当前位置:文档之家› 计算机组成原理实验报告46635

计算机组成原理实验报告46635

计算机组成原理实验报告46635
计算机组成原理实验报告46635

1. 寄存器

五、实验总结

按照实验要求进行连接和操作,对通用寄存器组进行了数据的写入和读出,两组数据完全对照,得到了预期效果,说明了存入数据的正确性,在整个过程中也对寄存器组的构成和硬件电路有了更深层次的理解。

2. 运算器

五、实验总结

基本熟悉了整个实验系统的基本结构,了解了该实验装置按功能分成几大区,学会何时操作各种开关、按键。最重要的是通过实验掌握了运算器工作原理,熟悉了算术/逻辑运算的运算过程以及控制这种运算的方法,了解了进位对算术与逻辑运算结果的影响,对时序是如何起作用的没太弄清楚,相信随着后续实验的进行一定会搞清楚的

3. 存储器

五、实验总结

按照实验要求连接器材设备元件,按照给定步骤进行实验操作。通过向静态RAM中写入数据并读出数据,在INPUT单元输入数并存入地址寄存器,再向相应的地址单元存入数,验证读出数据时,只需再INPUT单元输入想要读出单元的地址,再通过片选端CE读出存储单元内的数据,其中We=0是控制写端,WE=1控制读,CE低电平有效。实验过程遇到一些问题,对实验内容不是很熟,有待提高。

4. CPU与简单模型机设计实验

一、实验目的

(1) 掌握一个简单CPU的组成原理。

(2) 在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。

(3) 为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。

二、实验设备

PC机一台,TD-CMA实验系统一套。

三、实验原理

本实验要实现一个简单的CPU,并且在此CPU的基础上,继续构建一个简单的模型计算机。CPU 由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图5-1-1 所示。这个CPU 在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU 必须和主存挂接后,才有实际的意义,所以还需要在该CPU的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。

除了程序计数器(PC),其余部件在前面的实验中都已用到,在此不再讨论。系统的程序计数器(PC)和地址寄存器(AR)集成在一片CPLD 芯片中。CLR 连接至CON 单元的总清端CLR,按下CLR 按钮,将使PC 清零,LDPC 和T3 相与后作为计数器的计数时钟,当LOAD 为低时,计数时钟到来后将CPU内总线上的数据打入PC。

本模型机JMP,共有五条指令:IN(输入)、ADD(二进制加法)、OUT(输出)、JMP(无条件转移),HLT(停机),其指令格式如下(高4位为操作码):

其中JMP为双字节指令,其余均为单字节指令,********为addr对应的二进制地址码。微程序控制器实验的指令是通过手动给出的,现在要求CPU自动从存储器读取指令并执行。根据以上要求,设计数据通路图,如图5-1-3所示。本实验在前一个实验的基础上增加了三个部件,一是PC(程序计数器),另一个是AR(地址寄存器),还有就是MEM(主存)。因而在微指令中应增加相应的控制位,其微指令格式如表5-1-1所示。

当拟定“取指”微指令时,该微指令的判别测试字段为P<1>测试。指令译码原理见图3-2-3 所示,由于“取指”微指令是所有微程序都使用的公用微指令,因此P<1> 的测试结果出现多路分支。本机用指令寄存器的高6 位(IR7—IR2)作为测试条件,出现5路分支,占用5个固定微地址单元,剩下的其它地方就可以一条微指令占用控存一个微地址单元随意填写,微程序流程图上的单元地址为16进制。

当全部微程序设计完毕后,应将每条微指令代码化,表5-1-2即为将图5-1-4的微程序流程图按微指令格式转化而成的“二进制微代码表”。

设计一段机器程序,要求从IN单元读入一个数据,存于R0,将R0和自身相加,结果存于R0,再将R0的值送OUT单元显示。根据要求可以得到如下程序,地址和内容均为二进制数。

四、实验步骤

1. 按图5-1-5连接实验线路。

2. 写入实验程序,并进行校验,分两种方式,手动写入和联机写入。

1) 手动写入和校验

(1) 手动写入微程序

①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘编程’档,KK4置为‘控存’档,KK5置为‘置数’档。

②使用CON单元的SD05——SD00给出微地址,IN单元给出低8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的低8位。

③将时序与操作台单元的开关KK5置为‘加1’档。

④IN单元给出中8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN 单元的数据写到该单元的中8位。IN单元给出高8位应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元的高8位。

⑤重复①、②、③、④四步,将表5-1-2的微代码写入2816芯片中。

(2) 手动校验微程序

①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘校验’档,KK4置为‘控存’档,KK5置为‘置数’档。

②使用CON单元的SD05——SD00给出微地址,连续两次按动时序与操作台的开关ST,MC单元的指数据指示灯M7——M0显示该单元的低8位。

③将时序与操作台单元的开关KK5置为‘加1’档。

④连续两次按动时序与操作台的开关ST,MC单元的指数据指示灯M15——M8显示该单元的中8位,MC单元的指数据指示灯M23——M16显示该单元的高8位。

⑤重复①、②、③、④四步,完成对微代码的校验。如果校验出微代码写入错误,重新写入、校验,直至确认微指令的输入无误为止。

(3) 手动写入机器程序

①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘编程’档,KK4置为‘主存’档,KK5置为‘置数’档。

②使用CON单元的SD07——SD00给出地址,IN单元给出该单元应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该存储器单元。

③将时序与操作台单元的开关KK5置为‘加1’档。

④IN单元给出下一地址(地址自动加1)应写入的数据,连续两次按动时序与操作台的开关ST,将IN单元的数据写到该单元中。然后地址会又自加1,只需在IN单元输入后续地址的数据,连续两次按动时序与操作台的开关ST,即可完成对该单元的写入。

⑤亦可重复①、②两步,将所有机器指令写入主存芯片中。

(4) 手动校验机器程序

①将时序与操作台单元的开关KK1置为‘停止’档,KK3置为‘校验’档,KK4置为‘主存’档,KK5置为‘置数’档。

②使用CON单元的SD07——SD00给出地址,连续两次按动时序与操作台的开关ST,CPU 内总线的指数据指示灯D7——D0显示该单元的数据。

③将时序与操作台单元的开关KK5置为‘加1’档。

④连续两次按动时序与操作台的开关ST,地址自动加1,CPU内总线的指数据指示灯D7 ——D0 显示该单元的数据。此后每两次按动时序与操作台的开关ST,地址自动加1,CPU 内总线的指数据指示灯D7——D0 显示该单元的数据,继续进行该操作,直至完成校验,如发现错误,则返回写入,然后校验,直至确认输入的所有指令准确无误。

