当前位置:文档之家› 实验一传送类和逻辑运算类指令练习

实验一传送类和逻辑运算类指令练习

实验一传送类和逻辑运算类指令练习
实验一传送类和逻辑运算类指令练习

实验一 3.1 传送类和逻辑运算类指令练习

系别专业:电子系12级电信2班学号:3121003210

姓名:李书杰指导老师:刘志群老师

3.1.1 实验要求

1、参照第1章的介绍,观察TD-NMC+实验平台中各模块的位置及相应引脚的引出线。

2、复习传送类、逻辑类指令及程序的相关知识。

3、实验之前,请详细阅读第1、2章的内容,知道使用软件实验的步骤。

3.1.2 实验设备

PC 机一台,TD-NMC+教学实验系统

3.1.3 实验目的

1、了解TD-NMC+实验平台上各主要元器件及其插座的安装分布。

2、熟悉单片机仿真实验软件Keil C51的使用。

3、体会8051单片机传送和逻辑运算类指令的功能,掌握汇编语言设计和调试方法

3.1.4 实验内容

实验1程序:

(1)实验前请分析程序,计算下表各寄存器和存储单元的理论值并填入下表的

(2)编辑、编译、运行调试该程序,通过数据窗口和寄存器窗口查看各寄存器和存储单元的值并填入下表的第二空栏处,比较实验值和理论值是否相同。

实验1表

(3)软件调试程序时尽量采用单步执行或断点执行的方法,能跟踪程序的执行,还比较容易发现程序的错误。

实验2

编写一个程序,把片外RAM 7000H、7001H的低位相拼后送入7002H单元。其实验参考流程图如图3.1.1所示。

观察窗口,若(7000H)=03H,(7001H)=04H,那么(7002H)=34H。

3.1.5 思考题

1.上机实验后,你认为使用Keil软件应注意什么问题?

解:在使用Keil时应将文件保存以.ASM的格式。

2.MOVX、ANL、ORL和XCHD的功能?

解: MOVX外部寻址指令。ANL将两个指令相加。ORL两个

指令的或运算。XCHD将两个指令互换。

3.若把片外RAM7000H的高位、7001H的低位相拼后送入

7002H单元,程序该如何编写?

解:MOV DPTR, #7000H

MOVX A, @DPTR

INC DPTR

MOV B, A

MOVX A, @DPTR

INC DPTR

微机原理实验一报告

2.1 寻址方式与基本指令实验 2.1.1 实验目的 1、熟悉80x86寻址方式及基本指令的功能,进一步理解和巩固课堂学习内容。 2、掌握汇编语言程序设计上机过程, 掌握汇编语言源程序结构,为后续汇编语言程序设计 打好基础。 3、熟悉Microsoft的DEBUG或Borland的Turbo DEBUG调试工具的使用方法 2.1.2 实验预习要求 1、认真阅读本书第一部分第1章,熟悉汇编语言程序设计上机步骤。 2、认真阅读本书第三部分,熟悉DEBUG调试工具的使用方法。 3、复习80x86操作数寻址方式及基本指令(数据传送、算术运算和逻辑运算等)。 4、了解实验内容,并在实验前根据课堂所学知识回答有关问题(个别取决于程序实际运行 环境的问题除外),以便在实验时进行验证。 2.1.3 实验内容 1、读懂下面的源程序,使用EDIT生成名为EX11.ASM的源程序,汇编生成EX11.OBJ文件和EX11.LST文件,连接生成EX11.EXE文件,用EXIT打开EX11.LST文件,了解.LST 文件包含的信息,使用DEBUG调试工具单步执行EX11.EXE程序,注意观察IP值的变化,并回答下列问题。 ○1程序装入后,代码段寄存器CS的内容为1138H,代码段第一条可执行指令“MOV AX DA TA”对应的机器代码为0000B83711H,它是一个——字节指令,注意观察执行该指令是IP 值的变化情况,该指令源操作数DATA的寻址方式是立即数寻址方式,其值是1137。 ○2执行完“MOVDSDA TA”指令后,数据段寄存器DS的内容为1127H,源程序在数据段中定义的数据82H、68H和88H被装入的存储单元的物理地址分别为11270H、11271H和11272H。 ○3程序中第一条“ADDAL[BX]”指令对应的机器代码为0008 8A07H,它是一个四字节指令,注意观察执行该指令时IP值的变化情况;该指令中源操作数的寻址方式为寄存器间接寻址方式,该操作数所在的存储单元的逻辑地址(DS):(BX)为1137:0000,其物理地址为11370H,执行完该指令后(AL)=37H,CF=0H,OF=0H,ZF=0H,SF=0H,AF=0H,PF=0H;计算结果正确,结果是负数 ○4执行完第二条“ADD AL [BX]”指令后(AL)=82H,CF=0H,OF=0H,ZF=0H,SF=1H,AF=0H,PF=0H;计算结果正确,结果是负数 ○5指令“MOV SUM,AL”中,目的操作数的寻址方式为寄存器直接寻址方式。该指令执行完后,注意观察(DS):0003H单元中值的变化,该单元值变为00H。 DA TA SEGMENT NUM DB 82H,68H,88H SUM DB ? DA TA ENDS CODE SEGMENT ASSUME CS:CODE,DS:DA TA START: MOV AX,DA TA MOV DS,AX

第一章(逻辑运算及描述)

