测时发现逆变模块损坏,更换模块后,变频器正常运行。由于该台机器运行环境较差,机器内部灰尘堆积严重,且该台机器使用年限较长,决定对它进行除尘及更换老化器件的维护。以提高其使用寿命,器件更换后,给变频器通电,上电一瞬间,只听“砰”的一声响动,并伴随飞出许多碎屑,断开电源,发现C14电解电容炸裂,此刻想到的是有可能电容

装反,于是根据其标识再装一次,再次上电,电容又一次炸裂。于是进一步检查其线路,发现线路与电容标识无法对上,于是将错就错,把电容装反,再次上电,运行正常。这一点在后来送修的相 同的机器得以证实。 变频器的参数设置变频器的参数设定在调试过程中是十分重要的。由于参数设定不当,不能满足生产的需要,导致起动、制动的失败,或工作时常跳闸,严重时会烧毁功率模块IGBT或整流桥等器件。变频器的品种不同,参数量亦不同。一般单一功能控制的变频器约50~60个参数值,多功能控制的变频器有200个以上的参数。但不论参数多或少,在调试中是否要把全部的参数重新调正呢?不是的,大多数可不变动,只要按出厂值就可,只要把使用时原出厂值不合适的予以重新设 定就可, 制动时间( 最大150,电动机堵转。 压跳闸OE 加大,50Hz 时380V 机等)50Hz 设定值下降,可减小到30Hz或以下。这时,V/F>7.6,即在同频率下尤其低频段时输出电压增高(即 转矩∝U2)。故一般重载负荷都能较好的起动。 制动时过电压处理制动时过电压是由于制动时间短,制动电阻值过小所引起的,通过适当增长时间,增加电阻值就可避免。制动方法的选择(1)能耗制动。使用一般制动,能量消耗在电阻上,以发热形式损耗。在较低频率时,制动力矩过小,要产生爬行现象。(2)直流制动。适用精确停车或停位,无爬行现象,可与能耗制动联合使用,一般≤20Hz时用直流制动,>20Hz时用能耗制动。 (3)回馈制动。适用≥100kW,调速比D≥10,高低速交替或正反转交替,周期时间亦短,这种情况 下,适用回馈制动,回馈能量可达20%的电动机功率。更具体详情分析以及参数选取。

Y系列Y2系列电动机主要参数表

Y系列,Y2系列电动机主要参数表 Y系列电动机是一般用途的全封闭自扇冷式鼠笼型三相异步电动机。安装尺寸和功率等级符合IEC标准,外壳防护等级为IP44,冷却方法为IC411,连续工作制(S1)。适用于驱动无特殊要求的机械设备,如机床、泵、风机、压缩机、搅拌机、运输机械、农业机械、食品机械等。 Y系列电动机效率高、节能、堵转转矩高、噪音低、振动小、运行安全可靠。Y80~315电动机符合Y系列(IP44)三相异步电动机技术条件JB/T9616-1999。Y355电动机符合Y系列(IP44)三相异步电动机技术条件JB5274-91。Y80~315电动机采用B级绝缘。Y355电动机采用F级绝缘。额定电压为380V,额定频率为50Hz。功率3kW 及以下为Y接法;其它功率均为△接法。电动机运行地点的海拔不超过1000m;环境空气温度随季节变化,但不超过40℃;最低环境空气温度为-15℃;最湿月月平均最高相对湿度为90%;同时该月月平均最低温度不高于25℃。

Y2系列电动机是Y系列电机的更新换代产品,是一般用途的全封闭自扇冷式鼠笼型三相异步电动机。它是我国九十年代最新产品,其整体水平已达到国外同类产品九十年代初的水平。该产品应用于国民经济各个领域,如机床、水泵、风机、压缩机,也可适用于运输、搅拌、印刷、农机、食品等各类不含易燃、易爆或腐蚀性气体的场合。 Y2系列电机的安装尺寸和功率等级符合IEC标准,与德国 DIN42673标准一致,也与Y系列电机一样,其外壳防护等级为IP54,冷却方法为IC41l,连续工作制(S1)。采用F级绝缘,温升按B级

