当前位置:文档之家› 线性二自由度汽车操纵稳定性Simulink仿真

线性二自由度汽车操纵稳定性Simulink仿真

线性二自由度汽车操纵稳定性Simulink仿真
线性二自由度汽车操纵稳定性Simulink仿真

线性二自由度汽车操纵稳定性Simulink 仿真

汽车的操纵稳定性是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能够遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且遇到外界干扰时,汽车能够抵抗干扰而保持稳定行驶的能力,汽车的操纵稳定性是汽车主动安全性的重要评价指标之一。

操纵稳定性包括:汽车在转向盘输入或外界干扰输入下的侧向运动响应随时间而变化的特性称为时域响应特性;转向盘输入有角位移输入和力矩输入;外界干扰输入主要指侧向风和路面不平产生的侧向力。

1. 转向盘角阶跃输入下的响应

稳态响应,评价参量为 横摆角度速度增益—转向灵敏度

瞬态响应,评价参量为 反应时间;横摆角速度波动的无阻尼园频率。

2. 横摆角速度频率响应特性

转向盘转角正弦输入下,频率由0至∞变化时,汽车横摆角速度与转向盘转角的振幅比及相位差的变化规律。评价参量为:共振峰频率;共振时的振幅比;相位滞后角;稳态增益。

3. 转向盘中间位置操纵稳定性

转向盘小转角、低频正弦输入下,汽车高速行驶时的操纵稳定性。评价参量为:转向灵敏度、转向盘力特性、转向功灵敏度。

4. 回正性

转向盘力输入下的时域响应。评价参量为:回正后剩余横摆角速度与剩余横摆角;达到剩余横摆角速度的时间。

轮胎的侧偏特性为:αk F Y =,k 为侧偏刚度,Y F 一定时,侧偏角越小越好,因此k 越大越好;前轮侧偏角在4度内时,轮胎侧偏特性呈线性变化。

图1

线性二自由度汽车模型对前轮角输入的响应

建模假设:忽略转向系统的影响,直接以前轮转角为输入;忽略悬架的作用,车身仅作平行于地面的平面运动,绕z 轴的位移、绕y 轴的俯仰角和绕x 轴的侧倾角均为零;汽车前进速度不变。汽车被简化为只有侧向和横摆两个自由度的两轮汽车模型。

图2

假定汽车g y 4.0≤α(质心加速度在y 轴的投影),轮胎侧偏特性处于线性范围内,不计地面切向力Fx 、外倾侧向力Fy γ、回正力矩Tz 、垂直载荷的变化对轮胎侧偏刚度的影响;简化后的两轮汽车模型及车辆坐标系如下:

图3

确定汽车质心加速度(绝对加速度)在车辆坐标系的分量x α和y α,

图4

沿OX 轴速度分量的变化为:

()()θ

θθθθ

θ??-?--??+?=??+--??+sin sin cos cos sin cos v v u u u v v u u u

考虑θ?很小,忽略二阶微量,则有: θ

θθθθ?-?=??-?--??+?v u v v u u u sin sin cos cos 上式除t ?,取极限得r x v u dt

d v dt du a ωθ-=-=& 同理可得r y u v

a ω+=&

二自由度汽车运动力学分析

2

121cos cos Y Y Z Y Y Y bF aF M F

F F -=+=∑∑δδ 考虑δ较小,1cos =δ

111αk F Y =,222αk F Y =

则有:

2

2112

211ααα

αbk ak M k k F Z Y -=+=∑∑ 质心侧偏角u v =β u

a u a v r r ωβωξ+=+= ()δωβξδα-+=--=u

a r 1 u

b u b v r r ωβωα-=-=2

??

? ??-+??? ??-+=∑u b k u a k F r r Y ωβδωβ21 ??? ??--??? ??-+=∑u b bk u a ak M r r Z ωβδωβ21 由于y Y ma F =∑,r Z Z I M ω&=∑

()r r r u v m u b k u a k ωωβδωβ+=??

? ??-+??? ??-+&21 r Z r r I u b bk u a ak ωωβδωβ&=??? ?

?--??? ??-+21

()()()r r u v m k bk ak u k

k ωδωβ+=--++&121211 ()()r Z r I ak k b k a u

bk ak ωδωβ&=-++-12212211 动力学方程可变形为

δβωωZ

Z r Z r I ak I bk ak u I k b k a 1212212--++=& δβωβmu k mu k k mu bk ak r 1212211-++??

? ??--=& 即状态空间为

δβωβω??

????+????????????=??????211122211211b b a a a a r r && δβωβω??

????+????????????=??????001001r r 其中

u

I k b k a a Z 221211+=,Z I bk ak a 2112-=,Z I ak b 111-= 122121--=mu bk ak a ,mu k k a 2122+=,mu

k b 121-=

仿真参数设置:

仿真时间1.5s 汽车总质量 m=1818.2Kg 绕z 轴转动惯量I Z =3885Kgm 2

轴距L=3.084m 质心至前轴距离a=1.463m 质心至后轴距离b=1.585m

前轮总侧偏刚度k 1=-62618N/rad 后轮总侧偏刚度k 2=-110185N/rad

仿真模型为:

仿真工况1:前轮转角1度,车速80Km/h 下,仿真结果为:

仿真工况2:车速80Km/h下,前轮转角分别为1度、2度和3度,仿真模型为:

由上图可见,在车速为80km/h下,随前轮转角的增大,汽车质心侧偏角明显增大且开始出现振荡,固有圆频率及阻尼比减小,超调量及稳定时间增加,因此应避免在高速行驶时急转方向盘产生大的前轮转角。