⑤亦可重复①、②两步,完成对指令码的校验。如果校验出指令码写入错误,重新写入、校验,直至确认指令码的输入无误为止。2) 联机写入和校验联机软件提供了微程序和机器程序下载功能,以代替手动读写微程序和机器程序,但是微程序和机器程序得以指定的格式写入到以TXT为后缀的文件中,微程序和机器程序的格式如下:

本次实验程序如下,程序中分号‘;’为注释符,分号后面的内容在下载时将被忽略掉:

选择联机软件的“【转储】—【装载】”功能,在打开文件对话框中选择上面所保存的文件,软件自动将机器程序和微程序写入指定单元。选择联机软件的“【转储】—【刷新指令区】”可以读出下位机所有的机器指令和微指令,并在指令区显示,对照文件检查微程序和机器程序是否正确,如果不正确,则说明写入操作失败,应重新写入,可以通过联

机软件单独修改某个单元的指令,以修改微指令为例,先用鼠标左键单击指令区的‘微存’TAB 按钮,然后再单击需修改单元的数据,此时该单元变为编辑框,输入6位数据并回车,编辑框消失,并以红色显示写入的数据。

3. 运行程序

方法一:本机运行将时序与操作台单元的开关KK1、KK3置为‘运行’档,按动CON 单元的总清按钮CLR,将使程序计数器PC、地址寄存器AR和微程序地址为00H,程序可以从头开始运行,暂存器A、B,指令寄存器IR和OUT单元也会被清零。将时序与操作台单元的开关KK2 置为‘单步’档,每按动一次ST 按钮,即可单步运行一条微指令,对照微程序流程图,观察微地址显示灯是否和流程一致。每运行完一条微指令,观测一次CPU内总线和地址总线,对照数据通路图,分析总线上的数据是否正确。当模型机执行完JMP指令后,检查OUT单元显示的数是否为IN单元值的2倍,按下CON 单元的总清按钮CLR,改变IN单元的值,再次执行机器程序,从OUT单元显示的数判别程序执行是否正确。

方法二:联机运行将时序与操作台单元的开关KK1 和KK3 置为‘运行’档,进入软件界面,选择菜单命令“【实验】—【简单模型机】”,打开简单模型机数据通路图。按动CON单元的总清按钮CLR,然后通过软件运行程序,选择相应的功能命令,即可联机运行、监控、调试程序,当模型机执行完JMP指令后,检查OUT单元显示的数是否为IN单元值的2 倍。在数据通路图和微程序流中观测指令的执行过程,并观测软件中地址总线、数据总线以及微指令显示和下位机是否一致。

五、实验总结

通过本次课程设计了解了简单模型机的结构及其原理,通过给定的机器指令,基于计算机组成及工作原理的基础上,确定了模型机的数据通路结构,根据机器指令和微指令的译码情况,设计了机器指令格式和微指令格式,对简单模型机有了一定的了解。

感谢您的支持与配合,我们会努力把内容做得更好!

计算机组成原理补充题

计算机组成原理补充题 判断题 1.磁盘存储中如果文件长度超过磁道容量,会将其放在同一个记录面上。 2.随机存储存储器的访问时间与存储位置有关。 3.微程序控制器中,一条机器指令对应于一个微程序。 4.任何指令的执行可以由硬件来实现,也可以由软件来完成。 5.通常多级中断系统可实现中断嵌套。 6. RR、RS及SS型指令中,RR型指令的执行速度最慢。 补:7. 通常单级中断系统可实现中断嵌套。 8. RR、RS及SS型指令中,SS型指令的执行速度最慢 9.单管DRAM必须不断刷新是因为其为破坏性读出。 10.磁盘的读出过程是一个磁——电变换。 11.寄存器的间接寻址中,操作数存放在内存的相应单元中。 12.并行技术之所以能提升效率是因期许自身的物理性能得到了改善。 13.流水CPU一定是RISC机器。 14.半导体存储器均为易失性存储器。 15.寄存器间接寻址中,操作数存放在内存的相应单元中。 1.× 2.× 3. √ 4.√ 5.√ 6.× 7.× 8.√ 9.× 10.√ 11.× 12.× 13.×14.×15.× 填空题 1.流水CPU中可能造成“断流”的主要原因是存在数据相关、资源相关和控制相关。 2.双端口存储器和多模块交叉存储器均为并行存储器结构,前者采用空间并行技术,后者采用时间并行技术。 3.集中式仲裁通常可采用优先(级)策略或公平策略选择下一个总线主设备。 4.CPU从主存取出一条指令并执行该指令的时间叫指令周期,它通常包含若干个机器周期。而后者又包含又若干个时钟周期(节拍脉冲)。 5.冯.诺依曼型计算机的工作原理为:存储程序并按地址顺序执行。 6.指令的寻址方式包括顺序寻址和跳跃寻址两种方式。 7.计算机通常使用程序计数器来指定指令的地址。 8.建立Cache的理论依据是程序访问的局部性。 9.磁盘上访问信息的最小物理单位是扇区。 10.计算机系统是由硬件、软件组成的多级层次结构,它通常由微程序级、一般机器级、操作系统级、汇编语言级、高级语言级组成。 补:11.RSIC的三个基本要素:一个有限的简单的指令集、CPU配备大量的通用寄存器、强调对指令流水线的优化。 12.在定点二进制运算器中,减法运算一般用补码运算的二进制加法器。 13.-1的补码用8位二进制表示为1111111。 14.DMA的传送方式停止CPU访问、周期挪用、DMA与CPU交替访问。 15.保存当前正在执行的指令的寄存器IR(指令寄存器); 指示下一条指令地址的寄存器PC(程序计数器); 保存当前正在执行的指令地址AR(地址寄存器); 算术逻辑运算结果通常放在DR(数据寄存器)和通用寄存器。 16.某机字长32位,存储容量1MB,按字节编址,它的寻址范围是0-256K。 单选题 1.中断处理过程中,由硬件完成的操作是。

