当前位置:文档之家› 三相电路相序电流电压以及功率的测量

三相电路相序电流电压以及功率的测量

三相电路相序电流电压以及功率的测量
三相电路相序电流电压以及功率的测量

课程名称:电网络分析_______指导老师:_孙盾_____ 成绩:__________________ 实验名称:_三相电路相序电流电压以及功率的测量实验类型:_____同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填)

三、主要仪器设备(必填)四、操作方法和实验步骤

五、实验数据记录和处理六、实验结果与分析(必填)

七、讨论、心得

一、实验目的和要求

1、学习三相电源相序的判定方法;

2、学习三相负载Y型联结和△型联结的连接方法,掌握两种接法下,线电压和相电压、

线电流和相电流的测量方法;

3、熟悉一瓦表法测量有功和无功功率的原理与接线方法;

4、熟悉二瓦表法测量三相电路有功和无功功率的原理与接线方法;

5、掌握功率表的接线和使用方法。

二、实验内容和原理

(1)实验内容

1、三相相序的测定(三相电机转动方向,一表法二表法连接);

2.三相四线制Y0-Y0接法:对称负载 (单相负载为两只25W/220V灯泡、两个1μ

F/630V电容并联组成)测量各相(线)电流及中线电流,各相电压及线电压,各相

有功功率;

3.三相四线制Y0-Y0接法:不对称负载(将W相负载中的电容去掉)测量各相(线)

流及中线电流,各相电压及线电压,各相有功功率;

4. 断开中线,形成Y-Y接法;在不对称负载情况下,测量各相(线)电流,各相电

压及线电压,各相有功功率;

5. 断开中线,形成Y-Y接法;在不对称负载情况下,两表法测量总有功功率,并比

较;

6. 断开中线,形成Y-Y接法;在对称负载情况下,两表法测量总有功功率和总无功

功率;

7. 将负载改接为△型对称负载,形成 Y- △接法;各(相)线电压、线电流、相电流

及各相有功功率;

8. 二瓦表法测量三相△接对称负载总有功功率和总无功功率;一瓦表法测量三相△

接对称负载总无功功率;

(2)实验原理

1.对称三相三线制——一表法测量有功功率

2.对称三相三线制——二表法测量有功和无功功率

3.对称三相三线制——一表法测量无功功率

对称三相三线制电路可以用二表法测量三相电路有功功率和无功功率;

不对称三相三线制电路可以用二表法测量三相电路有功功率,但不能测量无功功率。

三、主要仪器设备

电工电子试验台、DG05单相灯负载

四、实验结果和分析

五、思考题

1.相序指示器的仿真(采用Orcad软件)

设置相位顺序为V1→V2→V3

V (2)-V (D )代表R3两端电压,V (3)-V (D )代表R4两端电压。

由图像可知,R3两端的电压的有效值高于R4两端的电压,证明了相序指示器应用正确。

2. 相序指示器的原理

3. .Y-Y 接法对称负载总有功功率和三相△接对称负载总有功功率比较分析 Y △Y <△经过测量发现,灯泡的电阻值随着电压的增大而增加,这是使P Y <3P △的主要原因。

电流电压功率之间的关系及公式

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

电流电压功率之间的关系及公式

电流电压功率之间的关 系及公式 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F? W=I2乘以R? V=IR W=V2/R 电流=电压/电阻? 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N (瓦特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I,

P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P 还有P=I2RP=IUR=U/I最好用这两个; 3、如电动机电能转化为热能和机械能: 电流符号:I 符号名称:安培(安) 单位:A 公式: 电流=电压/电阻I=U/R 单位换算:1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式=电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式=?*线电压U*线电流I(星形接法) =?3*相电压U*相电I(角形接法)

三相电机类电功率的计算公式=?*线电压U*线电流I*功率因数 COSΦ 星形电流=I,电压=U,电阻=R,功率=P? U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I? P=U2/R,R=U2/P P=I2R? 4、串联电路? P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时间)电流处处相等: I1=I2=I 总电压等于各用电器两端电压之和: U=U1+U2? 总电阻等于各电阻之和: R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和“ W=W1+W2? W1:W2=R1:R2=U1:U2? P1:P2=R1:R2=U1:U2? 总功率等于各功率之和:

初中九年级(初三)物理 第一章电流、电压和功率的测量

第一章 电流、电压和功率的测量 1.1 电流的测量 1.1.1 电流表直接测量法 一、直流电流表 1、动圈式磁电系测量机构(“表头”)的工作原理——图1-1-1 “动圈”(即可以转动的线圈)由弹性支承悬挂在永久磁铁产生的磁场中,当 动圈中流过电流i 时,动圈在磁场中受到的电磁力矩为: Ci bNLBi bF M c === 动圈转动时受到弹性支承作用的弹性力矩为: θk M k = 动圈转动时受到与转动角速度成正比的阻尼力矩 dt d D M d θ = c M 驱使动圈转动,而d M 、k M 则阻止线圈转动,因此根据转动定律有: 2 2dt d J M M M d k c θ =-- 将c M 、d M 、k M 代入上式得到动圈式磁电系测量机构的动态方程: Ci k dt d d dt d J =++θθθ22 若信号电流为直流I ,在达到稳定之后,上式左边前两项均为零,于是得到动圈式磁电系测量机构的静态方程: 0CI S I k θ= = 式中S 0=C/k 称为动圈测量机构的静态灵敏度 2、以动圈式磁电系测量机构为“表头”的非电量测量仪表――图0-2(a) 图0-2(a)中传感器的灵敏度(输出电量与输入非电量之比)为S 1,测量电路把 传感器输出的电量转换成直流电流,其灵敏度(输出直流电流与输入电量之比)为S 2,则表头指针偏转角θ与被测非电量x 成线性正比关系。 S x θ=? 式中 012S S S S =为图0-2(a)所示非电量x 的电测仪表的总灵敏度。 2、多量程电流表原理――图1-1—3(b) 单量程交流电流表配接分流电阻即构成多量程交流电流表 若电流表有三挡量程:1I 、2I 、3I ,则量程分流电阻1R 、2R 、3R 满足如下关系式:

电流、功率、电压、电阻计算公式.

= 1.732 X U X I X COSφ 功率 P =1.732X380X I X0.85 电流 I = P / (1.732 X 380 X 0.85 功率分有功和无功,有功P=U*I*(cos a;无功Q=U*I*(sin a;注:a是功率因数。 三相电动机的功率电阻的电流如何计算。电压已知为380V。求高人指点!2012-4-20 09:43 提问者:mfkwfntxgt|浏览次数:364次 我来帮他解答 2012-4-20 10:23 满意回答 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)

1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T (时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和 R=R1R2÷(R1+R2)

三相电路功率的计算.

三相电路功率的计算. 1. 对称三相电路功率的计算 (1)平均功率 设对称三相电路中一相负载吸收的功率等于Pp=UpIpcosφ,其中Up、Ip 为负载上的相电压和相电流。则三相总功率为: P =3Pp =3UpIpcosφ 注意: 1) 上式中的φ为相电压与相电流的相位差角( 阻抗角) ; 2) cosφ为每相的功率因数,在对称三相制中三相功率因数: cosφA=cosφB=cosφC= cosφ; 3) 公式计算的是电源发出的功率( 或负载吸收的功率) 。 当负载为星形连接时,负载端的线电压,线电流,代入上式中有: 当负载为三角形连接时,负载端的线电压,线电流,代入上式中有: (2)无功功率 对称三相电路中负载吸收的无功功率等于各相无功功率之和: (3)视在功率 (4)对称三相负载的瞬时功率 设对称三相负载A 相的电压电流为: 则各相的瞬时功率分别为: 可以证明它们的和为: 上式表明,对称三相电路的瞬时功率是一个常量,其值等于平均功率,这是对称三相电路的优点之一,反映在三相电动机上,就得到均衡的电磁力矩,避免了机械振动,这是单相电动机所不具有的。

2. 三相功率的测量 (1) 三表法 对三相四线制电路,可以用图11.15 所示的三个功率表测量平均频率。若负载对称,则只需一个表,读数乘以3 即可。 图11.15 图11.16 (2) 二表法 对三相三线制电路,可以用图11.16 所示的两个功率表测量平均频率。测量线路的接法是将两个功率表的电流线圈串到任意两相中,电压线圈的同名端接到其电流线圈所串的线上,电压线圈的非同名端接到另一相没有串功率表的线上。显然除了图11.16 的接线方式,还可采用图11.17 的接线方式。这种方法称为两瓦计法。 图11.17 两瓦计法中若W1 的读数为P1 , W2 的读数为P2 ,可以证明三相总功率为:P = P1 + P2 证明:设负载是Y 连接,根据功率表的工作原理,有: 所以 因为代入上式有: 所以两个功率表的读数的代数和就是三相总功率。由于△联接负载可以变为Y 型联接,故结论仍成立。 注意: 1)只有在三相三线制条件下,才能用二瓦计法,且不论负载对称与否; 2)两块表读数的代数和为三相总功率,每块表单独的读数无意义; 3)按正确极性接线时,二表中可能有一个表的读数为负,此时功率表指针反转,将其电流线圈极性反接后,指针指向正数,但此时读数应记为负值; 4)负载对称情况下,有:

三相电路功率的测量方法

三相电路功率的测量方法 F0403020班 5040309585方轶波 摘要:三相电路功率的测量是三相电路分析的重要内容,本文按三相三线制和三相四线制分类,较详细地讨论了三相电路功率测量的接线问题,总结了两表法和三表法各自的适用范围及功率表读数在不同接线方式下的物理意义,指出了它们的联系与区别。 关键词:三相电路,功率测量 0 引言 本文将围绕测量三相电路功率的两表法和三表法的原理和接线方法进行讨论,指出它们之间的联系与区别,希望对能对同学的理解以及总结归纳有所帮助。 1 对称三相电路功率的测量 1.1 对称三相电路功率的测量 对称三相电路即三相电源对称、三相负载均衡的三相电路。以下分别从三相四线制和三相三线制两种情况讨论。 对三相四线制系统,测三相平均功率的接线如图 1 所示。它的接线特点是每个功率表所接的电压均是以中线N 为参考点,三个功率表W AN,W BN 和W CN 的读数分别为P AN,P BN 和P CN,可用式(1)表示。 P AN=U AN I A cos? P BN=U BN I B cos?(1) P CN=U CN I C cos? 图1 三表法测三相四线制三相负载平均功率的接线示意图 三相的总功率为P = P CN+P BN+P AN。三个表的读数均有明确的物理意义,即P AN,P BN 和P CN 分别表示A 相、B 相和C 相负载各自吸收的平均功率。这就是三表法。这种接线方法是最容易理解的。 实际上,三表法测三相功率不止图 1 所示的一种接线方式,另外还有三种接线方式,如图2 所示,分别称作共A,共B 和共C 接法(与此相对应,图1 中的接法可称作共中线N 接法)。对应每一种接线中的三个表的读数的代数和均表示三相负载吸收的总功率(后面将给出证明)。实际上,因为是对称三相电路,有i N =0 ,所以图2(a),(b)和(c)中的W NA , W NB W NC的读数必为零,在测量时可不接,此时的三表法便简化为两表法。可见,此时的两表法是三表法的特例。当然,这里单个表的读数没有明确的物理意义。 上述四种三表法的接线的特点是每组接线中的三个表所接电压均以同一根线为参考点,即分别是共A, B, C 或N,而电流则分别是非参考线中的电流。功率表接线的极性端如图中所示。

电信号测量(功率电压电流)

产品特征 显示被测量的变化趋势、读数方便采用夹持式安装方式 技术参数 99T1-A 、V 外型及安装尺寸 96C-A 、V ,96T -A 、V 和96L-Hz 外型及安装尺寸 单位: mm

72L-COS φ外型及安装尺寸 96L-W 、var 外型及安装尺寸 96L-COS φ外型及安装尺寸 72C-A 、V ,72T -A 、V 和72L-Hz 外型及安装尺寸 72L-W 、var 外型及安装尺寸

99T1-A 、V 接线图 接线图 96C-A 、V ,72C-A 、V 接线图

注:带‘*’ 标记的端子为电流进线端96T -A 、V ,72T -A 、V 接线图 96L-Hz ,72L-Hz 接线图 72L-W 、var 接线图

96L-W 、var 接线图 96L-COS Φ接线图 注:带* 标记的端子为电流进线端 注:带*标记的端子为电流进线端

量程参数表(详细信息请参阅固定式直接作用模拟指示电测量仪表附表汇总) 选型指南 备注 1:表内72T -A 和96T -A 交流电流表的所有规格均为2倍电流的过载型 2:交流电流表中,99型的直接接入电流范围为0.5A ~20A ,72型与96型的直接接入电流范围为 1A ~5A 和10A ~100A 3:表中交流电流表0.5A ~20A 用于99T1-A 型, 准确度等级为2.5级,交流电压表99T1-V 型准确 度等级为2.5级 (72型和96型电压表为1.5级)订货示例: 如客户需要99型指针板表,输入方式为交流,类型为电流表,则相对应的订货编码为:99T1A*

