当前位置:文档之家› 17集成施密特触发器应用实验

17集成施密特触发器应用实验

17集成施密特触发器应用实验
17集成施密特触发器应用实验

数字电路-17

集成施密特触发器应用实验

一. 实验目的

1. 了解用示波器测试集成数字器件电压传输特性的方法。

2. 掌握集成施密特触发器的几种典型应用。

二. 实验原理

施密特触发器主要用于将随时间变化缓慢的非周期信号或周期性的非矩形波信号变换成上升时间和下降时间均很小的矩形波信号。

当输入u i 小于负向阀值电平U T-时,反相施密特触发器输出为“1”,当u i 大于正向阀值电平U T+时,施密特触发器输出为“0”。U i 介于两者之间时,施密特触发器的状态保持不变。所以,触发器的电压传输关系具有滞回特性,两个阀值电平之差称回差ΔU T 。

在电子系统中,施密特触发器具有广泛的应用。根据施密特触发器的滞回特性,可以将输入的三角波,正弦波和其他不规则的周期性电压信号转变成矩形信号输出。当电信号在传输过程中受到干扰而发生畸变时,可利用施密特触发器的回差特性对信号进行整形。当输入信号为一组幅度不等的脉冲时,可利用施密特触发器对输入信号的幅度进行鉴别,只有幅度达到施密特触发器阀值电平的信号,才能引起输出变化。 1. 用施密特触发器构成多谐振荡器

图17-1是用反相施密特触发器构成的多谐振荡电路。当输出u O 为高电平时,输入u c ≤U T+,施密特触发器的输出通过电阻R 向电容C 充电,u c 上升。至Uc 等于U T+,输出u O 变为低电平U OL 。然后电容通过电阻R 、施密特触发器输出端放电,u c 下降。在

+-<

oL

T oL

T T oH T oH PL PH U U U U RC U U U U RC T T T --+--=+=-+

+-ln ln

2. 用施密特触发器构成单稳态触发器

图17-2是用反相施密特触发器构成的微分型单稳态触发器。阻、容元件RC 组成微分电路,输入信号u i 的周期t pi 远小于RC 电路的时间常数τ,施密特触发器对微分电路的输出信号u c 进行整形,形成宽度一定的脉冲信号u O 。电路的工作原理:

当微分电路稳定时,电容开路,电阻R 无电流通过,V u c 0≈,u O 为高电平。 u i 上升(从0→U DD )时,由于电容电压不能突变,u c 电位上跃为U DD ,u c 大于U T+,施密特触发器输出u O 为“0”,然后电容充电,u c 下降至U T-,u O 为高电平。u c 继续下降至0V,电路恢复为稳态。

当u i 下降沿(从U DD 下降至0V )时,u c 电位从0V 下降至 -U DD ,然后电容放电,u c

上升至0V 。由于u c 始终小于U T+,施密特触发器输出u O 维持高电平。

所以,在输入u i 上升沿触发后,输出u O 产生一个宽度固定为t w 的负脉冲。由三要素法,得:

pi T DD

w t U U RC t <<=-

ln

输出脉冲宽度t w 与微分电路的参数R 和C 及施密特触发器的阀值有关,与输入信号宽度t pi 无关,具有单稳态触发器的控制特性。对于TTL 型的施密特触发器,可以接入二极管D 吸收u c 的负脉冲尖峰以保护器件,而CMOS 型施密特触发器内部具有输入保护嵌位二极管,u c 不会产生过大的负脉冲。

图17-3是集成六施密特反相触发器的引脚排列图,40106是CMOS 器件的型号,74LS14是TTL 器件的型号。

由于TTL 电路的输入结构,用74LS14构成的多谐振荡器和单稳态触发器电路,对电阻R 的阻值有所限制。如果阻值太大,输入低电平电流i iL 在电阻R 上的压降将使施密特触发器的输入电压u c 不可能低于U T-,甚至大于U T+,致使电路功能无法实现。

三. 实验参考电路

1. 由施密特触发器构成的多谐振荡器电路原理如图17-1所示。

2. 由施密特触发器构成的单稳态触发器电路原理如图17-2所示。

图17-1 多谐振荡器电路原理图 图17-2 单稳态触发器电路原理图

图17-3 40106引脚图

四. 实验预习要求

1. 复习教材中有关施密特触发器及其应用电路的工作原理。

2. 分析图17-1和图17-2电路各信号波形。

3. 考虑如何使函数发生器输出如图17-4波形的信号,需要调节哪些旋钮?

五. 实验内容及步骤

1. 施密特触发器特性测试。

(1) 调节函数发生器输出峰值为5V ,频率为1kHz ,波形如图17-4所示的直流脉动三角波信号。选择40106的一个施密特触发器,输入三角波信号。

图17-4 直流脉动三角波信号

(2) 用示波器X 通道观察施密特触发器的输入u i ,Y 通道观察输出u O ,记录输入、输出信号波形。测量输出高电平U oH 、低电平U oL ,对照输入、输出波形,测量施密特触发器的正向阀值电平U T+和负向阀值电平U T-。

U oH =________(V ),U oL =_________(V ),U T+ =________(V ),U T- =_________(V )。 (3) 调节函数发生器的波形对称度旋钮,改变三角波为锯齿波信号。

(4) 示波器选择X-Y 显示方式。如果CRT 上无显示轨迹,调节电平LEVEL 旋钮使之显现。

(5) 调节X 和Y 位移旋钮POSITION ,选择CRT 的合适点为显示坐标的参考原点,调节显示灵敏度使显示轨迹便于观察。记录施密特触发器的电压传输特性曲线,再次测试施密特触发器正向阀值U T+、负向阀值U T-、输出高电平U oH 和输出低电平U oL 。

U oH =________(V ),U oL =_________(V ),U T+ =________(V ),U T- =_________(V )。 2. CMOS 施密特触发器构成的多谐振荡器

(1) 根据器件引脚图17-3选择40106的一个施密特触发器连接图17-1电路,电阻R=1k Ω,电容C=0.01μF 。用示波器测试u O 和u c 的信号波形,并记录表17-1中各相应

