Soil phosphorus fractions and tree phosphorus resorption forests along an urban-to-rural gradient
- 格式:pdf
- 大小:1.43 MB
- 文档页数:10
生态化学计量学从分子到全球尺度,以C、N、P 等化学元素平衡对生态交互影响为切入点,为生态学研究提供了新的思路,成为当前生态学研究的热点。
C、N、P 是土壤中重要的生源要素,对其生态化学计量特征的研究对土壤的保持、土地恢复及土壤C、N、P 循环具有重要的理论和实践意义。
1土壤生态化学计量学1.1生态化学计量学1986年,Reiners 结合化学计量学和生态学提出生态化学计量学基本理论,2000年,Elser 等首次明确生态化学计量学[1]。
它综合了生态学、生物学、物理学和分析化学等学科,成为研究生态作用和生态过程中多重化学元素(主要为C、N、P)平衡及能量平衡的新兴学科。
生态化学计量学在发展过程中与能量守恒定律、分子生物学中心法则以及生物进化自然选择等理论结合,在限制元素判断、植物个体生长、种群动态、群落演替、生态系统稳定性等方面的研究成果较丰富[2,3]。
1.2土壤生态化学计量特征及对土壤养分的指示作用1.2.1土壤生态化学计量特征土壤作为陆地生态系统的重要单元,其养分对植物生长、矿质代谢起关键作用,影响着植物群落的组成结构、生产力水平和生态系统稳定性。
土壤主要组分C、N、P 生态化学计量特征能揭示土壤养分的可获得性、养分循环及平衡机制,对于判断土壤养分之间的耦合关系和土壤质量有重要作用[4,5]。
从全球尺度看,0~10cm 土层C:N:P 计量比通常为186∶13∶1(摩尔比),有显著的稳定性,但比值在一定的范围内波动,存在着差异性[6,7]。
对我国土壤C、N、P 计量研究显示,C 和N 含量具有较大的空间变异性,但C:N 相对稳定,受气候的影响很小[8]。
不同生态系统的土壤C、N、P土壤碳氮磷生态化学计量特征及影响因素概述(哈尔滨师范大学生命科学与技术学院,黑龙江省水生生物多样性研究重点实验室黑龙江,哈尔滨150025)【摘要】土壤碳氮磷生态化学计量特征反映土壤养分贮存和供应能力及养分动态,对土壤生态系统修复与保护具有重要指导意义。
不同粒径羟基磷灰石对污染土壤铜镉磷有效性和酶活性的影响崔红标;何静;吴求刚;巨星艳;范玉超;仓龙;周静【摘要】An in-situ field experiment was conducted to study the effects of ordinary hydroxyapatite (HAP,150 μm),micro-hydroxyapatite (MHAP,3 μm) and nano-hydroxyapatite (NHAP,40 nm) on the availability of copper (Cu),cadmium (Cd) and phosphorus (P) and soil enzyme activities.The results showed that MHAP had the best efficiency in increasing soil pH and decreasing soil exchangeable acid and aluminum compared with the other amendments.The concentration of exchangeable fraction of Cu was decreased by 62.6%,74.3% and 70.4%,while that of Cd was decreased by 15.7%,25.3% and 26.7%,respectively,in HAP,MHAP and NHAP-treated soils.The three amendments increased soil total P,with 73.4%-89.8%transformed into stable-P and only 4.61%-17.4% changed into resin-P.Moreover,soil urease activities and microbial biomass carbon were 4.66 and 0.66 times those in the control.The study showed that MHAP was more effective at transforming Cu and Cd from active to inactive fractions and increasing soil available P and soil microbial activity;therefore,MHAP has good potential for the heavy metal-contaminated red soil in southern China.