哈工大 三相电路的测量讲解

电 路 实 验 实验三 三相电路的测量 —基于三相电能及功率质量分析仪测量 一、 实验目的 1. 验证三相电路的星形连接与三角形连接电路的线电压、相电压及线电流、相电流之间的关系 2. 了解负载中性点位移的概念、中线的作用和一相电源断线后对负载的影响。 3. 掌握三相负载星形联接的三相三线制、三相四线制接法和三角形联接的接法。 4. 掌握三相电路电压、电流、有功功率、无功功率和视在功率的测量方法。 5. 掌握三相电能及功率质量分析仪的使用方法。 二、简述实验原理 1. 三相电源和负载可接成星形(又称“Y”接)或三角形(又称"△"接)。当三相对称负载作Y 形联接时,线电压l U 是相电压P U l I 等于相电流P I ,即 l P U =,l P I 三相四线制接法中,流过中性线的电流0O I =,这种情况下可以省去中性线,变成三相三 线制接法。 当对称三相负载作△形联接时,有 l P I =,l P U U = 2. 不对称三相负载作Y 联接时,应采用三相四线制接法,而且中性线必须牢固联接,以保证三相不对称负载的每相电压维持对称。倘若中性线断开,会导致三相负载电压的不对称。致使负载轻的那一相的相电压过高,使负载容易遭受损坏;负载重的那一相的相电压过低,使负载不能正常工作,这对三相照明负载表现得尤为明显。 3. 当不对称负载作△联接时,l P I =,但只要电源的线电压l U 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 4.FLUKE 434-Ⅱ三相电能质量分析仪提供了广泛且强大的测量功能,利用434 三相电能质量分析仪可以测量有效值和峰峰值电压和电流、频率、功耗、有功功率、无功功率、视在功率、功率因数、高达50次的谐波等;并具有示波器波形和示波器相量功能,可随时显示所测电压及电流的波形及相量。 5. 电压/电流/频率的测量需要在分析仪的面板菜单选项中选择“电压//电流//频率”。进入测量界面后,即可读出相电压、线电压和电流的有效值,测量界面中显示的数字是当前值,这些值

功率电压电流公式 功率电压电流公式大全

1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方)U:电压,V; I:电流,A; P:有功功率,W; R:电阻 纯电感无功功率 Q=I2*Xl (式中2为平方) Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率 Q=I2*Xc (式中2为平方) Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大 值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为 初相。 8、交流电路最大值与在效 值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接 I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线 ×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电 压,V; N1、N2:一次、二次线圈 圈数; I2、I1:二次、一次电流, A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方 (式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联 电路 I=U/Z Z=[R2+(XL-Xc)2]和的开 平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

功率表测功率

功率表如何测功率 F0403014 眭博聪 5040309405 摘要:分析功率表的结构,工作原理及其应用 关键字:功率,功率因素cosφ 前言:在学到三相电路功率测量时,用到了一个新的测量仪表——功率表。但是对于其工作原理,它是怎么可以直接显示功率的大小,为什么要这样接线不甚了解,也为此查阅了些资料。本文介绍了功率表的结构,工作原理等情况。 正文: 功率表是测量直流,交流电路中功率的机械式指示电表。直流电路和交流电路中的功率分别为P=UI。 直流电路和交流电路中的功率分別为P=UI和P=UIcosφ﹐U,I 为负载电压和电流,φ为电流相量与相量间夹角﹐cosφ为功率因数。虽然各系电表的测量机构都有可能构成测量功率的电表﹐但最适于制成功率表的是电动系电表和铁磁电动系电表的测量机构。 功率表的结构: 由于功率表的种类很多,这里只以单相电动系功率表进行分析。 单相电动系功率表的接线原理见图。 这种电表测量机构的转动力矩M与I1I2cosθ有关﹐I1为静圈电流,I2为动圈电流﹐θ为两 电流相量间夹角。使负载电流I通过静圈﹐即I1=I。将负载电压加于动圈及与动圈串联的大电阻R上﹐则动圈中电流I2=U/R。这样θ=φ﹐而转动力矩M=kI1I2cosφ﹐这反映了功率P的大小。 改变与动圈串联的电阻值﹐可改变电压量程﹐将静圈的两线圈由串联改为并联﹐可扩大电流量程。功率表的表盘一般按额定电压与额定电流相乘﹐并使功率因数cosφ=1來标值。如电压量程为300V﹑电流量程为5A的功率表﹐表盘的满刻度值为300×5×1=1500W。也有制成功率因数为 0.1的低功率因数功率表﹐其满刻度值为300×5×0.1=150W。功率表的量程不能简单地只提功率量程﹐而应同時指明电压﹑电流量程及功率因数数值。 功率表的接线: 功率表的正确接法必须遵守“发电机端”的接线规则。 1)功率表标有“*”号的电流端必须接至电源的一端,而另一端则接至负载端。电流线

