当前位置:文档之家› 地铁车站结构基本知识讲座

地铁车站结构基本知识讲座

地铁车站结构基本知识讲座
地铁车站结构基本知识讲座

地铁车站结构基本知识讲座

一、建筑与结构设计的关系

地铁车站设计,从城市大环境看,总的说受城市布局、规划线路条件等限制。

从车站本身的设计看,内部布置方面,建筑综合各个专业内容,也包括结构专业内容;外部布置方面,受周边环境、道路条件等各种因素影响。

车站本身,建筑与结构密不可分,相互制约。

根本上说,结构专业配合建筑、服从于建筑,但是由于地铁车站结构的特殊性,结构专业也制约着建筑。

二、地铁车站结构设计的特殊性

地铁主要是地下工程(也有地上,我们主要做的还是地下),与房建设计有很大区别。具体体现在以下3点:

1、荷载差异大

主要概念上与房建差别大,结构尺寸大,原因是荷载大小有数量级的差别。

房建中,一般公用建筑,除自重外,主要按照2.0~2.5KN/m2(即200kg~250kg/m2)考虑活荷载。一般70kg的一个人,每m2就站不超过4个人。

地铁车站,处于上下左右均受力,顶板和侧墙是水、土,底板是水浮力(这个是一般房建没有的)。中板荷载8KN(4KN)/m2(相当于10个人(5个人)。顶板覆土一般在3m~4m,相当于60~80KN,是房建荷载的30~40倍;因地下水水位关系,标准的2层车站(有站厅层、站台层)底板深度约在15~17m,水浮力(不考虑土体的影响作用)达到120~150KN/m2,达到房建荷载中的60~70倍。

2、尺寸差异大

因为荷载差异大,导致地铁车站结构的尺寸,远大于一般房建。

房建结构,对于我院常设计的,梁高500、600,柱尺寸500*500就算比较大,柱、梁尺度达到800就是很高的高层、跨度很大的结构才有的。对于房建,房屋楼板一般在100~200mm,很少有更大板厚的。

地铁车站荷载大了30~40倍,相应的结构尺寸不得不加大很多。

一般标准明挖的10m、11m站台单柱双层车站,结构尺寸一般如下:

这属于比较常用的尺寸,在局部地区,因结构形式不同、业主要求不同略有区别。

武汉地区已经有部分车站采用了12m站台单柱形式,这样引起

的问题也比较多,板、墙、梁、柱的尺寸都大,从经济角度看并不合理。

下图是一个车站顶纵梁的施工状态,可以看到,梁比人还高。

3、经济性因素

房建设计,板厚度小,有集中荷载、线荷载(墙体)位置一般设置次梁。

地铁车站,因为经济性的要求,一般不采用横向梁,只采用沿线路方向的纵向梁。(横向梁加大层高,引起基坑深度加大,土建造价增加)

实际设计中,往往是8m 柱距为主。采用这个柱距也是综合考虑建筑功能、视觉效果、结构受力合理、经济性等方面得到的。当然,

也不是一定都是这样的柱距,10m以上柱距也是有的。

比如深圳的福田站,实际也是我们院做的,他们设计的跨度12m (纵向),因为高铁要求,横向的跨度更加大,不得不采用了型钢混凝土、钢管混凝土梁柱体系,相应造价也高很多,不是一般城市地铁公司敢承受的。(土建费用接近3万/m2,一般地铁车站1万/m2)弯矩增加,相应需要增加的截面尺寸、钢筋量等均大幅度上升。

另外一个基本的概念,原来车站10m单柱站台车站,现在武汉采用11m单柱站台车站,造价增加多少?

大致估算情况是这样的,板厚增加、钢筋增加,每m2增加的土建造价大约是150~200元,对一个标准双层车站,4个常规出入口,可能总面积在1万m2左右,总造价增加就是约200万。

所以,有的时候,并不是结构专业不愿意做大跨度,这个是涉及到经济性问题,可能造价高了,地铁的业主感觉不能承受。

在没有十分特殊的条件下,一般结构不建议采用跨度过大的建筑形式,原因无外乎经济性不佳。

三、地铁车站施工方式

这里主要是说施工工法,这个也是结构对建筑制约最多的一块。

简单介绍下结构施工的几种主要工法。

地铁车站的施工方法有明挖法、盖挖法、暗挖法。根据《地铁设计规范》(GB50157-2003),盖挖法现已归并到明挖法中;暗挖法包括盾构法和矿山法,一般特指矿山法。盾构法施工的车站,在国内尚

未有专门报道,也就不具体介绍。

1、明挖法

明挖法施工系指从地面向下开挖至基坑底面后,再自下而上浇注车站结构,然后回填土方,恢复路面。

明挖法施工具有以下特点:

1)施工安全,质量容易保证。

2)结合地面工程改造及开发,其综合工程造价优势显著。

3)施工作业面开阔,有利于提高工效、缩短工期。

4)施工降、排水容易。结构防水简单,质量可靠。

5)施工期间对周围环境或道路交通影响大,且易受到气象条件的影响。

6)基坑较深时,须采取措施防止基坑变形及其周围地面沉降。

明挖顺作法一般适用于地面有条件敞口开挖,且有足够施工场地的情况。当站位设在现状道路范围外;或站位设在现状道路下,但施工允许暂时中断交通或结合地面拆迁及道路拓宽,使地面交通客流得以疏散时,就有可能采用明挖法施工。

当车站位于“十”字交通道路下时,为减少与车站垂直方向道路的影响,也可纵向分段施工,此时,前后施工段之间需设置临时封堵墙。

看一下主要的几个有特色的明挖地铁车站施工现场。

放坡开挖车站:

一般采用灌注桩的车站:

施工工序如下图:

2、盖挖法

盖挖法是在地面修筑维持地面交通的临时(或永久)路面系统后,构筑地铁车站的施工方法。

盖挖法根据其临时路面系统的构成及修建顺序,可分为盖挖顺作法和盖挖逆作法。分述如下:

1)盖挖顺筑法

其方法是在地面修筑维持地面交通的临时路面及其支撑后,自上而下开挖土方至坑底设计标高,再自下而上修筑结构的方法。盖挖顺筑法的路面系统由钢梁及路面盖板、围护结构组成,其中钢梁及路面盖板为临时结构,车站施工完成后需拆除。

当路面盖板根据需要仅铺设一部分时,为半盖挖顺筑法。

除了临时路面系统外,盖挖顺筑法的作业程序、结构方案与明挖法完全一致。其特点为:

(A)封闭道路时间比较短暂,而且允许分段实施,一旦路面先期恢复(或盖挖系统完成后),后续施工对地面交通几乎不再产生影响。

(B)盖挖系统的存在,使得工程造价较高;而且挖土是在顶部封闭(或半封闭的)状态下进行,大型机械应用受到限制,施工工期较明挖法长。

2)盖挖逆筑法

其作业顺序与明挖法相反,方法是开挖地面修筑结构顶板及其竖向支撑结构后,在顶板的下面自上而下分层开挖土方、分层修筑结构。

盖挖逆筑法的路面系统由车站顶板、中间支承、围护结构组成,一般均为永久结构。

盖挖顺筑法对路面干扰较盖挖逆作法小,通过合理组织车行路线,可以保证施工期间路面的交通,车站防水质量也较盖挖逆筑法好。

当车站位于现状道路或跨越路口,或处于比较繁华而狭窄的街道下,无明挖条件,但允许短时间中断交通或局部交通改移时,可采用盖挖法施工。

典型的半盖挖逆作法施工工序如下图:

3、暗挖法

当车站通过繁忙交通地段,或因其它原因不允许封闭路面交通或车站位于较完整的岩石地层且地下水不发育时,可采用暗挖法施工。

暗挖法已广为采用的有盾构法(如图2-9)、顶管法、矿山法(如图2-10、11)等。盾构法是地层掘进、出土运输、衬砌拼装、接缝防水和注浆充填盾尾间隙等主要作业都在盾构保护下进行,并通过控制开挖面压力、盾尾注浆等措施控制地面沉降,是工艺技术要求较高、综合性较强的一种施工方法,主要适用于各类软土地层和软岩地层,尤其适用于市区地铁和水底隧道。盾构法施工车站因设备费较高,目前在国内尚未应用。顶管法主要适用于车站下穿营业铁路线时,为保证铁路的安全运营,将铁路路基一侧预制好的钢筋混凝土箱形框架,采用高压油泵带动油压千斤顶,并借助于预先修好的后背支承,顶入铁路路基内,成为与铁路立交的地下车站。由于地铁车站框架断面尺寸较大,在既有铁路下顶进风险较大,且铁路管理部门一般不同意用这种方案在既有铁路站场下修建地铁站,因此国内尚未有此类车站。

1)矿山法施工的地铁车站的适用情形主要有以下几方面:

(A)矿山法车站主要适用于施工时不允许干扰地面交通,或因埋深过大,或拆迁过多,采用明、盖挖施工非常不经济时。

(B)在埋深较大、硬质围岩时,矿山法车站有较好的适应性。

(C)在第四系的松散地层中用矿山法修建地铁车站时,必须与明、盖挖方案进行全面比较,经过充分论证后采用。

(D)对饱和软土地层无法疏干地下水,或者即便进行预加固和预处理,开挖后的自稳性仍很差时,可视为不适合采用矿山法施工。

2)矿山法施工的车站主要优缺点:

(1)除竖井外,地面作业很少,对地面交通、地下管线、地表建筑物等周围环境影响较小,下穿河底时,不影响通航,也不受气候的影响。随着地铁车站埋深增大,其优点更加突出。

(2)矿山法车站施工难度大、安全性差、造价高、工期长,而且从使用功能和运营质量分析,也远不如明、盖挖车站。

暗挖法的最大优点就是施工时对路面交通没有干扰,对地下管线的改迁少,而且地面拆迁量也少。一般说来,在地下水位较高的软弱土层中不考虑采用暗挖法施工,如上海等地。武汉也基本不考虑,也是因为地下水水位的原因。

对3种不同施工方法的简单比较如下:

从功能要求、技术难度、施工质量及经济性等方面出发,明挖法

最优,盖挖法次之,暗挖法再次之。明挖法主要缺点是对路面交通影响比较大,而鉴于功能要求、造价和工期等对能否发挥修建地铁的社会效益和经济效益起决定作用,而施工期间对环境的影响只是一种短期效应,所以浅埋地铁车站仍首选明挖法施工。

四、明(盖)挖地铁车站围护结构

当结构施工方法选定后,车站土建的经济性主要由围护结构控制,因此,选择合适的围护结构相当重要。

一般说来,常用的围护结构有:

1、地下连续墙

2、人工挖孔桩(限制使用)

3、钻孔灌注桩

4、土钉墙

5、SMW工法桩

6、放坡开挖

7、其他围护形式(水泥土挡墙、锚索锚杆、套筒咬合桩等)

以上围护形式主要是使用的地层条件、深度不同而不同。

地下连续墙、人工挖孔桩、钻孔灌注桩可以应用的深度比较大,对地铁车站,主要用于主体和特殊的出入口风道(如距离房屋很近等)。

其他形式(土钉墙、放坡开挖、SMW工法桩)一般属于浅基坑有采用,对地铁车站,出入口风亭有采用,但在城市繁华地段,出入

口风亭离周边建筑物近了,结构也是不敢用,只能是用钻孔桩。只有在条件非常好的位置(比如荒郊野林、鸟不下蛋的地方,武汉站边的杨春湖站)才可能有在主体结构施工中采用土钉墙、放坡开挖的可能性。

五、暗挖车站形式

实际,在我国的现实条件下,因为其风险高、造价高、工作环境差、质量难以控制等多重因素的制约决定了暗挖车站只会越来越少。

不过,也需要大家有所了解即可。(其实类型还蛮多,形式比明挖可复杂多了……)

(1)单层单拱式车站隧道

这种结构型式由于可获得宽敞的空间和宏伟的建筑效果,适用于埋深较大的岩石地层中;在土层和软岩地层中,施工难度大、技术措施复杂,工程费用高。可作为单层岛式站台车站和单层侧式站台车站。这两种车站隧道均需另外配置客流进出站台的途径。

(2)单层双洞分离式车站隧道

单层双洞侧式站台车站隧道具有洞室小,布置灵活的特点,可适用于围岩条件稍差的地层中,也可在建筑物桩基之间穿越。采用多个横通道将两个侧式站台隧道连通,便形成分离岛式站台车站,方便乘客选择站台乘车。这种车站隧道需另外配置客流进出站台的途径。

(3)单层三洞分离式车站隧道

将单层双洞侧式站台车站隧道的基础上,增加一个洞室,布置楼扶梯系统,满足客流进出站台的需要,形成单层三洞分离式车站隧道。中间通道的标高可根据使用要求设置。这种结构型式可使车站站厅与站台分离,根据环境条件选择适当的站厅位置和结构型式,也可应用于换乘车站。

(4)单层双拱式车站隧道

单层双拱式车站隧道与单层双洞侧式站台车站隧道比较类似,即两侧洞合并成双联拱隧道型式。按其中间柱的型式,可分为双拱塔柱

式和双拱立柱式两种。早期地铁采用塔柱式较多,随着施工工艺的提高,取而代之为双拱立柱式应用较多。按站台型式可分为单层双拱岛式站台车站隧道和单层双拱侧式站台车站隧道。这种结构型式一般应用于地层条件稍差,或线间距不能加大等情况,较单拱车站隧道可减小结构高度,减小施工风险,降低工程费用,但较双洞分离式车站隧道,其施工难度大,且防水性能差。这种车站隧道需另外配置客流进出站台的途径。

(5)单层三拱式车站隧道

地铁车站结构设计

地铁车站结构设计 车站是旅客上、下车的集散地, 也是列车始发和折返的场所, 是地下铁道路网中的重要建筑。 在使用方面, 车站供旅客乘降, 是旅客集中处所, 故应保证使用方便、安全、迅速进出车站。为此, 要求车站有良好的通风、照明、卫生设备, 以提供旅客正常的清洁卫生环境。 地下铁道车站又是一种宏伟的建筑物, 它是城市建筑艺术整体的一个有机部分, 一条线路中各站在结构或建筑艺术上都应有独特的特点。 车站设计时, 首先要确定车站在现有城市路网中的确切位置, 这涉及到城市规范和现有地面建筑状况, 地下铁道车站不比地面建筑, 一但修建要改移位置则比较困难, 因此确定车站的位置时,必须详细调查研究, 作经济技术比较。车站位置确定后, 进行选型, 然后根据客流及其特点确定车站规模, 平面位置,断面结构形式等。然后进行车站构造设计, 内力计算, 配筋计算等等。 一、工程概况: 长沙市五一广场站设计为两层三跨岛式车站,车站全长134.6m,宽度为21.8m,上层为站厅层,下层为站台层。车站底板埋深16m,采用明挖法施工,用地下连续墙围护。 二、设计依据: 地铁设计规范(GB50157-2003); 地铁施工技术规范。 三、地铁车站结构设计 3.1 设计选用矩形框架结构。 设计为岛式车站,采用两层三跨结构。地铁车站采用明挖法。车站其矩形框架由底板、侧墙、顶板和楼板、梁、柱组合而成。顶板和楼板采用单向板,底板

按受力和功能要求,采用以纵梁和侧墙为支承的梁式板结构。采用地下连续墙和钻孔桩护壁,采用钢管和钢板桩作基坑的临时支护。临时立柱采用钢管混凝土,柱下基础采用桩基,桩基采用灌注桩。 3.2 车站开挖围护结构 地铁车站围护结构采用0.8m厚、30m深地下连续墙,入土深度比为 =0.875,其中基坑开挖深度H 为16m,入土深度D为14m 。 四、侧压力计算: 土分层及土的钻孔柱状图如图4.1: 图4.1土分层及土的钻孔柱状图(单位,m)

地铁车站计算书

地铁车站计算书

————————————————————————————————作者:————————————————————————————————日期: ?