计算机组成原理题附答案

计算机组成原理题解指南 第一部分:简答题 第一章计算机系统概论 1.说明计算机系统的层次结构。 计算机系统可分为:微程序机器级,一般机器级(或称机器语言级),操作系统级,汇编语言级,高级语言级。 第四章主存储器 1.主存储器的性能指标有哪些?含义是什么? 存储器的性能指标主要是存储容量. 存储时间、存储周期和存储器带宽。 在一个存储器中可以容纳的存储单元总数通常称为该存储器的存储容量。 存取时间又称存储访问时间,是指从启动一次存储器操作到完成该操作所经历的时间。 存储周期是指连续两次独立的存储器操作(如连续两次读操作)所需间隔的最小时间。 存储器带宽是指存储器在单位时间中的数据传输速率。 2.DRAM存储器为什么要刷新?DRAM存储器采用何种方式刷新?有哪几种常用的刷新方式?DRAM存储元是通过栅极电容存储电荷来暂存信息。由于存储的信息电荷终究是有泄漏的,电荷数又不能像SRAM存储元那样由电源经负载管来补充,时间一长,信息就会丢失。为此必须设法由外界按一定规律给栅极充电,按需要补给栅极电容的信息电荷,此过程叫“刷新”。 DRAM采用读出方式进行刷新。因为读出过程中恢复了存储单元的MOS栅极电容电荷,并保持原单元的内容,所以读出过程就是再生过程。 常用的刷新方式由三种:集中式、分散式、异步式。 3.什么是闪速存储器?它有哪些特点? 闪速存储器是高密度、非易失性的读/写半导体存储器。从原理上看,它属于ROM型存储器,但是它又可随机改写信息;从功能上看,它又相当于RAM,所以传统ROM与RAM的定义和划分已失去意义。因而它是一种全新的存储器技术。 闪速存储器的特点:(1)固有的非易失性,(2)廉价的高密度,(3)可直接执行,(4)固态性能。4.请说明SRAM的组成结构,与SRAM相比,DRAM在电路组成上有什么不同之处? SRAM存储器由存储体、读写电路、地址译码电路、控制电路组成,DRAM还需要有动态刷新电路。 第五章指令系统 1.在寄存器—寄存器型,寄存器—存储器型和存储器—存储器型三类指令中,哪类指令的执行时间最长?哪类指令的执行时间最短?为什么? 寄存器-寄存器型执行速度最快,存储器-存储器型执行速度最慢。因为前者操作数在寄存器中,后者操作数在存储器中,而访问一次存储器所需的时间一般比访问一次寄存器所需时间长。2.一个较完整的指令系统应包括哪几类指令? 包括:数据传送指令、算术运算指令、逻辑运算指令、程序控制指令、输入输出指令、堆栈指令、字符串指令、特权指令等。 3.什么叫指令?什么叫指令系统? 指令就是要计算机执行某种操作的命令 一台计算机中所有机器指令的集合,称为这台计算机的指令系统。 第六章中央处理部件CPU 1.指令和数据均存放在内存中,计算机如何从时间和空间上区分它们是指令还是数据。 时间上讲,取指令事件发生在“取指周期”,取数据事件发生在“执行周期”。从空间上讲,从内存读出的指令流流向控制器(指令寄存器)。从内存读出的数据流流向运算器(通用寄存器)。

计算机组成原理实验

计算机组成原理 一、8 位算术逻辑运算 8 位算术逻辑运算实验目的 1、掌握简单运算器的数据传送通路组成原理。 2、验证算术逻辑运算功能发生器74LS181的组合功能。 8 位算术逻辑运算实验内容 1、实验原理 实验中所用的运算器数据通路如图3-1所示。其中运算器由两片74LS181以并/串形成8位字长的ALU构成。运算器的输出经过一个三态门74LS245(U33)到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUS1~6中的任一个相连,内部数据总线通过LZD0~LZD7显示灯显示;运算器的两个数据输入端分别由二个锁存器74LS273(U29、U30)锁存,两个锁存器的输入并联后连至插座ALUBUS,实验时通过8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,通过数据开关输入的数据由LD0~LD7显示。 图中算术逻辑运算功能发生器74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M并行相连后连至SJ2插座,实验时通过6芯排线连至6位功能开关插座UJ2,以手动方式用二进制开关S3、S2、S1、S0、CN、M来模拟74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号LDDR1、LDDR2、ALUB`、SWB`以手动方式用二进制开关LDDR1、LDDR2、ALUB、SWB来模拟,这几个信号有自动和手动两种方式产生,通过跳线器切换,其中ALUB`、SWB`为低电平有效,LDDR1、LDDR2为高电平有效。 另有信号T4为脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端SD相连,按动手动脉冲开关,即可获得实验所需的单脉冲。 2、实验接线 本实验用到4个主要模块:⑴低8位运算器模块,⑵数据输入并显示模块,⑶数据总线显示模块,⑷功能开关模块(借用微地址输入模块)。

计算机组成原理习题解答全解

《计算机组成原理》习题解答 第1章 1. 解释概念或术语:实际机器、虚拟机器,机器指令、机器指令格式,主机、CPU、主存、I/O、PC、IR、ALU、CU、AC、MAR、MDR,机器字长、存储字长、指令字长、CPI、T C、主频、响应时间、吞吐量、MIPS、MFLOPS。 答:略 2. 如何理解计算机系统的层次结构?说明高级语言、汇编语言及机器语言的差别与联系。 答:⑴计算机系统是由软件和硬件结合而成的整体。为了提高计算机系统的好用性,程序设计语言的描述问题能力越来越强,各种程序设计语言大体上是一种层次结构,即高等级编程语言指令包含低等级编程语言指令的全部功能。 对于使用不同层次编程语言的程序员来说,他们所看到的同一计算机系统的属性是不同的,这些属性反映了同一计算机系统的不同层次的特征,即同一计算机系统可划分成多个层次结构,不同层次的结构反映的计算机系统的特征不同而已。 ⑵机器语言是能够被计算机硬件直接识别和执行的程序设计语言,机器语言是一种面向硬件的、数字式程序设计语言;汇编语言和高级语言均用符号表示机器语言指令,指令很容易阅读和编写、但不能被硬件直接识别和执行,它们均是一种面向软件的、符号式程序设计语言;相对于汇编语言而言,高级语言描述问题的能力更强;高级语言和汇编语言程序必须翻译成机器语言程序后,才能在计算机硬件上执行。 3. 计算机系统结构、计算机组成的定义各是什么?两者之间有何关系? 答:计算机系统结构是指机器语言程序员或编译程序编写者所看到的计算机系统的属性,包括概念性结构和功能特性两个方面。主要研究计算机系统软硬件交界面的定义及其上下的功能分配。 计算机组成是指计算机硬件设计人员所看到的计算机系统的属性。主要研究如何合理地逻辑实现硬件的功能。 计算机组成是计算机系统结构的逻辑实现。 4. 冯·诺依曼模型的存储程序原理包含哪些内容、对计算机硬件和软件有哪些要求?冯·诺依曼模型计算机的特点有哪些? 答:存储程序原理是指程序和数据预先存放在存储器中,机器工作时自动按程序的逻辑顺序从存储器中逐条取出指令并执行。 存储程序原理要求存储器是由定长单元组成的、按地址访问的、一维线性空间结构的存储部件;要求软件指令支持用地址码表示操作数在存储器中的地址,指令长度为存储单元长度的倍数,编程语言中必须有转移型指令,以实现程序存储顺序到程序逻辑顺序的转变。 冯·诺依曼模型计算机的特点可归纳为如下几点: ⑴计算机由运算器、控制器、存储器、输入设备和输出设备组成; ⑵存储器是由定长单元组成的、按地址访问的、一维线性空间结构; ⑶程序由指令组成,指令和数据以等同地位存放在存储器中; ⑷机器工作时自动按程序的逻辑顺序从存储器中逐条取出指令并执行; ⑸指令由操作码和地址码组成,操作码用于表示操作的性质,地址码用于表示操作数在