上次课内容及要求: 1、熟练掌握常用数制及常用数制之间的转换。 2、熟悉常用的BCD 码及奇偶校验码、ASCII 码。 本次上课内容(2学时) §1-2 逻辑函数及运算 1-2-1 逻辑函数中的三种基本运算 逻辑代数,又叫布尔代数。逻辑代数中的变量叫逻辑变量,取值只有0和1两种,分别用来表示客观世界中存在的既完全对立又相互依存的两个逻辑状态。要注意,逻辑值“1”和“0”与二进制数字“1”和“0”是完全不同的概念,它们并不表示数量的大小。 一、三种基本逻辑运算 1、与运算 A B L A B L 断断 不亮 0 0 0 断合 不亮 0 1 0 合断 不亮 1 0 0 合 合 亮 1 1 1 (d )逻辑符号 (a )例图 (b)状态表 (c)真值表 图1 与逻辑 只有决定某事件的所有条件全部满足(具备)时,该事件才会发生,这种因果关系我们称它为与逻辑关系,简称与逻辑。 例银行金库的门按规定必须有关人员如金库经理、金库保管、财务会计等都到场时,门才能被打开,缺少任何一方皆不可。又如图1(a)所示,只有当开关A、B 都合上时,灯L 才亮,情况列于状态表(b)中。我们用1表示开关合上和灯亮,用0表示开关断开和灯不亮,则(b)成(c)。这种表示输入变量(条件)的所有取值组合和其对应的输出变量(结果)取值的关系表叫逻辑真值表,简称真值表。常用数学的方法来表示逻辑关系,与逻辑的逻辑表达式为:L=A ·B=AB (或者A∧B);与逻辑的常量和常量之间的运算有:0·0=0;

0·1=0;1·0=0;1·1=1。 逻辑关系还可用符号来表示,图1(d)中列出了新、旧两种与逻辑符号。由于与逻辑关系常用数字电路中的与门实现,所以与逻辑符号也用来表示与门,而略去了实际的电路。 2、或运算 只要决定某事件的条件中有一个或几个满足,该事件就会发生;只有当条件全部不满足时,事件才不会发生, 这种因果关系即为或逻辑关系,简称或逻辑。如图2(a)所示,其真值表如(b)所示。或运算的逻辑表达式为 L=A+B(或者A∨B) 读成:“L 等于A 或B”,也可读成:“L 等于A 逻辑加B”。图(c)为或运算的新、旧两种逻辑符号,数字电路中该符号还用来表示或门。 (b)真值表 (c )逻辑符号 (a )电路例图 A B L 0 0 0 0 1 1 1 0 1 1 1 1 图2 或逻辑 或运算规则为:0+0=0;0+1=1;1+0=1;1+1=1 3、非运算 当决定某事件的条件满足时,该事件不发生,而条件不满足时,该事件就发生,这种因果关系称为非逻辑关系,简称非逻辑。如图3(a)所示,其真值表如图(b)所示。 A L 0 1 1 (a)电路图例 (b)真值表 (c)符号 图3 非逻辑 非运算的逻辑表达式为:A L = 图3(C)列出了非运算的新、旧逻辑符号,在数字电路中,还用该符号表示非门。

实验一 可编程控制器的基本指令编程练习 - 云南农业.

可编程控制器原理及应用实验指导书 苏红梅邹欢编 云南农业大学工程技术学院 2008年8月

目录 第一章可编程控制器的概述 (1) 第二章可编程控制器基本指令简介 (6) 第三章实验内容 (7) 实验一可编程控制器的基本指令编程练习 (7) 实验三 LED数码显示控制 (10) 实验四三相鼠笼式异步电动机星/三角换接起动控制 (12) 实验五十字路口交通灯控制 (13)

第一章 可编程控制器的概述 可编程序控制器,英文称Programmable Logical Controller ,简称PLC 。它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。PLC 是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的复杂接线、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC 的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。用户在购到所需的PLC 后,只需按说明书的提示,做少量的接线和简易的用户程序的编制工作,就可灵活方便地将PLC 应用于生产实践。 一、可编程控制器的基本结构 可编程控制器主要由CPU 模块、输入模块、输出模块和编程器组成(如下图所示)。 接触器电磁阀指示灯电源 电源 限位开关选择开关按钮 1、CPU 模块 CPU 模块又叫中央处理单元或控制器,它主要由微处理器(CPU )和存储器组成。它用以运行用户程序、监控输入/输出接口状态、作出逻辑判断和进行数据处理,即读取输入变量、完成用户指令规定的各种操作,将结果送到输出端,并响应外部设备(如编程器、电脑、打印机等)的请求以及进行各种内部判断等。PLC 的内部存储器有两类,一类是系统程序存储器,主要存放系统管理和监控程序及对用户程序作编译处理的程序,系统程序已由厂家固定,用户不能更改;另一类是用户程序及数据存储器,主要存放用户编制的应用程序及各种暂存数据和中间结果。 2、I/O 模块 I/O 模块是系统的眼、耳、手、脚,是联系外部现场和CPU 模块的桥梁。输

逻辑运算类指令

逻辑运算类指令 1.对累加器A的逻辑操作: CLR A ;将A中的值清0,单周期单字节指令,与MOV A,#00H效果 相同。 CPL A ;将A中的值按位取反 RL A ;将A中的值逻辑左移 RLC A ;将A中的值加上进位位进行逻辑左移 RR A ;将A中的值进行逻辑右移 RRC A ;将A中的值加上进位位进行逻辑右移 SWAP A ;将A中的值高、低4位交换。 例:(A)=73H,则执行CPL A,这样进行: 73H化为二进制为01110011, 逐位取反即为10001100,也就是8CH。 RL A是将(A)中的值的第7位送到第0位,第0位送1位,依次类推。 例:A中的值为68H,执行RL A。68H化为二进制为01101000,按上图 进行移动。01101000化为11010000,即D0H。 RLC A,是将(A)中的值带上进位位(C)进行移位。