一设计依据 二设计说明 2.1 工程概况 2.2 环境条件 2.3 地质概况 2.3.1地形地貌 2.3.2 岩土分层及其特性 2.3.3 水文及工程地质 2.3.4场地抗震设防 附岩土物理力学参数表 2.4 基坑支护形式 2.5 基坑计算 本工程围护结构主要采用理正软件进行设计计算,并利用岩土工程有限元分析程序plaxis对终点里程端头井基坑开挖过程进行模拟,作为对理正软件计算结果进行补充和验证。 钻孔灌注桩作临时结构考虑,即:开挖施工期间,钻孔灌注桩作为围护结构,承受全部的水土压力及地面超载。使用阶段不考虑钻孔灌注桩的作用。 理正深基坑软件模拟了施工过程,遵循“先变位,后支撑”的原则,在计算中计入结构的先期位移值及支撑变形,应用基于弹性理论的进行围护结构计算,岩土体对围护结构侧向作用力采用朗肯土压力理论计算,土体与结构相互作用采用一系列仅受压弹簧进行模拟(温克尔地基梁计算模型),最终的位移及内力值为各阶段累加值。 Plaxis为基于有限元理论的岩土专业分析程序,能较为真实地反映基坑开挖过程中岩土及结构物的应力变形发展,将终点里程处端头井简化为平面应变模型,利用地下水渗流分析功能对基坑开挖降水过程进行模拟,同时输出“半截桩”支护的变形与内力。 抗震分析采用地震系数法进行横向抗震分析。经计算地震作用对结构影响较小,故在设计中仅采用相应的构造措施来提高整体的抗震能力。 2.5.1湘府路终点里程端头井围护结构计算 计算所用地质资料取自地质勘查文件,钻孔编号为JZ-Ⅳ10-湘府路补10。

地铁车站主体结构施工

第一章主体结构施工 第1节主体施工准备 1、车站主体结构施工前准备工作 (1)首先编制结构施工专项方案,报有关部门审批后实施。方案中包括设备、机具、劳动力组织、混凝土供应方式、现场质量检查方法、混凝土浇筑流程、路线、工艺、混凝土的养护及防止混凝土开裂等的各项措施。 (2)基坑开挖至设计标高后,仔细进行测量、放样及验收,严禁超挖。 (3)结构施工前,对围护结构表面进行有效的防水处理,确保围护结构表面不渗漏。 (4)在每一结构段施工前首先进行接地网施工,接地网施工结束后,再施做垫层。 (5)对侧墙、立柱、中楼板、顶板模板支撑系统进行设计、检算,并经安全专项论证、报审批准后,根据施工进度提前安排进料。 (6)对结构施工顺序、施工进度安排、施工方法及技术要求向工班及全体管理人员进行认真交底。 2、施工节段划分 车站主体结构施工遵循“纵向分段,竖向分层,从下至上”的原则,满足车站质量要求及工期里程碑节点安排,结构施工由车站两端向中间方向施作,竖向从车站底板开始自下而上施作。主体结构共划分为17个节段,每段20m左右,施工队伍分别分段同时展开流水作业,施工节段的划分主要考虑以下因素: (1)墙体纵向施工缝不应留在剪力与弯矩最大处或底板与侧墙的交接处,应留在高出底板表面不小于30cm的墙体上。 (2)明挖结构施工缝的间距宜为15~20m。

(3)环向施工缝应避开附属结构及一些设备房间的距离要求设置。 3、主体结构施工流程 车站主体结构施工工艺流程见图4-4-1-1。

图4-4-1-1 主体结构施工工艺流程图

每施工段的施工流程见表4-4-1-1所示。 主体结构每施工段施工流程表4-4-1-1

地铁车站附属结构顶板模板计算书

7.1附属顶板(700mm )模板支架验算 ㈠ 荷载计算 ⑴ 砼自重 顶板:2.5×0.7=1.75t/m 2 ⑵ 模板与方木自重:0.3 t/m 2 ⑶ 钢筋自重: 顶板:0.11×0.7=0.077 t/m 2 ⑷ 人员、设备、振捣等活荷载总额:0.4 t/m 2 ⑸ 标准荷载(计算挠度时用)(按JGJ162-2008式4.3.1-1和表4.2.3) 顶板:q 标=1.2×(1.75+0.3+0.077)×0.9=2.297t/m 2 ⑹ 设计荷载组合(计算强度时用) 顶板:q 计=1.2×(1.75+0.3+0.077)×0.9+1.4×0.4×0.9=2.801t/m 2 ㈡ 立杆的强度验算 顶板:取柱网0.9m ×0.9m(纵向×横向),横杆步距为0.9m ,则每根立杆受力:0.9m ×0.9m/根×2.801t/m 2=2.269 t/根。 单根立杆强度为2.269×10×1000/489 = 46.401N/mm 2 < 205 N/mm 2满足强度要求 ㈢ 立杆的稳定性验算 N/ΨA ≤ f Ψ = N/Af = 28010/(489×205) = 0.137 式中:Ψ为轴心受压构件稳定系数 按《建筑施工碗扣式钢管脚手架安全技术规范》JGJ 166—2008附录C 查 得长细比λ=149,而钢管的回转半径i=224/1d D =15.8mm ,由λ=L 0 /i 可得 立杆的允许长度即横杆的步距L 0 =λi=149×15.8=2054.2mm ,所以横杆的步距选择为0.9m 满足要求。 ㈣ 模板计算

顶板模板面板为受弯构件,需要验算其抗弯强度和刚度,取单位宽度0.9m 的面板作为计算单元,则荷载取值为: 顶板:q 标=2.297t/m2×0.9=20.673 N/mm 顶板:q 计=2.801t/m2×0.9=25.209 N/mm 面板的截面惯性矩I 和截面抵抗矩W 分别为: W=bh 2/6=90×702/6=73500cm 3; I=bh 3/12=90×703/12=2572500cm 4; 模板面板的按照简支梁计算(@200mm )。 ⑴ 强度计算 最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下: 顶板:M=0.125×2.5209×0.22 = 0.0126t.m ; 面板最大应力计算值σ= 126000/38400 = 3.28N/mm 2; 根据《建筑施工模板安全技术规范》JGJ 162—2008附录A 表A5.1查的露天环境下胶合面板的抗弯强度设计值取 [f] = 31.5 N/mm 2; 面板的最大应力计算值为 3.28N/mm 2小于面板的抗弯强度设计值31.5 N/mm 2,满足要求。 ⑵ 挠度计算 根据《建筑施工手册》和(JGJ162-2008),刚度验算采用标准荷载,且不考虑震动荷载作用。简支梁挠度计算公式如下: 面板最大挠度计算值 ω=5×20.673×2004/(384×8500×2572500)=0.19mm ; []250/38454 l EI ql =δ=ωω2 125.0l q M 计=