表17-1

(2) 将电阻R 改为10k Ω,测量表17-1中各相应数据。 3. CMOS 施密特触发器构成的单稳态触发器 (1) 选择40106的一个施密特触发器按图17-2连接电路(二极管不接)。U i 输入1kHz 的TTL 信号。用示波器观察并记录单稳电路的各信号波形。先观察u i 和u c ,然后观察u c 和u O 。测试t w 记录于表17-2中。 (2) 将电阻R 改为10k Ω,测量t w 。

4. TTL 施密特触发器构成的单稳态触发器

(1) 选择TTL 施密特触发器74LS14连接图17-2的单稳电路,电阻R =1k Ω,输入u i 为200Hz 的TTL 信号。用示波器观察并记录单稳电路的各信号波形。测试t w =_______。

(2)接入二极管,观察u

c

波形的变化。

(3)将电阻R改为10kΩ,记录u

i ,u

c

和u

O

的波形。测量u

c

波形在输入u

i

为低电平期

间的各电位值。u

c =_______(V),u

O

=_______(V)。

5.TTL施密特触发器构成的多谐振荡器

(1)按图17-1改接电路,电阻R =1kΩ,电容C =0.01μF。用示波器测试u

O 与u

C

信号波形,并记录各数据于表17-3。

表17-3

六.实验设备和器材

名称数量型号

1.双踪示波器1台学校自备

2.函数信号发生器1台学校自备

3.直流电源1台5V

4.适配器1只SD128B

5.14芯IC插座1只SD143

6.电阻模块1只SD150

7.电位器模块1只

8.二极管模块1只

9.集成芯片若干74LS14 40106

10.连接导线若干P2

11.实验用6孔插件方板297mm×300mm

七.实验预习要求

1.根据实验内容3,分析图17-2单稳触发电路的电阻上拉接电源或下拉接地时,输入信号的触发沿和输出信号有效电平分别是什么?输出脉冲宽度是否相同?为什么?

2.根据TTL逻辑门的输入特性,试解释实验内容5中电阻为10kΩ时u

c 和u

O

波形产生

现象的原因。

八.实验预习要求

1.计算74LS14和40106的回差电压ΔU

T

2.根据实验测试的74LS14和40106 的阀值电平U

T-,U

T+

计算图17-1电路的振荡频率f

以及图17-2电路输出信号的脉冲宽度t

w

,并与实验值比较。

3.分析图17-2单稳电路中的电阻上拉后,u

O

输出脉冲宽度的理论计算值,并与实验值比较。

4.回答思考题。

集成触发器及其应用电路设计

华中科技大学 电子线路设计、测试与实验》实验报告 实验名称:集成运算放大器的基本应用 院(系):自动化学院 地点:南一楼东306 实验成绩: 指导教师:汪小燕 2014 年6 月7 日

、实验目的 1)了解触发器的逻辑功能及相互转换的方法。 2)掌握集成JK 触发器逻辑功能的测试方法。 3)学习用JK 触发器构成简单时序逻辑电路的方法。 4)熟悉用双踪示波器测量多个波形的方法。 (5)学习用Verliog HDL描述简单时序逻辑电路的方法,以及EDA技术 、实验元器件及条件 双JK 触发器CC4027 2 片; 四2 输入与非门CC4011 2 片; 三3 输入与非门CC4023 1 片; 计算机、MAX+PLUSII 10.2集成开发环境、可编程器件实验板及专用电缆 三、预习要求 (1)复习触发器的基本类型及其逻辑功能。 (2)掌握D触发器和JK触发器的真值表及JK触发器转化成D触发器、T触发器、T 触发器的基本方法。 (3)按硬件电路实验内容(4)(5),分别设计同步3 分频电路和同步模4 可逆计数器电路。 四、硬件电路实验内容 (1)验证JK触发器的逻辑功能。 (2)将JK触发器转换成T触发器和D触发器,并验证其功能。 (3)将两个JK触发器连接起来,即第二个JK触发器的J、K端连接在一起, 接到第一个JK触发器的输出端Q两个JK触发器的时钟端CP接在一起,并输入1kHz 正方波,用示波器分别观察和记录CP Q、Q的波形(注意它们之间的时序关系),理解2分频、4分频的概念。 (4)根据给定的器件,设计一个同步3分频电路,其输出波形如图所示。然后组装电路,并用示波器观察和记录CP Q、Q的波形。 (5)根据给定器件,设计一个可逆的同步模4 计数器,其框图如图所示。图中,M为控制变量,当M=0时,进行递增计数,当M=1时,进行递减计数;Q、 Q为计数器的状态输出,Z为进位或借位信号。然后组装电路,并测试电路的输入、输出