仿真工况3:前轮转角为2度,不同车速60km/h、80km/h、100km/h下横摆角速度和质心侧偏角响应曲线。仿真模型为:

由图可知,降低汽车行驶速度,可以减小质心侧偏角,使固有圆频率及阻尼比增加,超调量及稳定时间减小,而增加行驶速度,可使反应时间缩短。因此较低的行驶速度使汽车具有更好的瞬态响应特性。

详细步骤MATLAB车辆两自由度操纵稳定性模型分析

基于MATLAB的车辆两自由度操纵稳定性模型及分析 汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。 车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。 1二自由度汽车模 为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自由度的汽车模型,忽略转向系统的影响,直接一前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作用于地面的平面运动。

2 运动学分析 确定汽车质心的(绝对)加速度在车辆坐标系的分量 和。Ox 与Oy 为车辆坐标系的纵轴与横轴。质心速度 与t 时刻在Ox 轴上 的分量为u ,在oy 轴上的分量为v 。 2.1 沿Ox 轴速度分量的变化为: ()()cos sin cos cos sin sin u u u v v u u u v v θθ θθθθ+??--+??=?+??---?? 考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便 是汽车质心绝对加速度在车辆坐标系。

沿Ox 轴速度分量的变化为: u x r d d v u v dt dt a θω=-=- 同理,汽车质心绝对加速度沿横轴oy 上的分量为:y r v u a ω=+ 2.2 二自由度动力学方程 二自由度汽车受到的外力沿y 轴方向的合力与绕质心的力矩和为: 12 12cos a cos Y Y Y Z Y Y b F F F M F F δδ=+=-∑∑ 式中,,为地面对前后轮的侧向反作用力;为前轮转角。 考虑到很小,上式可以写上: 11221122 a Y Z b k k F k k M αα αα=+=-∑∑ 根据坐标系的规定,前后侧偏角为: ()12r r r a u v b b u u δξβδβωαωωα=--=+ --==- 由此,可以列出外力,外力矩与汽车参数的关系式为: 1212r r Y r r Z a b u u a b a b u u k k F k k M βδββδβωωωω????=+-+- ? ?????????=+--- ? ????? ∑∑ 所以,二自由度汽车的运动微分方程为: ()1212r r r r r z r a b m v u u u a b a b u u k k k k I βδββδβωωωωωω????+-+-=+ ? ?????????+---= ? ???? ? 上式可以变形为:

汽车操纵稳定性验之稳态回转实验

汽车操纵稳定性实验之稳态回转实验 实验目的:测定汽车对转向盘转角输入达到稳定行驶状态时汽车的稳态横摆响应 学会用前、后侧偏角绝对值之差12()αα-以及转向半径的比0R R 来判别汽车的稳态响应 实验仪器:垂直陀螺仪(VG400CD-100)实验车 汽车速度采集器 实验条件: 1. 实验汽车 1.1 实验车是按厂方规定装备齐全的汽车,实验前,应测定车轮定位参数, 对转向系、悬架系进行检查,并按规定进行调整、紧固和润滑。 1.2 实验时若用新轮胎,轮胎至少应经过200km 正常行驶磨合;若是旧胎, 实验结束时,残留花纹高度应小于1.5mm 。实验过程中,轮胎充气压力 应符合该车技术条件规定,误差不得超过±10kPa 。 2.实验场地 2.1 实验场地应为干燥、平坦且清洁的水泥或沥青路面,任意方向的坡度不大于2% 2.2 实验时风速应不大于5m s 2.3 大气温度在040-℃之间 实验方法: 1. 在实验场地上,画出半径为15m 的圆周1。 2. 接通仪器连线并开机预热至工作温度2。 3. 实验开始前,汽车以侧向加速度为23m s 的相应车速沿画定的圆周行驶 500m 以使轮胎升温。 4. 驾驶员操纵汽车以最低稳定车速沿所画圆周行驶,此时转向盘得转角为 sw 0δ;测定车速0u 以及横摆角速度0r ω。由于车速很低,离心力很小, 轮胎侧偏角忽略不计。保持转向盘转角sw 0δ不变条件下,令汽车缓慢连 续而均匀的加速(纵向加速度不得超过20.25m s ),直至汽车的侧向加速度达到26.5m s (或受发动机功率限制而所能达到的最大侧向加速度、或汽车出现不稳状态)为止。纪录整个过程。 5. 实验按向左转和向右转两个方向进行,每个方向实验三次。每次实验开 始时车身应处于正中位置。 实验数据处理: 1. 连续测量车速u 与横摆角速度r ω值,根据瞬时的u 与r ω值,按公式 ,y r r u R a u ωω==求出相应的R 与y a 值,根据数据画出0y R R a -曲线

汽车操纵稳定性实验指导书

汽车操纵稳定性实验指导书 课程编号: 课程名称: 实验一汽车转向轻便性实验 实验目的 汽车的转向轻便性和操纵稳定性是现代汽车重要的使用性能,通过对实验了解和掌握测试系统的安装调试、基本实验方法并学会数据处理和运用理论知识对汽车操纵稳定性研究、评价。以培养学生解决实际工程问题的能力。 二、实验的主要内容 了解测试系统的组成和测试原理,汽车转向轻便性实验的数据的实时采集和处理。测定汽车在低速大转角时的转向轻便性,与操纵稳定性其他试验项目一起,共同评价汽车的操纵稳定性。 采集测量变量及参数 方向盘转角; 方向盘力矩; 方向盘直径。 三、实验设备和工具 1.测量仪器 汽车方向盘转角——力矩传感器 汽车操纵稳定性数据采集和分析仪 2.实验车辆 小型客车一辆 3.标明试验路径的标桩16个。 四、实验原理 测定汽车在道路上进行转向行驶时,驾驶员作用在方向盘上的力矩和方向盘转角的变化关系评价汽车的转向操纵性能 验方法和步骤 1.实验准备 试验场地应为干燥、平坦而清洁的水泥或柏油路面。任意方向上的坡度不大于2%。在试验场地上,用明显颜色画出双纽线路径(图1),双纽线轨迹的极坐标方程为: 为:轨迹上任意点的曲率半径R