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

三相电路的功率测量

三相电路的功率测量 一、实验目的 1.学习并验证用“二瓦计“法测量三相电路的有功功率 2.学习并应用“三表跨相”法测量三相电路的无功功率 二、实验原理与说明 1.三相电路的有功功率的测量 (1)三瓦计法:三相负载所吸收的有功功率等于各相负载有功功率之和。在对称三相电路中,因各相负载所吸收有功功率相等,所以可以只用一只单相功率表测出一相负载的有功功率,再乘以3即可;在不对称三相电路中,因各相负载所吸收的有功功率不等,就必须测出三相各自的有功功率,再相加即可。三瓦计法适用于三相四线制电路。三瓦计法是将三只功率表的电流回路分别串入三条线中(A、B、C线),电压回路的“*”端接在电路回路的“*”端,非“*”端共同接在中线上。三只功率表读数相加就等于待测的三相功率。 (2)二瓦计法:对于对称电路中的三线三相制电路,或者不对称三相电路中,因均是三相三线制电路,所以可以采用两只单相功率表来测量三相电路的总的有功功率。接法如图13-1所示。两只功率表的电路回路分别串入任意两条线中(图示为A、B线),电压回路的“*”端接在电路回路的“*”端,非“*”端共同接在第三相线上(图示为C线)。两只功率表读数的代数和等于待测的三相功率。 图13-1 二表法测有功功率 2.三相电路无功功率的测量 (1)对称三相电路无功功率的测量

(a )一表跨相法:即将功率表的电流回路串入任一相线中(如A 线),电压回路的“*”端接在按正相序的下一相上(B 相),非“*”端接在下一相上(C 相),将功率表读数乘以3即得对称三相电路的无功功率Q 。 (b )二表跨相法:接法同一表跨相法,只是接完一只表,另一只表的电流回路要接在另外两条中任一条相线中,其电压回路接法同一表跨想法。将两只功率表的读数之和乘以 3/2即得三相电路的无功功率Q 。 (c )用测量有功功率的二瓦计法计算三相无功功率:按式子213()Q P P =-算出。 (2)不对称三相电路的无功功率测量 三表跨相法:三只功率表的电流回路分别串入三个相线中(A 、B 、C 线),电压回路接法同一表跨相法。最后按式子123()/3Q W W W =++算出。 三表跨相法也可适用于三相四线制电路。 三、实验内容 1.测量三相星形(无中线)负载的有功功率和无功功率 (1)按图13-2电路正确接线。接通电源前,各调压器的手柄应置于输出电压为0的位置,接通电源后,调节其输出电压为120V ,并维持不变。 (2)根据测量要求测量各种情况下有功功率和无功功率。将各自对应数据记入表一中。 (3)注意不同情况下测有功功率时二瓦计法和三瓦计法的异同,验证二者得出的三相电路的有功功率是否相同,并验证用二瓦计法和三表跨相法得出的三相电路无功功率是否相同。 图13-2 负载星形联结的功率测量 2.测量三相三角形联接的有功功率和无功功率

单相电路参数测量和功率因数的提高

单相电路参数测量及功率因数的提高 一实验目的 1.掌握单相功率表的使用。 2.了解日光灯电路的组成、工作原理和线路的连接。 3.研究日光灯电路中电压、电流相量之间的关系。 4.理解改善电路功率因数的意义并掌握其应用方法。 二实验原理 1.日光灯电路的组成 日光灯电路是一个RL串联电路,由灯管、镇流器、起辉器组成,如图3-1所示。由于有感抗元件,功率因数较低,提高电路功率因数实验可以用日光灯电路来验证。 I 图3-1日光灯的组成电路 灯管:内壁涂上一层荧光粉,灯管两端各有一个灯丝(由钨丝组成),用以发射电子,管内抽真空后充有一定的氩气与少量水银,当管内产生辉光放电时,发出可见光。 镇流器:是绕在硅钢片铁心上的电感线圈。它有两个作用,一是在起动过程中,起辉器突然断开时,其两端感应出一个足以击穿管中气体的高电压,使灯管中气体电离而放电。二是正常工作时,它相当于电感器,与日光灯管相串联产生一定的电压降,用以限制、稳定灯管的电流,故称为镇流器。实验时,可以认为镇流器是由一个等效电阻R L和一个电感L串联组成。 起辉器:是一个充有氖气的玻璃泡,内有一对触片,一个是固定的静触片,一个是用双金属片制成的U形动触片。动触片由两种热膨胀系数不同的金属制成,受热后,双金属片伸张与静触片接触,冷却时又分开。所以起辉器的作用是使电路接通和自动断开,起一个自动开关作用。 2.日光灯点亮过程 电源刚接通时,灯管内尚未产生辉光放电,起辉器的触片处在断开位置,此