施密特触发器工作原理

使用CMOS集成电路需注意的几个问题 集成电路按晶体管的性质分为TTL和CMOS两大类,TTL以速度见长,CMOS以功耗低而著称,其中CMOS电路以其优良的特性成为目前应用最广泛的集成电路。在电子制作中使用CMOS集成电路时,除了认真阅读产品说明或有关资料,了解其引脚分布及极限参数外,还应注意以下几个问题: 1、电源问题 (1)CMOS集成电路的工作电压一般在3-18V,但当应用电路中有门电路的模拟应用(如脉冲振荡、线性放大)时,最低电压则不应低于4.5V。由于CMOS集成电路工作电压宽,故使用不稳压的电源电路CMOS集成电路也可以正常工作,但是工作在不同电源电压的器件,其输出阻抗、工作速度和功耗是不相同的,在使用中一定要注意。 (2)CMOS集成电路的电源电压必须在规定围,不能超压,也不能反接。因为在制造过程中,自然形成许多寄生二极管,如图1所示为反相器电路,在正常电压下,这些二极管皆处于反偏,对逻辑功能无影响,但是由于这些寄生二极管的存在,一旦电源电压过高或电压极性接反,就会使电路产生损坏。 2、驱动能力问题 CMOS电路的驱动能力的提高,除选用驱动能力较强的缓冲器来完成之外,还可将同一个芯片几个同类电路并联起来提高,这时驱动能力提高到N倍(N为并联门的数量)。如图2所示。 3、输入端的问题 (1)多余输入端的处理。CMOS电路的输入端不允许悬空,因为悬空会使电位不定,破坏正常的逻辑关系。另外,悬空时输入阻抗高,易受外界噪声干扰,使电路产生误动作,而且也极易造成栅极感应静电而击穿。所以“与”门,“与非”门的多余输入端要接高电平,“或”门和“或非”门的多余输入端要接低电平。若电路的工作速度不高,功耗也不需特别考虑时,则可以将多余输入端与使用端并联。 (2)输入端接长导线时的保护。在应用中有时输入端需要接长的导线,而长输入线必然有较大的分布电容和分布电感,易形成LC振荡,特别当输入端一旦发生负电压,极易破坏CMOS中的保护二极管。其保护办法为在输入端处接一个电阻,如图3所示,R=VDD/1mA。 (3)输入端的静电防护。虽然各种CMOS输入端有抗静电的保护措施,但仍需小心对待,在存储和运输中最好用金属容器或者导电材料包装,不要放在易产生静电高压的化工材料或化纤织物中。组装、调试时,工具、仪表、工作台等均应良好接地。要防止操作人员的静电干扰造成的损坏,如不宜穿尼龙、化纤衣服,手或工具在接触集成块前最好先接一下地。对器件引线矫直弯曲或人工焊接时,使用的设备必须良好接地。 (4)输入信号的上升和下降时间不易过长,否则一方面容易造成虚假触发而导致器件失去正常功能,另一方面还会造成大的损耗。对于74HC系列限于0.5us以。若不满足此要求,需用施密特触发器件进行输入整形,整形电路如图4所示。 (5)CMOS电路具有很高的输入阻抗,致使器件易受外界干扰、冲击和静电击穿,所以为了保护CMOS管的氧化层不被击穿,一般在其部输入端接有二极管保护电路,如图5所示。 其中R约为1.5-2.5KΩ。输入保护网络的引入使器件的输入阻抗有一定下降,但仍在108Ω以上。这样也给电路的应用带来了一些限制: (A)输入电路的过流保护。CMOS电路输入端的保护二极管,其导通时电流容限一般为1mA在可能出现过大瞬态输入电流(超过10mA)时,应串接输入保护电阻。例如,当输入端接的信号,其阻很小、或引线很长、或输入电容较大时,在接通和关断电源时,就容易产生较大的瞬态输入电流,这时必须接输入保护电阻,若VDD=10V,则取限流电阻为10KΩ即可。 (B)输入信号必须在VDD到VSS之间,以防二极管因正向偏置电流过大而烧坏。因此在

实验六 触发器实验报告

实验五 触发器实验报告 [实验目的] 1. 理解Oracle 触发器的种类和用途 2. 掌握行级触发器的编写 [预备知识] 1. PL/SQL 程序设计 [实验原理] 1. 建立触发器 CREA TE [OR REPLACE] TRIGGER <触发器名> BEFORE|AFTER INSERT|DELETE|UPDA TE OF <列名> ON <表名> [FOR EACH ROW] WHEN (<条件>) ON 子句中的名称识别与数据库触发器关联的数据库表 触发器事件指定了影响表的 SQL DML 语句 ( INSERT 、 DELETE 或 UPDA TE) AFTER 指定了触发器在处理完成后触发 BEFORE 指定了触发器在处理完成前触发 默认情况下,触发器每个表触发一次 FOR EACH ROW 选项指定触发器每行触发一次(即触发器为行级触发器) 要使触发器触发,WHEN 子句中布尔型表达式的值必须判定为 TRUE 可以将 REPLACE 添加到 CREA TE 语句以自动删除和重建触发器 2. 行级触发器中引用表数据 在行级触发器中,使用伪记录来表示旧数据:old 和新数据:new 引用示例::new.customer_name, :old.customer_name 3. 行级触发器中的谓词 在一个多条件触发的触发器中,使用谓词可以区分当前触发的操作的类型:触发事件 :old :new Insert 无定义,所有字段都是NULL 该语句完成后插入的值 Update 更新前该行的旧值 更新后该行的值 Delete 删除前该行的值 无定义,所有字段

数电实验触发器及其应用

数电实验触发器及其应用 数字电子技术实验报告 实验三: 触发器及其应用 一、实验目的: 1、熟悉基本RS触发器,D触发器的功能测试。 2、了解触发器的两种触发方式(脉冲电平触发和脉冲边沿触发)及触发特点 3、熟悉触发器的实际应用。 二、实验设备: 1 、数字电路实验箱; 2、数字双综示波器; 3、指示灯; 4、74LS00、74LS74。 三、实验原理: 1、触发器是一个具有记忆功能的二进制信息存储器件,是构成多种时序 电路的最基本逻辑单元,也是数字逻辑电路中一种重要的单元电路。在数字系统和计算机中有着广泛的应用。触发器具有两个稳定状态,即“0”和“ 1 ”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态。触发器有集成触发器和门电路(主要是“与非门” )组成的触发器。 按其功能可分为有RS触发器、JK触发器、D触发器、T功能等触发器。触发方式有电平触发和边沿触发两种。 2、基本RS触发器是最基本的触发器,可由两个与非门交叉耦合构成。 基本RS触发器具有置“ 0”、置“ 1”和“保持”三种功能。基本RS触发器

也可以用二个“或非门”组成,此时为高电平触发有效。 3、D触发器在CP的前沿发生翻转,触发器的次态取决于CP脉冲上升沿n+1来到之前D端的状态,即Q = D。因此,它具有置“ 0”和“T两种功能。由于在CP=1期间电路具有阻塞作用,在CP=1期间,D端数据结构变RS化,不会影响触发器的输出状态。和分别是置“ 0”端和置“ 1” DD 端,不需要强迫置“ 0”和置“ 1”时,都应是高电平。74LS74(CC4013, 74LS74(CC4042均为上升沿触发器。以下为74LS74的引脚图和逻辑图。 馬LD 1CP 1云IQ LQ GM) 四、实验原理图和实验结果: 设计实验: 1、一个水塔液位显示控制示意图,虚线表示水位。传感器A、B被水浸沿时