°时,双纽线顶点的曲率半径为最小值,即=0Ψ 当. 双纫线的最小曲率半径(m)应按试验汽车的最小转弯半径(m)乘以倍,并圆整到比此乘积大的一个整数来确定。并据此画出双纽线,在双纽线最宽处、顶点和中点(即结点)的路径两侧共放置16个标桩(图1)。标桩与试验路径中心线的距离,按汽车的轴距确:定,当试验汽车轴距大于时,为车宽一半加50cm,当试验汽车轴距小于或等于2m时,为车宽一半加30cm。 图1 双纽线路径示意图 2.试验方法 2.1接通仪器电源,使之预热到正常工作温度。 2.2汽车以低速直线滑行,驾驶员松开方向盘,停车后,记录方向盘中间位置及方向盘力矩零线。 2.3驾驶员操纵方向盘使汽车沿双纽线路径行驶。车速为10土1km/h。待车速稳定后,开始记录方向盘转角及力矩,并记录(或显示)车速作为监督参数,直到汽车绕双纽线行驶满三周。 3.数据处理 3.1根据记录的方向盘转角及方向盘力矩,按双纽线路径每一周整理成图2所示的M—θ曲线,并计算以下参数: 3.1.1方向盘最大力矩,用下式计算: 式中:Mmax——方向盘最大力矩,N·m; 3.1.2方向盘最大作用力,用下式计算:

同济汽车操纵稳定性实验报告新终审稿)

同济汽车操纵稳定性实 验报告新 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验 实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度

在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录 方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法蛇形试验

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且 l r Z Z F F ; (3)汽车前进速度u 视为不变; (4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 与 为车辆坐标系的纵轴和横轴。质心速度 于时刻在 轴上的分量为 ,在 轴上的分量为 。由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿 轴速度分量变化为:

考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 同理得: 下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成:

下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成: 汽车前后轮侧偏角与其运动参数有关。如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为, ;质心侧偏角为,;为与轴的夹角,其值为:

汽车操纵稳定性

关键词:汽车操纵稳定性 1、蔡世芳(1985). "汽车操纵稳定性评价指标和参数匹配的工程分析方法." 汽车工程7(3): 21-29. 本文提出一种工程分析方法,并利用此方法研究评价指标和参数匹配规律。全文主要内容有四部份: (1)工程分析方法的数学模型; (2)评价指标的工程计算方法; (8)评价指标的相关分析和主要评价指标的推荐。(4)操纵稳定性参数匹配的基本规律。 2、岑少起, 潘筱, et al. (2006). "ADAMS 在汽车操纵稳定性仿真中的应用研究." 郑州大学学报: 工学版27(003): 55-58. 运用ADAMS软件建立了C型车多自由度整车多体动力学仿真模型,详细分析了前悬架系统、后钢板弹簧系统和轮胎模型,同时提出了一种建立钢板弹簧多体模型的新方法——中性面法,并对不同方向盘转角及改变整车质心位置下的操纵稳定性进行了动力学仿真.经过与实际车型性能比较,该模型与分析结果是准确、可靠的,可应用于汽车平顺性研究中. 3、陈克, 王工, et al. (2005). "基于ADAMS 的汽车操纵稳定性虚拟试验演示系统开发." 沈阳理工大学学报24(001): 59-61. 利用ADAMS动力学软件建立了整车多刚体系统模型.分别考虑车型、悬架、轮胎、车速等不同因素对整车操纵稳定性的影响,进行整车操纵稳定性6个性能试验的仿真分析.利用获取的动力学分析数据、仿真动画,实现汽车操纵稳定性虚拟试验演示系统. 4、陈黎卿, 王启瑞, et al. (2005). "基于ADAMS 的双横臂扭杆独立悬架操纵稳定性分析." 合肥工业大学学报: 自然科学版28(004): 341-345. 悬架的主要性能参数在悬架运动过程中的变化规律是影响悬架性能的主要因素。文章采用ADAMS软件建立了某商务车独立悬架的数学模型和仿真模型,分析了该悬架对操纵稳定性的影响,以及悬架主要性能参数的变化规律,为悬架设计奠定了基础。与传统的设计方法相比,这种方法提高了精度和效率。 5、邓亚东, 余路, et al. (2005). "ADAMS 在汽车操纵稳定性仿真分析中的运用." 武汉大学学报: 工学版38(002): 95-98. 利用ADAMS软件建立了某轿车的操纵动力学多体仿真模型,详细考虑了前后悬架系统、转向系统、轮胎以及各种连接件中的弹性衬套的影响,分析了汽车在方向盘转角阶跃输入时的转向特性.通过对不同车速、不同载荷下的仿真计算,得出汽车转向特性在这些条件下的不同表现,揭示了汽车转向特性与车速、载荷和轮胎的内在关系,为汽车操纵稳定性分析提供了参考. 6、董涵(2003). 侧风环境下高速汽车稳定性研究与分析[D], 长沙: 湖南大学. 随着汽车车速的不断提高,汽车侧风稳定性的研究日益重要。由于实车试验风险大、场地设备要求高,而使用计算机仿真则可以极大的的缩短产品开发周期。因而进行高速汽车侧风稳定性计算机仿真研究具有现实意义。在车辆动力学研究过程中,汽车数学模型的精确与否始终是一个关键问题。随着计算机技术的长足进步,以及多体系统动力学这一学科的成熟,汽车模型的自由度越来越多,仿真结果越来越精确。本文首先整理了汽车操纵稳定性的各项评价指标,根据汽车高速运动时的受力分析,使用非线性轮胎模型,建立了侧风环境下汽车运动十八自由度数学模型并进行了直线行驶运动仿真。