例:A中的值为68H,C中的值为1,则执行RLC A 1 01101000后,结果是0 11010001,也就是C进位位的值变成了0,而(A) 则变成了D1H。 RR A和RRC A就不多谈了,请大家参考上面两个例子自行练习吧。 SWAP A,是将A中的值的高、低4位进行交换。 例:(A)=39H,则执行SWAP A之后,A中的值就是93H。怎么正好 是这么前后交换呢?因为这是一个16进制数,每1个16进位数字代表4 个二进位。注意,如果是这样的:(A)=39,后面没H,执行SWAP A 之后,可不是(A)=93。要将它化成二进制再算:39化为二进制是10111,也就是0001,0111高4位是0001,低4位是0111,交换后是01110001,也 就是71H,即113。 练习,已知(A)=39H,执行下列指令后写出每步的结果 CPL A RL A CLR C RRC A SETB C

实验二 基本指令操作

L1 L2L3L4L8 L7L12 L5 L6L11L10L9 实验二 基本指令编程 一、实验目的: 进一步熟悉STEP7-Micro/WIN 编程软件的使用方法,掌握S7-200 SMART PLC 的结构和接线方法,用PLC 构成喷泉控制系统。 二、实训器材: (1)PLC 实验箱一台。 (2)安装了STEP7-Micro/WIN 编程软件的计算机一台。 (3)下载用网线1根。 三、实验内容: 1、控制要求,如图的喷泉设置,工作要求为 隔灯闪烁:L1亮0.5s 后灭,接着L2亮0.5s 后灭,接着L3亮0.5s 后灭,接着L4亮0.5s 后灭, 接着L5、L9亮0.5s 后灭,接着L6、L10亮0.5s 后 灭,接着L7、L11亮0.5s 后灭,接着L8、L12亮 0.5s 后灭,L1亮0.5s 后灭,如此循环下去。 2.I/O 分配 输入 输出 起动按钮:I0.0 L1:Q0.0 L5、L9: Q0.4 停止按钮:I0.1 L2:Q0.1 L6、L10:Q0.5 L3:Q0.2 L7、L11:Q0.6 L4:Q0.3 L8、L12:Q0.7 3.按图所示完成电源接线。 图1 电路电源接线电路图 按照I/O 分配完成输入输出接线。 4.完成梯形图程序输入。以下为参考梯形图程序:

图2 喷泉梯形图 5. 建立通信 1)在项目树中选择“系统块”修改CPU的型号为实验箱的型号,CPU CR40. 2):建立通信连接:S7-200 SMART CPU 可以通过以太网电缆与安装有STEP7 Micro/WIN SMART 的编程设备进行通信连接。 3)建立 Micro/WIN SMART 与 CPU 的连接

数据传送类指令

3.2.1 数据传送类指令 数据传送指令用于实现寄存器与存储器之间、寄存器之间、累加器AL/AX与I/O端口之间、立即数到寄存器或存储器之间的字节或字的传送。这类指令的共同特点是不影响标志寄存器的内容(SAHF,POPF除外)。堆栈操作指令、标志位传送指令和地址传送指令也归入这一类中,共14条指令,又可分为4组,如表3.4所示。 1.通用数据传送指令 通用数据传送指令包括传送指令MOV、堆栈操作指令PUSH、POP、输入/输出指令(累加器传送指令)、数据交换指令XCHG和查表转换指令XLAT。这类指令是唯一允许以段寄存器作为操作数的指令(XCHG除外)。 表3.4 数据传送类指令 指令类型指令书写格式指令功能 通用数据传送指令MOV 目标,源 PUSH 源 POP 目标 XCHG 目标,源 XLAT 字节或字传送 字压入堆栈 字弹出堆栈 字节或字交换 字节翻译 目标地址传送指令LEA 目标,源 LDS 目标,源 LES 目标,源装入有效地址

装入DS寄存器 装入ES寄存器 标志位传送指令LAHF SAHF PUSHF POPF 将FR低字节装入AH寄存器 将AH内容装入FR低字节 将FR内容压入堆域 从堆栈弹出FR内容 I/O数据传送指令IN 累加器,端口 OUT 端口,累加器从端口输入字节或字 将字节或字输出到端口 (1)MOV 传送指令 指令格式:MOV OPD,OPS 指令功能:将源操作数OPS传送到目的操作数OPD,即(OPD)→(OPS)。 源操作数OPS可以是8/16位的通用寄存器、段寄存器、存储器中某单元或8/16位的立即数。 (2)PUSH进栈(压入)指令 指令格式:PUSH OPS 指令功能:将源操作数OPS压入堆栈,即SP–2 → SP,OPS → (SPH,SP)。 源操作数0PS可以是16位通用寄存器、段寄存器或存储器中的数据字,以保证堆栈按―字‖操作。源操作数OPS不能是立即数。 由于堆栈是按―后进先出‖方式工作,所以每次执行PUSH指令时,总是首先修改栈指针(S P)–2 → SP (即SP先减2),使之指向新栈顶,然后把源操作数压入堆栈中SP所指示