触发器实验报告

实验3 触发器及其应用 一、实验目的 1、掌握基本RS、JK、D和T触发器的逻辑功能 2、掌握集成触发器的逻辑功能及使用方法 3、熟悉触发器之间相互转换的方法 二、实验原理 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存贮器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图5-8-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称S为置“1”端,因为S=0(R=1)时触发器被置“1”;R为置“0”端,因为R=0(S=1)时触发器被置“0”,当S=R=1时状态保持;S=R=0时,触发器状态不定,应避免此 种情况发生,表5-8-1为基本RS触发器的功能表。 基本RS触发器。也可以用两个“或非门”组成,此时为高电平触发有效。 表5-8-1 图5—8—1 基本RS触发器 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚功能及逻辑符号如图5-8-2所示。 JK触发器的状态方程为 Q n+1=J Q n+K Q n J和K是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组

成“与”的关系。Q与Q为两个互补输出端。通常把Q=0、Q=1的状态定为触发器“0”状态;而把Q=1,Q=0定为“1”状态。 图5-8-2 74LS112双JK触发器引脚排列及逻辑符号 下降沿触发JK触发器的功能如表5-8-2 表 注:×—任意态↓—高到低电平跳变↑—低到高电平跳变 Q n(Q n)—现态Q n+1(Q n+1 )—次态φ—不定态 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 3、D触发器 在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为 Q n+1=D n,其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器, 触发器的状态只取决于时钟到来前D端的状态,D触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。有很多种型号可供各种用途的需要而选用。如双 D 74LS74、四D 74LS175、六D 74LS174等。 图5-8-3 为双D 74LS74的引脚排列及逻辑符号。功能如表5-8-3。

触发器及其应用实验报告 - 图文-

实验报告 一、实验目的和任务 1. 掌握基本RS、JK、T和D触发器的逻辑功能。 2. 掌握集成触发器的功能和使用方法。 3. 熟悉触发器之间相互转换的方法。 二、实验原理介绍 触发器是能够存储1位二进制码的逻辑电路,它有两个互补输出端,其输出状态不仅与输入有关,而且还与原先的输出状态有关。触发器有两个稳定状态,用以表示逻辑状态"1"和"0飞在二定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 图14-1为由两个与非门交叉祸合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。 基本RS触发器具有置"0"、置"1"和保持三种功能。通常称s为置"1"端,因为 s=0时触发器被置"1"; R为置"0"端,因为R=0时触发器被置"0"。当S=R=1时状态保持,当S=R=0时为不定状态,应当避免这种状态。

基本RS触发器也可以用两个"或非门"组成,此时为高电平有效。 S Q S Q Q 卫R Q (a(b 图14-1 二与非门组成的基本RS触发器 (a逻辑图(b逻辑符号 基本RS触发器的逻辑符号见图14-1(b,二输入端的边框外侧都画有小圆圈,这是因为置1与置。都是低电平有效。 2、JK触发器 在输入信号为双端的情况下,JK触发器是功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降边沿触发的边沿触发器。引脚逻辑图如图14-2所示;JK触发器的状态方程为: Q,,+1=J Q"+K Q 3 5

J Q CLK K B Q 图14-2JK触发器的引脚逻辑图 其中,J和IK是数据输入端,是触发器状态更新的依据,若J、K有两个或两个以上输入端时,组成"与"的关系。Q和Q为两个互补输入端。通常把Q=O、Q=1的状态定为触发器"0"状态;而把Q=l,Q=0 定为"}"状态。 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 CC4027是CMOS双JK触发器,其功能与74LS112相同,但采用上升沿触发,R、S端为高电平

实验六 触发器实验报告

实验六触发器实验报告 触发器实验报告 [实验目的]1、理解Oracle触发器的种类和用途2、掌握行级触发器的编写 [预备知识]1、 PL/SQL程序设计 [实验原理]1、建立触发器 CREATE [OR REPLACE] TRIGGER <触发器名> BEFORE|AFTER INSERT|DELETE|UPDATE OF <列名> ON <表名> [FOR EACH ROW] WHEN (<条件>) ON 子句中的名称识别与数据库触发器关联的数据库表触发器事件指定了影响表的 SQL DML 语句 ( INSERT、 DELETE 或 UPDATE) AFTER 指定了触发器在处理完成后触发 BEFORE 指定了触发器在处理完成前触发默认情况下,触发器每个表触发一次 FOR EACH ROW 选项指定触发器每行触发一次(即触发器为行级触发器)要使触发器触发,WHEN 子句中布尔型表达式的值必须判定为 TRUE 可以将 REPLACE 添加到 CREATE 语句以自动删除和重建触发器2、行级触发器中引用表数据在行级触发器中,使用伪记录来表示旧数据:old和新数据:new 触发事件 :old :new Insert 无定义,所有字段都是NULL该语句完成后插入的值 Update 更新前该行的旧值更新后该行的值 Delete 删除前该行的值无定

义,所有字段都是NULL引用示例::new、 customer_name, :old、customer_name3、行级触发器中的谓词在一个多条件触发的触发器中,使用谓词可以区分当前触发的操作的类型:inserting,updating,deleting。 示例: IF Inserting THEN 语句 ; END IF; IF Updating THEN 语句 ; END IF; IF Deleting THEN 语句 ; END IF;4、触发器的限制 SELECT 语句必须是 SELECT INTO 语句或内部游标声明。 行级触发器不可以对触发表进行查询,包括其调用的子过程中。 不允许 DDL 声明和事务控制语句。 如果由触发器调用存储子过程,则存储子程序不能包括事务控制语句。 :old 和 :new 值的类型不能是 LONG 和 LONG RAW。 [实验内容]1、给Customer表增加一列Savings,类型为int,来存放每个顾客的存款总额。A LTER TABLE customer ADD (saving varchar2(30));select * from customer;2、更新Customer表,使得Savings字段的值正确。 3、在Account表上增加一个行级触发器,当对account的balance进行update和insert一个记录时同步修改Customer的Savings字段,保证数据的一致性。