计算机组成原理 实验4

实验四模型机设计 1 实验目的 (1) 掌握一个简单CPU的组成原理。 (2) 在掌握部件单元电路的基础上,进一步将其构造一台基本模型计算机。 (3) 为其定义五条机器指令,编写相应的微程序,并上机调试掌握整机概念。 2 实验设备 PC机一台,TD-CMA实验系统一套。 3 实验原理 本实验要实现一个简单的CPU,并且在此CPU的基础上,继续构建一个简单的模型计算机。CPU由运算器(ALU)、微程序控制器(MC)、通用寄存器(R0),指令寄存器(IR)、程序计数器(PC)和地址寄存器(AR)组成,如图4-1所示。这个CPU在写入相应的微指令后,就具备了执行机器指令的功能,但是机器指令一般存放在主存当中,CPU必须和主存挂接后,才有实际的意义,所以还需要在该CPU的基础上增加一个主存和基本的输入输出部件,以构成一个简单的模型计算机。 图4-1 基本CPU构成原理图 除了程序计数器(PC),其余部件在前面的实验中都已用到,在此不再讨论。系统的程序计数器(PC)和地址寄存器(AR)集成在一片CPLD芯片中。CLR连接至CON单元的总清端CLR,按下CLR按钮,将使PC清零,LDPC和T3相与后作为计数器的计数时钟,当LOAD为低时,计数时钟到来后将CPU内总线上的数据打入PC。

T3 CLR 图4-2 程序计数器(PC)原理图 本模型机和前面微程序控制器实验相比,新增加一条跳转指令JMP,共有五条指令:IN(输入)、ADD(二进制加法)、OUT(输出)、JMP(无条件转移),HLT(停机),其指令格式如下(高4位为操作码): 助记符机器指令码说明 IN0010 0000IN R0 ADD0000 0000R0 + R0 R0 OUT0011 0000R0 OUT JMP addr1110 0000 ********addr PC HLT0101 0000停机 其中JMP为双字节指令,其余均为单字节指令,********为addr对应的二进制地址码。微程序控制器实验的指令是通过手动给出的,现在要求CPU自动从存储器读取指令并执行。根据以上要求,设计数据通路图,如图4-3所示。 本实验在前一个实验的基础上增加了三个部件,一是PC(程序计数器),另一个是AR(地址寄存器),还有就是MEM(主存)。因而在微指令中应增加相应的控制位,其微指令格式如表4-1所示。

计算机组成原理实验

实验一基础汇编语言程序设计 一、实验目的: 1、学习和了解TEC-XP16教学实验系统监控命令的用法。 2、学习和了解TEC-XP16教学实验系统的指令系统。 3、学习简单的TEC-XP16教学实验系统汇编程序设计。 二、预习要求: 1、学习TEC-XP16机监控命令的用法。 2、学习TEC-XP16机的指令系统、汇编程序设计及监控程序中子程序调用。 3、学习TEC-XP16机的使用,包括开关、指示灯、按键等。 4、了解实验内容、实验步骤和要求。 三、实验步骤: 在教学计算机硬件系统上建立与调试汇编程序有几种操作办法。 第一种办法,是使用监控程序的A命令,逐行输入并直接汇编单条的汇编语句,之后使用G命令运行这个程序。缺点是不支持汇编伪指令,修改已有程序源代码相对麻烦一些,适用于建立与运行短小的汇编程序。 第二种办法,是使用增强型的监控程序中的W命令建立完整的汇编程序,然后用M命令对建立起来的汇编程序执行汇编操作,接下来用G命令运行这个程序。适用于比较短小的程序。此时可以支持汇编伪指令,修改已经在内存中的汇编程序源代码的操作更方便一些。 第三种办法,是使用交叉汇编程序ASEC,首先在PC机上,用PC机的编辑程序建立完整的汇编程序,然后用ASEC对建立起来的汇编程序执行汇编操作,接下来把汇编操作产生的二进制的机器指令代码文件内容传送到教学机的内存中,就可以运行这个程序了。适用于规模任意大小的程序。

在这里我们只采用第一种方法。 在TEC-XP16机终端上调试汇编程序要经过以下几步: 1、使教学计算机处于正常运行状态(具体步骤见附录联机通讯指南)。 2、使用监控命令输入程序并调试。 ⑴用监控命令A输入汇编程序 >A 或>A 主存地址 如:在命令行提示符状态下输入: A 2000↙;表示该程序从2000H(内存RAM区的起始地址)地址开始 屏幕将显示: 2000: 输入如下形式的程序: 2000: MVRD R0,AAAA ;MVRD 与R0 之间有且只有一个空格,其他指令相同 2002: MVRD R1,5555 2004: ADD R0,R1 2005: AND R0,R1 2006: RET ;程序的最后一个语句,必须为RET 指令 2007:(直接敲回车键,结束A 命令输入程序的操作过程) 若输入有误,系统会给出提示并显示出错地址,用户只需在该地址重新输入正确的指令即可。 ⑵用监控命令U调出输入过的程序并显示在屏幕上 >U 或>U 主存地址

计算机组成原理实验七

图16 启停单元布局图 序电路由1片74LS157、2片74LS00、4个LED PLS2、PLS3、PLS4)组成。当LED发光时 图17

图17 时序单元布局图 (二)启停、脉冲单元的原理 1.启停原理:(如图18) 启停电路由1片7474组成,当按下RUN按钮,信号输出RUN=1、STOP=0,表示当前实验机为运行状态。当按下STOP 按钮,信号RUN=0、STOP=1,表示当前实验机为停止状态。当 系统处于停机状态时,微地址、进位寄存器都被清零,并且可 通过监控单元来读写内存和微程序。在停止状态下,当HALT 时有一个高电平,同时HCK有一个上升沿,此时高电平被打入 寄存器中,信号输出RUN=1、STOP=0,使实验机处于运行状态。