考核(除315L2-2、4,355全部规格按F级考核外),并要求考核负载噪声指标。 Y2系列电动机额定电压为380V,额定频率为50Hz。功率3kwt 以下为Y接法,其他功率均为△接法。电动机运行地点的海拔不超过1000m;环境空气温度随季节变化,但不超过40℃;最低环境空气温度为-15℃;最湿月月平均最高相对湿度为90%;同时该月月平均最低温度不高于25℃。 Y2系列电动机有两种设计,一种是适用于一般机械配套和出口需要,在轻载时有较高效率,在实际运行中有较佳节能效果,且具有较高堵转转矩,此设计称为Y2-Y系列。中心高63~355mm,功率从 0.12~315kW。电动机符合JB/T8680.1-1998 Y2系列(1P54)三相异步电动机(机座号63~355)技术条件。 型号含义:如Y2-200L1-2Y:“Y2”表示异步电动机第二次改型设计,“200”表示中心高,“L”表示机座长短号,“1”表示铁心长度序号,“2”表示极数,“Y”表示第一种设计(可省略)。 第2种设计是满载时有较高效率,更适用于长期运行和负载率较高的使用场合,如水泵、风机配套,此设计称为Y2-E系列,中心高80~280mm,功率从0.55~90kW。电动机符合JB/T8680.2-1998 Y2系列(1P54)三相异步电动机(机座号80~280)技术条件。 型号含义:如Y2-200L2-6E:“Y2”表示异步电动机第二次改型设计,“200”表示中心高,“L”表示机座长短号,“2”表示铁心长度序号,“6”表示极数,“E”表示第二种设计。

变频器工作电流计算

采用变频器驱动异步电动机调速。选择变频器容量时,变频器的额定电流是一个关键量,变频器的容量应按运行过程中可能出现的最大工作电流来选择。在异步电动机确定后,通常应根据异步电动机的额定电流来选择变频器,或者根据异步电动机实际运行中的电流值(最大值)来选择变频器。 当运行方式不同时,变频器容量的计算方式和选择方法不同,变频器应满足的条件也不一样。选择变频器容量时,变频器的额定电流是一个关键量,变频器的容量应按运行过程中可能出现的最大工作电流来选择。变频器的运行一般有以下几种方式: 1、连续运转 由于变频器传给电动机的是脉冲电流,其脉动值比工频供电时电流要大,因此须将变频器的容量留有适当的余量。此时,变频器应同时满足以下三个条件: ? ηcos M CN KP P ≥ (KVA) M CN KI I ≥ (A) 3103-?≥M M CN I U K P (KVA) 式中:P M 、η、cos φ、U M 、I M 分别为电动机输出功率、效率(取、功率因数(取、 电压(V)、电流(A)。 K :电流波形的修正系数(PWM 方式取~ P CN :变频器的额定容量(KVA) I CN :变频器的额定电流(A) 2 频繁加减速运转 根据加速、恒速、减速等各种运行状态下的电流值,按下式确定: I 1CN =[(I 1t 1+I 2t 2+…+I S t S )/(t 1+t 2+…t S )]K 0 式中:I 1CN :变频器额定输出电流(A) I 1、I 2、…I S :各运行状态平均电流(A)

t 1、t 2、…t S :各运行状态下的时间 K 0:安全系数(运行频繁时取,其它条件下为 3 一台变频器传动多台电动机,且多台电动机并联运行,即成组传动 用一台变频器使多台电机并联运转时,对于一小部分电机开始起动后,再追加投入其他电机起动的场合,此时变频器的电压、频率已经上升,追加投入的电机将产生大的起动电流,因此,变频器容量与同时起动时相比需要大些。 以变频器短时过载能力为150%,1min 为例计算变频器的容量,此时若电机加速时间在1min 内,则应满足以下两式 )]1(1[321-+≥S T S CN CN K n n P P )]1(1[32-+≥S T S M T CN K n n I n I 若电机加速在1mn 以上时 )]1(1[1-+≥S T S CN CN K n n P P )]1(1[-+ ≥S T S M T CN K n n I n I 式中:n T :并联电机的台数 n S :同时起动的台数 P CN1:连续容量(KVA) P CN1=KP M n T /ηcos φ P M :电动机输出功率 η:电动机的效率(约取 cos φ:电动机的功率因数(常取 Ks :电机起动电流/电机额定电流 I M :电机额定电流 K :电流波形正系数(PWM 方式取~ P CN :变频器容量(KVA)

