当前位置:文档之家› 数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例

数控机床宏程序编程的技巧和实例
数控机床宏程序编程的技巧和实例

论文:

数控机床宏程序编程的技巧和实例

2011年8月11日

前言

随着工业技术的飞速发展,产品形状越来越复杂,精度要求越来越高,产品更新换代越来越快,传统的设备已不能适应新要求。现在我国的制造业中已广泛地应用了数控车床、数控铣床、加工中心机床、数控磨床等数控机床。这些先进设备的加工过程都需要由程序来控制,需要由拥有高技能的人来操作。要发挥数控机床的高精度、高效率和高柔性,就要求操作人员具有优秀的编程能力。

常用的编程方法有手工编程和计算机编程。计算机编程的应用已非常广泛。与手工编程比较,在复杂曲面和型腔零件编程时效率高、质量好。因此,许多人认为手工编程已不再重要,特别是比较难的宏程序编程也不再需要。只须了解一些基本的编程规则就可以了。这样的想法并不能全面。因为,计算机编程也有许多不足:1、程序数据量大,传输费时。2、修改或调整刀具补偿需要重新后置输出。3、打刀或其他原因造成的断点时,很难及时复位。

手工编程是基础能力,是数控机床操作编程人员必须掌握的一种编程方法。手工编程能力是计算机编程的基础,是刀具轨迹设计,轨迹修改,以及进行后置处理设计的依据。实践证明,手工编程能力强的人在计算机编程中才能速度快,程序质量高。

在程序中使用变量,通过对变量进行赋值及处理使程序具有特殊功能,这种有变量的程序叫宏程序。宏程序是数控系统厂家面向客户提供的的二次开发工具,是数控机床编程的最高级手工方式。合理有效的利用这个工具将极大地提升机床的加工能力。

作为一名从事数控车床、数控铣床、加工中心机床操作编程二十多年的技师,在平时的工作中,常常用宏程序来解决生产中的难题,因此对宏程序的编程使用积累了一些经验。在传授指导徒弟和与同事探讨中,总结了许多学习编制宏程序应注意的要点。有关宏编程的基础知识在许多书籍中讲过,我们在这里主要通过实例从编制技巧、要点上和大家讨论。

一、非圆曲面类的宏程序的编程技巧

1、非圆曲面可以分为两类;

(1)、方程曲面,是可以用方程描述其零件轮廓的曲面的。如

抛物线、椭圆、双曲线、渐开线、摆线等。这种曲线可以用先求节点,再用线段或圆弧逼近的方式。以足够的轮廓精度加工出零件。选取的节点数目越多,轮廓的精度越高。然而节点的增多,用普通手工编程则计算量就会增加的非常大,数控程序也非常大,程序复杂也容易出错。不易调试。即使用计算机辅助编程,其数据传输量也非常大。而且调整尺寸补偿也很不方便。这时就显出宏程序的优势了,常常只须二、三十句就可以编好程序。而且理论上还可以根据机床系统的运算速度无限地缩小节点的间距,提高逼近精度。

(2)、列表曲面,其轮廓外形由实验方法得来。如飞机机翼、汽车的外形由风洞实验得来。是用一系列空间离散点表示曲线或曲面。这些离散点没有严格一定的连接规律。而在加工中则要求曲线能平滑的通过各坐标点,并规定了加工精度。加工列表曲线的方法很多,可以采

用计算机辅助编程,利用离散点形成曲面模型,再生成加工轨迹和加工程序。对于一些老机床或无法传送数据的机床,我们也可以将轮廓曲线按曲率变化分成几段,每段分别求出插值方程。采用宏程序加密逼近曲线的方法。

2、非圆曲面类的宏程序的编程的要点有:建立数学模型和循环体

(1)、数学模型是产生刀具轨迹节点的一组运算赋值语句。它可以计算出曲面上每一点的坐标。它主要从描述其零件轮廓的曲面的方程转化而来。

(2)、循环体是由一组或几组循环指令和对应的加法器组成。它的作用是将一组节点顺序连接成刀具轨迹,再依次加工成曲面。

3、下面根据两个实例,按宏程序的编制过程将各步骤的要点和技巧进行详细说明。

图1—1、椭圆曲面零件

实例1、如图1-1数控车加工一个椭圆面。椭圆的长轴60,短

轴40.

步骤1:根据加工轨迹确定椭圆曲线的起始点A和终点B坐标。

这里的要点是分清编程坐标系和椭圆坐标系、A点在编程坐标系中的

坐标为X=113.742、Z=27.252 这里为适应数控车床的编程习惯x采

用直径坐标,A点以椭圆的中心为原点的坐标为X=113.742 Z=40

—27.252 B点的编程坐标是X=37.907 椭圆坐标为X=37.907

步骤2:确定在曲线方程中的主变量和从变量。这要根据实际

情况来选择。有以下几点原则:①变量的起点、终点已知的。②变量

在坐标中的变化方向一致。③变量的变化对曲线的精度影响较大。根

据以上原则我选X坐标为主变量、Z是从变量。

步骤3:将标准方程化为从变量赋值的形式。如图1-1以其中

心为原点,椭圆方程为X2/a2+Z2/b2=1化为Z= SQRT[(1-X *X/a*a)*b*b 这一步很关键。由于曲线只在椭圆坐标系的第一象限

Z为正值。

以上三步就是建立数学模型。在这个模型里X的一个坐标值,可

以计算出它对应的Z坐标值。要注意,这两个坐标是以椭圆中心为原

点的,要特别注意。也就是说,如果和这个零件一样,椭圆中心和你

设定的编程坐标系原点不重合,进入数学模型和从数学模型输出的数

值,都是以椭圆中心为原点的。刀具运动指令的坐标值是以编程坐标

系为原点。因此,需要设计计算方法将数学模型的输出数据转化成编

程坐标系的数值。许多多年从事数控机床操作的人一直不能用宏程

序,就是在这里犯了糊涂。

步骤4:画流程图确定宏程序的过程图1-2

流程图是建立和检查循环体的最好工具。这一步的关键点是:分

清计算过程、运动指令、加法器的排列顺序;循环体中条件转移语句

和加法器的配合,产生正确的循环控制,而不是死循环。

;赋初始值(注意

是椭圆坐标系)

;循环体开始,判断是

否结束。

;计算、运动指令

;加法器,改变动

参数

图1—2

步骤5:根据流程图编写程序程序如下O1001

应注意的要点有:(1)、当采用刀尖圆弧补偿方式编程时,循

环体的轨迹第一点不能和起始点重合,否则系统会显示出错。(2)要

注意循环体内计算语句、运动语句和加法器语句的顺序不能错。

该零件如图右端内部椭圆面的数控车精车程序如下:

O1001; 重点说明

T0101;

G90G40G0X200.0Z200.0M03;

G41G00X135.0Z5.0M08;

G01Z-25.0F0.1;

G03X#1Z-27.252;

#1=113.742-0.1; 将循环开始点错开

#2=40-27.252; Z值从编程坐标系转变到椭圆坐标系WHIFL[#1GT37.907] DO 1 ;循环体开始,X轴坐标逐渐减小#1=#1/2;将直径值转化成半径值

#2=SQRT[[1-#1*#1/[60*60]]*40*40];