地铁车站内部结构施工方案

目录 1编制说明 (1) 1.1编制依据 (1) 1.2编制范围 (1) 1.3编制原则 (1) 2工程概况 (2) 3施工部署 (2) 3.1工程总体目标 (2) 3.2施工总体部署 (3) 3.3施工组织管理 (3) 3.4工期保证措施 (4) 4施工分块及施工顺序、工艺流程 (5) 4.1施工分块 (5) 4.2施工顺序 (6) 4.3施工流程 (6) 5钢筋、模板及混凝土施工 (7) 5.1钢筋施工 (7) 5.1.1普通钢筋施工............................................................................................................................................ 7T J S O4。 5.1.2钢筋植筋施工............................................................................................................................................ 7K0F A I。 5.2模板施工 (9) 5.3混凝土施工 (10) 5.3.1砼施工技术措施 (10) 5.3.2施工缝缝面处理 (11) 5.4预埋件及预埋留孔 (11) 5.5支架施工 (11) 5.5.1支架搭设 (11) 5.5.2轨顶风道支架体系设计验算 (15) 6质量保证措施 (16) 6.1模板工程质量保证措施 (16) 6.2钢筋工程质量保证措施 (16) 6.3混凝土浇筑质量保证措施: (17) 6.4支架搭设质量保证措施: (18) 7安全文明施工措施 (18)

地铁车站附属出入口主体结构计算书

封面二○一七年十二月长沙

封面二○一七年十二月长沙

目录 1工程概况 (1) 2设计依据及采用规范 (1) 3计算原则及计算标准 (1) 4荷载及组合 (1) 4.1荷载分类 (1) 4.2荷载组合 (1) 5计算方法及计算程序 (1) 6主要工程材料及保护层厚度 (2) 6.1主要材料 (2) 6.2钢筋混凝土构件钢筋净保护层厚度 (2) 6.3钢筋的连接、锚固与搭接 (2) 7计算断面及计算荷载 (2) 7.1参数选取 (2) 7.2结构尺寸 (3) 7.3计算模型 (3) 7.4计算荷载 (4) 7.4.1 3号出入口标准断面(取钻孔Jz2-Ⅲ12-SYZ17)基底位于卵石层 (4) 7.4.2 2号出入口与2号风亭标准断面(取钻孔Jz2-Ⅲ12-SYZ26)基底位于卵石层 (4) 7.5人防荷载工况 (5) 7.6地震荷载工况 (5) 8抗浮计算 (5) 9横断面计算结果及配筋 (6) 9.1 3号出入口横断面计算结果 (6) 9.1.1 3号出入口横断面内力图 (6) 9.2 2号出入口2号风亭横断面计算结果 (8) 9.2.1 2号出入口2号风亭横断面内力图 (8) 9.3 人防工况计算结果 (9) 9.4各截面配筋验算 (11) 10 2号风亭纵梁计算 (12) 10.1 纵梁计算 (12) 11 2号风亭柱轴压比及配筋计算 (17) 11.1 柱轴压比计算 (17) 11.2 柱配筋计算 (17) 12 楼梯计算 (19) 12.1 2号出入口人防楼梯计算 (19) 12.2 3号出入口楼梯计算 (19) 13地基承载力 (21)

一个地铁车站工程的计算例子知识讲解

一个地铁车站工程的 计算例子

1计算荷载、计算模型及计算内容 1.1计算荷载 1.结构自重:按结构的实际重量计,钢筋混凝土容重取25kN/m3,装修层容重取22kN/m3; 在进行荷载基本组合时作为恒荷载考虑; 2.顶板覆土荷载:覆土厚度按实计算,根据路面标高情况分 3.8m和3.5m两种厚度,容重取 20kN/m3,在进行荷载基本组合时作为恒荷载考虑; 3.顶板地面超载20kN/m,盾构吊出段30kN/m;在进行荷载基本组合时作为活荷载考虑并考 虑超载引起的附加土压力; 4.公共区活载标准值按4kPa计,楼梯活载标准值按4kPa计,设备区恒载按8kPa计; 5.侧向水压力具体的计算方法及数值见各个断面的计算简图;在进行荷载基本组合时作为恒 荷载考虑; 6.侧向土压力作用在地下连续墙上,具体的计算方法及数值见各个断面的计算简图;在进行 荷载基本组合时作为恒荷载考虑; 7.底板水压力荷载,具体的计算方法及数值见各个断面的计算简图;在进行荷载基本组合时 作为恒荷载考虑;由于底板上的其他行人荷载对底板受力有利,同时这些荷载不起主要作用,因此不予考虑。 8.人防荷载及地震荷载:按规范要求取。 根据《建筑结构荷载规范》(GB 50009-2012)、《建筑抗震设计规范》(GB 50011-2010)、《轨道交通工程人民防空设计规范》(RFJ02-2009)和《地下铁道设计规范》(GB 50157-2003)的规定,按结构在施工阶段和使用阶段可能出现的最不利情况进行荷载组合。各种荷载组合及分项系数见下表。 注:括号内数值为抗浮工况 在对主体结构进行承载力验算时,采用基本组合结果进行验算;对结构进行裂缝验算时,采用准永久组合进行验算。 1.2计算模型 本计算书采用通用空间有限元分析软件MIDAS进行计算分析。 1.沿车站纵向取一米,按平面框架结构进行计算,荷载作用于框架构件轴线; 2.考虑围护结构与主体结构的共同作用,两者之间用只承受压力的连杆相连,当连杆受拉则 自动失效; 3.按实际情况考虑施工阶段与正常使用阶段两种工况。施工阶段中,底板设置泄水孔而无水 压力,侧向水土压力作于围护结构,然后传至主体结构;正常使用阶段底板泄水孔封闭而产生水压力,侧向水压力作于主体结构侧墙,土压力作用于围护结构。对于盾构端,除考虑正常使用工况外,按实际情况考虑盾构吊出阶段工况,盾构吊出阶段底板未封闭,侧向水压力压力均作用于围护结构。 4.采用地层弹簧模拟地层反力,弹簧刚度=基床系数×分段长度。 1.3计算内容 计算内容包括各断面的内力计算、配筋验算,梁、柱、板的内力计算、配筋验算,抗浮验算等。 本计算书将对3个断面进行计算,包括标准断面(5轴,覆土厚度3.8m)、标准断面(22轴,覆土厚度3.5m),端头井断面(2轴,覆土厚度3.8m),其中标准断面计算全水头工况、抗浮工况、施工工况;盾构井计算盾构吊出阶段与正常使用阶段工况。 2单柱双跨标准段(轴5)计算(覆土厚度3.8m) 2.1计算模型 取5轴处标准断面纵向1m长度进行计算,顶、底板及侧墙用实际厚度,中柱不连续采用刚度等效的墙简化计算(柱子截面bxh=1.3mx0.7m,标准柱跨L=9.8m,),其厚度满足:2 1 /EI L EI=,故322 3 1 1 /h b L h b=,3 2 3 1 1 2 ) /(b L h b h? ==0.357m。式中12 I I ,分别为简化前后中柱抗弯模量。

地铁车站主体结构及防水工程施工监理实施细则

XG-T-003 编号:007 地铁车站工程主体结构及防水工程 质量监理实施细则 编制: 日期: 审批: 日期: 上海新光建设工程监理咨询公司 目录 1、工程概况及专业工程特点 (1) 2、编制依据 (1) 3、监理工作流程 (2) 4、监理控制要点及目标值 (2) 4、1结构工程监理控制要点 (2) 4、2防水工程监理控制要点 (12) 4、3接地及防迷流工程监理控制要点 (15) 5、监理平行检验计划 (16) 6、监理工作得方法及措施 (16) 7、安全生产、文明施工 (17) 8、旁站监理计划 (17)