实验一--掌握DEBUG-的基本命令及其功能

实验一掌握DEBUG 基本命令及其功能【上篇】查看CPU和内存,用机器指令和汇编指令编程 一.实验目的: 掌握DEBUG 的基本命令及其功能 掌握win7 win8 使用DEBUG功能 二.实验内容: 1. 预备知识:Debug的使用 (1) 什么是Debug? Debug是DOS、Windows都提供的实模式(8086方式)程序的调试工具。使用它,可以查看CPU各种寄存器中的内容、内存的情况和在机器码级跟踪程序的运行。 (2) 我们用到的Debug功能 ●用Debug的R命令查看、改变CPU寄存器的内容; ●用Debug的D命令查看内存中的内容; ●用Debug的E命令改写内存中的内容; ●用Debug的U命令将内存中的机器指令翻译成汇编指令; ●用Debug的T命令执行一条机器指令; ●用Debug的A命令以汇编指令的格式在内存中写入一条机器指令。 (3) 进入Debug Debug是在DOS方式下使用的程序。我们在进入Debug前,应先进入到DOS方式。用以下方式可以进入DOS: ①重新启动计算机,进入DOS方式,此时进入的是实模式的DOS。 ②在Windows中进入DOS方式,此时进入的是虚拟8086模式的DOS。 三.实验任务 1. 从网上下载Dosbox和debug.exe(文件夹中有)。 2. debug.exe放在D:根目录,然后安装,安装完成以后,点击快捷方式进入Dos界面:

3.输入mount c d:\ 接着输入c: Dosbox 5.接着,你就可以使用Debug: debug 6.备注:debug.exe放在D:根目录下,你也可以把debug.exe放在任何一个文件夹下面。 其中这个文件夹就是mount c d:所对应的。 一.(1) 使用Debug,将下面的程序段写入内存,逐条执行,观察每条指令执行后,CPU 中相关寄存器中内容的变化。(逐条执行,每条指令执行结果截图) 机器码汇编指令 b8 20 4e mov ax,4E20H 05 16 14 add ax,1416H bb 00 20 mov bx,2000H 01 d8 add ax,bx 89 c3 mov bx,ax

汇编传送指令

汇编传送指令 r8——任意一个8位通用寄存器AH/AL/BH/BL/CH/CL/DH/DL r16——任意一个16通用寄存器AX/BX/CX/DX/SI/DI/BP/SP reg——代表r8或r16 seg——段寄存器CS/DS/ES/SS m8——一个8位存储器操作数单元(包括所有主存寻址方式) m16——一个16位存储器操作数单元(包括所有主存寻址方式) mem——代表m8或m16 i8——一个8位立即数 i16——一个16位立即数 imm——代表i8或i16 dest——目的操作数 src——源操作数 ---------------------------------------------------------------------------------------------------------------------------- 一、通用数据传送指令 1、传送指令MOV 格式:MOV dest,src ;dest←src MOV指令把一个字节或字的操作数从源地址src传送至目的地址dest。源操作数可以是立即数、寄存器或是主存单元,目的操作数可以是寄存器或主存单元,但不能是立即数。用约定的符号表达如下: MOV reg/mem, imm ;立即数送寄存器或是存储器 MOV reg/mem/seg, reg ;寄存器送寄存器(包括段寄存器)或贮存 MOV reg/seg, mem ;主存送寄存器(包括段寄存器) MOV reg/mem, seg ;段寄存器送主存或寄存器 特别说明:(1)立即数传送至通用寄存器(不包括段寄存器)或存储单元MOV reg/mem,imm 例: mov al,4 ;al←4,字节传送 mov cx,0ffh ;cx←00ffh,字传送 mov byte ptr [si],0ah ;ds:[si]←0ah, byte ptr说明是字节操作 mov word ptr [si+2],0bh ;ds:[si+2]←0bh, word ptr 说明是字操作 绝大多数说操作数的指令中(除非特别说明)目的操作数与源操作数必须类型一致,或同为字节,或同为字,否则为非法指令。8086不允许立即数传送至段寄存器。 特别说明(2)8086指令系统除串操作类指令外,不允许两个操作数都是存储单元,所以也就没有主存至主存的数据传送。可以通过寄存器间接实现 。例: mov ax,buffer1 ;ax←buffer1(将buffer1内容送ax)

实验二 常用命令操作实验报告

实验二 常用命令操作实验报告 1、 实验目的 1. 熟悉Linux文件系统结构 2. 掌握文本操作命令 3. 掌握文件、目录操作命令 2、 实验内容 1. 显示、改变文件目录 2. 显示文本文件 3. 匹配文本文件 4. 文本文件排序 5. 复制、删除、移动文件 6. 复制、删除、移动目录文件 7. 建立硬连接、符号连接文件,理解文件i节点和链接数 3、 实验准备 1. 从20 2.117.179.110下载SSH客户端软件PieTTy.exe,使用该虚拟 终端登录主机120.95.134.104完成本实验 2. 主机120.95.134.104目录/var/xg11x下保存了本实验用到文件4、 步骤和要求 1. 登录主机120.95.134.104 用户名:学号 口令:学号 2. 练习cd、ls、pwd命令,理解显示信息意义 命令显示信息以及意义 mesg n决定是否允许其他人传讯息到自己的终端机介面。 y允许讯息传到终端机介面上;n不允许讯息传到终 端机介面上 。

pwd显示当前的工作路径为/home/2011013304 cd / 进入根目录 pwd显示当前工作路径为/ cd /home进入home目录 pwd显示当前工作路径为/home cd 个人学号进入用户主目录 pwd显示当前工作路径为/home/2011013304 cd ..返回上上级目录,即为home目录 cd /个人学号进入根目录下的2011013304文件,由于此文件在根 目录下不存在,故出错。 Cd返回用户主目录 cd /var/xg11x进入xg11x目录下,但此目录不存在 pwd 显示当前工作路径。仍为/home/2011013304 cd .. 返回上上级目录 pwd显示当前目录/home cd返回用户主目录 ls –l列出当前路径下的文件名称,并以长格式显示文件 信息 ls –l .列出当前路径下的文件名称,并以长格式显示文件 信息 ls –ld .列出当前目录下文件的详细信息 ls –ld /home列出/home目录下的文件详细信息 ls –ld /home/列出/home/2011013304目录下的详细信息