#2=#2-40 Z值从椭圆坐标系转变到编程坐标系

#1=#1*2 将半径值转化成直径值

G01X#1Z#2F0.08; 运动指令

#1=#1-0.1; 递减加法器

END 1; 循环体结束

G01X37.907Z-2.048;

G01X35.0;

G00Z200.0;

G00X260.0M09;

M30;

图1--3

实例2、在加工中心上加工抛物线球面。

比较加工中心或数控铣床上铣削曲面和数控车床车削曲面,有许多差别:(1)、加工方式不同。(2)、车削曲面需要计算沿一条轮廓素线的若干个节点;铣削曲面需要计算整个曲面上若干个轮廓素线的若干节点。计算量大,宏程序非常复杂。

编制铣削曲面宏程序确实非常难,然而只要我们抓住几个关键要点,做好流程图和数学模型,勤于实践,也是一定能够掌握这个技能的。下面把编制铣削曲面宏程序的过程分成几步:

步骤1、分析曲面的构成特点确定加工路线

如图1-3、这个曲面是由一条抛物线以与它共面水平直线为轴线旋转切成的。加工轨迹可以有两种,一种是水平层切、一种是垂直层切。我们用垂直层切的方式。其轨迹如图1-4,每个层切面上的刀具轨迹都是一个YZ平面的圆弧。

图1--4

步骤2、选择合适的编程坐标系,确定主、从变量。如图1-3把坐标系原点设置形腔上表面的中心,可以简化计算。Z为主变量。取Z=0 为起点,Z=20为终点。

步骤3、抛物线方程X2=36(Z-20)转化为X=SQRT[36*[Z-20]] 和X= -SQRT[36*[Z-20]] 、这里需要注意两个象限的变化,要设计两个循环体,用控制指令“换向”。

步骤4、设计流程图,试验循环体程序框架。

步骤5、根据流程图编制程序。注意程序的加工平面为y-z(G18)平面。流程图和程序如下图1—5,O1002

O1002; G0X0Y0M8;

G54G18G90G40; G43G0Z100H1M3S3000

T1M6; Z5;

#1=0;

WHILE[#1GT-20] DO 1

#2=SQRT[36*[#1-20]];

G1X#2F500;

G41G1Y#1D1

G1Z0

G2Y-#1J-#1

G40G1Y0;

#1=#1-0.1

END 1;

#1=-20

WHILE[#1LT0] DO 2

#2=-SQRT[36*[#1-20]]

G01X#2F500

G41G1Y#1D1

G2Y-#1J-#1

G40G1Y0

#1=#1+0.1

图1—5 END 2;

G00Z200M9

M30

二、用宏程序开发对零件自动找正功能

图2---1

1、开发过程

某零件如图2-1。工艺安排卧式加工中心上一次装夹将四个Φ8孔加工完成,保证其位置精度。但是工件在夹具中定位后,B向旋转无法用夹具精确定位。当时的方法是:①每个零件装夹后单独用百分表找平。或者用自动测量触头取值,手工计算偏转角。②修改程序中新的B向坐标基准值。

整个过程用时较长须用时长,对操作工的技能要求也较高。这种零件数量多,工期紧,要想办法节约时间。我就想利用宏程序计算功能和机床具备的自动测量触头功能可以实现自动找正。

2、自动找正零件功能的工作原理

(1)、零件夹具中设计一个粗定位圆柱销,使零件粗定位,保证测量精度和测量工具的安全。.(2)、选择零件基准面上较远的两个点采值,如图a、b两点。分别放入#1和#2参数在。(3)、计算差值及偏转角。(4)、输入编程坐标系G54的B轴。

另一台四轴加工中心没有自动测量功能,我们用采用百分表触测零件基准面,目测记录差值,手工输入参数表中。宏程序自动计算并找正。速度和准确率提高了很多,保证了生产任务按时完成。

3、编制宏程序

自动找正功能的开发并不复杂,使用的是宏程序对内部系统变量读取和赋值功能。程序如下:

O2001

T3M6;

G54G90G0X40Y300B0;

G43G0Z200H3;

G0Y15Z60; 运动到预备测量a位置

G31G91Z-52F500; 执行G31测量a点坐标存入#5000

G90G0Y100Z200;

#1=#5000;#5000系统参数记录a点的坐标值,赋给#1

G0X-40;

G0Y15Z60;

G31G91Z-52F500; 执行G31测量b点

G0G90Y200Z200;

#2=#5000;

#3=ATAN[[#1-#2]/80]; 计算偏转角

#5204=#5204-#3;给过G54中B轴赋新值

G54G0B0; 执行G54,B轴归零

M99;

三、宏程序开发加工中心工作台任意旋转

后,坐标系自动转换的功能

1 、五轴加工中心工作台旋转对坐标系的影响

五轴加工中心工作台可以在一个或两个方向旋转,可以加工工件的多个表面。当工件安装在工作台任一位置处上,我们找正工件基准,确定工件坐标系。当需要加工另一个表面时,工作台需要旋转一个角度,这时工件上的基准原点与工件坐标系分离。需要再次找正工件基准重新建立坐标系。如图3-1如果工件有五个表面,那么就需要建立

五个坐标系。这样的方法费时费力,对于加工形状较简单的单个工件还可以接受。图中C点、D点这样的基准点就不容易找正。型腔是空间斜角相交的零件用基准多次找正来保证空间位置精度就完全不可能了。

图3--1

我们可以用计算的方式,以工作台的回转中心为基准,计算出每次旋转工作台,工件基准相对于工作台回转中心的偏移量。用基准转移的方式建立新的工件坐标系。把这个过程用宏程序来实现,使坐标自动转换,方便准确。

2、工作台旋转后坐标系转换的数学模型

图3—2a 图3—2b

五轴加工中心绕X轴旋转的是A轴,如图3-2a中O是机床坐标系原点,O1是工件坐标系原点,O2是工作台A轴旋转中心。图3-2b为A 轴旋转&角后与原来旋转前的比较图。

建立LZ和LY数学模型

LZ=(L3-L1)COS&+(L2+L4)SIN&-(L3-L1)=(L3-L1)(COS&-1)+(L2+L4) SIN&

LY=(L2=L4)-[(L2+L4)COS&-(L3-L1)SIN&]=(L2+L4)(1-COS&)+(L3-L1 )SIN&

要点说明:1.L1L2是工件坐标系原点到机床坐标系原点的距离,也就是G54中Z、Y的值

2.L3L4是工作台旋转中心到机床坐标系原点的值。由

机床厂家测量出存放于一般机床参数中。

3.LZLY将用于对工作台的修改

4.设置工件坐标系时要便于坐标转换的计算。

这种问题的难点就是建立数学模型,有了数学模型,我们可以很方便的完成坐标转换宏程序。

四、用参数简化程序提高编程效率

实例、采用参数控制循环的方式时深型腔的粗精铣加工

如图4-1零件型腔深度65mm材料硬度较高,由于内角R的要求,

粗精采用的刀具为直径16mm和 10mm的加长

铣刀。刚性差因此采用层铣方式,每层铣10mm

水平粗铣环切路径如图4-2。编制这种宏程

序的特点是使用循环功能。

采用参数宏程序层切循环和环切循环与普通

方式编程的比较。

图4--1

(1)程序方便的比较进给量调整宏程

序方便只须修改一个参数。而普通

程序需要修改整个粗铣程序;(2)