1、工程概况及专业工程特点 1、1 工程概况 1、1、1 工程名称(指本地铁车站工程名称)才 1、1、2建设单位 1、1、3设计单位 1、1、4施工单位 1、1、5监理单位 1、1、6本车站工程内容及工期要求(从设计说明与施工组织设计中摘录) 1、2 专业工程特点 1、2、1 车站主体结构工程分包单位名称及承包方式 1、2、2 主体结构工程内容及工期要求 1、2、3 主体结构工程施工方法及采取得主要技术措施 (从施工组织设计中摘录) 2、编制依据 2、1 《建设工程监理规范》 (GB50319-2000); 2、2 《建筑工程施工质量验收统一标准》 (GB50300-2001); 2、3 《混凝土结构工程质量验收规范》 (GB50204-2002); 2、4 《建筑地基基础工程施工质量验收规范》 (GB50202-2002); 2、5 《地下防水工程技术规范》 (GB50108-2001); 2、6 《地下防水工程质量验收规范》 (GBJ50208-2002); 2、7 《地下铁道工程施工及验收规程》 (GB50299-1999); 2、8 《上海地铁基坑工程施工规程》 (SZ-08-2000); 2、9 《市政地下工程施工及验收规程》 (DGJ08-236-1999); 2、10《建筑地基基础设计规范》(GB50007-2002); 2、11 《地基基础设计规范》 (DBJ08-11-1999); 2、12 《钢筋焊接及验收规程》 (JGJ18-96); 2、13 《钢筋机械连接通用技术规程》 (JGJ107-96); 2、14 《钢筋等强度滚轧直螺纹连接技术规程》 (DBJ/CT005-99); 2、15 《普通混凝土配合比设计规程》 (JGJ55-2000);

地铁车站主体结构与附属结构连接处施工技术探讨

地铁车站主体结构与附属结构连接处施工技术探讨 发表时间:2018-03-23T15:55:41.820Z 来源:《防护工程》2017年第32期作者:覃海成 [导读] 在施工过程中,基坑建筑物、管线、地表沉降等监测双控数据均未出现报警现象。为类似工程提供安全可靠的换撑施工方案。广州轨道交通建设监理有限公司 摘要:在地铁车站建设过程中,附属结构以外挂的形式附着在车站主体两边。特别是与明挖车站主体平行布置的附属结构,往往基坑支撑受力在主体围护结构上。本文分析了上述情况施工时附属基坑受力问题,解决了主体围护结构拆除过程的基坑受力转换,提出围护结构的拆除方案等。 关键词:地铁车站;受力转换;拆除;接驳 地铁交通不但能避免城市地面拥挤,而且该交通方案运量大、速度快、按时、安全、节省土地、减少噪音、减少干扰、减少污染、节约能源等优点,得到全国人民的青睐。在如今拥堵的城市交通,地铁已成为人们出行不二之选。因此,地铁建设已成为一个城市建设的重中之重。然而,地铁建设风险极大,特别是地铁基坑风险,是地铁建设成败之举。本文通过实例,对地铁车站主体与附属结构连接施工过程的基坑安全进行探讨。 1工程概况 南宁某地铁车站地下四层,该站设12个出入口,3个风亭组。本文以该站7号出入口与主体结构连接施工过程为例,详细分析结构接驳施工过程基坑受力转换及施工工艺。该出入口位于车站东南侧,与车站主体平行布置,两层框架结构,采用明挖法顺筑法进行施工。基坑深18.4米,基坑支护体系采用内支撑+地下连续墙进行支护;共设三道支撑,首道支撑为600mm*800mm的C30砼支撑,第二、第三道均为Φ609,t=16mm钢支撑;支撑一端撑在出入口地下连续墙上,另一端撑在主体地下连续墙上,详见《图1-1》、《图1-2》。 图1-1 7号出入口平面布置图图1-2 7号出入口剖面图 2接驳过程 由于该基坑支护体系利用主体地连墙进行支撑受力,在出入口结构施工过程中无法拆除主体地下连续墙,一次性完成结构施工;需预留后浇带,进行基坑支护体系受力转换,待主体地下连续墙拆除后,方可进行主体与出入口结构接驳施工。 2.1受力转换 为了基坑安全,提高附属结构施工工效,控制周边建筑物的沉降变形,确保其在施工期间的安全,采取预留后浇带+二次架设换撑的施工方法。具体方案如下:基坑开挖至基底后,底板施工时,离主体地下连续墙0.8米处设置接驳后浇带;后浇带出入口端上断面设置 @3000mm的换撑基座,后浇带主体端地下连续墙上值入换撑基座(与出入口端对应,隔一布一,间距6000mm)。基座大样如图2-1。接着采用63A工字钢进行一次换撑安装。具体布置如图2-2。之后进行底板施工,待底板砼强度达到75%后拆除第三道支撑。拆除后基坑转入原第三道支撑应力大部分转移到底板及一次换撑上。依此方法进行中板及顶板施工。 图2-1 基座大样图图2-2 一次换撑示意图 拆除首道支撑后将进行拆除主体地下连续墙墙体,采取两期跳马口方式破除主体基坑围护结构地下连续墙后,一期主体地下连墙拆除后,在主体结构上植入二次换撑基座,进行二次换撑安装详见图2-3。之后拆除一次换撑,促使一次换撑所受水平应力转移至二次换撑上,完成二次换撑施工。在二次换撑的支撑下,安装后浇带范围内钢筋,浇筑结构砼(二次换撑不拆除,浇筑在后浇带内)。详见图图2-4。