基本逻辑关系和常用逻辑门电路

第2章 基本逻辑关系和常用逻辑门电路 通常,把反映“条件”和“结果”之间的关系称为逻辑关系。如果以电路的输入信号反映“条件”,以输出信号反映“结果”,此时电路输入、输出之间也就存在确定的逻辑关系。数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。 2.1 基本逻辑关系和逻辑门 2.1.1 基本逻辑关系和逻辑门 逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门。 一、与逻辑及与门 与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。 如图2.1.1所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。 这种因果关系就是与逻辑关系,可表示为Y =A ?B ,读作“A 与B”。在逻辑运算中,与逻辑称为逻辑乘。 与门是指能够实现与逻辑关系的门电路。与门具有两个或多个输入端,一个输出端。其逻辑符号如图2.1.2所示,为简便计,输入端只用A 和B 两个变量来表示。 与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y =A ?B =AB 两输入端与门的真值表如表2.1.1所示。波形图如图2.1.3所示。 表2.1.1 与门真值表 (a )常用符号 (b )国标符号

由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。 二、或逻辑及或门 或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。 如图2.1.4所示电路,只要开关A 或B 其中任一个闭合,灯泡Y 就亮;A 、B 都不闭合,灯泡Y 才不亮。这种因果关系就是或逻辑关系。可表示为: Y =A +B 读作“A 或B”。在逻辑运算中或逻辑称为逻辑加。 或门是指能够实现或逻辑关系的门电路。或门具有两个或多个输入端,一个输出端。其逻辑符号如图 2.1.5所示。 或门的输出与输入之间的逻辑关系用逻辑表达式表示为: Y =A +B 两输入端或门电路的真值表和波形图分别如表2.1.2和图2.1.6所示。 图2.1.3 与门的波形图 表2.1.2 图2.1.4 或逻辑举例

PLC基本指令训练实验报告要求

实验二 PLC 基本指令训练实验 一、实验目的 1.掌握编程器的键盘操作 2.学会程序的输入和指令的增删 3.加深对常用指令的理解 二、实验设备(记录下仪器、设备的规格、型号及数量) 三、实验内容(包括梯形图、指令表、数据、时序图)实验中作好纪录 (一) PRO15编程器基本操作 1.开机: 将编程开关,拨至右端 2.清零: (1)屏幕清零 (2)内存清零 当完成步骤(1)后,继续下面操作 3.键入程序练习: 椐实验教材内容进行,每键入一条指令后,按 键即进入内存。 指令上下滚动显示 4.修改程序: (1)如改本行程序,只需写入正确程序后按即可。 (2 )删除本行指令时,按 即可。 (3 )插入程序,① 回到初始程序行(即屏幕清零) ② 键入待插入的地址码,写入新指令。 5.运行程序: 将编程开关,拨至左端 (二) 基本指令训练(写出指令表,记录数据或时序图) 1.逻辑指令实验 0500 0007 END 00070500ON OFF 0501 0007 END 00070501ON OFF

0500 0002 END 00020500ON OFF 0000ON ON ON ON OFF OFF OFF OFF 000105000001 0500 0000END 0500 0000 END 0001000000010500 ON ON ON ON OFF OFF OFF OFF 0002 0500 0000END 00030001 2.定时、计数指令实验 输入如下程序,观察运行结果,监视各计时器或计数器的内容及状态。 TIM 0000END TIM00 00000500 00 #0040000010s 2s TIM000500 0002 END 00020003 0501CNT010501 0003CNT01 CNT 01 #0003 0000END 00000002 0500CNT010500 0002CNT01 CNT 01 #00391902100s 四、实验总结(实验中出现的问题及解决方法) 注: 1. 预习要求(实验课前按指定的梯型图列出指令表) 2. 由统一的实验报告纸完成。 3. 写清班级、姓名、日期、同组人名。

基本逻辑运算

《数字电路与逻辑设计》 教 案 试讲教师:孙发贵 工作单位:北京化工大学北方学院

教学内容与过程 (一)讲解新课 逻辑运算:当0和1表示逻辑状态时,两个二进制数码按照某种指定的因果关系进行的运算。即逻辑运算表示的是条件与结果之间的因果关系。 逻辑运算与算术运算完全不同,其采用的数学工具是逻辑代数。 逻辑代数——又称布尔代数或开关代数,是按一定逻辑规律进行运算的代数,是分析和设计数字电路的工具和理论基础。 逻辑代数与普通代数的异同: 相同点:变量与函数均用字母表示 不同点:ⅰ) 无论变量与函数均只有0、1两种取值 ⅱ) 0、1只表示两种对立的逻辑状态, 无数量大小的意义。 一、三种基本逻辑关系 1、与逻辑(逻辑乘) (1)定义:只有决定事物结果的全部条件同时具备时,结果才发生。 L何时点亮?只有开关A、B全部闭合时。 (2)逻辑式:L= A·B = AB (3)真值表:表示变量与函数关系的表格。 逻辑赋值:设开关A、B:闭合为“1”,断开为“0” 灯L:亮为“1”,灭为“0”。讨论与逻辑运算的逻辑口诀 逻辑功能口决:有“0”出“0”,全“1”出“1”。 即当逻辑变量A、B同时为1时,逻辑函数L才为1。其它情况下,L均为0。