图18 启停单元原理图 2.时序电路: 时序电路由监控单元来控制时序输出(PLS1、PLS2、PLS3、PLS4)。实验所用的时序电路(如图19)可产生4个等间隔的时序信号PLS1、PLS2、PLS3、PLS4。为了便于监控程序流程,由监控单元输出PO信号和SIGN脉冲来实现STEP(微单步)、GO (全速)和HALT(暂停)。当实验机处于运行状态,并且是微单步执行,PLS1、PLS2、PLS3、PLS4分别发出一个脉冲,全速执行时PLS1、PLS2、PLS3、PLS4脉冲将周而复始的发送出去。在时序单元中也提供了4个按钮,实验者可手动给出4个独立的脉冲,以便实验者单拍调试模型机。

图19 时序电路图 实验步骤 1.交替按下“运行”和“暂停”,观察运行灯的变化(运行:RUN 亮;暂停:RUN灭)。 2.把HALT信号接入二进制拨动开关,HCK接入脉冲单元的PLS1。按下表接线 接入开关位号 信号定 义 HCK PLS1孔 HALT H13孔 3.按启停单元中的停止按钮,置实验机为停机状态,HALT=1。 4.按脉冲单元中的PLS1脉冲按键,在HCK上产生一个上升

计算机组成原理实验十

上海大学计算机学院 《计算机组成原理二实验》报告十 姓名:林琦学号:xxxxxxxx 教师:王雪娟 时间:周一5-6 地点:计算机大楼609 机位:33 实验名称:十中断机制和应用(综合实验) 一、实验目的 1. 学习实验箱感知中断的硬件结构和工作原理。 2. 学习使用中断系统。 3. 学习使用扩展外设。 二、实验原理 程序中断:因“随机性”原因,使一个程序暂停执行,转而执行另一个程序,以处理随机事件,然后再返回原程序继续执行的过程成为“中断”。中断同子程序调用有共同点:执行另一个程序,然后返回。所以在调用另一个程序(中断服务子程序)时必须保存断点。中断与子程序调用有一个根本区别:中断发生的时间是随机的(不可预知,但发生后应该如何处理是安排好的),而子程序调用时间是安排好的,由程序员写下的调用指令决定。中断发生的“随机性”决定了“必须用硬件感知中断请求”、“不仅要保存断点,还必须保存现场”。中断发生时间与正在运行的程序的无关性,使得整个系统在运行一个程序的同时,还能感知其它事件的发生!这是实时监控的技术基础、是多用户、多任务、多线程技术的关键点,因此是操作系统工作的前提,是计算机系统的“点睛”之笔!深刻理解中断系统是计算机专业人员用好计算机的必备知识! 只有“中断返回”指令和复位操作使EINT为低电平,这个低电平作用到IREQ 的SD端,使上面这个D触发器的Q端为1,作用到IACK的CD端使下面这个D触发器的Q端输出0。 CK驱动下,IREQ的Q端输出D端的INT状态。当有中断请求时INT为0,则一个CK后Q端输出0,但这个0能否被CPU感知却要看①号“或门”是否允许它通过。而“非取指”微指令有IREN=1,则②号“或门”输出1,于是IREQ 的Q端无论输出0或1,①号“或门”总输出1,即不允许中断请求通过。同时这个1又送入IACK的SD端;于是下触发器的SD和CD端的输入都是无效状态,这个触发器保持稳定。

计算机组成原理实验完整版

河南农业大学 计算机组成原理实验报告 题目简单机模型实验 学院信息与管理科学学院 专业班级计算机科学与技术2010级1班 学生姓名张子坡(1010101029) 指导教师郭玉峰 撰写日期:二○一二年六月五日

一、实验目的: 1.在掌握各部件的功能基础上,组成一个简单的计算机系统模型机; 2.了解微程序控制器是如何控制模型机运行的,掌握整机动态工作过程; 3定义五条机器指令,编写相应微程序并具体上机调试。 二、实验要求: 1.复习计算机组成的基本原理; 2.预习本实验的相关知识和内容 三、实验设备: EL-JY-II型计算机组成原理试验系统一套,排线若干。 四、模型机结构及工作原理: 模型机结构框图见实验书56页图6-1. 输出设备由底板上上的四个LED数码管及其译码、驱动电路构成,当D-G和W/R均为低电平时将数据结构的数据送入数据管显示注:本系统的数据总线为16位,指令、地址和程序计数器均为8位。当数据总线上的数据打入指令寄存器、地址寄存器和程序寄存器时,只有低8位有效。 在本实验我们学习读、写机器指令和运行机器指令的完整过程。在机器指令的执行过程中,CPU从内存中取出一条机器指令到执行结束为一个指令周期,指令由微指令组成的序列来完成,一条机器指令对应一段微程序。另外,读、写机器指令分别由相应的微程序段来完成。

为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,必须设计三个控制操作微程序。 存储器读操作(MRD):拨动清零开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“00”时,按“单步”键,可对RAM连续读操作。 存储器写操作(MWE):拨动清零开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“10”时,按“单步”键,可对RAM连续写操作。 启动程序(RUN):拨动开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“11”时,按“单步”键,即可转入第01号“取指”微指令,启动程序运行。 注:CA1、CA2由控制总线的E4、E5给出。键盘操作方式有监控程序直接对E4、E5赋值,无需接线。开关方式时可将E4、E5接至控制开关CA1、CA2,由开关控制。 五、实验内容、分析及参考代码: 生成的下一条微地址 UA5 UA0 MS5 MS0 微地址

计算机组成原理实验

计算机组成原理上机实验指导

一、实验准备和实验注意事项 1.本课程实验使用专门的TDN-CM++计算机组成原理教学实验设备,使用前后均应仔细检查主机板,防止导线、元件等物品落入装置导致线路短路、元件损坏。 2.完成本实验的方法是先找到实验板上相应的丝印字及其对应的引出排针,将排针用电缆线连接起来,连接时要注意电缆线的方向,不能反向连接;如果实验装置中引出排针上已表明两针相连,表明两根引出线部已经连接起来,此时可以只使用一根线连接。 3.为了弄清计算机各部件的工作原理,前面几个实验的控制信号由开关单元“SWITCH UNIT”模拟输入;只有在模型机实验中才真正由控制器对指令译码产生控制信号。在每个实验开始时需将所有的开关置为初始状态“1”。 4.本实验装置的发光二极管的指示灯亮时表示信号为“0”,灯灭时表示信号为“1”。 5.实验接线图中带有圆圈的连线为实验中要接的线。 6.电源关闭后,不能立即重新开启,关闭与重启之间至少应有30秒间隔。 7.电源线应放置在机专用线盒中。 8.保证设备的整洁。