汽车操纵稳定性仿真

实验4 汽车操纵稳定性仿真 一.实验目的 1.了解和掌握汽车操作稳定性实验条件、试验规程、数据实验方法以及实验仪器设备。 2.熟悉掌握Adams/Car软件的应用并能实际操作完成汽车操控性仿真的全过程。 二.实验器材 Adams软件、计算机一台 三.实验结果与分析 1.定转弯半径仿真 汽车在行驶过程中,由于路面的侧向倾斜,侧向风或者曲线行驶时的离心力等的作用,车轮中心沿车轴方向产生一个侧向力F。因为车轮是有弹性的,所以,在侧向力F 未达到车轮与地面间的最大摩擦力时,侧向力 F 使轮胎产生变形,使车轮倾斜,导致车轮行驶方向偏离预定的行驶路线。这种现象,就称为汽车轮胎的侧偏现象。汽车轮胎的中心线,在侧向力F 的作用下,与车轮平面错开了一定距离,而且有一个倾斜角,这个倾斜角,就叫做汽车轮胎的侧偏角。 侧偏最常见于汽车转弯。汽车转弯时,前后轮都会产生侧偏角。如果前后轮侧偏角相等,则汽车实际转弯半径等于方向盘转角对应的转弯半径,称为“中性转向”;如果前轮侧偏比后轮大,汽车实际转弯半径大于方向盘转角对应的转弯半径,称为“不足转向”;如果后轮侧偏比前轮大,汽车实际转弯半径小于方向盘转角对应的转弯半径,称为“过度转向”。 在设置转弯半径28m,车辆以10km/h的初速度加速到120km/h时,汽车行驶到最后阶段失去控制,脱离预先设计好的圆形轨道。其行驶轨迹如下图所示;

图1 从图中我们可以看出,汽车在行驶大概一圈的时候冲出轨道,且距离圆心随着时间增长越来越远。这是由于随着速度的不断增加,汽车所受到的侧向力不断变大,当地面的摩擦力不足以平衡侧向力时,汽车便会失去控制。从图中可以看出,在汽车达到120km/h时候汽车已经偏原来的轨道很大一段距离。 在这实验的基础上,改了一下数据,设置转弯半径20m,出事加速度0.1m/s^2最终加速度为4m/s^2,得到了以下曲线: 图2 图3 从图中,我们可以得到,汽车在设定好的轨道中良好运行,没有冲出跑道。再上一个控制速度的实验中,所得到的最终加速度的大小大概为 5.5g,而控制加速度的实验中,所得到的最终加速度大小为0.4g,明显小于前者,因此猜想,当汽车的加速度比较大时,汽车比较容易冲出跑道 为了证实以上猜想,设定转弯半径20m,初始加速度0.01g,最终加速度5g,得到以下实验曲线:

整车操纵稳定性仿真分析报告分析解析

L11整车操纵稳定性仿真分析报告 (HB11A/HB12A 编制(日期)____________________________ 校对(日期)____________________________ 审核(日期)____________________________ 批准(日期)____________________________ 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A 1.定半径稳态圆周试验 1.1试验方法 HB11A处于满载状态,沿半径为 40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过0.2 m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超岀车道0.5 m,直至不 能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。 1.2数据处理 “方向盘转角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。 图1方向盘转角一侧向加速度(左转) 从图1计算得到左转不足转向梯度为137o/g 图2方向盘转角一侧向加速度(右转) 右转不足转向梯度为 134.5o/g,则HB11A平均不足转向梯度为 135.75o/g。 HB11A的角传动比约为 23.333,则不足转向梯度/转向系角传动比为 5.817o/g。 “质心侧偏角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。 图3质心侧偏角——侧向加速度(左转)左转侧偏角梯度为 5.987 o/g。 图4 质心侧偏角一一侧向加速度(右转) 右转侧偏角梯度为 5.987o/g,则HB11A平均侧偏角梯度为 5.987o/g。 “车身侧倾角一一侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为0.25g时的曲线斜率。

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z轴的位移、绕y轴的俯仰角和绕x轴的侧倾角均为零,且F Zr Fzi ; (3)汽车前进速度u视为不变; (4)侧向加速度限定在0.4g —下,确保轮胎侧偏特性处于线性围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 閒代后护曲轮汽车枠即及车辆咐标丟 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 "T与W为车辆坐标系的纵轴和横轴。质心速度V l于f时刻在轴上的分量为|/<,在°匸轴上的分量为 卜。由于汽车转向行驶时伴有平移和转动,在'时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿'■轴速度分量变化为: (? + Av)sin A" =u cos A6? + cos A 0 it -vsin 0 Avsin \0 考虑到△ 6很小并忽略二阶微量,上式变成:\u -K A0