宏程序的程序句子较少粗铣留量

越大,宏程序的优势越明显;(3)

宏程序结构清楚比较容易检验程

序的正确性;(4)通用性强,只需图4—2 对参数赋上合适的值,就可以用于精铣轮廓

和精铣底面及侧面。只需走完一次循环即可,而不必将整个程序走完。

五、用宏程序对数控机床的功能进行二次开发

宏程序像许多计算机软件一样是数控系统厂家提供给我们的一种二次开发工具。用好它对我们的工作帮助非常大。我们可以把一些重复性强,编程有规律的工作。编制成宏程序像数控系统中的其他固定循环一样调用。编制时应注意:(1)运动轨迹尽可能多的受参数控制,才能方便灵活。(2)主要功能应针对性强,才能实用。(3)要注意快速运动轨迹的安全性、通用性。(4)输入参数不要太多,一般固定参数可放在宏程序内修改。

下面我简要介绍开发的几个小宏程序:

1.数控车床加工不锈钢材料的深孔的宏程序

解决问题:不锈钢材料加工深孔时排屑困难钻头易磨损,铁屑不易折断,容易绕到工件和钻头上,使钻头易损坏,也会拉毛已加工表面。增大发生折断的意外。采取的方法:增长每次进给的退刀长度,方便排屑降温。增加M00方式暂停,用M05方式主轴暂停,方便检查保护刀具,不用时打开“/”跳过。

2.数控车床盲孔深槽的加工宏程序;

设计思路:盲孔内深槽粗车有两个难点1)排屑困难。2)刀头伸出刀杆较长,进退刀困难,空程较长。

在设计工艺路线时我们采取的措施有:1)切屑进给路线上增加若干断点,造成断屑、可以防止切屑缠绕刀杆,也方便排屑。2)分层进给,每层结束,刀具退出工件较长距离,主轴进给都暂停,排出孔内

切屑并检查刀具。3)刀具每次返回切屑面时空行程采用较快进给速度。

实践以上的措施,如应用普通方式编程是非常困难的,即使编出来也是语句庞大,检查修改也非常麻烦。使用宏程序的计算语句和循环控制语句就可以解决这些问题。

结束语

前面介绍了几种编制宏程序的方法和重点技巧。我们在平时的工作中经常会用到,为生产活动带来了很大的便利,提高了生产效率,改善了加工质量,完善了机床的功能。应该说宏程序编制就像一个魔方,随着你对它的使用。它会变幻出越来越多的美丽图案。

举例使用的数控系统都是FANC1S数控系统。S1EMENA(西门子)数控系统、HE10ENHA1N(海德汉)数控系统与FANUA数控系统的编程方法大同小异,只是参数名、地址字等计算格式上有所区别。前面举例的部分宏程序,我在HE10ENHA1N系统上应用过,并不需要结构上大改动。

新代数控车床宏程序说明

一.用户宏程序的基本概念 用一组指令构成某功能,并且象子程序一样存储在存储器中,再把这些存储的功能由一个指令来代表,执行时只需写出这个代表指令,就可以执行其相应的功能。 在这里,所存储的一组指令叫做宏程序体(或用户宏程序),简称为用户宏。其代表指令称为用户宏命令,也称作宏程序调用指令。 用户宏有以下四个主要特征: 1)在用户用户宏程序中可以使用变量,即宏程序体中能含有复杂的表达式; 2)能够进行变量之间的各种运算; 3)可以用用户宏指令对变量进行赋值,就象许多高级语言中的带参函数或过程,实参能赋值给形参; 4)容易实现程序流程的控制。 使用用户宏时的主要方便之处在于由于可以用变量代替具体数值,因而在加工同一类的工件时.只得将实际的值赋予变量既可,而不需要对每个不同的零件都编一个程序。 二.基本书写格式 数控程序文档中,一般以“%”字符作为第一行的起头,该行将被视为标题行。当标题行含有关键字“@MACRO”时整个文档就会以系统所定义的MACRO语法处理。如果该行无“@MACRO”关键词此档案就会被视为一般ISO程序文档格式处理,此时将不能编写用户宏和使用其MACRO语法。而当书写ISO程序文档时标题行一般可以省略,直接书写数控程序。“@MACRO”关键词必须是大写字母。 对于程序的注释可以采用“//……”的形式,这和高级语言C++一样。 例一:MACRO格式文档 % @MACRO //用户宏程序文档,必须包含“@MACRO”关键词 IF @1 = 1 THEN G00 X100.; ELSE G00 Z100.; END_IF; M99; 例二:ISO格式文档 % 这是标题行,可当作档案用途说明,此行可有可无 G00 X100.; G00 Z100.; G00 X0; G00 Z0; M99;

数控车床由浅入深的宏程序实例

宏程序 裳华职业技术中专鲍新涛 宏程序概述 其实说起来宏就是用公式来加工零件的,比如说,如果没有宏的话,我们要逐点算出上的点,然后慢慢来用直线逼近,如果是个光洁度要求很高的工件的话,那么需要计算很多的点,可是应用了宏后,我们把椭圆公式输入到系统中然后我们给出Z坐标并且每次加10um那么宏就会自动算出X坐标并且进行切削,实际上宏在程序中主要起到的是运算作用。.宏一般分为A类宏和B类宏。 A类宏是以G65 Hxx P#xx Q#xx R#xx的格式输入的,而B类宏程序 则是以直接的公式和语言输入的和C语言很相似在0i系统中应用比较广。 宏程序的作用 数控系统为用户配备了强有力的类似于高级语言的宏程序功能,用户可以使用变量进行算术运算、逻辑运算和函数的混合运算,此外宏程序还提供了循环语句、分支语句和子程序调用语句,利于编制各种复杂的零件加工程序,减少乃至免除手工编程时进行繁琐的数值计算,以及精简程序量。 宏程序指令适合抛物线、椭圆、双曲线等没有插补指令的曲线编程;适合图形一样,只是尺寸不同的系列零件的编程;适合工艺路径一样,只是位置参数不同的系列零件的编程。较大地简化编程;扩展应用范围。 宏的分类 B类宏 由于现在B类宏程序的大量使用,很多书都进行了介绍这里我就不再重复了,但在一些老系统中,比如(FANUC)OTD系统中由于它的MDI键盘上没有公式符号,连最简单的等于号都没有,为此如果应用B类宏程序的话就只能在计算机上编好