变频器常见问题产生的原因分析及处理方法

变频器常见问题产生的原因分析及处理方法对变频器在运行过程中出现的过电压、过电流、高次谐波、振动与噪声、发热等问题,作了详细的原因分析,并提出了相应的对策或处理方法。 摘要:对变频器在运行过程中出现的过电压、过电流、高次谐波、振动与噪声、发热等问题,作了详细的原因分析,并提出了相应的对策或处理方法。 关键词:变频器;常见问题;原因分析:处理方法随着变频技术的提高,变频器的应用范围越来越广泛。运行中出现的问题也越来越多。主要表现为:过电压、过电流、高次谐波、振动与噪声、发热等。 本文针对上述常见问题的产生进行原因分析并提出相应的处理方法。 1 过电压产生的原因及处理方法 1.1 过电压产生的原因 (1)分断变压器出现的过电压按照截流过电压形成的理论,当断开变压器时,变压器电感中的电流不能突变,其中存储的磁场能量,在变压器励磁电感和对地电容间形成振荡,从而出现过电压。 (2)变压器带负载合闸产生的过电压在实际试验中,合空载变压器曾检测到数倍于电源电压的过电压,其物理原理为:空载变压器仍可等值于一个励磁电感与变压器本身的等效电容的并联,如果变压器的中性点不接地,开关又是非周期合闸(一相或两相先合),由于馈线电容、变压器对地电容,纵向电容与变压器电感产生振荡,结果产生较高的过电压,特别是变压器中性点过电压较高。虽然变压器基本上都是带负载合闸,但是变压器带上负载后合闸也会产生过电压,只是相对空载时要小些。在真实负载中有比较大的电容,由于电容的储能不会突然增加,再加上输送电缆在传输高频率的振荡电压时有分布对地电容,这些电容对过电压有吸收作用。这两者的共同作用使变压器在合闸过程中的过电压受到抑制,但是有时候其数值仍然很高,甚至有可能高出元件的耐压值,这是很危险的。 (3)整流元件的换向过电压整流元件在换向时,由于很高,所以换向过电压也很高。这不仅会损坏元件,而且还会产生电磁干扰。 1.2 过电压的处理方法 (1)对于变频器移相变压器的分断过电压,采用阻容吸收网络和氧化锌避雷器组成过电压吸收回路,取得较好效果。 (2)对于变压器带负载合闸产生的过电压,可以选用周期性能好的开关(开关长期操作后会出现不同期);采用良好的阻容吸收回路或者有源抑制器技术方案;采用带静电屏蔽