二、实验设备的数据通路结构 利用本实验装置构造的模型机的数据通路结构框图如下图。其中各单元部已经连接好,单元之间可能已经连接好,其它一些单元之间的连线需要根据实验目的用排线连接。 图0-2 模型机数据通路结构框图

实验一运算器实验:算术逻辑运算实验 一.实验目的 1.了解运算器的组成结构; 2.掌握运算器的工作原理; 3.掌握简单运算器的数据传送通路。 4.验证运算功能发生器(74LSl81)的组合功能。 二.实验设备 TDN-CM++计算机组成原理教学实验系统一台,排线若干。 三.实验原理 实验中所用的运算器数据通路如图1-l所示。其中两片74LSl81以串行方式构成8位字长的ALU,ALU的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-B控制,控制运算器运算的结果能否送往总线,低电平有效。 为实现双操作数的运算,ALU的两个数据输入端分别由二个锁存器DR1、DR2(由74LS273实现)锁存数据。要将数据总线上的数据锁存到DR1、DR2中,锁存器的控制端LDDR1和LDDR2必须为高电平,同时由T4脉冲到来。 数据开关(“INPUT DEVICE”)用来给出参与运算的数据,经过三态门(74LS245)后送入数据总线,三态门由SW-B控制,低电平有效。数据显示灯(“BUS UNIT”)已和数据总线相连,用来显示数据总线上的容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲。 ALU运算所需的电平控制信号S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B均由“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为低电平有效,LDDRl、LDDR2为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

计算机组成原理所有测验题及答案

测验1 一. (10分)求[X]补、[X/2]补、[X/4]补、[2X]补=? X= -43/64 解: X=(-43/64)10=(-0.101011)2 [X]补= 1.010101 X/2]补= 1.101010 或[X/2]补= 1.101011 [X/4]补= 1.110101 [2X]补= 溢出 二. (12分)定点数的表示范围。 32位整数原码。25位小数原码。 28位整数补码。27位小数补码。 解: N+1位的机器数 32位整数原码的表示范围:+(2^31—1)~ -(2^31—1) 25位小数原码的表示范围:+(1—2^-24)~ -(1—2^-24)28位整数补码的表示范围:+(2^27—1)~ -2^27 27位小数补码的表示范围:+(1—2^-26)~ -1.0 三.(16分)定点补码加减法。求X+Y,X—Y X= -0.5625,Y= +39/64 解: X=(-0.5625)10=(-0.1001)2

Y=(+39/64)10=(+0.100111)2 采用7位机器数(N=6)[X]补= 1.011100 [Y]补= 0.100111 [X+Y]补=[X]补+[Y]补= 11.011100+ 00.100111 =00.000011 取双符号位运算 11.011100 + 00.100111 00.000011 X+Y= +0.000011 [-Y]补= 1.011001 [X—Y]补=[X]补+[-Y]补= 11.011100+11.011001 = 溢出 11.011100 + 11.011001 10.110101

五. (16分)移码加减法。求X+Y , X —Y X= -69,Y= +57, 解: X=(-69)10=(-1000101)2 Y=( +57)10=(+111001)2 [X]补移 = 00111011 (N=7) [Y]补 = 00111001 [Y]移 [X+Y]移 = [X]移+[Y]补 = 00111011+00111001 = 000111011+000111001 = 001110100 [X+Y]补 X+Y= (-1100)2=(-12)10 四. (8分)浮点数表示范围。尾数12位原码,阶码8位补码。 写出该浮点数能表示的:最大正数,绝对值最大负数,最小正数, 绝对值最小负数。 解: 最大正数 绝对值最大负数 最小正数 绝对值最小负数 规格化 1 21172)21(--?-1 21172)21(--?--7 2122--?7 2122--?-非规格化 121172)21(--?-121172)21(--?--721122--?721122--?-

计算机组成原理_实验报告四(含答案)

湖南科技学院 电子与信息工程学院 实验报告 课程名称: 姓名: 学号: 专业: 班级: 指导老师:

实验四微程序控制组成实验 一、实验目的及要求 1.将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机。 2.用微程序控制器控制模型计算机的数据通路。 3.执行给定的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。 二、实验电路 本次实验将前面几个实验中的所模块,包括运算器、存储器、通用寄存器堆等同微程序控制器组合在一起,构成一台简单的模型机。这是最复杂的一个实验,也将是最有收获的一个实验。 在前面的实验中,实验者本身作为“控制器”,完成了对数据通路的控制。而在本次实验中,数据通路的控制将交由微程序控制器来完成。实验机器从内存中取出一条机器指令到执行指令结束的一个指令周期,是由微程序完成的,即一条机器指令对应一个微程序序列。 实验电路大致如下面框图所示。其中控制器是控制部件,数据通路是执行部件,时序发生器是时序部件。需使用导线将各个部件控制信号与控制器相连。 三、实验主要仪器设备 1.TEC-5计算机组成实验系统1台 2.逻辑测试笔一支(在TEC-5实验台上) 四、实验任务 1.对机器指令组成的简单程序进行译码。将下表的程序按机器指令格式手工汇编成二进制机器代码, 此项任务请在预习时完成。 2. 3.使用控制台命令将寄存器内容初始化为:R0=11H,R1=22H,R2=0AAH。

4.使用控制台命令将任务1中的程序代码存入内存中(注意起始地址为30H),以及将内存地址为 11H的单元内容设置为0AAH。 5.用单拍(DP)方式执行一遍程序,执行时注意观察各个指示灯的显示并做好记录(完成实验表格), 从而跟踪程序执行的详细过程(可观察到每一条微指令的执行过程)。 6.用连续方式再次执行程序。这种情况相当于计算机正常的工作。程序执行到STP指令后自动停机。 读出寄存器中的运算结果,与理论值比较。 五、实验步骤和实验结果记录 1.程序译码。 2.实验接线(本实验接线比较多,需仔细) 只要把上表种同列的信号用线连接即可,一共接线33条。 接好线后,将编程开关拨到“正常位置”。合上电源,按CLR#按钮,使TEC-5实验实验系统处于初始状态。 3.实验任务3:使用控制台命令将寄存器内容初始化为:R0=11H,R1=22H,R2=0AAH的操作步骤及结果记录。 (1)掌握写寄存器WRF的原理和步骤(详见实验参考资料)。 (2)操作过程如下:

计算机组成原理试题及答案

《计算机组成原理》试题 一、(共30分) 1.(10分) (1)将十进制数+107/128化成二进制数、八进制数和十六进制数(3分) (2)请回答什么是二--十进制编码?什么是有权码、什么是无权码、各举一个你熟悉的有权码和无权码的例子?(7分) 2.已知X=0.1101,Y=-0.0101,用原码一位乘法计算X*Y=?要求写出计算过程。(10分) 3.说明海明码能实现检错纠错的基本原理?为什么能发现并改正一位错、也能发现二位错,校验位和数据位在位数上应满足什么条件?(5分) 4.举例说明运算器中的ALU通常可以提供的至少5种运算功能?运算器中使用多累加器的好处是什么?乘商寄存器的基本功能是什么?(5分) 二、(共30分) 1.在设计指令系统时,通常应从哪4个方面考虑?(每个2分,共8分) 2.简要说明减法指令SUB R3,R2和子程序调用指令的执行步骤(每个4分,共8分) 3.在微程序的控制器中,通常有哪5种得到下一条指令地址的方式。(第个2分,共10分) 4.简要地说明组合逻辑控制器应由哪几个功能部件组成?(4分) 三、(共22分) 1.静态存储器和动态存储器器件的特性有哪些主要区别?各自主要应用在什么地方?(7分) 2.CACHE有哪3种基本映象方式,各自的主要特点是什么?衡量高速缓冲存储器(CACHE)性能的最重要的指标是什么?(10分) 3.使用阵列磁盘的目的是什么?阵列磁盘中的RAID0、RAID1、RAID4、RAID5各有什么样的容错能力?(5分) 四、(共18分) 1.比较程序控制方式、程序中断方式、直接存储器访问方式,在完成输入/输出操作时的优缺点。(9分) 2.比较针式、喷墨式、激光3类打印机各自的优缺点和主要应用场所。(9分) 答案 一、(共30分) 1.(10分) (1) (+107/128)10 = (+1101011/10000000)2 = (+0.1101011)2 = (+0.153)8 = (+6B)16 (2) 二-十进制码即8421码,即4个基2码位的权从高到低分别为8、4、2、1,使用基码的0000,0001,0010,……,1001这十种组合分别表示0至9这十个值。4位基二码之间满足二进制的规则,而十进制数位之间则满足十进制规则。 1

计算机组成原理实验实验报告

计算机组成原理实验报告 学院信息与管理科学学院 专业班级计算机科学与技术2010级2班学生姓名毛世均 1010101046 指导教师郭玉峰 撰写日期:二○一二年六月四日

SA4=1 1.根据上边的逻辑表达式,分析58页图6-2的P1测试和P4测试两条指令的微地址转移方向。 P1测试:进行P1测试时,P1为0,其他的都为1, 因此SA4=1, SA3=I7,SA2=I6,SA1=,SA0=I4 微地址011001,下址字段为001000下址字段001000译码后,高两位不变,仍然为00,低四位受到机器指令的高四位I7-I4的影响。 机器指令的高四位为0000时,下一条微指令地址为001000,转到IN 操作。机器指令高四位0010时,下一条微指令地址为001010,转到MOV 操作。机器指令高四位为0001时,下一条微指令地址为001001,转到ADD 操作。机器指令高四位为0011时,下一条微指令地址为001011,转到OUT 操作。机器指令高四位为0100时,下一条微指令地址001100,转到JMP 操作 P4测试:进行P4测试时,P4为0,其他的都为1. 因此SA4=SA3=SA2=1,SA1=CA2,SA0=CA1 微地址000000,下址字段为010000. 010000被译码之后,高四位不变,0100低两位由CA2和CA1控制。CA2和CA1的值是由单片机的键盘填入控制的。 当实验选择CtL2=1时,CA2和CA1被填入0和1,这时低两位被译码电路翻译成01,所以下一条微地址就是010001,然后进入写机器指令的状态。当实验选择CtL2=2时,CA2和CA1被填入1和0,这时低两位被译码电路翻译成10,所以下一条微地址就是010010,然后进入读机器指令的状态。当实验选择CtL2=2时,CA2和CA1被填入1和1,这时低两位被译码电路翻译成 11,所以下一条微地址就是010011,然后进入运行机器指令的状态。 2.分析实验六中五条机器指令的执行过程。

计算机组成原理期末补充习题概念题答案

练习题答案 一、概念题 1、目前计算机存储系统由主存和 cache 、外存(或辅存) 构成 三级 存储系统。 2、指令的流水线方式指的是 若干个子部件同时对若干条指令子过程进行操作 ,因此不同指令的不同阶段可 并行 执行。若指令的执行过程分为n 个子过程,则经过 (n-1)⊿t 时间间隔后,n 条指令的n 个子过程可同时进行。 3、目前计算机的存储系统是 两个存储层次的三级存储系统 。 4、指令是 指示计算机执行某一操作的命令 ,计算机硬件能识别和执行的指令是 机器指令 。机器指令是 指示计算机执行某一操作的用二进制代码表示的命令 ,机器指令一般由 操作码和地址码 组成。 5、微指令是 产生一个或几个操作控制信号的以二进制代码表示的控制字 , 微程序是 对应一条机器指令的微指令序列 ,微命令是 控制计算机各执行部件完成某个基本微操作的控制命令 ,微操作是 执行部件接受微命令后进行的操作 。 6、CPU 执行任何一条指令的过程可分为 取指令 、 分析指令 和 操作执行 三个阶段 ,三个阶段的时间总和称为 指令周期 。 7、虚拟存储器是指 由主存和辅存形成的一个存储容量极大的逻辑型存储器 ,其作用是 使计算机存储系统容量大、速度快、用户编程的空间大 , 虚拟存储器是由 辅助硬件和软件 进行管理。 8、运行程序时,CPU 执行的是 机器 指令,CPU 从 主存(内存)或cache 读取它。 9、半 加 器 的 逻 辑 图 如 下,指 出 它 的 逻 辑 式 为 S =A ⊕B C=AB 。 A B C 10、A+B+C+__A +A __ B = 1 11、.比较两个两位二进制数A=A 1A 0和B=B 1B 0,当A>B 时输出F=1,则F 的表达式是 A1?B1 + A ⊕B ?A0?B0 。 12、下图中输出F=__ A 的电路是 D 。

《计算机组成原理》实验报告四

《计算机组成原理》 实 验 报 告 学院:数学与计算机学院 专业:软件工程 班级学号: 学生姓名: 实验日期: 2014-11-8 指导老师: 成绩评定: 西华大学数学与计算机学院计算机组成原理实验 室 实验四存储器和总线实验 一、实验目的 熟悉存储器和总线的硬件电路