再通过RSN-32接口传输的数控系统中,可是如果我们没有PC机和RSN-32电缆的话怎么办呢,那么只有通过A类宏程序来进行宏程序编制了,下面我介绍一下A 类宏的引用; A类宏 A类宏是用G65 Hxx P#xx Q#xx R#xx或G65 Hxx P#xx Qxx Rxx格式输入的,xx 的意思就是数值,是以um级的量输入的,比如你输入100那就是0.1MM.#xx就是号,变量号就是把数值代入到一个固定的地址中,固定的地址就是变量,一般OTD 系统中有#0~#100~#149~#500~#531.关闭电源时变量#100~#149被初始化成“空”,而变量#500~#531保持数据.我们如果说#100=30那么现在#100地址内的数据就是30了,就是这么简单.好现在我来说一下H代码,大家可以看到A类宏的标准格式中#xx和xx都是数值,而G65表示使用A类宏,那么这个H就是要表示各个数值和变量号内的数值或者各个变量号内的数值与其他变量号内的数值之间要进行一个什么运算,可以说你了解了H代码A类宏程序你基本就可以应用了,好,现在说一下H代码的各个含义: 应用 以下都以#100和#101和#102,及数值10和20做为例子,应用的时候别把他们当格式就行, 基本指令 H01赋值;格式:G65H01P#101Q#102:把#102内的数值赋予到#101中 G65H01P#101Q#10:把#10赋予到#101中 H02加指令;格式G65 H02 P#101 Q#102 R#103,把#102的数值加上#103的数值赋予#101

数控机床宏程序例题

由浅入深宏程序10-车床旋转正弦函数宏程序 正弦函数曲线旋转宏程序 坐标点旋转1 s = x cos(b) – y sin(b) t = x sin(b) + y cos(b) 根据下图,原来的点(#1,#2),旋转后的点(#4,#5),则公式: #4=#1*COS[b]- #2*SIN[b] #5=#1*SIN[b]+ #2*COS[b] 公式中角度b,逆时针为正,顺时针为负。 下图中正弦曲线如果以其左边的端点为参考原点,则此条正弦曲线顺时针旋转了16度,即b=-16 正弦函数旋转图纸1 此正弦曲线周期为24,对应直角坐标系的360 对应关系【0,360】 y=sin(x) 【0,24】 y=sin(360*x/24) 可理解为: 360/24是单位数值对应的角度 360*x/24是当变量在【0,24】范围取值为x时对应的角度 sin(360*x/24)是当角度为360*x/24时的正弦函数值 旋转正弦函数曲线粗精加工程序如下: T0101

M3S800 G0X52Z5 #6=26 工件毛坯假设为50mm,#6为每层切削时向+X的偏移量。N5 G0X[#6+] 0F #1=48 N10 #2=sin【360*#1/24】 #4=#1*COS[-16]- #2*SIN[-16] 旋转30度之后对应的坐标值#5=#1*SIN[-16]+ #2*COS[-16] #7=#4-【】坐标平移后的坐标。 #8=45+2*#5+#6 G1X[#8]Z[#7] 沿小段直线插补加工 #1=# 递减,此值越小,工件表面越光滑。 IF [#1 GE 0] GOTO 10 条件判断是否到达终点。 Z-50 G1X52 直线插补切到工件外圆之外 G0Z5 #6=#6-2 IF [#6 GE 0] GOTO 5 G0X150Z150 M5 M30

数控车床宏程序编程

数控宏程序 一.什么是宏程序? 什么是数控加工宏程序?简单地说,宏程序是一种具有计算能力和决策能力的数控程序。宏程序具有如下些特点:1.使用了变量或表达式(计算能力),例如:(1)G01 X[3+5] ; 有表达式3+5 (2)G00 X4 F[#1] ; 有变量#1 (3)G01 Y[50*SIN[3]] ; 有函数运算2.使用了程序流程控制(决策能力),例如:(1)IF #3 GE 9 ; 有选择执行命令 ENDIF 2)WHILE #1 LT #4*5 ; 有条件循环命令 ENDW

二.用宏程编程有什么好处? 1.宏程序引入了变量和表达式,还有函数功能,具有实时动态计算能力,可以加工非圆曲线,如抛物线、椭圆、双曲线、三角函数曲线等; 2.宏程序可以完成图形一样,尺寸不同的系列零件加工; 3.宏程序可以完成工艺路径一样,位置不同的系列零件加工; 4.宏程序具有一定决策能力,能根据条件选择性地执行某些部分; 5.使用宏程序能极大地简化编程,精简程序。适合于复杂零件加工的编程。 一.宏变量及宏常量 1.宏变量 先看一段简单的程序: G00 X25.0 上面的程序在X tt作一个快速定位。其中数据25.0是固定的,引入变量后可以写成:#1=25.0 ;#1 是一个变量 G00 X[#1] ;#1 就是一个变量 宏程序中,用“ #”号后面紧跟1~4位数字表示一个变量,如#1, #50, #101,……。变 量有什么用呢?变量可以用来代替程序中的数据,如尺寸、刀补号、G指令编号……,变量的使用,给程序的设计带来了极大的灵活性。

使用变量前,变量必需带有正确的值。如 #1=25 G01 X[#1] ; 表示G01 X25 #1=-10 ; 运行过程中可以随时改变#1的值 G01 X[#1] ; 表示G01 X-10 用变量不仅可以表示坐标,还可以表示G M F、D H、MX、Y、……等各种代码后的数字。如: #2=3 G[#2] X30 ; 表示G03 X30 例1 使用了变量的宏子程序 %1000 #50=20 ; 先给变量赋值 M98 P1001 ; 然后调用子程序 #50=350 ; 重新赋值 M98 P1001 ; 再调用子程序 M30

数控车床编程实例 100

数控车床编程实例 例1.G01直线插补指令编程如下图所示 安装装仿形工件 坐标点X(直径)Z圆弧半径圆弧顺逆A00 B300 C30-48 D64-58 E84-73 F84-150 0-150 FUNAC数控车编程如下: O9001 N10 G50 X100 Z10 (设立坐标系,定义对刀点的位置) N20 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处) N30 G01 U10 W-5 G98 F120 (倒3×45°角) N40 Z-48 (加工Φ26 外圆) N50 U34 W-10 (切第一段锥) N60 U20 Z-73 (切第二段锥) N70 X90 (退刀) N80 G00 X100 Z10 (回对刀点) N90 M05 (主轴停) N100 M30 (主程序结束并复位) //////////////////////////////////////////////////////////////////////////////////////// 华中数控车床编程如下: %9001 N10 G92 X100 Z10 (设立坐标系,定义对刀点的位置) N20 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处)

N30 G01 U10 W-5 F300 (倒3×45°角) N40 Z-48 (加工Φ26 外圆) N50 U34 W-10 (切第一段锥) N60 U20 Z-73 (切第二段锥) N70 X90 (退刀) N80 G00 X100 Z10 (回对刀点) N90 M05 (主轴停) N100 M30 (主程序结束并复位) =============================================================== 例2.G02/G03圆弧插补指令编程,如下图 安装装仿形工件 请设置安装装仿形工件,各点坐标参考如下(X向余量3mm) 坐标点X(直径)Z圆弧半径圆弧顺逆A00 B60 C30-24183 D32-3182 E32-40 F45-40 45-100 0-100 FUNAC数控车编程如下: O9002 N10 G50 X40 Z5(设立坐标系,定义对刀点的位置) N20 M03 S400 (主轴以400r/min旋转) N25 G50 S1000 (主轴最大限速1000r/min旋转)