变频器的节能计算方法

现有一台250KW风机,现采用星--三角起动运行,工作电流太约在360A左右,如果改成变频器, 一个小时能节多少电,太概多长时间能收回成本. 变频器节能计算方法 例如:当从50Hz降至45Hz得 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 (2)当从50Hz降至45Hz得 已知:单台冷却器在工频耗电功率为250KW/h。 (3)∵P45=0.729P50=0.729×250=182.28 KW/h (4)单台电机节能:250-182.25=67.75 KW/h;为原耗电量节约为67.75/250×100%=27.1% (5)年节能:250kw×24h×30d×12m×27.1%=585360KW;按1KW/h电费0.45元计算年节约共计585360×0.45=263412元。 2. 公式:P45/P50=45(3次方)/50(3次方) P45=0.729P50 我想知道这个叫什么公式,这个公式怎么来的? 公式:P45/P50=45(3次方)/50(3次方) 这个公式是由风机工作特性决定的,由于风机是二次方负载,轴功率与转速的三次方成正比。 风机水泵类负载使用高压变频器节能计算 风机水泵工作特性 风机水泵特性:H=H0-(H0-1)*Q2 H-扬程 Q-流量 H0-流量为0 时的扬程 管网阻力:R=KQ2 R-管网阻力 K-管网阻尼系数 Q-流量 注:上述变量均采用标么值,以额定值为基准,数值为1 表示实际值等于额定值 风机水泵轴功率P:P= KpQH/ηb P-轴功率 Q-流量; H-压力; ηb-风机水泵效率; Kp-计算常数; 流量、压力、功率与转速的关系: Q1/Q2 = n1/n2; H1/H2 =(n1/n2)2; P1/P2 =(n1/n2)3 ■变阀控制 变阀调节就是利用改变管道阀门的开度,来调节泵与风机的流量。变阀调节时,泵或风机的功率基本不变,泵或风机的性能曲线不变,而管道阻力特性曲线发生变化,泵或风机的性能曲线与新的管道阻力特性曲线的交点处就是新的工作点。 ■变频控制 变频调节就是利用改变性能曲线方法来改变工作点,变速调节中没有附加阻力,是比较理想的一种调节方法。通过变频器改变电源的工作频率,从而实现对交流

变频器功率模块的故障与驱动电路的关系

变频器功率逆变模块的故障与驱动电路(电压)的关系 关键词:变频器故障驱动电路 国内厂矿企业对变频器的应用已基本上普及,凡是用到电动机的地方,几乎就会见到变频器的踪影。变频器是强电与弱电的有机结合;是硬件与软件的有机结合。它强大的功能、完善的检测和保护电路、控制上的智能化和灵活多变;它的电气元器件的非通用性和特殊要求,使的检修思路和方法也有其独特性。变频器和PLC等工控设备的应用和普及,对其维修甚至形成了一个专门的行业,成为电气技术的一个分支。也使得电工的概念发生了深刻变化。不具备变频器和PLC的相关应用和维修知识,不能称为好电工。 变频器驱动电路元器件及单元电路 对IGBT承担直接驱动任务的有直接联系的这一部分电路,叫做驱动电路。小功率变频器一般是由驱动IC(如PC923、PC929)直接驱动IGBT。例如东元变频器的驱动电路,每相上下臂驱动IC,也是PC923、PC929的经典结合。(见图1) 通常认为IGBT器件是电压型控制器件,只需提供一定电平幅度激励电压,而不需要吸取激励电流。因为IGBT栅—射极间存在一个结电容,在对其进行开通和截止过程,实质上是对IGBT栅—射极间结电容进行充电、放电的过程。这个充电放电的过程和形成了一定的峰值电流,故功率较大的IGBT 模块需由功率放大电路来驱动。一方面,要使IGBT可靠和快速地开通,而给出正栅偏压的时间很短,就要提供尽可能大的驱动电流(充电电流),使IGBT迅速开通。对于截止的控制也是一样,须外电路对栅—射结电容上的电荷进行快速释放。为了使IGBT 截止可靠,就要提供足够幅度截止负压来满足IGBT 关断的要求。另一方面,变频器输出电路中的IGBT工作于数KHz的脉冲之下,其栅偏压也为数KHz的脉冲电压。电容有通交隔直的特性,相对于数十KHz的脉冲电压,电容的容抗较小,因而形成较大的充放电流。因此,通过述分析,可以得出:用在变频器输出电路的IGBT应是电流或功率驱动器件,而不是纯电压控制器件。驱动电路的输出级,也应是一个功率放大电路。因为IGBT的驱动是消耗一定功率,要输出一定电流的。 由此可见:????? 变频器驱动电路中常用的驱动IC,总共就三五种型号。像T250V、3120、PC923等,均为双列塑封直插8脚IC,电路功能与引脚都极为相似,有的可直接代换。 PC923的引脚功能:1、4脚为空脚;2、3为信号输入;6脚为信号输出;8、7脚为正负电源;8、5脚短接,以使内部输出和控制回路共用正电源(23—24V)。 PC929的引脚功能:1、2脚内部短接;2、3脚内接光耦合器发光二极管的阳极和阴极; 4、5、6、7为空脚;8脚为故障信号输出;9脚为故障信号输入;10、14脚为负电源;12、13脚为正电源;11脚为驱动脉冲输出。 因PC923本身的驱动能力是有限的,驱动大功率IGBT,需要外加功率驱动级,主要提供电流放大,才以去驱动IGBT。如果忽略驱动对管Q3、Q4的导通电压降,可以看出IGBT 正激励电压+14V、截止电压10V。????? PC929还内含IGBT保护检测电路,PC929所检测到的IGBT故障,报给CPU的是SC (短路)还是OC(过流),其实归根结底是IGBT的管压降信号,意味IGBT严重过流了,