除以Ar并取极限,便是汽车质心绝对加速度在车辆坐标系\ox上的分量 du dO * a -- ----- v——= n-va) x dt dt r 同理得:叭"刊叫 下面计算二自由度汽车的动力学方程 < ------------------------------ --------------------------------------- ih 二自由度汽车受到的外力沿匸"|轴方向的合力与绕质心的力矩和为 》禺=洛心方"二11 式中,如,比为地面对前后轮的侧向反作用力,即侧偏力;/为前轮转角考虑到’很小,上式可以写成:

汽车操纵稳定性试验解析

汽车操纵稳定性试验解析! 汽车的操稳性不仅影响到汽车驾驶的操纵方面,而且也是决定汽车安全行驶的一个主要性能;为了保证安全行驶,汽车的操稳性受到汽车设计者很大的重视,成为现代汽车的重要使用性能之一,如何试验并评价汽车的操稳性显得极其重要。汽车操控稳定性分为两个方面:1、操控性: 指汽车能够确切的响应驾驶员转向指令的能力;2、稳定性:指汽车受到外界扰动(路面扰动或阵风扰动)后恢复原来运动状态的能力。一、常用试验仪器 1、陀螺仪:用于汽车运动状态下测动态参数,如汽车行进方位角,汽车横摆角速度,车身侧倾角及纵倾角等; 2、光束水准车轮定位仪:测车轮外倾角,主销内倾角,主销外倾角,车轮前束,车轮最大转角及转角差; 3、车辆动态测试仪:测汽车横摆角速度,车身侧倾角及纵倾角,汽车横向加速度与纵向加速度等运动参数; 4、力矩及转角仪:测转向盘转角或力矩; 5、五轮仪和磁带机等。二、试验分类三、稳态回转试验 01试验步骤 1、在试验场上,用明显的颜色画出半径为15m或20m的圆周; 2、接通仪器电源,使之加热到正常工作温度; 3、试验开始前,汽车应以侧向加速度为3m/s2的相应车速沿画定的

圆周行驶500m以使轮胎升温。4、以最低稳定速度沿所画圆周行驶,待安装于汽车纵向对称面上的车速传感器在半圈内都能对准地面所画的圆周时,固定转向盘不动,停车并开始记录,记下各变量的零线,然后,汽车起步,缓缓连续而均匀地加速(纵向加速度不超过0·25m/s2),直至汽车的侧向加速度达到6·5m/s2为止,记录整个过程。5、试验按向左转和右转两个方向进行,每个方向试验三次。每次试验开始时车身应处于正中央。 02评价条件 1、中性转向点侧向加速度值An:前后桥侧偏角之差与侧向加速度关系曲线上斜率为零的点的侧向加速度值,越大越好; 2、不足转向度:按前后桥侧偏角之差与侧向加速度关系曲线上侧向加速度2m/s2点的平均值计算,越小越好; 3、车厢侧倾度K:按车厢侧倾角与侧向加速度关系曲线上侧向加速度2m/s2点的平均斜率计算,越小越好。 转向特性曲线图四、转向回正试验 01试验步骤一)低速回正性能试验:1、在试验场地上用明显的颜色画出半径为15m的圆周。2、试验前试验汽车沿半径为15m的圆周、以侧向加速度达3m/ s 2 的相应车速,行 驶500m,使轮胎升温。3、接通仪器电源,使其达到正常工作温度。4、试验汽车直线行驶,记录各测量变量零线,然

线性二自由度汽车模型的运动方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且 l r Z Z F F ; (3)汽车前进速度u 视为不变; (4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 与 为车辆坐标系的纵轴和横轴。质心速度 于时刻在 轴上的分量为 ,在 轴上的分量为 。由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿 轴速度分量变化为:

考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 同理得: 下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成:

下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成: 汽车前后轮侧偏角与其运动参数有关。如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为,;质心侧偏角为,;为与轴的夹角,其值为:

同济汽车操纵稳定性实验报告新

《汽车平顺性和操作稳定性》实验报告 学院(系)汽车学院 专业车辆工程(汽车) 学生姓名同小车学号 000001 同济大学汽车学院实验室 2014年11月 1.转向轻便性实验

实验目的 驾驶员通过操纵方向盘来控制汽车的行驶方向,操纵方向盘过重,会增加驾驶员的劳动强度,驾驶员容易疲劳;操纵方向盘过轻,驾驶员会失去路感,难以控制汽车的形式方向。操纵方向盘的轻重,是评价汽车操纵稳定性的基本条件之一。转向轻便性实验的目的在于通过测量驾驶员操纵方向盘力的大小,与其他实验仪器评价汽车操纵稳定性的好处。 实验仪器设备 实验条件 试验车:依维柯 实验场地与环境 于圆形试车场,实验时按照桩桶圈出的双扭线,以10Km/h的车速行驶。双扭线的极坐标方程见下,形状如下图 实验当天天气晴好,无风,气温20度 在ψ=0时,双扭线顶点处的曲率半径最小,相应数值为Rmin=1/3d,双扭线的最小曲率半径应按照实验汽车的最小转弯半径乘以1,1倍,并圆整到比此乘积大的一个整数来确定。 试验中记录转向盘转交及转向盘转矩,并按双扭线路经过每一周整理出转向盘转矩转向盘转矩曲线。通常以转向盘最大转矩,转向盘最大作用力以及转向盘作用功等来评价转向轻便性。 转向轻便型实验数据记录