时电源电压通过镇流器和灯管两端的灯丝全部加在起辉器的二个触片上,起辉器的两触片之间的气隙被击穿,发生辉光放电,使动触片受热伸张而与静触片构成通路,于是电流流过镇流器和灯管两端的灯丝,使灯丝通电预热而发射热电子。与此同时,由于起辉器中动、静触片接触后放电熄灭,双金属片因冷却复原而与静触片分离。在断开瞬间镇流器感应出很高的自感电动势,它和电源电压串联加到灯管的两端,使灯管内水银蒸气电离产生弧光放电,并发射紫外线到灯管内壁,激发荧光粉发光,日光灯就点亮了。 灯管点亮后,电路中的电流在镇流器上产生较大的电压降(有一半以上电压),灯管两端(也就是起辉器两端)的电压锐减,这个电压不足以引起起辉器氖管的辉光放电,因此它的两个触片保持断开状态。即日光灯点亮正常工作后,起辉器不起作用。 3.日光灯的功率因数 日光灯点亮后的等效电路如图2 所示。灯管相当于电阻负载R A ,镇流器用内阻R L 和电感L 等效代之。由于镇流器本身电感较大,故整个电路功率因数很低,整个电路所消耗的功率P 包括日光灯管消耗功率P A 和镇流器消耗的功率P L 。只要测出电路的功率P 、电流I 、总电压U 以及灯管电压U R ,就能算出灯管消耗的功率P A =I ×U R , 镇流器消耗的功率P L =P ?P A ,UI P =?cos R A 图3-2日光灯工作时的等效电路 2.功率因数的提高 日光灯电路的功率因数较低,一般在0.5 以下,为了提高电路的功率因数,可以采用与电感性负载并联电容器的方法。此时总电流I 是日光灯电流 I L 和电容器电流 I C 的相量和:? ? ? +=C L I I I ,日光灯电路并联电容器后的相量图如图3 所示。由于电容支路的电流I C 超前于电压U 90°角。抵消了一部分日光灯支路电流中的无功分量,使电路的总电流I 减小,从而提高了电路的功率因数。电压与电流的相位差角由原来的 1?减小为?,故cos ?>cos 1?。 当电容量增加到一定值时,电容电流C I 等于日光灯电流中的无功分量,?= 0。cos ?=1,此时总电流下降到最小值,整个电路呈电阻性。若继续增加电容量,

电流、电压、功率的关系及公式

电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是: V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= *线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= *线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2