%为研究不同粒径羟基磷灰石对重金属污染土壤的修复效果,采用向污染土壤添加常规磷灰石(150 μm)、微米(3μm)和纳米(40nm)羟基磷灰石的田间原位试验方法,考察其钝化修复5 a后对土壤铜镉磷有效性和酶活性的影响.结果表明:3种粒径羟基磷灰石均提高了土壤pH,降低了土壤交换性酸和交换性铝的含量,且微米羟基磷灰石处理效果最好.常规磷灰石、微米和纳米羟基磷灰石处理分别使w(离子交换态铜)降低了62.6%、74.3%和70.4%,w(离子交换态镉)降低了15.7%、25.3%和26.7%.3种材料均增加了土壤w(TP),其中4.61%~17.4%和73.4%~89.8%分别转化为树脂磷和稳定态磷.微米羟基磷灰石处理分别使土壤脲酶活性和微生物量碳含量提高了4.66和0.66倍.研究显示,微米羟基磷灰石更有利于铜和镉由活性态向非活性态转化,增加土壤磷的有效性,提高土壤微生物活性,在我国南方重金属污染红壤区具有较好的应用潜力.【期刊名称】《环境科学研究》【年(卷),期】2017(030)007【总页数】8页(P1146-1153)【关键词】羟基磷灰石;粒径;铜;镉;磷;有效性;土壤酶活性【作者】崔红标;何静;吴求刚;巨星艳;范玉超;仓龙;周静【作者单位】安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;安徽理工大学地球与环境学院,安徽淮南232001;中国科学院南京土壤研究所,中国科学院土壤环境与污染修复重点实验室,江苏南京21008;中国科学院南京土壤研究所,中国科学院土壤环境与污染修复重点实验室,江苏南京21008【正文语种】中文【中图分类】X53Abstract: An in-situ field experiment was conducted to study the effects of ordinary hydroxyapatite (HAP, 150 μm), micro-hydroxyapatite (MHAP, 3μm) and nano-hydroxyapatite (NHAP, 40 nm) on the availability of copper (Cu), cadmium (Cd) and phosphorus (P) and soil enzyme activities. The results showed that MHAP had the best efficiency in increasing soil pH and decreasing soil exchangeable acid and aluminum compared with the other amendments. The concentration of exchangeable fraction of Cu was decreased by 62.6%, 74.3% and 70.4%, while that of Cd was decreased by 15.7%, 25.3% and 26.7%, respectively, in HAP, MHAP and NHAP-treated soils. The three amendments increased soil total P, with 73.4%-89.8% transformed into stable-P and only 4.61%-17.4% changed into resin-P. Moreover, soil urease activities and microbial biomass carbon were 4.66 and 0.66 times those in the control. The study showed that MHAP was more effective at transforming Cu and Cd from active to inactive fractions and increasing soil available P and soil microbial activity; therefore, MHAP has good potential for the heavy metal-contaminated red soil in southern China.Keywords: hydroxyapatite; grain size; Cu; Cd; phosphorus; availability; soil enzyme activity重金属可以通过食物链对人体健康产生严重威胁,已成为当前全世界关注的主要问题之一[1]. 