方向盘转角-转矩曲线 2. 蛇形试验 实验目的 本项试验是包括车辆-驾驶员-环境在内的闭路试验的一种,用来综合评价汽车行驶的稳定性及乘坐的舒适性,与其他操纵试验项目一起,共同评价汽车的操纵稳定性。也可以用来考核汽车在接近侧滑或侧翻工况下的操纵性能,在若干汽车操纵稳定性对比试验时,作为主观评价的一种感性试验。 实验原理 将试验车辆以不同车速行驶于规定的蛇形试验中,通过实验仪器可以得到行驶时的车速,方向盘转角,横摆角速度,车身侧倾角。 试验方法遵照GB/T 6323.1-94汽车操纵稳定性试验方法 蛇形试验

基于Simulink的车辆两自由度操纵稳定性模型

基于Simulink的车辆两自由度操纵稳定性模型汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。 车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。 1.二自由度汽车模型 为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自 由度的汽车模型,忽略转向系统的 影响,直接一前轮转角作为输入; 忽略悬架的作用,认为汽车车厢只 作用于地面的平面运动。

2.运动学分析 分析时,令车辆坐标系原点与汽车质心重合。首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 确定汽车质心的(绝对)加速度在车辆坐标系的分量 和 。Ox 与Oy 为车辆坐标系的纵轴与横轴。质心速度 1与t 时刻在Ox 轴上的分量为u ,在Oy 轴上的分量为v 。 2.1 沿Ox 轴速度分量的变化为: 由于汽车转向行驶时伴有平移和转动,在t+△t 时刻,车辆坐标系中质心速度的大小与方向均发生变化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿x 轴速度分量变化为: ()cos ()sin cos cos sin sin u u u v v u u u v v θθ θθθθ +??--+??=?+??---??

整车操纵稳定性仿真分析报告分析解析

整车操纵稳定性仿真 分析报告分析解析Revised on November 25, 2020

L11整车操纵稳定性仿真分析报告 (HB11A/HB12A) 编制(日期) 校对(日期) 审核(日期) 批准(日期) 简式国际汽车设计(北京)有限公司 L11整车操纵稳定性仿真分析报告(HB11A/HB12A) 1.定半径稳态圆周试验 试验方法 HB11A处于满载状态,沿半径为40m的定半径圆周进行回转运动,开始以最低稳定速度进入圆周,找准方向盘的位置,使汽车可以沿圆周进行回转运动,开始记录,然后缓慢连续而均匀地加速(纵向加速度不超过 m/s2),加速的同时调整方向盘转角以维持定半径圆周运动,这个过程中车辆不应超出车道m,直至不能维持稳态定半径圆周运动条件时或受发动机功率限制所能达到的最大侧向加速度为止。记录整个过程,建议使用满足试验条件的最高档位。试验按向左转和向右转两个方向进行,每次试验开始时车身应处于正中位置。

数据处理 “方向盘转角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图1 方向盘转角—侧向加速度(左转) 从图1 计算得到左转不足转向梯度为137o/g 图2 方向盘转角—侧向加速度(右转) 右转不足转向梯度为g,则HB11A平均不足转向梯度为g。 HB11A的角传动比约为,则不足转向梯度/转向系角传动比为g。 “质心侧偏角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图3 质心侧偏角——侧向加速度(左转) 左转侧偏角梯度为g。 图4 质心侧偏角——侧向加速度(右转) 右转侧偏角梯度为g,则HB11A平均侧偏角梯度为g。 “车身侧倾角——侧向加速度”拟合曲线线性部分的斜率,取侧向加速度为时的曲线斜率。 图5 车身侧倾角——侧向加速度(左转) 左转侧倾角梯度为g。 图6 车身侧倾角—侧向加速度(右转) 右转侧倾角梯度为g,则HB11A平均侧倾角梯度为g。 2.方向盘转角阶跃输入试验 试验方法 HB11A处于满载状态,以70km/h的车速稳定直线行驶,开始记录数据,以尽可能快的速度(阶跃时间为转动方向盘,达到预定的转角,保持方向盘

线性二自由度汽车操纵稳定性Simulink仿真

线性二自由度汽车操纵稳定性Simulink 仿真 汽车的操纵稳定性是指在驾驶者不感到过分紧张、疲劳的情况下,汽车能够遵循驾驶者通过转向系统及转向车轮给定的方向行驶,且遇到外界干扰时,汽车能够抵抗干扰而保持稳定行驶的能力,汽车的操纵稳定性是汽车主动安全性的重要评价指标之一。 操纵稳定性包括:汽车在转向盘输入或外界干扰输入下的侧向运动响应随时间而变化的特性称为时域响应特性;转向盘输入有角位移输入和力矩输入;外界干扰输入主要指侧向风和路面不平产生的侧向力。 1. 转向盘角阶跃输入下的响应 稳态响应,评价参量为 横摆角度速度增益—转向灵敏度 瞬态响应,评价参量为 反应时间;横摆角速度波动的无阻尼园频率。 2. 横摆角速度频率响应特性 转向盘转角正弦输入下,频率由0至∞变化时,汽车横摆角速度与转向盘转角的振幅比及相位差的变化规律。评价参量为:共振峰频率;共振时的振幅比;相位滞后角;稳态增益。 3. 转向盘中间位置操纵稳定性 转向盘小转角、低频正弦输入下,汽车高速行驶时的操纵稳定性。评价参量为:转向灵敏度、转向盘力特性、转向功灵敏度。 4. 回正性 转向盘力输入下的时域响应。评价参量为:回正后剩余横摆角速度与剩余横摆角;达到剩余横摆角速度的时间。 轮胎的侧偏特性为:αk F Y =,k 为侧偏刚度,Y F 一定时,侧偏角越小越好,因此k 越大越好;前轮侧偏角在4度内时,轮胎侧偏特性呈线性变化。 图1 线性二自由度汽车模型对前轮角输入的响应 建模假设:忽略转向系统的影响,直接以前轮转角为输入;忽略悬架的作用,车身仅作平行于地面的平面运动,绕z 轴的位移、绕y 轴的俯仰角和绕x 轴的侧倾角均为零;汽车前进速度不变。汽车被简化为只有侧向和横摆两个自由度的两轮汽车模型。