施密特触发器原理简介

施密特触发器简单介绍 本文来自: https://www.doczj.com/doc/68225579.html, 原文网址:https://www.doczj.com/doc/68225579.html,/sch/test/0083158.html 我们知道,门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上 升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压(),在输入信号从 高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压()。正向 阈值电压与负向阈值电压之差称为回差电压()。普通门电路的电压传输特性曲线是单调的,施密特触发器的电压传输特性曲线则是滞回的[图6.2.2(a)(b)]。 图6.2.1 用CMOS反相器构成的施密特触发器 (a)电路(b)图形符号

图6.2.2 图6.2.1电路的电压传输特性 (a)同相输出(b)反相输出 用普通的门电路可以构成施密特触发器[图6.2.1]。因为CMOS门的输入电阻很高,所以 的输入端可以近似的看成开路。把叠加原理应用到和构成的串联电路上,我们可以推导出 这个电路的正向阈值电压和负向阈值电压。当时,。当从0逐渐上升到时, 从0上升到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻的情况。 因为此时电路状态尚未发生变化,所以仍然为0,, 于是,。与此类似,当时,。当从逐渐下降到 时,从下降到,电路的状态将发生变化。我们考虑电路状态即将发生变化那一时刻 的情况。因为此时电路状态尚未发生变化,所以仍然为, ,于是, 。通过调节或,可以调节正向阈值电压和反向阈值电压。不过,这个 电路有一个约束条件,就是。如果,那么,我们有及

触发器实验报告

. . . . .. . 实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1 +n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 (上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: 专业:电卓1501 姓名:卢倚平 学号:3150101215 日期:2017.6.01 地点:东三404

实验名称:集成触发器应用实验 姓名: 卢倚平 学号: 2 (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1 +n Q Q J =Q K +, D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图: (上:Qn ,下:CP ) (上:Qn ,下:D ) 4、J-K →T ′的转换实验。 设计过程: J-K 触发器:n n 1 +n Q Q J =Q K +, T ’触发器:Qn+1=!Qn 若将J-K 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:J=K=1 实验截图:

实验四 触发器 实验报告

实验四触发器实验报告 徐旭东 11180243 物理112班 一、实验目的 1. 熟悉并掌握R-S、D、J-K触发器的特性和功能测试方法。 2. 学会正确使用触发器集成芯片。 3. 了解不同逻辑功能FF相互转换的方法。 二、实验仪器及材料 1. 实验仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件 74LS00 二输入端四与非门 1片 74LS74 双D触发器 1片 74LS76 双J-K触发器 1片 三、实验内容步骤及记录 1. 基本RS触发器功能测试: 两个TTL与非门首尾相接构成的基本RS触发器的电路。如图5.1所示。

(1)试按下面的顺序在S R 端加信号: d S =0 d R =1 d S =1 d R =1 d S =1 d R =0 d S =1 d R =1 观察并记录触发器的Q 、Q _ 端的状态,将结果填入 下表4.1中,并说明在上述各种输入状态下,RS 执行的是什么逻辑功能? 表4.1 d S d R Q 逻辑功能 0 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 置1 保持 置0 保持 (2)当d S 、d R 都接低电平时,观察Q 、Q _ 端的状态,当d S 、d R 同时由低电平跳为高电平时,注意观察Q 、Q _ 端的状态,重复3~5次看Q 、Q _ 端的状态是否相同,以正确理解“不定” 状态的含义。 结论: 当d S 、d R 都接低电平时,Q 和Q _ 端的状态不定。 2. 维持- 阻塞型D 触发器功能测试 双D 型正边沿维持-阻塞型触发器74LS74的逻辑符号如图4.2所示。 图中d S 、d R 端为异步置1端,置0端(或称异步置位,复位端),CP 为时钟脉冲端。试按下面步骤做实验: (1)分别在d S 、d R 端加低电平,观察并记录Q 、Q _ 端的状态。 (2)令d S 、d R 端为高电平,D 端分别接高,低电平,用点动脉 冲作为CP ,观察并记录当CP 为0、 、1、 时Q 端状态的变化。 图4.1 基本RS 触发器电 图4.2D 逻辑符号

触发器的使用实验报告

实验II、触发器及其应用 一、实验目的 1、掌握基本RS、JK、D和T触发器的逻辑功能 2、掌握集成触发器的逻辑功能及使用方法 3、熟悉触发器之间相互转换的方法 二、实验原理 触发器具有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。 1、基本RS触发器 如图1为两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。基本RS触发器具有置“0”、置“1”和“保持”三种功能。通常称为置“1” 段,因为=0(=1)时触发器被置为“1”;为置“0”端,因为=0(=1)时触发器被置“0”,当==1时状态保持;==0时,触发器状态不定,应避免此种情况发生,表1为基本RS 触发器的状态表。 图1、基本RS触发器 表1、基本RS触发器功能表 输入输出 0 1 1 0 1 0 0 1 1 1 0 0 不定不定 基本RS 2、JK触发器

在输入信号为双端的情况下,JK触发器的功能完善、使用灵活和通用性较强的一种触发器。本实验采用74LS112双JK触发器,是下降沿出发的边沿触发器。引脚功能及逻辑符号如图2所示。 图2、74LS112双JK触发器引脚排列及逻辑符号 JK触发器的状态方程为:=J+ J和K是数据输入端,是触发器状态更新的依据,若J、K有两个或者两个以上输入端时,组成“与”的关系。和为两个互补输出端。通常把=0,=1的状态定为触发器“0” 状态;而把=1,=0定为“1”状态。下降沿触发JK触发器功能表如表2所示。 表2、JK触发器功能表 JK触发器常被用作缓冲存储器,移位寄存器和计数器。 3、D触发器 在输入信号为单端的情况下,D触发器用起来最为方便,其状态方程为=D,其输出状态的更新发生在CP脉冲的上升沿,故又称为上升沿触发的边沿触发器,触发器的状态只取决于时钟到来前D端的状态,D触发器的应用很广,可用作数字信号的寄存,移位寄存,分频和波形发生等。有很多种型号可供各种用途的需要而选用。如双D 74LS74、四D 74LS175、六D 74LS174等。 下图为双D774LS74的引脚排列及逻辑符号。功能表如表3.