(4)逻辑符号 (国标):(国外): 推广到n个逻辑变量情况,“与运算”的布尔代数表达式为:L=A1A2A3… A n 2、或运算(逻辑加) (1)定义:在决定事物结果的诸条件中只要任何一个满足,结果就 会发生。 (2)逻辑表达式:L=A+B (3)真值表:逻辑赋值:设开关A、B:闭合为“1”,断开为“0” 灯L:亮为“1”,灭为“0”。 讨论或逻辑运算的逻辑口诀 逻辑功能口决:有“1”出“1”全“0”出“0” (4)逻辑符号 (国标):(国外): 若有n个逻辑变量呢? L=A1+A2+A3+…+A n 3、非运算(逻辑反) (1)定义:条件与结果反相 A具备时,事件L不发生;A不具备时,事件L发生。 电阻的作用:防止整个电路短路 L (2)逻辑表达式:A (3)真值表:逻辑赋值:设开关A、B:闭合为“1”,断开为“0” 灯L:亮为“1”,灭

第三章 基本指令实验

第三章 基本指令实验 §3.1 [实验3.1] 循环操作 一、实验目的 1. 掌握循环操作指令的运用; 2. 掌握用汇编语言编写DSP 程序的方法。 二、实验设备 1.一台装有CCS 软件的计算机; 2. DSP 实验箱的TMS320C5416主控板; 3. DSP 硬件仿真器。 三、实验原理 TMS320C54x 具有丰富的程序控制与转移指令,利用这些指令可以执行分支转移、循环控制以及子程序操作。本实验要求编写一程序完成 ∑==51i i x y 的计算。这个求和运算可以通过一个循环操作指令BANZ 来完成。BANZ 的功能是当辅助寄存器的值不为0时转移到指定标号执行。 例如: STM #4, AR2 loop: ADD *AR3+, A BANZ loop, *AR2– ;当AR2不为零时转移到loop 行执行。 假设AR3中存有x 1到x 5五个变量的地址,则上述简单的代码就完成了这五个数的求和。 四、实验步骤 1. 学习有关指令的使用方法; 2. 在CCS 环境中打开本实验的工程(Ex3_1.pjt ),阅读源程序; 3. 编译并重建 .out 输出文件(Rebuild All … ),然后通过仿真器把执行代码(.out 的文件)下载到 DSP 芯片中;

4.在“end:B end”代码行设置断点(当光标置于改行时,单击工具条上的Toggle Breakpoint图标, 此时该行代码左端会出现一个小红点或双击此行),单击运行; 5.选择“View”->“memory”,起始地址设为“0x0060”,观察内存数值的变化。应能看到五个加数的值及其求和值。 注意查看0X0060--0X0065单元中计算值显示的十六进制结果。 6. 停止程序的运行(单击); 7.尝试改变对变量的初始赋值,或者增加或减少变量数目,重复上述3~6步过程,验证程序运行结果。 五、思考题 1.总结迭代次数与循环计数器初值的关系(在本实验的代码中,用AR2作为循环计数器,设其初值为4,共执行了5次加法。); 2.学习其它转移指令。

实验一传送类和逻辑运算类指令练习

实验一 3.1 传送类和逻辑运算类指令练习 系别专业:电子系12级电信2班学号:3121003210 姓名:李书杰指导老师:刘志群老师 3.1.1 实验要求 1、参照第1章的介绍,观察TD-NMC+实验平台中各模块的位置及相应引脚的引出线。 2、复习传送类、逻辑类指令及程序的相关知识。 3、实验之前,请详细阅读第1、2章的内容,知道使用软件实验的步骤。 3.1.2 实验设备 PC 机一台,TD-NMC+教学实验系统 3.1.3 实验目的 1、了解TD-NMC+实验平台上各主要元器件及其插座的安装分布。 2、熟悉单片机仿真实验软件Keil C51的使用。 3、体会8051单片机传送和逻辑运算类指令的功能,掌握汇编语言设计和调试方法 3.1.4 实验内容 实验1程序: (1)实验前请分析程序,计算下表各寄存器和存储单元的理论值并填入下表的 (2)编辑、编译、运行调试该程序,通过数据窗口和寄存器窗口查看各寄存器和存储单元的值并填入下表的第二空栏处,比较实验值和理论值是否相同。 实验1表

(3)软件调试程序时尽量采用单步执行或断点执行的方法,能跟踪程序的执行,还比较容易发现程序的错误。 实验2 编写一个程序,把片外RAM 7000H、7001H的低位相拼后送入7002H单元。其实验参考流程图如图3.1.1所示。 观察窗口,若(7000H)=03H,(7001H)=04H,那么(7002H)=34H。 3.1.5 思考题 1.上机实验后,你认为使用Keil软件应注意什么问题? 解:在使用Keil时应将文件保存以.ASM的格式。 2.MOVX、ANL、ORL和XCHD的功能? 解: MOVX外部寻址指令。ANL将两个指令相加。ORL两个 指令的或运算。XCHD将两个指令互换。 3.若把片外RAM7000H的高位、7001H的低位相拼后送入 7002H单元,程序该如何编写? 解:MOV DPTR, #7000H MOVX A, @DPTR INC DPTR MOV B, A MOVX A, @DPTR INC DPTR

逻辑代数的基本公式和常用公式

逻辑代数的基本公式和常用公式 一.基本定义与运算 代数是以字母代替数,称因变量为自变量的函数,函数有定义域和值域。——这些都是大家耳熟能详的概念。如 或; 当自变量的取值(定义域)只有0和1(非0即1)函数的取值也只有0和1(非0即1)两个数——这种代数就是逻辑代数,这种变量就是逻辑变量,这种函数就是逻辑函数。 逻辑代数,亦称布尔代数,是英国数学家乔治布尔(George Boole)于1849年创立的。在当时,这种代数纯粹是一种数学游戏,自然没有物理意义,也没有现实意义。在其诞生100多年后才发现其应用和价值。其规定: 1.所有可能出现的数只有0和1两个。 2.基本运算只有“与”、“或”、“非”三种。 与运算(逻辑与、逻辑乘)定义为(为与运算符,后用代替) 00=0 01=0 10=0 11=1 或 00=0 01=0 10=0 11=1 或运算(逻辑或、逻辑加)定义为(为或运算符,后用+代替) 00=0 01=1 10=1 11=1 或 0+0=0 0+1=1 1+0=1 1+1=1 非运算(取反)定义为:

至此布尔代数宣告诞生。 二、基本公式 如果用字母来代替数(字母的取值非0即1),根据布尔定义的三种基本运算,我们马上可推出下列基本公式: A A=A A+A=A A0=0 A+0=A A1=A A+1=1 =+= 上述公式的证明可用穷举法。如果对字母变量所有可能的取值,等式两边始终相等,该公 式即告成立。现以=+为例进行证明。对A、B两个逻辑变量,其所有可能的取值为00、01、10、11四种(不可能有第五种情况)列表如下:

由此可知: =+ 成立。 用上述方法读者很容易证明: 三、常用公式 1. 左边==右边 2. 左边==右边 例题:将下列函数化为最简与或表达式。 (公式1:) = (公式2:) ()

ARM基本指令实验报告书.

ARM基本指令实验报告书 ARM基本指令实验报告书1、实验内容或题目●熟悉开发环境的使用并使用ldr/str,mov 等指令访问寄存器或存储单元。●使用 add/sub/lsl/lsr/and/orr 等指令,完成基本数学/逻辑运算。2、实验目的与要求●初步学会使用Embest IDE for ARM 开发环境及ARM 软件模拟器;●通过实验掌握简单ARM 汇编指令的使用方法。3、实验步骤与源程序⑴ 实验步骤1) 新建工程:运行Embest IDE 集成开发环境,选择菜单项File → New Workspace,系统弹出一个对话框,输入相关内容。点击OK 按钮,将创建一个新工程,并同时创建一个与工程名相同的工作区。此时在工作区窗口将打开该工作区和工程。2) 建立源文件:点击菜单项File → New,系统弹出一个新的、没有标题的文本编辑窗,输入光标位于窗口中第一行,按照实验参考程序编辑输入源文件代码。3) 添加源文件:选择Project → Add To Project → Files 命令,或单击工程管理窗口中的相应右键菜单命令,弹出文件选择对话框,在工程目录下选择刚才建立的源文件asm1_a.s。4) 基本配置:选择菜单项Project → Settings…或快捷键Alt+F7,弹出工程设置对话框。在工程设置对话框中,选择Processor 设置对话框,按照图3-2 所示,进行目标板所用处理器的配置。5) 生成目标代码:选择菜单项Build → Build asm_a 或快捷键F7,生成目标代码。6) 调试设置:选择菜单项Project → Settings…或快捷键Alt+F7,弹出工程设置对话框。在工程设置对话框中,选择Remote 设置对话框,按照图3-4 所示对调试设备模块进行设置。7) 选择Debug 菜单Remote Connect 进行连接软件仿真器,执行Download 命令下载程序,并打开寄存器窗口。打开memory 窗口,观察地址0x8000~0x801f 的内容,与地址 0xff0~0xfff的内容。8) 单步执行程序并观察和记录寄存器与memory 的值变化。9) 结合实验内容和相关资料,观察程序运行,通过实验加深理解ARM 指令的使用。10)理解和掌握实验后,完成实验练习题。首先在C盘根目录下找到EmbestIDE文件夹,打开Examples\ARM_Basic\3.1_asm1,这是实验的第一题。系统用EmbestIDE Pro软件打开此项目。然后在软件中操作Build- >Build asm1_a,接着再操作Debug Remote Connect,最后操作Debug Download.便能得出结果。⑵ 源代码题目一: 0x00008000 mov sp, #40960x00008004 mov r0, #450x00008008 str r0, [sp]0x0000800c mov r0, #640x00008010 ldr r1, [sp]0x00008014 add r0, r0, r10x00008018 str r0, [sp] stop :0x0000801c b 0x801c题目二: 0x00008000 mov r0, #450x00008004 mov r0, r0, lsl #80x00008008 mov r1, #640x0000800c add r2, r0, r1, lsr #10x00008010 mov sp, #40960x00008014 str r2, [sp]毕业论文

-基本逻辑关系和常用逻辑门

T 1101 第2章 基本逻辑关系和常用逻辑门电路 通常,把反映“条件”和“结果”之间的关系称为逻辑关系。如果以电路的输入信号反映“条件”,以输出信号反映“结果”,此时电路输入、输出之间也就存在确定的逻辑关系。数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。 2.1 基本逻辑关系和逻辑门 2.1.1 基本逻辑关系和逻辑门 逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门。 一、与逻辑及与门 与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。 如图T1101所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。 这种因果关系就是与逻辑关系,可表示为Y =A B ,读作“A 与B ”。在逻辑运算中,与逻辑称为逻辑乘。 T 1102

与门是指能够实现与逻辑关系的门电路。与门具有两个或多个输入端,一个输出端。其逻辑符号如图T1102所示,为简便计,输入端只用A和B两个变量来表示。 与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y=A B=AB 两输入端与门的真值表如表B1104所示。波形图如图T1103所示。 由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。 二、或逻辑及或门 或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。 如图T1104所示电路,只要开关A或B其中任一个闭合,灯泡Y就亮;A、B都不闭合,灯 泡Y才不亮。这种因果关系就是或逻辑关系。可表示为: Y=A+B 读作“A或B”。在逻辑运算中或逻辑称为逻辑加。