白家电的变频器智能功率模块(IPM)技术及方案

白家电的变频器智能功率模块(IPM)技术及方案 【大比特导读】如今,在白家电设计中具有显着节能、低噪声和优异变速性能等特性的无刷直流(BLDC)电机(或称“马达”)应用越来越广泛。据统计,高档电冰箱中可能会使用5个或以上电机,空调的室外机及室内机各使用2个,洗衣机/烘干机、洗碗机等通常也会使用2个电机,这就需要高能效的电机驱动/控制方案。 由于世界各国不断关注节能问题,使节能型消费类产品的需求持续上升,尤其是电冰箱、洗衣机和空调等白家电产品。除了节能,白家电设计的挑战包括尺寸、散热、可靠性、噪声及外观设计等。如今,在白家电设计中具有显着节能、低噪声和优异变速性能等特性的无刷直流(BLDC)电机(或称“马达”)应用越来越广泛。据统计,高档电冰箱中可能会使用5个或以上电机,空调的室外机及室内机各使用2个,洗衣机/烘干机、洗碗机等通常也会使用2个电机,这就需要高能效的电机驱动/控制方案。 变频器技术的开发旨在高能效地驱动用于工业及家用电器的电机。此技术要求像绝缘门双极晶体管(IGBT)、快速恢复二极管(FRD)这类的功率器件,以及控制IC和无源元件。智能功率模块(IPM)将这些元器件高密度贴装封装在一起(见图1),高能效地驱动电机,配合白家电对低能耗、小尺寸、轻重量及高可靠性的要求。IPM内置高击穿电压的驱动器IC、高击穿电压及大电流IGBT、快速恢复二极管、门极电阻、用于驱动上边IGBT及IGBT门极电阻的启动二极管、用于检测发热的热敏电阻、用于过流保护的分流电阻等,用于变频器电路。IPM提供低损耗,包含多种封装类型,电流范围宽。 图1:典型变频器IPM将多种元器件封装为模块