触发器实验报告

触发器实验报告 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验报告 课程名称:数字电子技术基础实验 指导老师: 周箭 成绩:__________________ 实验名称:集成触发器应用 实验类型: 同组学生姓名:__邓江毅_____ 一、实验目的和要求(必填) 二、实验内容和原 理(必填) 三、主要仪器设备(必填) 四、操作方法和实 验步骤 五、实验数据记录和处理 六、实验结果与分 析(必填) 七、讨论、心得 实验内容和原理 1、D →J-K 的转换实验 设计过程:J-K 触发器和D 触发器的次态方程如下: J-K 触发器:n n 1+n Q Q J =Q K +, D 触发器:Qn+1=D 若将D 触发器转换为J-K 触发器,则有:n n Q Q J =D K +。 实验结果: J K Qn-1 Qn 功能 0 0 0 0 保持 1 1 0 1 0 0 置0 1 0 1 1 0 1 翻转 1 0 1 0 1 置1 1 1 实验截图: 专业:电卓1501 姓名:卢倚平 学号: 日期:地点:东三404

(上:Qn ,下:CP ,J 为高电平时) 2、D 触发器转换为T ’触发器实验 设计过程:D 触发器和T ’触发器的次态方程如下: D 触发器:Q n+1= D , T ’触发器:Q n+1=!Q n 若将D 触发器转换为T ’触发器,则二者的次态方程须相等,因此有:D=!Qn 。 实验截图: (上:Qn ,下:!Qn )CP 为1024Hz 的脉冲。 3、J-K →D 的转换实验。 ①设计过程: J-K 触发器:n n 1+n Q Q J =Q K , D 触发器:Qn+1=D 若将J-K 触发器转换为D 触发器,则二者的次态方程须相等,因此有:J=D ,K=!D 。 实验截图:

数据库存储器与触发器实验报告(互联网+)

南昌航空大学实验报告 二0一七年 5 月 3 日 课程名称:数据库概论实验名称:存储器与触发器 班级:xxx 姓名:xxx 同组人: 指导教师评定:签名: 一、实验环境 1.Windows2000或以上版本; 2.SQLServer2000或2005。 二、实验目的 1.掌握存储过程的创建,修改,使用,删除; 2.掌握触发器的创建,修改,使用,删除。 三、实验步骤及参考源代码 1.创建过程代码: CREATE PROCEDURE C_P_Proc(@ccna varchar(10),@cno char(4)OUTPUT,@cna varchar(10)OUTPUT,@pna varchar(20)OUTPUT,@num int OUTPUT) AS SELECT @cna=cna,@cno=https://www.doczj.com/doc/68225579.html,o,@pna=pna,@num=num FROM cp,customer,paper WHERE https://www.doczj.com/doc/68225579.html,o=https://www.doczj.com/doc/68225579.html,o AND paper.pno=cp.pno AND cna=@ccna;

6.执行存储过程C_P_Pro,实现对李涛,钱金浩等不同顾客的订阅信息查询execute C_P_Proc@name='李涛' execute C_P_Proc@name='钱金浩' 7,删除存储过程C_P_Prcc DROP PROCEDURE C_P_PROC (4)在DingBao数据库中针对PAPER创建插入触发器TR_PA PER_I、删除触发器TR_PAPER_D、修改触发器TR_PAPER_U。具体要求如下。

<1>对PAPER的插入触发器:插入报纸记录,单价为负值或为空时,设定为10元。 CREATE TRIGGER TR_PAPER_I ON paper FOR INSERT AS DECLARE @ippr FLOAT; declare @ipno int; SELECT @ippr=ppr,@ipno=pno from inserted begin if @ippr<0 or @ippr is NULL begin raiserror('报纸的单价为空或小于零!',16,1) update paper set ppr=10 where paper.pno=@ipno end

D触发器及其应用实验报告

实验五D触发器及其应用 实验人员:班号:学号: 一、实验目的 1、熟悉D触发器的逻辑功能; 2、掌握用D触发器构成分频器的方法; 3、掌握简单时序逻辑电路的设计 二、实验设备 74LS00 ,74LS74,数字电路实验箱,数字双踪示波器,函数信号发生器 三、实验内容 1、用74LS74(1片)构成二分频器、四分频器,并用示波器观察波形; 74LS74是双D触发器(上升沿触发的边沿D触发器),其管脚图如下: 其功能表如下: ○1构成二分频器:用一片74LS74即可构成二分频器。实验电路图如下:

○2构成四分频器:需要用到两片74LS74。实验电路图如下: 2、实现如图所示时序脉冲(用74LS74和74LS00各1片来实现) 将欲实现功能列出真值表如下:

Q 1n+1=Q 0n =D 1 Q 0n+1=Q 1n ????=D 0 F ′=Q 1n Q 0n ???? F =F ′?CP 连接电路图如下: 四、实验结果 1、用74LS74(1片)构成二分频器、四分频器。示波器显示波形如下: ○ 1二分频器: ○ 2四分频器:

2、实现时序脉冲。示波器显示波形如下: 五、故障排除 在做“用74LS74(1片)构成二分频器、四分频器”时,连接上示波器后,发现通道二总显示的是类似于电容放电的波形,但表现出了二分频。反复排查问题均没有发现原因。最后换了一根连接示波器的线,便得到了理想的结果。 在示波器使用时想要用U盘保存电路波形,不会操作。后来在询问了同学之后才知道只需要按“print”就好。 六、心得体会 通过此次实验,我更深入地领悟了触发器的原理和用法,还复习了示波器的用法,还学会了如何保存示波器波形。