地铁车站及其附属结构穿越既有桥梁方案分析

地铁车站及其附属结构穿越既有桥梁方案分析 发表时间:2019-09-21T12:43:04.343Z 来源:《基层建设》2019年第19期作者:李伟[导读] 摘要:随社会经济不断发展、城市化进程不断加速,越来越多的人口选择在较大城市工作、定居。青岛市市政工程管理处山东青岛 266022摘要:随社会经济不断发展、城市化进程不断加速,越来越多的人口选择在较大城市工作、定居。据统计,世界范围内有近半数人口居住在仅占地表面积 0.7%的各大城市中。该情况在我国也日益突出。针对这一情况,城市发展对于城市土地利用率就提出了较高要求,大力发展公共交通尤其是地铁等交通工具是日后国内主要城市在高效利用土地的前提下解决交通拥堵问题的重要途径。 关键词:地铁车站;附属结构;穿越既有桥梁 一、施工引起地层变形机理 1、明挖工程基坑开挖是不断移除坑底及坑侧壁开挖面土体的过程。随基坑土体逐渐移除,开挖面土体被卸载,坑底开挖面以下土体被卸载竖向自重应力、坑侧壁土体被卸载水平向静止土压力。作用在基坑底部的土压力卸载使坑底竖向应力平衡改变,导致坑底土体向上隆起。对于侧壁土体而言,基坑土体移除使原先施作的围护结构的应力平衡状态发生改变,围护结构坑外侧土体对其施加的主动土压力将大于坑内侧土体对其施加的被动土压力,应力不平衡使围护结构产生朝向基坑内侧的位移。因此,基坑周围土体被扰动,致使周围土体产生变形。开挖引起的土体变形主要体现在坑底土体隆起及基坑周边土体位移两方面。引起坑底土体隆起的原因主要有;(1)坑底开挖面以上土体被移除后,原应力平衡被打破,坑底土体所受自重应力减小,致使土体产生上弹;(2)基坑围护结构向坑内侧的水平位移使其对坑底土体产生挤压,导致坑内被动区土体产生隆起;(3)若坑底存在承压水,则水的浮力也会使土体隆起。在基坑施作过程中决定坑底隆起量的因素较多,如坑底处理方案、基坑支护类型、基坑开挖深度与宽度,相关研究都较复杂。同时,坑底土体隆起及围护结构向坑内移动将导致基坑周边土体产生位移,主要为水平位移及竖向位移。围护结构向坑内移动导致周边土体产生朝向基坑的水平位移,周边土体竖向位移主要受围护结构类型及入土深度、基坑深度、土层情况等因素影响。若基坑深度较大或土层情况较差,则开挖过程中土体塑性变形较大,土体主要向坑内及坑底移动,引起地表沉降。基坑周边地表沉降曲线主要有三角形和二次抛物线两种。若土质情况较差或围护结构入土较浅,则沉降曲线呈三角形:临近围护结构的土体沉降最大,距离围护结构越远沉降越小;若土质情况良好或围护结构入土深度较大,则沉降曲线呈二次抛物线型:坑外一定距离处的土体沉降最大,并向两侧逐渐减小。 2、暗挖工程暗挖工程引起地表沉降的原因主要有土体应力状态改变及地层损失两方面。暗挖工程施工将引起原本作用于开挖土体上部的自重应力转移至开挖部分两侧土体,使两侧土体产生附加应力进而产生沉降。部分土体开挖后,其上部的应力转移至两侧土体,红色部分即为附加应力。开挖面上部土体被卸载支撑力进而产生应力松弛,土体颗粒变松散并产生竖向沉降。开挖面两侧土体被卸载水平侧向土压力而向开挖面方向移动。同时,在实际暗挖工程施工过程中将不可避免地产生土体超挖现象,即设计要求的土体开挖体积总比实际土体开挖体积偏小。在初期支护封闭成环后,土体临空面将向初期支护表面收缩,收缩所带来的地层损失也将导致周围土体产生变形,进而导致地表沉降。 二、地层变形对桩基的影响 1、地层变形对单桩影响机理当桩基施做完毕并承担竖向荷载时,桩身和桩端相对土层产生向下的位移。桩身受到土层的侧摩阻力,桩端受到土的桩端阻力,侧摩阻力和桩端阻力共同组成桩体的承载力。地下工程施工对土体产生扰动,使其应力和应变状态产生变化,从而影响桩体的侧摩阻力、桩端阻力及桩体本身应力状态。隧道开挖引起的地层变形有竖直和水平两种分量,地层变形状况不同,桩基承载力及桩体应力状态变化情况也不相同。现将土层两种变形情况对既有桩基影响情况分开叙述:地层水平变形情况下,靠近暗挖工程的桩周土体向开挖面移动,造成该侧土体对既有桩基的法向压力减小,另一侧土体对桩基的压力增大,使桩基两侧产生压力差。在两侧压力差的作用下桩基产生水平向变形和阻止变形的内部抗力,继而影响桩基承载力及桩基上部承台的稳定性;同时,该压力差也会导致桩基础的横向位移或倾斜情况发生。暗挖工程施工时,土层与既有桩基同时产生竖向沉降。若桩周土沉降值大于桩基沉降值,则土体对桩基产生向下的负摩阻力,桩基承载力减小;若桩周土体相对桩基向上移动,将产生向上的摩阻力,从而增大桩基的承载力。在实际工程中,可能负摩阻力与正摩阻力同时存在,且桩体某一位置存在一点,该点负摩阻力、正摩阻力桩体与土体相对位移均为零。同时,若桩端土体承载能力较强,则桩体沉降将引起土体抗力增加进而增大桩端阻力;若桩端土体承载能力较弱,则桩体将刺入桩端土层导致土体剪坏,进而减小桩端阻力。同时,桩基竖向位移是上部压力、负摩阻力、正摩阻力、桩端阻力综合总用的结果。当上部压力与负摩阻力之和大于正摩阻力与桩端阻力之和时,桩体产生沉降;当上部压力与负摩阻力之和小于正摩阻力与桩端阻力之和时,桩体产生隆起。暗挖隧道临近既有桥桩施工时,若隧道与桥桩水平间距一定,那么隧道的埋深将直接影响既有桩基的沉降及水平变形情况。当桥桩底部埋深小于隧道水平轴线埋深时,两者位置关系为短桩情形。全部桩基均位于隧道开挖影响范围内,桥桩基本与土体同时发生沉降。同时,桩端土体位于影响范围内且距开挖面较近,受开挖影响较大,因此桩端承载力损失较严重。由于该类位置关系中隧道轴线埋深大于桩底埋深,隧道开挖不会对桩侧土体产生较明显的卸载作用,因此该类情况下隧道开挖时,桥桩主要表现为竖向沉降,而水平位移值较小。同时,该类型桩基承载力受施工影响较大,极易产生较大沉降,在施工中应重点关注。当桥桩底部埋深等于隧道水平轴线埋深时,两者位置关系为中长桩情形。此时桩体部分位于开挖影响范围内,桩端阻力受影响较小,对于摩擦桩而言,隧道开挖将产生桩体沉降。同时,桩侧土体卸载将导致处于影响线范围内的桩体产生较大的水平变形。由于桩基大部分处于施工影响范围内,仅桩端位于影响范围外,桩体不同位置的水平位移不同,使桩体产生较大倾斜,该类情况的桩基倾斜程度也是三种情况中最大的。同时由于桩体大部分处于影响范围内,桩侧摩阻力损失较大,其产生的竖向沉降也较大。当桥桩底部埋深大于隧道水平轴线埋深时,两者位置关系为长桩情形。由于该类型桩基处于影响线范围外的部分较多,桩基下部土体受施工影响较小,因此桩基产生的沉降和倾斜均较小。因此,对于桩基竖向沉降而言,短桩最大,中长桩次之,长桩最小;对于桩基倾斜而言,中长桩比其他两种情况更大。结束语

地铁车站主体结构计算书

XX市城市轨道交通XX线工程XXX站主体结构施工图设计 专业:结构 计算书 中铁XX工程集团有限责任公司 2011 年 2 月

XX市城市轨道交通XX线工程XXX站主体结构施工图设计 专业:结构 计算书 中铁XX工程集团有限责任公司 2011 年 2 月

一.工程概况 XXX站位于XX路与XX路交叉的十字路口北侧,顺XX路呈南北向偏东布置。XX路规划宽43m,道路现已形成,路面车流量大,交通繁忙。十字路口东北象限为海雅百货、世博广场;东南象限为夏威夷阁住宅小区;西南象限为中惠华庭住宅小区、中国移动;西北象限为华润万家购物广场和XX老饭店。车站四周商业建筑多,较繁华,客流量大。 二.设计依据及采用规范 1、《XX市城市快速轨道交通XX线工程详细勘察阶段XXX站岩土工程勘察报告》,中铁XX工程集团有限责任公司,2010年1月 2、业主、总体组及其它相关部门提供的基础资料 3、设计采用的规范、规程和标准 《地铁设计规范》(GB50157-2003) 《地下铁道工程施工及验收规范》(GB50299-1999)(2003年版) 《建筑结构荷载规范》(GB50009-2001)(2006年版) 《混凝土结构设计规范》(GB50010-2002) 《轨道交通工程人民防空设计规范》(RFJ 02-2009) 《人民防空工程设计规范》(GB50225-2005)(2006版) 《钢结构设计规范》(GB50017-2003) 《地下工程防水技术规范》(GB50108-2008) 《建筑抗震设计规范》(GB50011-2010) 《混凝土结构工程施工质量验收规范》(GB50204-2008) 《建筑工程抗震设防分类标准》(GB50223-2004) 国家及广东省、XX市的其它现行相关规范、规程。 三.计算原则及计算标准 1、车站主体结构安全等级为一级;结构按设计使用年限100年的要求进行耐久性设计;结构重要性系数1.1。 2、车站主体结构可按底板支承在弹性地基上的平面框架进行内力分析,计算时宜考虑所有构件的弯曲、剪切和压缩变形的影响。 3、车站主体结构裂缝控制:最大裂缝宽度允许值背土面为0.3mm、迎土面为0.2mm。 4、车站人防设计按6级抗力,并严格按《轨道交通工程人民防空设计规范》(RFJ 02-2009)的规定进行设计。