二、实验要求 按照实验步骤完成实验项目,熟悉存储器的读、写操作,理解在总线上数据传输的方法。 三、实验说明 (一)存储器和总线的构成 1.总线由一片74LS245、一片74LS244组成,把整个系统分为内部总线和外部总线。二片74LS374锁存当前的数 据、地址总线上的数据以供LED显示。(如图8)

图8 总线布局图 2.存储器采用静态RAM(1片6264) 3.存储器的控制电路由一片74LS32和74LS08组成。如图9

图9 存储器控制电路布局图(二)存储器和总线的原理

1.总线的原理:由于本系统内使用8根地址线、8根数据线,所以使用一片74LS245作为数据总线,另一片 74LS244作为地址总线(如图10)。总线把整个系统分为内部数据、地址总线和外部数据、地址总线,由于数据总线需要进行内外部数据的交换,所以由BUS信号来控制数据的流向,当BUS=1时数据由内到外,当 BUS=0时数据由外到内。 图10 总线单元 2.由于本系统内使用8根地址线、8根数据线,所以6264的A8~A12接地,其实际容量为256个字节(如图11)。 6264的数据、地址总线已经接在总线单元的外部总线 上。存储器有3个控制信号:地址总线设置存储器地 址,RM=0时,把存储器中的数据读出到总线上;当 WM=0,并且EMCK有一个上升沿时,把外部总线上的数据写入存储器中。为了更方便地编辑内存中的数 据,在实验机处于停机状态时,可由监控来编辑其中的数据。

计算机组成原理实验说明分解

实验一运算器组成实验 一、实验目的 1.熟悉双端口通用寄存器堆(组)的读写操作。 2.熟悉简单运算器的数据传送通路。 3.验证运算器74LS181的算术逻辑功能。 4.按给定数据,完成指定的算术、逻辑运算。 二、实验原理 上图是本实验所用的运算器数据通路图。参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF中。

RF由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选取从A端口(左端口)读出的通用寄存器。而WR1、WR0用于选择写入的通用寄存器。LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。RF的A、B端口分别与操作数暂存器DR1、DR2相连:另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF 中的数据可以直接通过B端口送到DBUS上。 DR1和DR2各由1片74LS273构成,用于暂存参与运算的数据。DR1接ALU 的A输入端口,DR2接ALU的B端口。ALU由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。 图中尾巴上带粗短线标记的信号都是控制信号,其中S3,S2,Sl,S0,M,Cn#,LDDR2,LDDRl, ALU-BUS#,SW-BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0等是电位信号,用电平开关K0—Kl5来模拟。T2、T3是脉冲信号,印制板上已连接到实验台的时序电路上。#为低电平有效。K0—K15是一组用于模拟各控制电平信号的开关,开关向上时为1,开关向下时为0,每个开关无固定用途,可根据实验具体情况选用。 实验中进行单拍操作,每次只产生一组Tl,T2,T3,T4脉冲,需将实验台上的DP,DB开关进行正确设置。将DP开关置l,将DB开关置0,每按一次QD 按钮,则顺序产生Tl、T2、T3、T4各一个单脉冲。 三、实验任务 1.按图要求,将运算器模块与实验台操作板上的线路进行连接。 置DP=1,DB=0,编程开关拨到正常位置. 2.用开关SW7-SW0向通用寄存器堆RF内的R0-R3寄存器置数34H、21H、52H、65H。然后读出R0-R3的内容,在数据总线DBUS上显示出来。 3.令DR1=55H、DR2=0AAH、Cn#=1,验证ALU的正逻辑算术、逻辑运算功能。 四、实验要求 1.做好实验预习。掌握运算器的数据传送通路和ALU的功能特性,并熟悉本实验中所用的控制台开关的作用和使用方法。

计算机组成原理实验1.

计算机组成原理实验1 运算器(脱机)实验 通过开关、按键控制教学机的运算器执行指定的运算功能,并通过指示灯观察运算结果。实验原理: 为了控制Am2901运算器能够按照我们的意图完成预期的操作功能,就必须向其提供相应的控制信号和数据。 控制信号包括 1、选择送入ALU的两路操作数据R和S的组合关系(实际来源)。 2、选择ALU的八种运算功能中我们所要求的一种。这可通过提供三位功能选择码I5、 I4、I3实现。 3、选择运算结果或有关数据以什么方式送往何处的处理方案,这主要通过通用寄存器 组合和Q寄存器执不执行接收操作或位移操作,以及向芯片输出信息Y提供的是 什么内容。这是通过I8、I7、I6三位结果选择码来控制三组选择门电路实现的。 外部数据包括 1、通过D接收外部送来的数据 2、应正确给出芯片的最低位进位输入信号C n 3、关于左右移位操作过程中的RAM3、RAM0、Q3和Q0的处理。 4、当执行通用寄存器组的读操作时,由外部送入的A地址选中的通用寄存器的内容送 往A端口,由B地址选中的通用寄存器的内容送往B端口,B地址还用作通用寄 存器的写汝控制。 对于芯片的具体线路,需说明如下几点: 1、芯片结果输出信号的有无还受一个/OE(片选)信号的控制。 2、标志位F=0000为集电极开路输出,容易实现“线与”逻辑,此管脚需经过一个电阻 接到+5V。 3、RAM3、RAM0、Q3和Q0均为双向三态逻辑,一定要与外部电路正确连接。 4、通用寄存器组通过A端口、B端口读出内容的输出处均有锁存器线路支持。 5、该芯片还有两个用于芯片间完成高速进位的输出信号/G和/P。 6、Am2901芯片要用一个CLK(CP)时钟信号作为芯片内通用寄存器、锁存器和Q寄 存器的打入信号。 实验步骤如下: (1)选择运算器要完成的一项运算功能,包括数据来源,运算功能,结果保存等;(2)需要时,通过数据开关向运算器提供原始数据; (3)通过24位的微型开关向运算器提供为完成指定运算功能所需要的控制信号; (4)通过查看指示灯或用电表量测,观察运算器的运行结果(包括计算结果和特征标志)。实验准备 12为微型开关的具体控制功能分配如下: A口和B口地址:送给Am2901器件用于选择源与目的操作数的寄存器编号; I8~I0:选择操作数来源、运算操作功能、选择操作数处理结果和运算器输出内容的3组3位控制码; Sci,SSH和SST:用于确定运算器最低位的进位输入、移位信号的入/出和怎样处理Am2901产生的状态标志位的结果。

相关主题
文本预览
相关文档 最新文档