在我国,由于经济快速发展过程中缺乏完善的环保措施,尤其是在一些金属矿区、金属冶炼和加工企业周边地区,大量的可耕地被重金属污染[2]. 如国家环境保护部和国土资源部在2014年公布的《全国土壤污染状况调查公报》显示,全国耕地土壤点位超标率为19.4%,主要污染物为Cd、Ni、Cu、As等. 根据2016年5月发布的《土壤污染防治行动计划》可知,我国江西、湖南、广东、广西、四川、贵州、云南等地存在污染耕地集中区域,这些地区同时也是我国典型的低磷(有效磷)红壤区[3].近年来,研究[4-5]表明,磷基钝化材料(磷灰石、磷酸二氢钾、过磷酸钙和羟基磷灰石等)可以有效降低土壤和废水中Pb、Cd和Co等重金属活性. 尤其是羟基磷灰石(来源于脊椎动物硬组织部分如骨头和牙齿)对重金属具有强烈的吸附固定能力,目前被广泛应用于修复重金属污染的土壤和沉积物[6-7]. 这种稳定化修复方法不能降低重金属污染物的总量,仅是通过与重金属结合或使其由活性态向非活性态转化[8]. 另外,研究[9-10]表明,羟基磷灰石较常规水溶性磷肥具有低淋出率和缓慢磷释放的特性,是一种具有较大潜力的磷肥. 因此,在我国重金属污染红壤区施加磷基钝化材料羟基磷灰石不仅有助于降低重金属活性,还能够促进作物的生长.研究表明,钝化剂的粒径显著影响土壤重金属的生物有效性和地球化学稳定性[11-12],但目前报道的研究结果并不一致. 如CHEN等[13]发现,小于35 μm的磷矿粉颗粒较133~266 μm颗粒更能有效降低土壤重金属的生物有效性,其主要原因可能是颗粒越小,比表面积大,更有利于形成金属磷酸盐. 然而,笔者前期的室内研究发现,小于12 μm的微米羟基磷灰石较60 nm的纳米羟基磷灰石更能有效的降低铜和镉的有效性[11]. DONG等[14]研究发现,微纳米级羟基磷灰石较微米和纳米级羟基磷灰石更有助于降低污染土壤铜和镉的有效性.另外,以上不同的研究结果都是在实验室内完成,缺少实际污染土壤的田间验证效果比较. 因此,该研究选择三种粒径羟基磷灰石(普通磷灰石粉、微米羟基磷灰石和纳米羟基磷灰石)为供试材料,研究其在田间尺度下连续5 a稳定化修复后对土壤酶活性、铜、镉和磷有效性的影响,以评价田间尺度下不同粒径材料稳定化效果,以期为土壤修复钝化剂的选择提供科学指导.1.1 土壤和羟基磷灰石研究区位于江西省贵溪市滨江乡九牛岗村,靠近一个大型铜冶炼厂和化肥厂. 试验布置前,该区域主要为废弃的水稻田,已被周边企业排放的含有重金属的废水和废气污染,主要污染物是铜(w为592 mg/kg)和镉(w为896 μg/kg)[15]. 土壤pH 为4.48,阳离子交换量(CEC)为82.5 mmol/kg,w(有机碳)、w(碱解氮)、w(速效磷)、w(速效钾)分别为17、144、91、84 mg/kg,交换性酸和交换性铝含量分别为31.7和26.9 mmol/kg.常规磷灰石粉(pH=9.12,粒径150 μm)购自湖北南漳县鑫泰磷化工;微米(pH=7.68,粒径3 μm)和纳米羟基磷灰石(pH=7.72,粒径40 nm)购自南京埃普瑞纳米材料公司. 常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石中w(Cu)、w(Cd)分别为10.5、5.85、4.4 mg/kg和61.7、38.3、37.1 μg/kg.1.2 试验过程试验于2010年11月布置,共设4个处理,分别为常规磷灰石、微米和纳米羟基磷灰石以及对照处理. 其中常规磷灰石、微米和纳米羟基磷灰石用量均为表层20 cm土壤质量的1%,对照处理不添加任何钝化材料. 采用随机区组设计,每处理三次重复,每小区面积为4 m2(2 m×2 m). 各小区间采用防渗聚乙烯塑料薄膜(高出30 cm)包裹田埂,防止因雨水径流影响试验结果.利用人工翻耕、耙匀使钝化材料与0~20 cm表层土壤充分混匀,然后用自来水清水平衡(每小区施加100 kg)1周后施复合肥、播种黑麦草. 整个试验过程中仅在2010年施加一次钝化材料,并且黑麦草仅在2010—2014年能够存活,其生物量逐渐降低. 但是试验过程中除对照处理外均有土著杂草金黄狗尾草生长. 另外,试验过程中各小区施肥、播种、田间管理方式均保持一致.试验样品于2016年1月28日采集,此时小区杂草已经移除,样品采集深度0~20 cm. 一部分样品装于无菌自封袋中,用于土壤酶活性和微生物量碳氮的分析;另一份样品带回实验室后风干、研磨后用于土壤化学性质、铜和镉及磷有效性的分析.1.3 分析方法土壤和钝化材料的pH采用固液比为1∶2.5的比例添加无CO2蒸馏水,用pH电极(E-201-C,上海楚柏实验室设备有限公司)测定. 