地铁车站内部结构施工方案

如有帮助,欢迎下载支持 目录 1编制说明 (1) 1.1编制依据 (1) 1.2编制范围 (1) 1.3编制原则 (1) 2工程概况 (2) 3施工部署 (2) 3.1工程总体目标 (2) 3.2施工总体部署 (2) 3.3施工组织管理 (3) 3.4工期保证措施 (4) 4施工分块及施工顺序、工艺流程 (4) 4.1施工分块 (4) 4.2施工顺序 (5) 4.3施工流程 (5) 5钢筋、模板及混凝土施工 (5) 5.1钢筋施工 (5) 5.1.1普通钢筋施工 (5) 5.1.2钢筋植筋施工 (6) 5.1.2.1工艺流程 (6) 5.1.2.2注重事项 (8) 5.2模板施工 (8) 5.3混凝土施工 (9) 5.3.1 砼施工技术措施 (9) 5.3.2 施工缝缝面处理 (9) 5.4预埋件及预埋留孔 (9) 5.5支架施工 (10) 5.5.1 支架搭设 (10) 5.5.1.1模板支架搭设型式 (10) 5.5.1.2支架材料及构件的选用 (10) 5.5.1.3 支架搭设流程 (10) 5.5.1.4 支架搭设与拆除 (10) 5.5.2轨顶风道支架体系设计验算 (13) 6质量保证措施 (14) 6.1模板工程质量保证措施 (14) 6.2钢筋工程质量保证措施 (14) 6.3混凝土浇筑质量保证措施: (15) 6.4支架搭设质量保证措施: (16) 7安全文明施工措施 (16)

如有帮助,欢迎下载支持 1编制说明 1.1编制依据 1、昆明轨道交通首期工程×××××施工图纸(设计单位:中铁第四勘察设计院集团有限公司) ×××××内部结构主要施工图纸表表1.1-1 图纸名称图号出图日期×××××车站主体建筑KMDT1.SS.131-JZ-01 2010年5月 ×××××车站主体结构KMDT1.SS.131-JG-02 2010年1月 ×××××车站附属结构KMDT1.SS.131-JG-03 2010年5月 ×××××车站内部结构KMDT1.SS.131-JG-05 2011年6月 2、设计、施工过程中涉及的有关规范、规程: (1)《地铁设计规范》(GB50157-2003) (2)《混凝土结构设计规范》(GB50010-2010) (3)《建筑抗震设计规范》(GB50011-2001) (4)《建筑结构荷载规范》(GB50009-2001) (5)《混凝土耐久性设计与施工指南》(CCES01-2004) (6)《混凝土结构工程施工质量验收规范》(GB50204-2002) (7)《地下铁道工程施工及验收规范》(GB50299-1999)2003版 (8)《钢筋混凝土锚固技术规程》(JGJ145-2004) (9)《建筑施工碗扣式钢管脚手架安全技术规范》(JGJ166-2008) (10)《钢管脚手架、模板支架安全选用技术规程》(DB11/T583-2008) (11)《建筑施工扣件式钢管脚手架安全技术规范》(JGJ 130-2001) (12)《建筑施工模板安全技术规范》(JGJ 162-2008) 3、业主、设计提供的其它基础资料; 4、施工场地周边环境及施工条件。 1.2编制范围 本次施工为×××××内部结构土建工程,包括轨顶风道、站台板及站厅层、站台层的楼梯钢筋、混凝土、预留孔洞、预埋件处理等施工。 1.3编制原则 1、严格按照设计图纸施工。

浅谈地铁车站地面附属建筑

浅谈地铁车站地面附属建筑 摘要:文章从成都地铁1号线车站地面附属建筑风亭的外观设计出发,基于城市的景观概念,着重阐述了地铁车站地面风亭的建筑布置形式、外观设计与城市景观之间的相互关系及结合的方式、方法。阐述了笔者的设计观点和设计思路,并提出了风亭布置适用的条件、存在的主要问题及初步的解决问题思路。 关键词:地铁车站地面风亭城市景观结合 1 概述 地铁车站的地面附属建筑(出入口、风亭等)布置形式,受到诸多内部和外部因素的影响,主要受站址周边环境条件的限制。应综合考虑线网和线路条件、道路的交通流量和交通疏解条件、工程及水文地质条件、车站的施工工法、站址范围内地面和地下建、构筑物和地下管线等影响因素。并结合车站的不同特点,在满足地铁车站使用功能和运营功能要求的基础上,因地制宜地提出与其特点相适应的地铁车站的地面附属建筑布置形式。 目前国内由于气候条件、温湿度和车站的规模等因素,地铁车站一般设有3~4个车站风亭。地面风亭为防止雨雪、灰砂、地面杂物等被风吹入通风道内,并从安全考虑,一般设有顶盖及围护墙体,通风口距离地面的高度一般不小于2m,并且为避免串风,进风及排风口之间水平距离不小于5m。因此一般地下车站的组合式高风亭的体量相当巨大,高度接近或超过10m,对周边的环境及城市景观影响很 大。 为此,本文通过对我院作为总体设计的成都地铁1号线一期工程建设中最直接体现城市形象这一窗口功能的一个分项工程:车站地面附属建筑——风亭的布置形式的分析研究,探讨与1号线部分车站特点相适应的地铁车站地面风亭合理、可行的布置形式。 2 成都地铁1号线工程概况

成都地铁1号线一期工程(升仙湖至世纪城段)呈南北走向,贯穿成都市城区的南北,为南北方向主干线,串联了城市新老城区中心和南北两端新发展区。该工程北起红花堰站北端,然后向西折向站北一路,向南下穿火车北站铁路站场后,沿人民北、中、南路及其南延线南下,出火车南站穿南延线与三环路立交桥进入南都西路,并沿南都西路,经三环路、行政中心和孵化园后,向东穿过外环高速公路折回人南延线,南止于新会展中心,线路全长18.5km,全部为地下线。一期工程共设车站17座,依次为:升仙湖站、火车北站、人北站、文殊院站、骡马市站、天府广场站、锦江宾馆站、华西坝站、省体育馆站、倪家桥站、桐梓林站、火车南站、高新站、行政中心站、孵化园站、海洋公园站、世纪城站。本工程2010年9月底建成试通车后,减少了地面交通压力,较大程度缓解了沿线区域交通紧张矛盾,改善了居民出行条件和乘车环境。(详见附图2-1) 3 风亭外观设计的定位 成都地铁1号线一期工程火车北站至桐梓林站段线路,位于城市建成区内,沿城市主要交通走廊——人民北、中、南路及天府大道南延线布设。人民南路作为成都市的中轴主干道,对于城市的景观功能有着非常高的要求,地铁1号线线路走向正处于人民北路、人民南路及南延线路面以下,其车站地面附属建筑必然与之产生接口关系,而2008年12月至2009年8月间,正逢成都地铁1号线地面附属建筑工程建设与成都市人民南路市政改造项目同步,因此市规划及相关部门提出:地铁1号线地面附属建筑的形式及体量不能对人民南路的景观效果造成较大的影响。在这样的前提下,对于如何减小地面附属建筑的体量以及风亭的外观与人民南路改造的景观如何统一,成为设计者在设计过程中解决的重点问题。(附图3-1人民南路街景)

煤矿窄轨铁路轨道(讲座)汇总

煤矿窄轨铁路轨道 (讲座) 主讲:程国志 联系方式:5 天弘公司盐井一矿建设项目部

第一章煤矿窄轨铁路概述 第一节煤矿窄轨铁路的作用和分类 一.煤矿窄轨铁路的作用 窄轨铁路是煤矿轨道运输的基础建筑物,是煤矿生产过程中煤炭、矸石、材料、设备和人员运输的物质条件之一。 它的作用是把车轮的集中载荷传播、分散到地面或井下巷道底板上,使列车沿轨道平稳、高速运行。轨道的设计、施工和维修的质量,是安全行车最基本的保证。 二.煤矿铁路的分类 煤矿现行的窄轨铁路,按轨距分有900mm、762mm、600mm 三种。根据运输情况分为主要运输与一般运输线路。三.铁路建筑的组成 轨道的建筑由两大部分组成,即轨道下部建筑: 1. 轨道下部建筑(路基及附属设备——排水和防护加固设备等); 2.轨道上部建筑(道床、轨枕、钢轨、道岔、联接零件、安全设备)。 第二节轨距、水平、轨底坡、高低和方向一.轨距 轨距是指铁道线路上两股钢轨头部侧、与轨道中心线垂直的距离。(如图1所示)