施密特、单稳态触发器仿真实验

上海大学 本科生课程作业 题目:数字电子技术课程实践项目二 课程名称:数字电子技术 学院:机电工程与自动化学院 姓名:张炜 学号:12122030

题目要求:用555定时器构成的单稳态触发器、多谐振荡器、施密特触发器进行设计和仿真 1.单稳态触发器: 1.1 工作原理: 单稳态电路的组成和波形下图所示。当电源接通后,Vcc 通过电阻R 向电容C 充电,待电容上电压Vc 上升到2/3Vcc 时,RS 触发器置0,即输出Vo 为低电平,同时电容C 通过三极管T 放电。当触发端2的外接输入信号电压Vi <1/3Vcc 时,RS 触发器置1,即输出Vo 为高电平,同时,三极管T 截止。电源Vcc 再次通过R 向C 充电。输出电压维持高电平的时间取决于RC 的充电时间,当t=t W 时,电容上 的充电电压为;CC RC t CC C V e V v w 321=??? ? ??-=-,所以输出电压的脉宽 t W =RCln3≈1.1RC 。一般R 取1k Ω~10M Ω,C >1000pF 。 值得注意的是:t 的重复周期必须大于t W ,才能保证放一个正倒置脉冲起作用。由上式可知,单稳态电路的暂态时间与VCC 无关。因此用555定时器组成的单稳电路可以作为精密定时器。 单稳态电路的电路图和波形图

1.2 555单稳态触发器的设计: 1.2.1 电路设计基本原理: 单稳态触发器具有稳态和暂稳态两个不同的工作状态。在外界触发脉冲作用下,它能从稳态翻转到暂稳态,在暂稳态维持一段时间以后,在自动返回稳态;暂稳态维持时间的长短取决于电路本身的参数,与触发脉冲的宽度和幅度无关。由于单稳态触发器具有这些特点,常用来产生具有固定宽度的脉冲信号。 按电路结构的不同,单稳态触发器可分为微分型和积分型两种,微分型单稳态触发器适用于窄脉冲触发,积分型适用于宽脉冲触发。无论是哪种电路结构,其单稳态的产生都源于电容的充放电原理。 用555定时器构成的单稳态触发器是负脉冲触发的单稳态触发器,其暂稳态维持时间为T w=lnRC=1.1RC,仅与电路本身的参数R、C 有关。 1.2.2 实验数据及分析结论: 单稳态触发器实验电路下图所示

17集成施密特触发器应用实验

数字电路-17 集成施密特触发器应用实验 一. 实验目的 1. 了解用示波器测试集成数字器件电压传输特性的方法。 2. 掌握集成施密特触发器的几种典型应用。 二. 实验原理 施密特触发器主要用于将随时间变化缓慢的非周期信号或周期性的非矩形波信号变换成上升时间和下降时间均很小的矩形波信号。 当输入u i 小于负向阀值电平U T-时,反相施密特触发器输出为“1”,当u i 大于正向阀值电平U T+时,施密特触发器输出为“0”。U i 介于两者之间时,施密特触发器的状态保持不变。所以,触发器的电压传输关系具有滞回特性,两个阀值电平之差称回差ΔU T 。 在电子系统中,施密特触发器具有广泛的应用。根据施密特触发器的滞回特性,可以将输入的三角波,正弦波和其他不规则的周期性电压信号转变成矩形信号输出。当电信号在传输过程中受到干扰而发生畸变时,可利用施密特触发器的回差特性对信号进行整形。当输入信号为一组幅度不等的脉冲时,可利用施密特触发器对输入信号的幅度进行鉴别,只有幅度达到施密特触发器阀值电平的信号,才能引起输出变化。 1. 用施密特触发器构成多谐振荡器 图17-1是用反相施密特触发器构成的多谐振荡电路。当输出u O 为高电平时,输入u c ≤U T+,施密特触发器的输出通过电阻R 向电容C 充电,u c 上升。至Uc 等于U T+,输出u O 变为低电平U OL 。然后电容通过电阻R 、施密特触发器输出端放电,u c 下降。在 +-<

数字电路实验报告集成触发器及应用

姓名:xxxxxxxxxxxxxxx学号:xxxxxxxxxx . 学院:计算机与电子信息学院专业:计算机类. 班级:xxxxxxxxxxxxxxxxxx时间:2019年10月18 日. 指导教师:xxxxxxxx . 实验名称:集成触发器及应 用. 一、实验目的 1、掌握RS、JK、D触发器的基本逻辑功能测试方法; 2、掌握时序电路的设计; 二、实验原理 触发器是构成时序电路的基本逻辑单元。它具有两个稳定状态,即“0”状态和“1”状态。只有在触发信号作用下,才能从原来的稳定状态转变为新的稳定状态。因此触发器是一种具有记忆功能的电路,可作为二进制存储单元使用。 触发器种类很多,按其功能可分为基本RS触发器、JK触发器、D触发器和T触发器等;按电路的触发方式又可分为电位触发器型、主从型、维阻型、边沿触发器型等。 基本RS触发器是各种触发器中最基本的组成部分,它能存贮一位二进制信息,但有一定约束条件。例如用与非门组成的RS触发器的R'、S'不能同时为“0”,否则当R’、S’端的“0”电平同时撤销后,触发器的状态不定。因此只R'=S'=0的情况不允许出现,也就是RS=0约束条件。 基本RS触发器的用途之一是作无抖动开关。例如在图4-1所示的电路中,当开关S 接通时,由于机械开关在扳动的过程中,存在接触抖动,使得F点电压从+5V直接跃降到0V一瞬间(几十毫秒),会发生多次电压抖动,相当产生连续多个脉冲信号。如果利用这种电路产生的信号去驱动数字电路,则可能导致电路发生误动作。