土壤w(有机碳)采用重铬酸钾湿式氧化法测定,土壤w(TN)、w(TP)、阳离子交换量、w(碱解氮)、w(速效磷)、w(速效钾)、交换性酸和交换性铝含量按照常规方法[16]测定. 土壤采用HF-HNO3-HCLO4(10 mL-5 mL-5 mL)电热板消解后,采用原子吸收(或石墨炉)分光光度计法测定w(TCu)和w(TCd). 土壤铜和镉的离子交换态、碳酸盐结合态、铁锰氧化物结合态、有机结合态和残渣态含量采用Tessier分级方法[17]测定.土壤磷分级采用Tiessen等[18]的方法测定:①树脂磷,0.5 g风干土用去离子水和阴离子交换树脂提取;②NaHCO3提取无机磷(NaHCO3-Pi)和有机磷(NaHCO3-Po),上一步残留物加入pH=8.5的0.5 mol/L NaHCO3提取;③NaOH提取无机磷(NaOH-Pi)和有机磷(NaOH-Po),上一步残留物加入0.1 mol/L NaOH提取;④NaOH提取态磷,上一步残留物加入1 mol/L NaOH提取;⑤残渣态磷,上一步残留物用H2SO4和H2O2消解提取.土壤微生物量碳氮含量采用氯仿熏蒸-浸提方法[19]测定. 土壤过氧化氢酶、脲酶和酸性磷酸酶活性参照文献[20-21]的方法测定. 其中过氧化氢酶活性用每克土滴定H2O2消耗的0.1 mol/L KMnO4的毫升数表示,记为mL/g;脲酶和酸性磷酸酶活性采用比色法测定,分别以37 ℃下培养24 h后每g土中NH3-N 和酚的mg数表示,均记为mg/[g/(24 h)].1.4 数据处理用Excel 2010对试验数据进行整理,SPSS 19.0 软件对数据进行单因素方差分析,不同处理间的最小显著性差异检验在P<0.05(LSD)水平上.2.1 土壤性质变化如表1所示,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理污染土壤5 a后土壤pH较对照分别显著提高了0.48、0.61和0.57个单位. 与土壤pH相似,三种钝化材料均显著增加了土壤w(TP)和w(有效磷),其中微米和纳米羟基磷灰石处理w(TP)和w(有效磷)分别较对照增加了2.07、2.19倍以及1.49和1.16倍. 与w(有效磷)相同,三种钝化材料均显著增加了土壤w(速效钾). 与对照相比,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石分别使土壤交换性酸和交换性铝显著降低了75.2%、76.1%、71.6%和86.4%、87.8%、81.5%. 但是所有处理土壤间,土壤w(TN)、w(有机碳)和阳离子交换量未有显著差异.2.2 土壤铜和镉化学形态变化不同粒径羟基磷灰石处理后土壤铜和镉化学形态变化如表2所示. 对照处理中,五种形态铜的分布规律为:残渣态>离子交换态>有机结合态>碳酸盐结合态>铁锰氧化物结合态. 三种粒径羟基磷灰石处理后,铜化学形态的分布均表现为残渣态>铁锰氧化物结合态>碳酸盐结合态>有机结合态>离子交换态. 其中常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理w(离子交换态铜)较对照分别显著降低了62.6%、74.3%和70.4%. 三种粒径羟基磷灰石处理均提高了土壤w(碳酸盐结合态铜)和w(铁锰氧化物结合态铜),但是未对w(有机结合态铜)和w(残渣态铜)产生显著影响. 然而,与对照相比,微米羟基磷灰石和纳米羟基磷灰石处理w(TCu)分别显著提高了20和25 mg/kg.由表2可知,对照处理中,五种形态镉的分布规律为残渣态>离子交换态>碳酸盐结合态>铁锰氧化物结合态>有机结合态. 与铜相似,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理w(离子交换态镉)较对照分别显著降低了15.7%、25.3%和26.7%. 另外,三种粒径羟基磷灰石处理后均显著增加了w(铁锰氧化物结合态镉)和w(有机结合态镉),但是对w(残渣态镉)和w(TCd)没有显著影响.2.3 土壤磷化学形态变化如表3所示,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理分别使土壤w(树脂磷)和w(NaOH 提取态无机磷)较对照提高了0.35、1.05和1.52倍以及0.35、0.77和0.73倍. 另外,三种粒径材料均提高了土壤w(NaHCO3提取态无机磷)和w(NaOH 提取态有机磷). 与树脂磷变化相似,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理土壤w(HCl提取态磷)和w(残渣态磷)分别较对照提高了6.55、6.25和7.02倍以及3.69、3.44和3.05倍. 但是,三种粒径材料对土壤w(NaHCO3提取态有机磷)的影响较小.2.4 土壤酶活性和微生物量碳氮变化三种粒径材料对土壤酶活性和微生物量碳氮的影响如图1所示. 