数控车床编程实例详解(30个例子)-数控代码编程实例

车床编程实例一 半径编程 图3.1.1 半径编程 %3110 (主程序程序名) N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置) N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转) N3 M98 P0003 L6 (调用子程序,并循环6 次) N4 G00 X16 Z1 (返回对刀点) N5 G36 (取消半径编程) N6 M05 (主轴停) N7 M30 (主程序结束并复位) %0003 (子程序名) N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8 园弧段)N3 U3.215 W-39.877 R60 (加工R60 园弧段) N4 G02 U1.4 W-28.636 R40(加工切R40 园弧段) N5 G00 U4 (离开已加工表面) N6 W73.436 (回到循环起点Z 轴处) N7 G01 U-4.8 F100 (调整每次循环的切削量) N8 M99 (子程序结束,并回到主程序)

1

直线插补指令编程%3305车床编程实例二图3.3.5 G01 编程实例 N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置) N2 G00 X16 Z2 M03 (移到倒角延长线,Z 轴2mm 处) N3 G01 U10 W-5 F300 (倒3×45°角) N4 Z-48 (加工Φ26 外圆) N5 U34 W-10 (切第一段锥) N6 U20 Z-73 (切第二段锥) N7 X90 (退刀) N8 G00 X100 Z10 (回对刀点) N9 M05 (主轴停) N10 M30 (主程序结束并复位) 圆弧插补指令编程 车床编程实例三 %3308 N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置)N2 M03 S400 (主轴以400r/min 旋转) N3 G00 X0 (到达工件中心) N4 G01 Z0 F60 (工进接触工件毛坯) N5 G03 U24 W-24 R15 (加工R15 圆弧段) N6 G02 X26 Z-31 R5 (加工R5 圆弧段) N7 G01 Z-40 (加工Φ26 外圆) N8 X40 Z5 (回对刀点) N9 M30 (主轴停、主程序结束并复位

FANUC_0-TD数控车床编程实例

FANUC 0-TD数控车床编程实例 2007-04-18 21:19 如图示: O0002;O机能指定程序号。 N10 T0101; N20 S500 M03;主轴正转。 N30 G00 X45 Z2;到毛坯外。 N40 G71 U1.5 R1;与N50一起根据轮廓段组N60-N140自动分配切削参数进行粗车循环,U 为吃刀量,R为退刀量,均为半径值。 N50 G71 P60 Q140 U0.5 W0.2 F0.3;P为轮廓开始段号,Q为轮廓结束段号,U为X向精加工余量(直径值),W为Z向精加工余量 N60 G01 X18 Z0;轮廓开始。 N80 X20 Z-1; N90 Z-28; N100 X27.368 Z-45.042;点A。 N110 G03 X25.019 Z-54.286 R14;点B。 N120 G02 X26.806 Z-60.985 R6;点C。 N130 G03 X36 Z-73 R18; N140 G01 Z-85;

N150 G70 P60 Q140 S1100 F0.05; N160 G00 X50 Z60;远离工件,准备换刀。 N170 T0202;换割刀。割刀刀宽4mm N180 S200 M03;割槽时,要求低转速。 N200 G00 X22 Z-28;准备割第一刀。 N210 G01 X16 F0.03;割第一刀。 N220 G04 P1000;停留1S。 N230 G00 X22;退刀。 N240 Z-24;准备割第二刀。 N250 G01 X16 F0.03;割第二刀。 N260 G04 P1000;停留1S。 N270 G00 X22;退刀。 N280 Z-21;准备用右刀尖割倒角。 N290 G01 X16 Z-24 F0.1;用右刀尖割倒角。 N300 G00 X50; N310 Z60; N320 T0303; N330 S300 M03;降低转速以切螺纹。 N340 G00 X22 Z-23;准备切螺纹的第一线。 N350 G92 X19.2 Z3 F3;切螺纹,导程3。 N360 X18.7; N370 X18.3; N380 X18.05; N390 G00 X22 Z-24.5;准备切螺纹的第二线。 N400 G92 X19.2 Z3 F3; N410 X18.7; N420 X18.3; N430 X18.05; N440 G00 X50; N450 Z60; N470 T0202; N480 S200 M03; N490 G00 X38 Z-84;准备割断。 N500 G01 X0 F0.03;割断。 N520 G00 X50; N525 Z0;停在工件右端面,方便第二个工件的加工。N530 M05; N540 M30;返回程序头 O0235; N1T0101; N2G00X40.0Z0; N3M03S800 N4G71U2.0R0.5; N5G71P6Q12X0.5Z10.0F10;

华中数控铣床宏程序实例

华中数控铣床宏程序实例 O0001(分开的太极) %0001 G54G00X-30Y30Z50 M03S1000 Z3 #0=4 #2=90 WHILE#2LT180 G01Z[#0*SIN[#2*PI/180]]F 200 #101=ABS[#0*COS[#2*PI/1 80]] G01G41Y9D101 X7 G02Y-9R9 G01X-7 G02Y9R9 G03X0Y20R20 G01G40X-30Y30 G41X-12Y13D101 G03X-7Y9R5 G02Y0R4.5 G03Y-9R4.5 G01G40X30Y-30 G41X12Y-3D101 G03X7Y-9R5 G02Y0R4.5 G03Y9R4.5 G01G40Y30X-30 #2=#2+1 ENDW G00Z50 M30 o0002(花) %0002 G54G00X0Y0Z50 M03S1500 Z5 G01Z0F250 #1=90 WHILE#1GE0 #2=10*COS[#1*PI/180] #3=10*SIN[#1*PI/180]-10 G18G01X[#2]Z[#3] G17G02I[-#2] #1=#1-1.5 ENDW G00Z5 X-10 #6=270 WHILE#6GE180 #7=14*COS[#6*PI/180] #8=10*SIN[#6*PI/180] #9=#7-10 #10=#7+28 #11=ABS[#9*COS[72*PI/18 0]] #12=ABS[#9*SIN[72*PI/18 0]] #13=ABS[#9*COS[144*PI/1 80]] #14=ABS[#9*SIN[144*PI/1 80]] G18G01X[#9]Z[#8] G17G03X[-#11]Y[#12]R[#1 0] X[-#13]Y[#14]R[#10] Y[-#14]R[#10] X[#11]Y[-#12]R[#10] Y0X[#9]R[#10] #6=#6-1.5 ENDW G00Z50 M30 O0003(太极倒角) %0003 G54G00x-20y60z50 M03S1500 Z5 #1=90 WHILE#1GE0 G01Z[5*SIN[#1*PI/180]-5]F 250 #101=ABS[5*COS[#1*PI/18 0]]-5 G01G41X0D101 Y42 G02Y0R21 G03Y-42R21 G01Y-60 Y-42 G02J42 Y0R21 G03Y42R21 G01Y60 G40X-20 #1=#1-1 ENDW G00Z50 M30 O0004(椭圆铣平面) %0004 G54G00X0Y0Z50 M03S1500 Z5 G01Z-3F250 #1=41 WHILE#1GE5 G01X[#1] #2=0 WHILE#2LT360 #3=#1*COS[#2*PI/180] #4=#1*4/5*SIN[#2*PI/180] G01X[#3]Y[#4] #2=#2+1 ENDW #1=#1-5 ENDW G00Z50 M30 其二 G54G00X43Y0Z50 M03S1500 Z5 G01Z-3F250 #1=43