1.轨距的测量点 因钢轨头部两侧呈圆弧形,同时车轮轮缘也有一定的曲线形式,轮缘与钢轨的接触点,随钢轨类型不同而异,窄轨道轨矩在轨顶下13mm处测量。 2.游间 为了使车轮沿两钢轨滚动时不被卡住,减少车轮与钢轨间的摩擦,在轮缘与钢轨间应有一定的空隙,这个空隙称为游间。 游间可用下式计算: &=S-q 式中:&——游间;S——轨距;q——轮缘距。 其中 q=T+2h 式中:T——轮背距;h——轮缘厚。 &max=Smax-qmin &min=Smin-qmax

3.轨矩允许误差 轨矩允许有误差,是因为列车运行对铁道产生很大的压力和冲击,是铁道轨矩不可能经常保持标准规定的公称轨距,另外,施工时也会出现误差。《煤矿安全规程》规定“直线段或曲线段加宽后,最宽不得超过5mm,最窄不得超过2mm。 二.水平、三角坑 为了保证车辆行驶平稳,使两股钢轨均匀的承担荷重,所以在直线轨道上,左右两股钢轨顶面应位于同一水平上,以保持列车运行平稳和磨耗均匀,因此规定两股钢轨轨顶水平误差不得超过5mm。 在延长两米围,两股钢轨顶面水平向相反变化,先左股比右股高,后右股比左股高,水平差超过5mm,称为三角坑。这样会使得四个轮子的一个悬空,如果恰好在这个轮上出现很大的横力,就可能使浮起的车轮轮缘沿钢轨爬上轨面而引起跳道。 三.轨面前后高低 轨道纵向的不平顺,出现坑洼或凸起现象时,称为轨面前后高低。由于雨后和矿井巷道存水,路基状态发生变化,道床捣固坚实程度不均匀,连接扣件松紧不同,都会使轨道产生不均匀的下沉,造成轨面高低不平。 主要运输线路要求目视平顺,用10m弦量轨面高低允许

地铁车站内部结构施工方案

地铁车站内部结构施工方案

目录 1工程概况 (1) 1.1工程概述 (1) 1.2 围护工程 (1) 1.3 结构工程 (1) 1.4工程重点、难点分析 (1) 2编制依据 (1) 3施工总体部署 (2) 3.1 施工单元划分 (2) 3.2 结构施工顺序 (2) 3.3 进度计划 (4) 3.4 劳动力计划 (4) 3.5 工具设备配置 (4) 3.6 材料计划 (4) 4 基坑结构施回筑施工方案 (5) 4.1 内部结构回筑施工 (5) 4.2 模板体系 (5) 4.3 脚手支架 (5) 4.4 钢筋成型与绑扎 (5) 4.4.1 钢筋现场绑扎的准备工作 (5) 4.4.2 结构板的钢筋绑扎 (6) 4.4.3 侧墙的钢筋绑扎 (7) 4.4.4 楼板的钢筋绑扎 (7) 4.5 混凝土浇筑 (7) 4.5.1 混凝土施工总体要求 (7) 4.5.2 混凝土施工方案 (7) 4.6 预埋钢洞门 (13) 4.7结构防水施工方案 (13) 4.7.1结构自防水 (14)

4.7.3附加全包外防水层 (15) 4.7.4其他特殊防水构造 (15) 5常规混凝土结构模板支架工程 (15) 5.1 模板支架设计 (15) 5.2模板支架的安装 (15) 5.3模板支架的拆除 (17) 5.4模板支架的施工要求 (17) 5.5 模板体系施工技术质量措施 (18) 5.5.1 模板施工的一般规定和要求 (18) 5.5.2 模板体系施工技术措施 (19) 5.5.3 模板体系施工质量措施 (20) 5.6模板体系施工安全措施 (21) 5.6.1 施工现场操作规范 (21) 5.6.2 高处作业安全措施 (21) 5.6.3 模板安拆安全要求及措施 (21) 5.6.4 脚手架搭拆安全措施 (23) 5.6.5 施工现场临时用电安全措施 (23) 5.6.6 施工现场防火安全措施 (24) 6.文明施工与环境保护 (24) 6.1 文明施工目标 (24) 6.2 文明施工措施 (24) 6.3 消防管理措施 (25) 6.4 市容卫生管理措施 (26) 6.5 配合交通措施 (26) 6.6 社会治安综合治理措施 (26) 6.7 环境保护主要技术措施 (26) 7质量保证措施 (27) 7.1 质量检验标准 (27) 7.2 工程质量保证措施 (27)

地铁车站附属结构施工方案

地铁车站附属结构施工方案 目录 1 编制依据1 2工程概况1 2.1附属结构概况 1 2.2附属设计概况 2 2.3工程地质情况 3 2.4水文地质概况 4 2.5场区地下水埋深、分布情况(详地质勘查报告) 4 2.6施工重点、难点 4 3施工部署5 3.1主要工程量 5 3.2施工进度计划 5 3.3施工机具选择 5 3.4结构主要施工方法选型 6 3.4.1钢筋连结 6 3.4.2侧墙模板及支撑体系 6 3.4.3顶板模板及支撑体系 6 3.4.4 框架柱模板6 3.5技术准备7 4施工方案7 4.1 钢筋工程7 4.2模板工程11 4.2.1模板支撑体系选型11 4.2.2技术参数11 4.2.3主要施工方法12 4.2.5模板的维护与维修16 4.2.6主要计算内容17 4.2.7构造要求17 4.2.8 检查与验收17 4.2.9模板验算20 4.3混凝土工程29 4.3.1施工准备29 4.4施工缝施工32 4.5脚手架工程33 5 质量目标设计及质量保证措施36 5.1质量目标36

5.2工程质量管理体系36 5.3质量保证措施 37 6安全、环保及文明施工措施38 6.1安全措施38 1 编制依据 1.3现场踏勘所采集的资料 1.4建筑施工碗口式钢管脚手架安全技术规范(JGJ166-2008) 1.4建筑施工扣件式钢管脚手架安全技术规范(JGJ130-2001) 1.5建筑施工模板安全技术规范(JGJ162-2008) 1.6地下铁道、轻轨交通工程测量规范(GB50308-1999) 1.7钢筋机械连接通用技术规程(JGJ107-96) 1.8混凝土质量控制标准(GB50164-92) 1.9建筑工程施工质量验收统一标准(GB50300-2001) 1.10地下防水工程质量验收规范(GB50208-2002) 1.11地下铁道工程施工及验收规范(GB50299-1999)(2003年版) 1.12混凝土结构工程施工质量验收规范(GB50204-2002) 1.13混凝土强度检验评定标准(GBJ107-87) 1.14钢筋焊接及验收规程(JGJ18-96) 1.15建筑施工安全检查标准(JGJ59-99) 1.16建筑机械使用安全技术规程(JGJ33-2001) 1.17施工现场临时用电安全技术规程(JGJ46-88) 1.18建筑施工扣件式钢管脚手架安全技术规范(JGJ130-2001)(2002年版) 1.19建筑施工模板安全技术规范(JGJ162-2008) 1.20建筑施工手册(第四版) 1.21国家、部委颁布的其它有关规范和标准 1.22其他由甲方或监理工程师指定的工程规范和技术说明 2工程概况 2.1附属结构概况 附属结构是指和车站主体相连接的出入口、通风道,本工程包括3个出入口、2个风道、1个消防出入口。结构主体均位于地下,与站厅层连接,采用明挖法施工。 2.2附属设计概况 风道剖面图 出入口纵剖面图

相关主题
文本预览
相关文档 最新文档