对于土壤过氧化氢酶活性,三种材料的添加均未对其产生显著影响. 常规磷灰石和微米羟基磷灰石处理使土壤脲酶活性较对照显著增加了2.11和4.46倍,但纳米羟基磷灰石处理未表现出显著差异. 与对照相比,常规磷灰石处理微弱降低了土壤酸性磷酸酶活性,但是微米羟基磷灰石和纳米羟基磷灰石对土壤酸性磷酸酶活性的影响较小. 另外,与对照相比,常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石处理较对照分别使土壤微生物量碳含量增加了0.56、0.66和0.58倍,但仅常规羟基磷灰石处理显著增加了土壤微生物量氮的含量.羟基磷灰石是一种碱性材料(pH>7.6),其溶解过程〔见式(1)〕能够消耗大量H+[22],因而可以增加土壤pH,导致土壤交换性酸和交换性铝含量的降低. 与此相同,WEI等[23]研究也表明,纳米羟基磷灰石的添加较对照土壤pH显著增加了1.8个单位. 另外,尽管常规羟基磷灰石材料具有最高的pH,但是笔者研究结果表明修复5 a后,微米羟基磷灰石对土壤pH的提高幅度最好,其次是纳米羟基磷灰石. 这可能是由于常规的磷灰石中除含有羟基磷灰石外,还含有一定量的碳酸钙,其在酸性条件下快速溶解,导致其对土壤pH的维持效果不如微米和纳米羟基磷灰石. 处理后土壤速效钾较对照增加可能是由于三种钝化材料本身含有一定量的钾,增加了土壤中w(TK);黑麦草的生长改变微生物群落结构促进土壤钾活性的提高. 另外,研究区域土壤的总氮和总磷较其他地区处于较高的水平,主要是由于该研究区靠近一个化肥厂,前期土壤灌溉了含有大量氮磷的废水,导致其w(TN)和w(TP)逐渐增加.与前期的室内研究结果[11]一致,大田试验条件下微米和纳米羟基磷灰石能够显著降低土壤w(离子交换态铜)和w(离子交换态镉). 其主要原因是由于三种材料均提高了土壤pH,降低了交换性酸和交换性铝含量,增加了土壤对重金属的固定能力.且该研究中土壤w(离子交换态铜)和w(离子交换态镉)均与pH呈现极显著的负相关关系,与交换性酸和交换性铝含量均呈现极显著的正相关关系(数据未列出). 因为土壤pH可用来表示土壤活性酸度,是土壤溶液中H+浓度的直接反映;交换性酸、交换性铝可用来表达土壤潜性酸度,是土壤胶体吸附的可代换性H+和Al3+. 因此,土壤酸度是影响土壤重金属活性的关键因子. 此外,一些研究[7,24]表明羟基磷灰石主要是通过离子交换、表面络合和共沉淀等作用,降低重金属的活性. Siebers等[25]指出高含量镉下,磷酸盐材料主要是通过形成磷酸盐沉淀来降低土壤镉的有效性. DONG等[14]研究进一步表明,不同粒径的羟基磷灰石对铜和镉吸附固定存在机理上的差异,微纳米羟基磷灰石的表面特性和结构特点使得其具有更多的吸附位点,提高对铜和镉的吸附能力. 通常,材料粒径越小,比表面积和表面能越大,对重金属的吸附固定能力更强[13],但该研究中微米羟基磷灰石对铜和镉活性的降幅要优于常规磷灰石和纳米羟基磷灰石. 在前期的研究中笔者认为,这可能是由于纳米羟基磷灰石在土壤中发生团聚,失去了纳米材料的特性[11],导致微米羟基磷灰石对重金属具有较好钝化效果.此外,与对照相比,钝化材料的应用均不同程度的提高了土壤w(TCu)和w(TCd),这与笔者前期的研究结果[26]一致. 这可能是由于尽管该地区目前已经不再遭受灌溉水带入的重金属污染,但是仍然存在大气干湿沉降的重金属污染. 如陶美娟等[27]的研究表明,该地区干湿沉降的铜和镉含量年均达到1 973和15.2 mg/m2. 另外,笔者前期通过比较重金属输入(钝化材料输入和大气干湿沉降输入)和输出(植物吸收、地表径流和向下淋溶)发现,钝化材料(常规磷灰石、石灰和木炭)的添加均提高了土壤对铜和镉的吸附固定能力,减少了通过地表径流和淋溶作用输出的重金属,且其减少的重金属输出量大于通过植物提取和地表径流输出的重金属总量,因而导致改良后表层土壤重金属总量高于对照处理[26,28]. 因此,在实际的土壤修复过程中,完全截断外源污染物的输入尤其必要.同时,羟基磷灰石的添加显著增加了土壤w(TP),其在溶解过程也会导致大量磷的溶出[10],因此可以显著增加土壤w(有效磷). 与土壤有效磷变化相同,常规磷灰石、微米和纳米羟基磷灰石的添加增加了土壤树脂磷,但是仅占总磷的4.61%、12.6%和17.4%. 同样,Rivaie等[29]研究也表明磷灰石和过磷酸钙的应用可以显著增加土壤w(树脂磷). 根据文献[30],活性无机磷(NaHCO3-Pi)和中度活性无机磷(NaOH-Pi)更有可能被植物吸收和利用,该研究中微米和纳米羟基磷灰石处理的土壤均高于对照和普通磷灰石处理,因此更有利于植物生长. 类似地,LIU等[9,31]研究发现,有机和无机磷改良材料的应用均增加了土壤NaHCO3-Pi和NaOH-Pi 的含量. 