测量电功率的特殊方法

测量电功率特殊方法 同学们都熟悉用如图1的方法测量小灯泡的电功率,这是测量电功率 的标准方法,除过这种方法外,还有几种测量电功率得特殊方法,这里就 结合几道考题予以介绍。 例1、要测出一只额定电压为3.8V的小灯泡的额定功率,器材有:电 源(电压恒为6V)、阻值合适的滑动变阻器一个、开关一个、导线若干、电流表一块、电压表一块,其中电流表的量程完好,电压表的量程只有0~3V档可用。请设计电路,并回答:闭合开关,调节滑动变阻器,使电压表的示数达到___V时,小灯泡恰好正常发光。若此时电流表的示数为0.3A,则小灯泡的额定功率为___W。 解析:显然,小灯泡的额定电压3.8V大于电压表的最大量程3V,所以我们不能用电压表直接测量小灯泡两端的电压;但是,由于电源电压已知,我们可考虑通过测量滑动变阻器两端的电压间接测量出小灯泡两端的电压。因为电源电压为6V,小灯 泡的额定电压为3.8V,这时滑动变阻器两端的电压为2.2V,而2.2V正 好小于3V,所以可以这样来测量。因此可得如图2的电路图。然而, 由于电压表测量的是滑动变阻器两端的电压,所以,要测量小灯泡的额 定功率,电压表的示数应为2.2V。而小灯泡的额定功率应为其额定电压 (一定要注意是 3.8V而不是 2.2V)和此时电流的乘积,所以有: 3.0 .1 ? = =。 8.3= W A V P14 UI 可以看出,用这样的电路测量电功率时,当电流表示数变大时电压表示数变小;而当电流表示数变小时电压表示数变大。有时命题者也依此命题,请同学们注意。 例2、在一次测定小灯泡额定功率的实验中,老师给出了如下器材:额定电压为U0的小灯泡、电源(电压未知)、一个阻值为R的电阻、一个滑动变阻器、一只电流表、一只电压表、一个单刀双掷开关和若干导线。实验时不能忽略灯丝的电阻随温度的变化。 ⑴小张同学设计的实验电路图如图3,请你根据这个电路图写出测量小灯泡额定功率的主要步骤和需要测量的物理量(物理量用字母表示)。 ⑵本实验中,小灯泡额定功率的表达式P=_______。 ⑶若在给出的器材中只将其中的一只电流表改为一只电压表,请 你重新设计一个实验电路图,测量小灯泡的额定功率(只画出电路图, 不需要说明测量步骤)。 解析:⑴由于题目中只给了电流表,所以设法使小灯泡两端的电 压等于其额定电压是解决问题的关键。从电路图可以看出,小灯泡与定值电阻并联,它们两端的电压相等,而定值电阻两端的电压为U=I R R,这样,如果将S掷向1时,当电流表的示数为U0/R时,它们两端的电压就为小灯泡的额定电压U0。因此,我们可以这样测量小灯泡的额定功率:a、计算当R两端的电压为U0时,通过它的电流为U0/R;b、S掷向接线柱1,调节滑动变阻器,使电流表的示数为U0/R;c、保持滑动变阻器滑片不动,S掷向接线柱2,读出电流表示数I。 ⑵这一步我们来推导P的表达式:显然,L和R是并联的,当S 接1时,电流表测量的是R的电流,大小为U0/R;当S接2时,电流 表测量的是R和L的总电流I所以,通过L的电流为I-U0/R。而我们 前面已经看到这时L两端的正好是小灯泡的额定电压U0,所以小灯泡

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

测量电功率实验的目的和原理

?测量电功率实验的目的和原理: 1. 实验目的: 1)测定小灯泡额定电压下的电功率; 2)测定小灯泡略高于额定电压下的电功率; 3)测定小灯泡略低于额定电压下的电功率。 2. 实验原理:P=UI 应测量的物理量:小灯泡两端的电压U,和通过的电流I。 3. 实验方法:伏安法 ?伏安法测小灯泡的电功率:

伏安法测电阻与测功率的异同点:

?补充: (1)伏安法测功率。滑动变阻器的作用是保护电路和控制灯泡两端电压。多次测量的目的是 为了测量不同电压下小灯泡的实际功率,不是为了多次测量求平均值。所以设计的表格中没有“平均功率” 这一栏。 (2)伏安法测定值电阻时,滑动变阻器的作用是保护电路和改变电路中的电流和电阻两端电 压,因电阻阻值不变,这是为了多测几组对应的电压、电流值,多测几次电阻值,用多次测量求平均值来减小误差。 (3)伏安法测小灯泡电阻时,由于灯丝电阻大小与温度有关。在不同的工作状态下,小灯泡 温度不同。灯丝电阻也不同。因此测灯丝电阻时滑动变阻器的作用是为了保护电路和改变电路中的电流,不是为了多次测量求平均值。 ?“伏安法测功率”中常见故障及排除: “伏安法测功率”是电学中的重要实验。同学们在实验过程中,容易出现一些实验故障,对出现的实验故障又束手无策,因此,能够找出实验故障是做好实验的“法宝”。下面就同学们在实验中易出现的故障从以下几方面进行分析。 1.器材选择不当导致故障 故障一:电流表、电压表指针偏转的角度小。 [分析原因]①电压表、电流表量程选择过大;②电源电压不高。 [排除方法]选择小量程,如果故障还存在,只有调高电源电压。实验中若电表指针偏转的角度太小,估读电流或电压时由于视觉造成的误差将增大。为了减小实验误差,选择量程时既不能使电表指针超过最大刻度,又要考虑到每次测量时应该使电表指针偏过刻度盘的中线。 2.器材连接过程中存在故障 故障二:电压表、电流表指针反向偏转。 [分析原因]两表的“+”“-”接线柱接反了,当电流从“一”接线柱流入时,指针反向偏转,甚至出现指针打弯、损坏电表的情况。 [排除方法]将两电表的“+”“-”接线柱对调。 故障三:滑动变阻器的滑片滑动时,电表示数及灯泡亮度无变化。 [分析原因]滑动变阻器连接有误,没有遵循“一上一下”的接线原则,把滑动变阻器接成了定值电阻。 [排除方法]遵循“一上一下”原则正确连接滑动变阻器。 故障四:滑动变阻器的滑片滑动时,电表示数都不变,灯泡极亮且亮度无变化。 [分析原因]滑动变阻器的连接有误,没有遵循“一上一下”的接线原则,且滑动变阻器在电路中的阻值为零。 [排除方法]遵循“一上一下”的原则正确连接滑动变阻器。 故障五:刚接好最后一根导线,灯泡立即亮了。