数控机床宏程序编程技巧实例

论文: 数控机床宏程序编程的技巧和实例 西北工业集团有限公司 白锋刚 2018年8月11日 前言 随着工业技术的飞速发展,产品形状越来越复杂,精度要求越来越高,产品更新换代越来越快,传统的设备已不能适应新要求。现在我国的制造业中已广泛地应用了数控车床、数控铣床、加工中心机床、数控磨床等数控机床。这些先进设备的加工过程都需要由程序来控制,需要由拥有高技能的人来操作。要发挥数控机床的高精度、高效率和高柔性,就要求操作人员具有优秀的编程能力。 常用的编程方法有手工编程和计算机编程。计算机编程的应用已非常广泛。与手工编程比较,在复杂曲面和型腔零件编程时效率高、 质量好。因此,许多人认为手工编程已不再重要,特别是比较难的宏程序编程也不再需要。只须了解一些基本的编程规则就可以了。这样的想法并不能全面。因为,计算机编程也有许多不足:1、程序数据量大,传输费时。2、修改或调整刀具补偿需要重新后置输出。 3、打刀或其他原因造成的断点时,很难及时复位。 手工编程是基础能力,是数控机床操作编程人员必须掌握的一种编程方法。手工编程能力是计算机编程的基础,是刀具轨迹设计

,轨迹修改,以及进行后置处理设计的依据。实践证明,手工编程能力强的人在计算机编程中才能速度快,程序质量高。 在程序中使用变量,通过对变量进行赋值及处理使程序具有特殊功能,这种有变量的程序叫宏程序。宏程序是数控系统厂家面向客户提供的的二次开发工具,是数控机床编程的最高级手工方式。合理有效的利用这个工具将极大地提升机床的加工能力。 作为一名从事数控车床、数控铣床、加工中心机床操作编程二十多年的技师,在平时的工作中,常常用宏程序来解决生产中的难题,因此对宏程序的编程使用积累了一些经验。在传授指导徒弟和与同事探讨中,总结了许多学习编制宏程序应注意的要点。有关宏编程的基础知识在许多书籍中讲过,我们在这里主要通过实例从编制技巧、要点上和大家讨论。 一、非圆曲面类的宏程序的编程技巧 1、非圆曲面可以分为两类; <1)、方程曲面,是可以用方程描述其零件轮廓的曲面的。如 抛物线、椭圆、双曲线、渐开线、摆线等。这种曲线可以用先求节点,再用线段或圆弧逼近的方式。以足够的轮廓精度加工出零件。选取的节点数目越多,轮廓的精度越高。然而节点的增多,用普通手工编程则计算量就会增加的非常大,数控程序也非常大,程序复杂也容易出错。不易调试。即使用计算机辅助编程,其数据传输量也非常大。而且调整尺寸补偿也很不方便。这时就显出宏程序的优势了,常常只须二、三十句就可以编好程序。而且理论上还可以根

数控铣宏程序实例

第四章数控铣宏程序实例 §4、1 椭圆加工(编程思路:以一小段直线代替曲线) 例1 整椭圆轨迹线加工(假定加工深度为2mm) 方法一:已知椭圆的参数方X=acosθ Y=bsinθ 变量数学表达式 设定θ= #1(0°~ 360° ) 那么 X= #2 = acos[#1] Y= #3= bsin[#1] 程序 O0001; S1000 M03; G90 G54 G00 Z100; G00 Xa Y0; G00 Z3; G01 Z-2 F100; #1=0; N99 #2=a*cos[#1]; #3=b*sin[#1]; G01 X#2 Y#3 F300; #1=#1+1; IF[#1LE360]GOTO99; GOO Z50; M30;

例2 斜椭圆且椭心不在原点的轨迹线加工(假设加工深度为2mm) 椭圆心不在原点的参数方程 X=a*COS[#1]+ M Y=b*SIN[#1]+ N 变量数学表达式 设定θ=#1; (0°~360°) 那么X=#2=a*COS[#1]+ M Y=#3=b*SIN[#1]+ N 因为此椭圆绕(M ,N)旋转角度为A 可运用坐标旋转指令G68 格式 G68 X - Y - R - X,Y:旋转中心坐标; R: 旋转角度 程序 O0002; S1000 M03; G90 G54 G00 Z100; GOO X0 Y0; GOO Z3; G68 XM YN R45; #1=0; N99 #2=a*COS[#1]+M; #3=b*SIN[#1]+N;

GO1 X#2 Y#3 F300; G01 Z-2 F100; #1=#1+1; IF[#1LE360]GOTO99; G69 GOO Z100; M30; 例3:椭圆轮廓加工(深度2mm) 采用椭圆的等距加工方法使椭圆的长半轴与短半轴同时减少一个行距的方法直到短半轴小于刀具的半径R 根据椭圆的参数方程可设 变量表达式θ=#1(0°~360°) a=#2 b=#3(b-R~R) X=#2*COS[#1]=#4 Y=#3*SIN[#1]=#5 程序 O0003; S1000 M03; G90 G54 G00 Z100;

华中数控车宏程序修订稿

华中数控车宏程序 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

华中数控宏程序 一.什么是宏程序? 什么是数控加工宏程序?简单地说,宏程序是一种具有计算能力和决策能力的数控程序。宏程序具有如下些特点: 1.使用了变量或表达式(计算能力),例如: (1)G01 X[3+5] ;有表达式3+5 (2)G00 X4 F[#1] ;有变量#1 (3)G01 Y[50*SIN[3]] ;有函数运算 2.使用了程序流程控制(决策能力),例如: (1)IF #3 GE 9 ;有选择执行命令 …… ENDIF (2)WHILE #1 LT #4*5 ;有条件循环命令 …… ENDW 二.用宏程编程有什么好处? 1.宏程序引入了变量和表达式,还有函数功能,具有实时动态计算能力,可以加工非圆曲线,如抛物线、椭圆、双曲线、三角函数曲线等; 2.宏程序可以完成图形一样,尺寸不同的系列零件加工; 3.宏程序可以完成工艺路径一样,位置不同的系列零件加工; 4.宏程序具有一定决策能力,能根据条件选择性地执行某些部分; 5.使用宏程序能极大地简化编程,精简程序。适合于复杂零件加工的编程。

一.宏变量及宏常量 1.宏变量 先看一段简单的程序: G00 上面的程序在X轴作一个快速定位。其中数据是固定的,引入变量后可以写成: #1= ;#1是一个变量 G00 X[#1] ;#1就是一个变量 宏程序中,用“#”号后面紧跟1~4位数字表示一个变量,如#1,#50, #101,……。变量有什么用呢?变量可以用来代替程序中的数据,如尺寸、刀补号、G指令编号……,变量的使用,给程序的设计带来了极大的灵活性。 使用变量前,变量必需带有正确的值。如 #1=25 G01 X[#1] ;表示G01 X25 #1=-10 ;运行过程中可以随时改变#1的值 G01 X[#1] ;表示G01 X-10 用变量不仅可以表示坐标,还可以表示G、M、F、D、H、M、X、Y、……等各种代码后的数字。如: #2=3 G[#2] X30 ;表示G03 X30 例1 使用了变量的宏子程序。 %1000 #50=20 ;先给变量赋值 M98 P1001 ;然后调用子程序 #50=350 ;重新赋值