因为HCl提取态磷主要来源于土壤磷灰石、钙磷及其他负电荷氧化物结合态磷[32],所以该研究中三种粒径羟基磷灰石材料均显著增加了土壤HCl提取态磷.总的来看,三种粒径材料的添加均提高了土壤w(活性磷)、w(中度活性磷)和w(稳定态磷),且对稳定态磷的提高幅度最大. 另外,微米和纳米羟基磷灰石对活性磷的提高优于常规磷灰石. 但是,添加的三种粒径材料处理土壤中,73.4%~89.8%增加的总磷都是以稳定态磷(HCl提取态和残渣态)形式存在,这可能导致我国南方地区土壤有效磷较低的一个原因. 这也表明,羟基磷灰石钝化材料在我国南方重金属污染的缺磷(有效磷低)土壤中具有较大应用潜力,既能够钝化重金属,又可以通过有效磷的提升,促进作物的增产. 但是要控制好用量,因为w(树脂磷)过高,容易导致水体的富营养化[33]. 如前期的室内淋溶试验发现,没有作物生长的情况下,0.5%用量的羟基磷灰石处理镉污染土壤,淋出液磷的含量达到0.50~1.42 mg/L,超过了GB 3838—2002《地表水环境质量标准》Ⅴ类水标准〔ρ(TP)为0.4 mg/L〕[34].土壤微生物活性是评价土壤污染的一个重要特性,尤其是土壤酶活性,其在养分循环、有机质转化、土壤理化性质、微生物活性方面具有重要作用,常用于土壤质量的评价[35-36]. 该研究结果表明,微米羟基磷灰石处理能够显著增加土壤脲酶和过氧化氢酶活性,纳米羟基磷灰石处理对土壤酶活性未有显著影响. 另外,该研究也表明,三种材料粒径的应用均有利于土壤微生物量碳的提高. 可见,总体上微米羟基磷灰石处理更有利于土壤酶活性和微生物量碳的增加. 这可能是由于材料的应用显著提高了土壤pH,降低了土壤铜和镉的活性,改变了土壤微生物群落结构,导致土壤微生物活性的增加. 同时,黑麦草和土著植物杂草金黄狗尾草的残落物、根系分泌物和根际微生物影响土壤微生物群落结构,提高土壤微生物活性. 如WEI等[23]的研究发现,纳米HAP处理后提高了黑麦草生物量和土壤脲酶和脱氢酶的活性,并改变了土壤微生物多样性和群落结构,尤其是增加了土壤中Stenotrophomonas sp.和Bacteroides的数量.a) 微米羟基磷灰石较常规磷灰石和纳米羟基磷灰石更有利于提高土壤pH,降低土壤交换性酸和交换性铝含量;随着常规磷灰石、微米和纳米羟基磷灰石的添加,土壤中w(离子交换态铜)降低了62.6%、74.3%和70.4%,w(离子交换态镉)降低15.7%、25.3%和26.7%.b) 常规磷灰石、微米和纳米羟基磷灰石显著提高了土壤w(TP),其中的4.61%~17.4%和73.4%~89.8%分别转化为树脂磷和稳定态磷.c) 常规磷灰石、微米羟基磷灰石和纳米羟基磷灰石的添加分别使土壤微生物量碳含量增加了0.56、0.66和0.58倍,且常规磷灰石和微米羟基磷灰石处理使土壤脲酶活性增加了2.11和4.46倍,但仅有常规磷灰石处理显著增加土壤微生物量氮的含量.【相关文献】[1] HU Yuanan,CHENG Hefa,TAO Shu.The challenges and solutions for cadmium-contaminated rice in China:acritical review[J].Environment International,2016,92:515- 532.[2] LI Wanlu,XU Binbin,SONG Qiujin,et al.The identification of ′hotspots′ of heavy metal pollution in soil-rice systems at a regional scale in eastern China[J].Science of the Total Environment,2014,472:407- 420.[3] LI Baozhen,GE Tida,XIAO Heai,et al.Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils[J].Environmental Science and Pollution Research,2016,23(8):7494- 7503.[4] SMICIKLAS I,DIMOVIC S,PLECAS I,et al.Removal of Co2+ from aqueous solutions by hydroxyapatite[J].Water Research,2006,40(12):2267- 2274.[5] VALIPOUR M,SHAHBAZI K,KHANMIRZAEI A.Chemical immobilization oflead,cadmium,copper and nickel in contaminated soils by phosphateamendments[J].Clean-Soil,Air,Water,2016,44(5):572- 578.