汽车操纵稳定性和平顺性仿真研究报告

科研训练文献阅读综述题目:汽车操纵稳定性和平顺性的仿真研究 姓名 : 学号 : 专 业: 班 级: 指导老师: 时间:

第一章整车操纵稳定性实验仿真分析本章节,在前悬架优化的基础上建立整车模型。整车进行转向回正实验、转向轻便性实验、稳态回转实验,并根据国标计分评价。 1.1转向回正实验仿真分析 转向回正实验是研究汽车瞬态响应特性的一种重要实验方法,尤其是研究汽车能否恢复直线行驶能力的一种重要实验方法,汽车的转向回正表达了汽车的自由控制运动特性,其实质是一种力阶跃输入实验。国标GB/T6323.4-94对 实验做出了相关规定。低速回正实验在半径为15m圆周上侧向加速度达到 4m/s A2,,然后然放松转向盘,记录汽车的状态。由于该重货车最高车速为90km/h,按照国标规定不需要进行高速转向回正实验。对于侧向加速度达不到 4 士0.2m/sA2的汽车,按实验汽车所能达到的最高侧向加速度进行实验。实验 [1] 按向左与向右两个方向进行,每个方向三次 1.1.1仿真曲线: 仿真中设定圆弧半径为15m,要达到4 士0.2m/s的侧向加速度车速必须大于 7.746m/sA2。左转低速转向回正实验具体仿真结果如下(右转仿真结果略>: 图6-1转向盘转角输入

K6-3横摆角速度响应图6-4侧倾旳响应

图6-5质心侧偏角响应 1.1.2仿真结论: 对于虚拟样车系统,回正特性的主要参数根据国标GB/T6323.4-94规定的 转向回正实验要求计算,结果见表6-1 o 表6T回正特性主要参数 1.2转向瞬态响应实验(转向盘转角阶跃输入>仿真分析 瞬态转向特性是指汽车在受到外界扰动下,达到稳态状态前表现出来的特性,瞬态转向特性是汽车最重要的性能之一,是评价汽车高速行驶安全性的一个重要指标。 1.2.1实验方法: 具体做法参照国标GB/T6323.2-1994。实验车速按被测汽车最高车速的70% 并四舍五入为10的整数倍确定。该重型货车最高车速为90KM/h,所以实验车 速取6Okm/h实验中转向盘转角的预选位置(输入角〉,按稳态侧向加速度值1-

汽车操纵稳定性和平顺性的仿真研究

本科生科研训练-项目申请表 2011 年 1 月 2日 项目名称: 汽车操纵稳定性和平顺性的仿真研 究 项目负责人: 所在学院: 能源与动力工程学院 班 级: 联系电话: 指导教师 学校代码:10128 学 号:200820302071

成绩考核表 项目名称汽车操纵稳定性和平顺性的仿真研究成绩 完成人姓名班级交运08- 评阅内容评阅要求得分 资料调研完成相关科研资料的调研。 撰写项目概述。(10分) 立项意义研究现状选题是否紧密结合生产实际或贴近学科前沿。 撰写项目研究意义和课题研究现状。(40分,各20分) 创新性创新点是否明确,创新性与实用性是否兼备。不作评价 成果预见性所研究项目的成果应用前景是否看好,撰写项目应用 前景预测。 不作评价 研究内容研究内容是否按照项目名称、技术路线及目标任务等要求来设置。 只写项目研究内容。(10分) 技术路线技术路线是否科学、合理,思路是否正确完整。不作评价研究方法研究方法是否先进可行,校内条件是否可以达到。不作评价 研发能力研发队伍的合作精神,知识积累及指导老师的相关科 研项目的资助力度是否有利于本项目的开展。 不作评价 完成情况本次科研训练作业是否按期完成;撰写内容、撰写格式是否规范。(20分) 格式规范撰写内容、撰写格式是否规范。(20分) 得分合计 综合评语

一、项目概况 项目名称:汽车操纵稳定性和平顺性的仿真研究 英文:Study on simulation of vehicle handling and stability of peace along 项目概述:(400字以内,五号字,行距16磅) 汽车的操纵稳定性和平顺性是指在驾驶者不感到过分紧张疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力汽车的操纵稳定性不仅影响到汽车驾驶的操纵方便程度,而且也是决定高速汽车安全行驶的一个主要性能随着社会经济的发展和汽车科学技术的进步,公路交通呈现出行驶高速化、车流密集化和驾驶员非职业化的趋势。频繁的交通事故使公路的交通安全成为社会广泛关注的问题。为了保证安全行驶,汽车的操纵稳定性受到汽车设计者的很大重视,成为现代汽车的重要使用性能之一。几十年来,如何设计和试验汽车以获得良好的安全性,尤其是如何试验和评价汽车的操纵稳定性,始终是各国学者和设计师们的主要研究方向之一。 本项目通过对汽车在悬架、转向、车身等初始参数匹配状态下整车的操纵稳定性和平顺性的研究,得出的仿真实验数据为评估、改进、优化同型车辆提供了重要的理论参数。该项目研究为整车的设计开发开拓了更加科学的方法解决了一些汽车运动学和动力学的难题。 关键词操纵稳定性;行驶平顺性;仿真技术 类别 √A.自然科学类学术论文□B.科技发明制作A类□C.科技发明制作B类注:科技发明制作A类:指科技含量较高、制作投入较大的作品; 科技发明制作B类:投入较少,为生产技术或社会生活带来便利的小发明、小制作。 申请资助金额大写:小写:项目起止时间 结题形式(打√)√A、论文□B、著作□C、报告□D、软件 申请人情况姓名性别男民族汉出生年月专业交通运输班级 学号2008 所在学院能源与动力工程学院 项 目 组 主 要 成 员 姓名性别学历院系、专业、年级项目分工签名