基本逻辑关系和常用逻辑门电路

第2章基本逻辑关系和常用逻辑门电路 通常,把反映“条件”和“结果”之间的关系称为逻辑关系。如果以电路的输入信号反映“条件”,以输出信号反映“结果”,此时电路输入、输出之间也就存在确定的逻辑关系。数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。 2.1 基本逻辑关系和逻辑门 2.1.1 基本逻辑关系和逻辑门 逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门。 一、与逻辑及与门 与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。 如图2.1.1所示电路,只有当开关A与B全部闭合时,灯泡Y才亮;若开关A或B其中有一个不闭合,灯泡Y就不亮。 这种因果关系就是与逻辑关系,可表示为Y=A?B,读作“A与B”。在逻辑运算中,与逻辑称为逻辑乘。 与门是指能够实现与逻辑关系的门电路。与门具有两个或多个输入端,一个输出端。其逻辑符号如图2.1.2所示,为简便计,输入端只用A和B两个变量来表示。 与门的输出和输入之间的逻辑关系用逻辑表达式表示为: Y=A?B=AB 两输入端与门的真值表如表2.1.1所示。波形图如图2.1.3所示。 A B Y 0 0 0 0 1 0 1 0 0 表2.1.1 与门真值表 图2.1.1 与逻辑举例 (a)常用符号(b)国标符号 图2.1.2 与逻辑符号

1 1 1 由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。 二、或逻辑及或门 或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。 如图2.1.4所示电路,只要开关A或B其中任一个闭合,灯泡Y就亮;A、B都不闭合,灯泡Y才不亮。这种因果关系就是或逻辑关系。可表示为: Y=A+B 读作“A或B”。在逻辑运算中或逻辑称为逻辑加。 或门是指能够实现或逻辑关系的门电路。或门具有两个或多个输入端,一个输出端。其逻辑符号如图2.1.5所示。 或门的输出与输入之间的逻辑关系用逻辑表达式表示为: Y=A+B 两输入端或门电路的真值表和波形图分别如表2.1.2和图2.1.6所示。 A B Y 0 0 0 0 1 1 1 0 1 1 1 1 图2.1.3 与门的波形图 表2.1.2 图2.1.4 或逻辑举例(a)常用符号(b)国标符号 图2.1.5 或逻辑符号

PLC实验报告

实验一基本指令实验 专业班级:电科1211 姓名:卢明明学号:07 一、实验目的 1.掌握FXGP软件的使用。 2.学会用PLC基本指令实现基本逻辑组合电路的编程。 3.掌握常用基本指令的使用方法。 二、实验器材 1.FX系列PLC一台 2.PC机一台 3.模拟开关板一块 4.编程电缆 5.连接导线 三、实验内容和步骤 1.基本指令实验 如图1所示,根据梯形图编写指令表,分别接通PLC输入端开关为ON 或OFF,观察PLC输出结果。 图1 基本指令程序 2.组合电路的PLC编程实验 如图2、3所示,根据梯形图编写指令表,分别接通PLC输入端开关为 ON或OFF,观察PLC输出结果。 图2 组合电路指令程序(1) 图3 组合电路指令程序(2) 3.置位、复位和脉冲指令的编程实验 如图4所示,根据梯形图编写指令表,分别接通PLC输入端开关为ON或OFF,观察PLC 输出结果。当X0闭合时,Y0有输出,即使X0断开,Y0仍然保持有输出;当X1闭合时,Y0无输出。当X2闭合时,Y1有输出,当X3闭合时,Y1仍然有输出,只有当X3再断开时,Y1无输出。 图4 置位、复位和脉冲电路指令程序 四、实验结果 五、实验总结 PLC基本实验指令有: 而我们基本就只使用LD ANI AND ORI LDI 等最基本的一些指令,这个实验是比较简单的实验,而我们就只需要学会最基本的一点操作就可以了。

实验二步进顺控及功能指令实验 专业班级:电科1211 姓名:卢明明学号:07 一、实验目的 1.掌握步进顺控指令的编程方法。 2.理解步进顺控指令的几种编程结构。 3.进一步熟练编程器的使用。 4. 掌握功能指令中的移位寄存器指令的编程和使用方法。 二、实验器材 1.FX系列PLC一台 2.PC机一台 3.模拟开关板一块 4.编程电缆 5.连接导线 三、实验内容和步骤 1.用步进顺控指令实现如图5所示的波形,使Y0、Y1和Y2每隔1s顺序输出,并循环。其顺序功能图和指令语句表如图5所示。 图5 输出波形图 图6 顺序功能图及语句表 实验步骤: (1)按图6输入程序。 (2)检查程序是否正确。 (3)运行程序,观察Y0、Y1和Y2的输出是否和波形一致。 (4)改变定时器的定时时间常数,再次运行程序,观察输出情况。 2.分支及汇合指令实验 选择性分支及汇合指令的顺序功能图和语句表如图7所示。 图7 选择性分支与汇合 选择性分支与汇合实验步骤: (1)按图7输入程序。 (2)检查程序是否正确。 (3)运行程序,先闭合X1,然后闭合X2,观察Y2和Y3有无输出。 (4)改变X1和X2的闭合顺序,观察Y2和Y3的输出情况。 并性分支及汇合指令的顺序功能图和语句表如图8所示。 图8 并行分支与汇合 并行分支与汇合实验步骤: (1)按图8输入程序。 (2)检查程序是否正确。 (3)运行程序,闭合X1,观察Y2和Y4有无输出。然后闭合X2、 X3和X4,观察Y3、Y5和Y6的输出情况。 3.用左移移位指令实现表1循环左移真值表的输出。 表1 循环左移真值表

相关主题
文本预览
相关文档 最新文档