[6] ZHANG Zizhong,LI Mengyan,CHEN Wei,et al.Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite[J].Environmental Pollution,2010,158(2):514- 519.[7] MA Q Y,TRAINA S J,LOGAN T J,et al.Effects of aqueous Al,Cd,Cu,Fe(Ⅱ),Ni,and Zn on Pb immobilization by hydroxyapatite[J].Environmental Science &Technology,1994,28(7):1219- 1228.[8] KOMAREK M,VANEK A,ETTLER V.Chemical stabilization of metals and arsenic in contaminated soils using oxides:a review[J].Environmental Pollution,2013,172:9- 22. [9] LIU R,LAL R.Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions[J].Science of the Total Environment,2015,514:31- 139.[10] MONTALVO D,MCLAUGHLIN M J,DEGRYSE F.Efficacy of hydroxyapatite nanoparticles as phosphorus fertilizer in Andisols and Oxisols[J].Soil Science Society of America Journal,2015,79(2):551- 558.[11] CUI Hongbiao,ZHOU Jing,ZHAO Qiguo,et al.Fractions of Cu,Cd,and enzyme activities in a contaminated soil as affected by applications of micro-and nano-hydroxyapatite[J].Journal of Soils and Sediments,2013,13(4):742- 752.[12] BERBER-MENDOZA M S,LEYVA-RAMOS R,ALONSO-DAVILA P,et al.Effect of pH and temperature on the ion‐exchange isotherm of Cd(Ⅱ)and Pb(Ⅱ)on clinoptilolite[J].Journal of Chemical Technology and Biotechnology,2006,81(6):966- 973.[13] CHEN S,ZHU Y G,MA Y B.The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils[J].Journal of HazardousMaterials,2006,134(1):74- 79.[14] DONG Anle,YE Xinxin,LI Hongying,et al.Micro/nanostructured hydroxyapatite structurally enhances the immobilization for Cu and Cd in contaminated soil[J].Journal of Soils and Sediments,2016,16(8):2030- 2040.[15] CUI Hongbiao,FAN Yuchao,YANG J,et al.In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil[J].Chemosphere,2016,161:233- 241.[16] 鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,l999.[17] TESSIER A,CAMPBELL P G C,BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844- 851. [18] TIESSEN H,MOIR J O.Characterization of available P by sequential extraction,in Carter,M.R.