电流电压电阻功率的关系

电流电压电阻功率的关 系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电流、电压、电阻、功率的关系功率(瓦)=电流(安培)x电压(伏特); 功率=电压*电流 12V*1A=12W 电流=电压/电阻 12V/40Ω= 电压/电流=电阻 功率符号P单位W 电压符号U单位V 电阻符号R单位Ω 电流符号I单位A 关系式 ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U2=U

总电阻等于各电阻之积除以各电阻之和 R=(R1R2)/(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2 ⑶同一用电器的电功率 ①额定功率比实际功率等于额定电压比实际电压的平方 Pe/Ps=(Ue/Us)的平方2.有关电路的公式 ⑴电阻 R ①电阻等于材料密度乘以(长度除以横截面积) R=ρ×(L/S) ②电阻等于电压除以电流 R=U/I ③电阻等于电压平方除以电功率 R=U²/P ⑵电功 W 电功等于电流乘电压乘时间 W=UIT(普式公式) 电功等于电功率乘以时间 W=PT 电功等于电荷乘电压 W=QU 电功等于电流平方乘电阻乘时间 W=I²RT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间 W=U²T/R(同上) ⑶电功率 P ①电功率等于电压乘以电流 P=UI ②电功率等于电流平方乘以电阻 P=I²R(纯电阻电路)

三相功率计算公式

三相功率计算公式 P=1.732×U×I×COSφ (功率因数COSφ一般为0.7~0.85之间,取平均值0.78计算) 三相有功功率 P=1.732*U*I*cosφ 三相无功功率 P=1.732*U*I*sinφ 对称负载,φ:相电压与相电流之间的相位差 cosφ为功率因数,纯电阻可以看作是1,电容、电抗可以看作是0 有功功率的计算式:P=√3IUcosΦ (W或kw) 无功功率的公式: Q=√3IUsinΦ (var或kvar) 视在功率的公式:S=√3IU (VA或kVA) ⑴有功功率 三相交流电路的功率与单相电路一样,分为有功功率、无功功率和视在功率。不论负载怎样连接,三相有功功率等于各相有功功率之和,即: 当三相负载三角形连接时: 当对称负载为星形连接时因

UL=根号3*Up,IL= Ip 所以P== ULILcosφ 当对称负载为三角形连接时因 UL=Up,IL=根号3*Ip 所以P== ULILcosφ 对于三相对称负载,无论负载是星形接法还是三角形接法,三相有功功率的计算公式相同,因此,三相总功率的计算公式如下。 P=根号3*Ip ULILcosφ ⑵三相无功功率: Q=根号3*Ip ULILsinφ (3)三相视在功率 S=根号3*Ip ULIL 对于交流电三相四线供电而言,线电压是380,相电压是220,线电压是根号3相电压 对于电动机而言一个绕组的电压就是相电压,导线的电压是线电压(指A相B 相C相之间的电压,一个绕组的电流就是相电流,导线的电流是线电流 当电机星接时:线电流=相电流;线电压=根号3相电压。三个绕组的尾线相连接,电势为零,所以绕组的电压是220伏 当电机角接时:线电流=根号3相电流;线电压=相电压。绕组是直接接380的,导线的电流是两个绕组电流的矢量之和 功率计算公式p=根号三UI乘功率因数是对的 用一个钳式电流表卡在A B C任意一个线上测到都是线电流 电流和相电流与钳式电流表测量无关,与电机定子绕组接线方式有关。 当电机星接时:线电流=根3相电流;线电压=相电压。 当电机角接时:线电流=相电流;线电压=根3相电压。 所以无论接线方式如何,都得乘以根3。 电机功率=电压×电流×根3×功率因数

文本预览
相关文档 最新文档