数控车床加工编程典型实例

数控车床加工编程典型实例 数控机床是一种技术密集度及自动化程度很高的机电一体化加工设备,是综合应用计算机、自动控制、自动检测及精密机械等高新技术的产物。随着数控机床的发展与普及,现代化企业对于懂得数控加工技术、能进行数控加工编程的技术人才的需求量必将不断增加。数控车床是目前使用最广泛的数控机床之一。本文就数控车床零件加工中的程序编制问题进行探讨。 一、编程方法 数控编程方法有手工编程和自动编程两种。手工编程是指从零件图样分析工艺处理、数据计算、编写程序单、输入程序到程序校验等各步骤主要有人工完成的编程过程。它适用于点位加工或几何形状不太复杂的零件的加工,以及计算较简单,程序段不多,编程易于实现的场合等。但对于几何形状复杂的零件(尤其是空间曲面组成的零件),以及几何元素不复杂但需编制程序量很大的零件,由于编程时计算数值的工作相当繁琐,工作量大,容易出错,程序校验也较困难,用手工编程难以完成,因此要采用自动编程。所谓自动编程即程序编制工作的大部分或全部有计算机完成,可以有效解决复杂零件的加工问题,也是数控编程未来的发展趋势。同时,也要看到手工编程是自动编程的基础,自动编程中许多核心经验都来源于手工编程,二者相辅相成。 二、编程步骤 拿到一张零件图纸后,首先应对零件图纸分析,确定加工工艺过程,也即确定零件的加工方法(如采用的工夹具、装夹定位方法等),加工路线(如进给路线、对刀点、换刀点等)及工艺参数(如进给速度、主轴转速、切削速度和切削深度等)。其次应进行数值计算。绝大部分数控系统都带有刀补功能,只需计算轮

廓相邻几何元素的交点(或切点)的坐标值,得出各几何元素的起点终点和圆弧的圆心坐标值即可。最后,根据计算出的刀具运动轨迹坐标值和已确定的加工参数及辅助动作,结合数控系统规定使用的坐标指令代码和程序段格式,逐段编写零件加工程序单,并输入CNC装置的存储器中。 三、典型实例分析 数控车床主要是加工回转体零件,典型的加工表面不外乎外圆柱、外圆锥、螺纹、圆弧面、切槽等。例如,要加工形状如图所示的零件,采用手工编程方法比较合适。由于不同的数控系统其编程指令代码有所不同,因此应根据设备类型进行编程。以西门子802S数控系统为例,应进行如下操作。 (1)确定加工路线 按先主后次,先精后粗的加工原则确定加工路线,采用固定循环指令对外轮廓进行粗加工,再精加工,然后车退刀槽,最后加工螺纹。 (2)装夹方法和对刀点的选择 采用三爪自定心卡盘自定心夹紧,对刀点选在工件的右端面与回转轴线的交点。 (3)选择刀具 根据加工要求,选用四把刀,1号为粗加工外圆车刀,2号为精加工外圆车刀,3号为切槽刀,4号为车螺纹刀。采用试切法对刀,对刀的同时把端面加工出来。 (4)确定切削用量 车外圆,粗车主轴转速为500r/min,进给速度为0.3mm/r,精车主轴转速为800r/min,进给速度为0.08mm/r,切槽和车螺纹时,主轴转速为300r/min,进给速度为0.1mm/r。 (5)程序编制 确定轴心线与球头中心的交点为编程原点,零件的加工程序如下: 主程序 JXCP1.MPF N05 G90 G95 G00 X80 Z100 (换刀点) N10 T1D1 M03 S500 M08 (外圆粗车刀) -CNAME=“L01” R105=1 R106=0.25 R108=1.5 (设置坯料切削循环参数) R109=7 R110=2 R111=0.3 R112=0.08 N15 LCYC95 (调用坯料切削循环粗加工) N20 G00 X80 Z100 M05 M09 N25 M00 N30 T2D1 M03 S800 M08 (外圆精车刀) N35 R105=5 (设置坯料切削循环参数)

数控车宏程序

数控宏程序 FANUC 数控车

第一章编程代码----------------------------------------------------------1 1.准备功能G------------------------------------------------------------1 2.辅助功能M-----------------------------------------------------------6 第二章用户宏程序-------------------------------------------------------7 1. 运算符号---------------------------------------------------------------7 2.转移和循环-----------------------------------------------------------7 3.运算指令--------------------------------------------------------------8第三章宏程序编程------------------------------------------------------11 1.车V型圆锥- --------------------------------------------------------11 2.车U圆弧-------------------------------------------------------------12 3.方程曲线车削加工-------------------------------------------------13 5.车梯形螺纹36×6--------------------------------------------------14 6.蜗杆-------------------------------------------------------------------15 7.加工多件--------------------------------------------------------------17 第四章自动编程---------------------------------------------------------------21 1.UG建模--------------------------------------------------------------------21 2.创建几何体----------------------------------------------------------------24 附录--------------------------------------------------------------------------29

数控车床编程实例

如图2-16所示工件,毛坯为φ45㎜×120㎜棒材,材料为45钢,数控车削端面、外圆。 ? 1.根据零件图样要求、毛坯情况,确定工艺方案及加工路线 1)对短轴类零件,轴心线为工艺基准,用三爪自定心卡盘夹持φ45外圆,使工件伸出卡盘80㎜,一次装夹完成粗精加工。 2)? 工步顺序 ①粗车端面及φ40㎜外圆,留1㎜精车余量。 ②精车φ40㎜外圆到尺寸。 2.选择机床设备 根据零件图样要求,选用经济型数控车床即可达到要求。故选用CK0630型数控卧式车床。 3.选择刀具 根据加工要求,选用两把刀具,T01为90°粗车刀,T03为90°精车刀。同时把两把刀在自动换刀刀架上安装好,且都对好刀,把它们的刀偏值输入相应的刀具参数中。 4.确定切削用量 切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。 5.确定工件坐标系、对刀点和换刀点 确定以工件右端面与轴心线的交点O为工件原点,建立XOZ工件坐标系,如前页图2-16所示。 采用手动试切对刀方法(操作与前面介绍的数控车床对刀方法基本相同)把点O作为对刀点。换刀点设置在工件坐标系下X55、Z20处。 6.编写程序(以CK0630车床为例) 按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。该工件的加工程序如下: N0010 G59 X0 Z100 ;设置工件原点

N0020 G90 N0030 G92 X55 Z20 ;设置换刀点 N0040 M03 S600 N0050 M06 T01 ;取1号90°偏刀,粗车 N0060 G00 X46 Z0 N0070 G01 X0 Z0 N0080 G00 X0 Z1 N0090 G00 X41 Z1 N0100 G01 X41 Z-64 F80 ;粗车φ40㎜外圆,留1㎜精车余量 N0110 G28 N0120 G29 ;回换刀点 N0130 M06 T03 ;取3号90°偏刀,精车 N0140 G00 X40 Z1 N0150 M03 S1000 N0160 G01 X40 Z-64 F40 ;精车φ40㎜外圆到尺寸 N0170 G00 X55 Z20 N0180 M05 N0190 M02 如图2-17所示变速手柄轴,毛坯为φ25㎜×100㎜棒材,材料为45钢,完成数控车削。