七自由度整车模型及参数

七自由度整车模型及参数 七自由度线性整车模型如图1.1所示。图中各符号意义如下: s M 、θI 、φI ——悬挂质量、悬挂质量的侧倾转动惯量和俯仰转动惯量; 1t m 、2t m 、3t m 、4t m ——非悬挂质量(分别为前左、前右、后左、后右,下同); 1s k 、2s k 、3s k 、4s k ——悬架刚度系数; 1t k 、2t k 、3t k 、4t k ——轮胎刚度; 1s c 、2s c 、3s c 、4s c ——阻尼器阻尼系数; 1u 、2u 、3u 、4u ——作用于悬架的控制力; 1r x 、2r x 、3r x 、4r x ——地面扰动输入; 1t x 、2t x 、3t x 、4t x ——非簧载质量位移; 1s x 、2s x 、3s x 、4s x ——悬挂质量与悬架连接处的位移; c x 、θ、φ——悬挂质量的垂直位移、侧倾角、俯仰角; xf l 、xr l ——悬挂质量质心至前后车轴的距离; ylf l 、ylr l ——前后悬挂质量质心至左轮的距离。 图1.1 七自由度整车模型 令地面扰动输入向量T r r r r x x x x w ][4321 =、车轮位置向量T t t t t t x x x x x ][4321 =、悬挂质量运动向量T c C x X ][φθ=、悬架控制力向量T u u u u u ][4321 =、悬挂质量与悬架的四个连接点处的位置向量T s s s s t x x x x x ][4321=、悬架动挠度向量T st st st st st x x x x x ][4321=(1st x 、2st x 、3st x 、4st x 分别表示前左、前右、后左、后右悬架动挠度),易知,t s st x x x -=。 根据悬架的特点和几何关系可以得出: C s HX x = (1)

汽车操纵稳定性和平顺性的仿真研究[1]

题目:汽车操纵稳定性和平顺性的仿真研究 第一章整车操纵稳定性试验仿真分析本章节,在前悬架优化的基础上建立整车模型。整车进行转向回正试验、转向轻便性试验、稳态回转试验,并根据国标计分评价。 1.1转向回正试验仿真分析 转向回正试验是研究汽车瞬态响应特性的一种重要试验方法,尤其是研究汽车能否恢复直线行驶能力的一种重要试验方法,汽车的转向回正表达了汽车的自由控制运动特性,其实质是一种力阶跃输入试验。国标 GB/T6323.4-94对试验做出了相关规定。低速回正试验在半径为15m圆周上侧向加速度达到4m/s^2,,然后然放松转向盘,记录汽车的状态。由于该重货车最高车速为90km/h,按照国标规定不需要进行高速转向回正试验。对于侧向加速度达不到4士0.2m/s^2的汽车,按试验汽车所能达到的最高侧向加速度进行试验。试验按向左与向右两 个方向进行,每个方向三次[1] . 1.1.1仿真曲线: 仿真中设定圆弧半径为15m,要达到4士0.2m/s的侧向加速度车速必须大于7.746m/s^2。左转低速转向回正试验具体仿真结果如下(右转仿真结果略):

1.1.2仿真结论: 对于虚拟样车系统,回正特性的主要参数根据国标GB/T6323.4-94规定的转向回正试验要求计算,结果见表6-1。

1.2转向瞬态响应试验(转向盘转角阶跃输入)仿真分析 瞬态转向特性是指汽车在受到外界扰动下,达到稳态状态前表现出来的特性,瞬态转向特性是汽车最重要的性能之一,是评价汽车高速行驶安全性的一个重要指标。 1.2.1试验方法: 具体做法参照国标GB/T6323.2-1994。试验车速按被测汽车最高车速的70%并四舍五入为10的整数倍确定。该重型货车最高车速为90KM/h,所以试验车速取6Okm/h。试验中转向盘转角的预选位置(输入角),按稳态侧向加速度值1-3m/s^2确定,从侧向加速度为lm/s^2做起,每间隔0.5m/m^2进行一次试验。汽车以试验车速直线行驶,经过一段时间,以尽快的速度(起跃时间不大于0.2s 或起跃速度不低于200 /s)转动转向盘,使其达到预先选好的位置并固定数秒 钟(待所测变量过渡到新稳态值),停止记录。记录过程中保持车速不变[2] 。 1.2.2试验曲线: 以下为向左转侧向加速度为2m/s^2时的转向盘转角时间历程(如图6-28)、横摆角速度响应(如图6-29)、侧向加速度响应(图6-30)、车身侧倾角响应(图6-31)、汽车质心侧偏角响应(图6-32)等曲线。

相关主题
文本预览
相关文档 最新文档