变频器计算

变频器计算 一、变频器的合理选用 变频器的选用,应按照被控对象的类型、调速范围、静态速度精度、启动转矩等来考虑,使之在满足工艺和生产要求的同时,既好用,又经济。 1. 变频器及被控制的电机 (1)电机的极数。一般电机极数以不多于4 极为宜,否则变频器容量就要适当加大。 (2)转矩特性、临界转矩、加速转矩。在同等电机功率情况下,相对于高过载转矩模式,变频器规格可以降格选取。 (3)电磁兼容性。为减少主电源干扰,在中间电路或变频器输入电路中增加电抗器,或安装前置隔离变压器。一般当电机与变频器距离超过50m时,应在它们中间串入电抗器、滤波器或采用屏蔽防护电缆。 表1 列出不同类型变频器的主要性能、应用场合。 2. 变频器箱体结构的选用 变频器的箱体结构要与条件相适应,必须考虑温度、湿度、粉尘、酸碱度、腐蚀性气体等因素。有下列几种常见结构: (1) 敞开型IP00型。本身无机箱,可装在电控箱内或电气室内的屏、盘、架上,尤其适于多台变频器集中使用时选用,但环境条件要求较高。 (2)封闭型IP20 型。适于一般用途,可有少量粉尘或少许温度、湿度的场合。 (3)密封型IP45 型。适于工业现场条件较差的环境。 (4)密闭型IP65 型。适于环境条件差,有水、灰尘及一定腐蚀性气体的场合。 3. 变频器功率的选用 变频器负载率β与效率η的关系曲线见图1。由图1 可见:当β= 50%时,η= 94%;当β= 100%时,η= 96%。虽然β增一倍,η变化仅2%,但对中大功率(几百千瓦至几千千瓦) 电动机而言亦是可观的。系统效率等于变频器效率与电动机效率的乘积。从效率角度出发,在选用变频器功率时,要注意以下几点。 (1)变频器功率与电动机功率相当时为最合适,以利于变频器在高效率状态下运转。 (2)在变频器的功率分级与电动机功率分级不相同时,则变频器的功率要尽可能接近电动机的功率,并且应略大于电动机的功率。 (3)当电动机属频繁启动、制动工作或处于重载启动且较频繁时,可选取大一级的变频器,以利于变频器长期、安全地运行。 (4)经测试,电动机实际功率确实有富余,可以考虑选用功率小于电动机功率的变频器,但要注意瞬时峰值电流是否会造成过电流保护动作。 (5) 当变频器与电动机功率不相同时,则必须相应调整节能程序的设置,以利于达到较高的节能效果。 4. 变频器容量的确定 合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三种。 (1) 电机实际功率确定法。首先测定电机的实际功率,以此来选用变频器的容量。 (2) 公式法。设安全系数取1. 05 ,则变频器的容量pb 为:

变频器充电电阻,电容容量的计算

充电电阻和储能电容引发的变频器故障 1.充电电阻中小功率通用变频器一般为电压型变频器,采用交—直—交工作方式。当变 频器刚上电时,由于直流侧的滤波电容容量非常大,在刚充电的瞬间对电流相当于短路,电流会很大。如果在整流桥与电解电容之间不加充电电阻,则相当于380V 电源直接对地短路, 瞬间整流桥通过无穷大的电流导致整流桥炸掉。加上充电电阻限流后,要是不并继电器或其他元件,充电电阻消耗功率也很大。例如对于22kW 的变频器,在PN 端(直流母线)上至少有45A 的电流。如果“接控制电路”部分出问题(比如继电器或者晶闸管等等质量有问题)则在变频器运行一会儿充电电阻就将因发热太大而坏掉。所以充电电阻串接在充电回路中,起通电瞬间限流充电,以保护整流器等一些输入回路器件的作用,有的书本上也叫缓冲电阻或启动电阻。西门子6SE701G 变频启动电路如附图所示。 充电完成后,控制电路通过继电器的触点或晶闸管将电阻短路,完成变频器的上电过程。如果变频器的交流输入电源频繁通断,或者旁路接触器的触点接触不良或晶闸管的导通阻值变大,反复充电或充电时间过长都会导致充电电阻烧坏。因此在替换充电电阻前,必须找出原因,才能再将变频器投入使用。 但有的变频器在启动期间CPU 是有一个电压检测和降频动作的,如果接触器线圈引线端子松动造成接触不良,接触器未能吸合,启动时的较大电流在充电电阻上形成较大的压降,主回路直流电压的急剧跌落为电压检测电路所侦测,CPU 会做出降频指令,在空载或轻载时,检测电路将欠压故障“及时上报”,CPU 马上停机保护。电阻来不及烧掉,变频器已经停机保护。 那么,如何选择充电电阻的阻值呢? 380V 交流电整流后经过充电电阻对电解电容充电,当充到一定值(比如DC200V)辅助电源 启动给控制板供电,让控制板工作从而继电器或晶闸管接通,机的瞬 充电电阻就不再工作了。在开 间,充电电阻越小,则流过整流桥的电流就越大。经常有初学变频器 维修者打来电话

相关主题
文本预览
相关文档 最新文档