数控铣宏程序实例

第四章 数控铣宏程序实例 §4.1 椭圆加工(编程思路:以一小段直线代替曲线)例1 整椭圆轨迹线加工(假定加工深度为2mm) 方法一:已知椭圆的参数方X=acosθ Y=bsinθ 变量数学表达式 设定θ= #1(0°~ 360°) 那么 X= #2 = acos[#1] Y= #3= bsin[#1] 程序 O0001; S1000 M03; G90 G54 G00 Z100; G00 Xa Y0; G00 Z3; G01 Z-2 F100; #1=0; N99 #2=a*cos[#1]; #3=b*sin[#1]; G01 X#2 Y#3 F300; #1=#1+1; IF[#1LE360]GOTO99; GOO Z50; M30;

例2 斜椭圆且椭心不在原点的轨迹线加工(假设加工深度为2mm ) 椭圆心不在原点的参数方程 X=a*C OS [#1]+ M Y=b*SIN [#1]+ N 变量数学表达式 设定θ=#1; (0°~360°) 那么X=#2=a*C OS [#1]+ M Y=#3=b*SIN [#1]+ N 因为此椭圆绕(M ,N )旋转角度为A 可运用坐标旋转指令G68 格式 G68 X - Y - R - X,Y :旋转中心坐标; R: 旋转角度 程序 O0002; S1000 M03; G90 G54 G00 Z100; GOO X0 Y0; GOO Z3; G68 XM YN R45; #1=0; N99 #2=a*COS [#1]+M;

#3=b*SIN[#1]+N; GO1 X#2 Y#3 F300; G01 Z-2 F100; #1=#1+1; IF[#1LE360]GOTO99; G69 GOO Z100; M30; 例3:椭圆轮廓加工(深度2mm) 采用椭圆的等距加工方法使椭圆的长半轴和短半轴同时减少一个行距的方法直到短半轴小于刀具的半径R 根据椭圆的参数方程可设 变量表达式θ=#1(0°~360°) a=#2 b=#3(b-R~R) X=#2*COS[#1]=#4 Y=#3*SIN[#1]=#5 程序 O0003; S1000 M03;

980TDb宏程序

可以的,它有A类和B类宏程序的功能。不过它的宏程序功能和法拉克比还是差一些。它不能进行直接的运算比如G0 z[#100+#102]它这个是执行不了的,需要提前把这个结果运算出来。比如#103=#100+#102;后G0z#103 数控车床宏程序与数控车模拟精灵 《二》FANUC B类宏程序与GSK980TDb的语句式宏代码 本文介绍FANUC B类宏程序(FANUC Oi系列)及GSK980TDb的语句式宏代码;这类宏程序的表达方式更为灵活并且直观:使用人们所熟悉的等号(=)与加减乘除(+-*/)等运算符组成表达式直接给变量赋值;在条件表达式中使用英文单词缩写GE、GT、LE、LT。EQ、NE来表示大于等于、大于、小于等于、小于、等于、不等于;使用英语单词IF、WHILE 来表示条件与循环; (一)关于变量、变量赋值与表达式 变量代号还是用#***来表示一个变量,980TDb 的公用变量使用范围是:#100-#199,#500-#999(前者为失电不保持,后者为失电保持,);局部变量范围是#1-#33。FANUC Oi 系列的变量范围与此相同。(数控车模拟精灵只使用#0-#199号变量;大于199号的变量不支持,并且不区分局部变量或公共变量) 当用变量值来表示坐标时,均以毫米为单位,表示角度则以度为单位。 FANUC Oi系列宏程序及GSK980TDb的语句式宏代码可以直接使用常数通过等号“=”给变量赋值,也可以使用表达式给变量赋值,表达式中可以使用以下各项的组合:宏变量、函数、常数、加减乘除(+-*/)运算符、括号;计算规则符合人们熟悉的数学计算规则(例如先括号内后括号外,先乘除后加减等)。 (二)函数: FANUC Oi 及GSK980TDb支持的函数达十多个,但常用的不多,数控车模拟精灵只对其中常用的一些函数给予支持: 三角函数:正弦SIN、余弦COS、正切TAN、反正切ATAN; 开平方:SQRT 函数的自变量可以是常数、已赋值的宏变量或表达式,自变量可用方括号[ ]括住。 (三)条件转移:(IF [条件表达式] GOTOn 及IF [条件表达式] THEN) IF [条件表达式] GOTOn 条件表达式比较结果为真(满足条件),则跳转到目标程序段(以n为程序段号的程序段)运行,条件表达式比较结果为假(不能满足条件),则按正常顺序往下运行。 也可以是单纯的GOTOn,则为无条件转移,即无条件跳转到以n为程序段号的程序段。 IF [条件表达式] THEN 跟在IF后面的是一个宏语句(一般是一个宏变量赋值语句),条件表达式比较结果为真(满足条件),则执行这个宏语句,否则,不执行这个宏语句。 (四)循环(WHILE [条件表达式] DOn………ENDn) 条件表达式比较结果为真(满足条件)时,循环执行DOn至ENDn之间的程序段;条件表

数控车床编程实例详解(30个例子)

半径编程 图3.1.1 半径编程 %3110 (主程序程序名) N1 G92 X16 Z1 (设立坐标系,定义对刀点的位置) N2 G37 G00 Z0 M03 (移到子程序起点处、主轴正转) N3 M98 P0003 L6 (调用子程序,并循环6次) N4 G00 X16 Z1 (返回对刀点) N5 G36 (取消半径编程) N6 M05 (主轴停) N7 M30 (主程序结束并复位) %0003 (子程序名) N1 G01 U-12 F100 (进刀到切削起点处,注意留下后面切削的余量)N2 G03 U7.385 W-4.923 R8(加工R8园弧段) N3 U3.215 W-39.877 R60 (加工R60园弧段) N4 G02 U1.4 W-28.636 R40(加工切R40园弧段) N5 G00 U4 (离开已加工表面) N6 W73.436 (回到循环起点Z轴处) N7 G01 U-4.8 F100 (调整每次循环的切削量) N8 M99 (子程序结束,并回到主程序)

直线插补指令编程 图3.3.5 G01编程实例 %3305 N1 G92 X100 Z10 (设立坐标系,定义对刀点的位置) N2 G00 X16 Z2 M03 (移到倒角延长线,Z轴2mm处) N3 G01 U10 W-5 F300 (倒3×45°角) N4 Z-48 (加工Φ26外圆) N5 U34 W-10 (切第一段锥) N6 U20 Z-73 (切第二段锥) N7 X90 (退刀) N8 G00 X100 Z10 (回对刀点) N9 M05 (主轴停) N10 M30 (主程序结束并复位) 车床编程实例三 圆弧插补指令编程 %3308 N1 G92 X40 Z5 (设立坐标系,定义对刀点的位置) N2 M03 S400 (主轴以400r/min旋转) N3 G00 X0 (到达工件中心) N4 G01 Z0 F60 (工进接触工件毛坯) N5 G03 U24 W-24 R15 (加工R15圆弧段) N6 G02 X26 Z-31 R5 (加工R5圆弧段) N7 G01 Z-40 (加工Φ26外圆) N8 X40 Z5 (回对刀点) N9 M30 (主轴停、主程序结束并复位 图3.3.8 G02/G03编程实例

相关主题
文本预览
相关文档 最新文档