图4-1 这在某些场合是绝对不允许的,为了消除机械开关的抖动,可在开关S与输入端A 之间接入一个RS触发器(见图4-2所示),就能使F端产生很清晰的阶跃信号。那么这种带RS触发器的开关通常称为无抖动开关(或称为逻辑开关)。而把有抖动的开关称为数据开关。 图4-2 TTL集成触发器主要有三种类型:锁存器、D触发器和JK触发器。锁存器是电位型触发器。由于它存在“空翻”,不能用于计数器和移位寄存器,只能用于信息寄存器。维阻D触发器,克服了“空翻”现象,所以称作维阻型触发器。 主从型触发器,虽然克服了“空翻”,但存在一次变化问题,即在CP=1期间,J、K 端若有干扰信号,触发器可能产生误动作,这就降低了它的抗干扰能力,因而使用范围受到一定的限制。边沿触发型JK触发器抗干扰性能较好,故应用广泛。 图4-3是集成JK、D触发器的逻辑符号。图中RD为复位输入端,SD为置位输入端,端旁的小圆圈表示低电平驱动。当SD和RD端有加“0”信号驱动时,触发器的状态不受CP及控制输入端所处状态的影响。CP为时钟输入端,在SD=RD=1时,只有在CP 脉冲的作用时才使触发器状态更新。CP端有小圆圈,表示该触发器在CP产脉冲的负沿时翻转。CP端没有小圆圈,表示该触发器在CP脉冲的正沿时翻转。在部分国外的触发器符号中,CP端的小圆圈上加有尖角标志,表示该触发器是负沿触发器的边沿触发器,如图4-3(C)所示。J、D、K为触发器的控制信号输入端,它们是触发器更新状态的数据。若J、K、D有两个或两个以上的输入端时,就将这些端子画成与门的形式,如图4.3(a)、(b)中所示。Q和Q’为两个互补输出端,通常把Q=1,Q’=0的状态,定为触发器的1状态,而把Q=0,Q’=1的状态定为触发器的0状态。

施密特触发器

施密特触发器 一、基本概念: 在电子学中,施密特触发器(英语:Schmitt trigger)是包含正反馈的比较器电路。 正反馈:是指受控部分发出反馈信息,其方向与控制信息一致,可以促进或加强控制部分的活动。台湾地区又叫正回馈。 负反馈:负反馈(英语:negative feedback),在台湾称作负回馈,又称负回授,是反馈的一种。是指系统的输出会 影响系统的输入,在输出变动时,所造成的影响恰和原 来变动的趋势相反;反之,就称为正反馈。 将一个系统的输出信号的一部分或全部以一定方式和路径送回到系统的输入端作为输入信号的一部分,这个作用过程叫——反馈。按反馈的信号极性分类,反馈可分为正反馈和负反馈。 若反馈信号与输入信号极性相同或变化方向同相,则两种信号混合的结果将使放大器的净输入信号大于输出信号,这种反馈叫正反馈。正反馈主要用于信号产生电路。反之,反馈信号与输入信号极性相反或变化方向相反(反相),则叠加的结果将使净输入信号减弱,这种反馈叫负反馈放大电路和自动控制系统通常采用负反馈技术以稳定系统的工作状态。 比较器:对两个或多个数据项进行比较,以确定它们是否相等,或确定它们之间的大小关系及排列顺序称为比较。能 够实现这种比较功能的电路或装置称为比较器。比较 器是将一个模拟电压信号与一个基准电压相比较的电 路。比较器的两路输入为模拟信号,输出则为二进制 信号,当输入电压的差值增大或减小时,其输出保持

恒定。 门电路:用以实现基本逻辑运算和复合逻辑运算的单元电路称为门电路。常用的门电路在逻辑功能上有与门、或门、 非门、与非门、或非门、与或非门、异或门等几种。 对于标准施密特触发器,当输入电压高于正向阈值电压,输出为高;当输入电压低于负向阈值电压,输出为低;当输入在正负向阈值电压之间,输出不改变,也就是说输出由高电准位翻转为低电准位,或是由低电准位翻转为高电准位对应的阈值电压是不同的。只有当输入电压发生足够的变化时,输出才会变化,因此将这种元件命名为触发器。这种双阈值动作被称为迟滞现象,表明施密特触发器有记忆性。从本质上来说,施密特触发器是一种双稳态多谐振荡器。 门电路有一个阈值电压,当输入电压从低电平上升到阈值电压或从高电平下降到阈值电压时电路的状态将发生变化。施密特触发器是一种特殊的门电路,与普通的门电路不同,施密特触发器有两个阈值电压,分别称为正向阈值电压和负向阈值电压。在输入信号从低电平上升到高电平的过程中使电路状态发生变化的输入电压称为正向阈值电压,在输入信号从高电平下降到低电平的过程中使电路状态发生变化的输入电压称为负向阈值电压。正向阈值电压与负向阈值电压之差称为回差电压。

触发器——实验报告

触发器 20100810410 计科四班阚琛琛 【实验内容】 1.搭接一个基本RS触发器,并对其功能进行测试,填写基本RS触发器的特性表; 2.对边缘D触发器74LS74的逻辑功能进行测试,并在示波器上显示波形图像; 3.测试D触发器的异步清零和置一功能; 4.用D触发器实现四分频。 【实验环境】 74LS00; 74LS74; 实验箱: 示波器; 导线; 【实验过程】 1.用与非门构造RS锁存器 电路说明:一个74LS00芯片,引脚连接:14接VCC,7接GND,1接逻辑电平,2接4,3接输出,5接逻辑电平,6接输出,如图所示: 控制逻辑电平以及现态的高低,得到输出关系如下: 则根据上述关系,可以得出RS锁存器的特征方程:Qn+1=S+R’Qn; 2.测试D触发器的逻辑功能 电路说明:1D接100KHZ脉冲,时钟信号接500KHZ,引脚14接VCC,7接GND,如图所示:

再将数据输入端和输出接在示波器上的两个通道,显示波形如图: 3.测试D触发器的异步清零和置一功能 电路说明:1D接100KHZ脉冲,时钟信号接500KHZ,引脚14接VCC,7接GND,直接置位和直接清零接逻辑电平,如图所示: 将输出接在示波器上,调整PRN和CLRN的逻辑电平,得到图形: 清零:

置一: 4.用D触发器实现四分频 设计实验电路如图: 图形说明:由于D触发器是在上升沿触发,则将输出的Q’接在数据输入端,则输出端Q即为时钟信号的二分,一次类推,再接一个D触发器,则输出端即为时钟信号的四分。 将时钟信号和输出接在示波器上,如图:

【实验总结】 1.要听清老师的要求,否则狠容易丢失数据,在清零置一的测试中就没有接数据输入端与 输入进行对照,只有输出的图形; 2.在实验前要设计好电路图,能达到事半功倍的效果; 3.在读数的时候要注意一小格和一个刻度代表多少,否则狠容易读错。 【实验心得】 对于示波器的使用应该加强,要将图形处理成想要的形状给如何调整要熟知。

相关主题
文本预览
相关文档 最新文档