(ed.):soil sampling and methods of analysis[M].Boca Raton:Lewis Publishers,1993.[19] VANCE E D,BROOKES P C,JENKINSON D S.An extraction method for measuring soil microbial biomass C[J].Soil Biology & Biochemistry,1987,19(6):703- 707.[20] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.[21] 周礼凯.土壤酶学[M].北京:科学出版社,1987.[22] BOISSON J,RUTTENS A,MENCH M,et al.Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils.Part 1.Influence of hydroxyapatite on metal exchange ability in soil,plant growth and plant metal accumulation[J].Environmental Pollution,1999,104(2):225- 233.[23] WEI Liu,WANG Shutao,ZUO Qingqing,et al.Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil[J].Environmental Sciences Processes & Impacts,2016,18:760- 767. [24] CAO X D,MA L Q,RHUE D R,et al.Mechanisms of lead,copper,and zinc retention by phosphate rock[J].Environmental Pollution,2004,131:435- 444.[25] SIEBERS N,KRUSE J,LEINWEBER P.Speciation of phosphorus and cadmium in a contaminated soil amended with bone char:sequential fractionations and XANES spectroscopy[J].Water,Air,& Soil Pollution,2013,224(5):1- 13.[26] CUI H B,FAN Y C,XU L,et al.Sustainability of in situ remediation of Cu-and Cd-contaminated soils with one-time application of amendments in Guixi,China[J].Journal of Soils and Sediments,2016,16(5):1498- 1508.[27] 陶美娟,周静,梁家妮,等.大型铜冶炼厂周边农田区大气重金属沉降特征研究[J].农业环境科学学报,2014,33(7):1328- 1334. TAO Meijuan,ZHOU Jing,LIANG Jiani,et al.Atmospheric deposition of heavy metals in farmland area around a copper smelter[J].Journal of Agro-Environment Science,2014,33(7):1328- 1334.[28] CUI Hongbiao,ZHOU Jing,SI Youbin,et al.Immobilization of Cu and Cd in a contaminated soil:one-and four-year field effects[J].Journal of Soils andSediments,2014,14(8):1397- 1406.[29] RIVAIE A A,LOGANATHAN P,GRAHARM J D,et al.Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant-availability and downward movement in two volcanic ash soils under Pinusradiata plantations in NewZealand[J].Nutrient Cycling in Agroecosystems,2008,82(1):75- 88.[30] NEGASSA W,LEINWEBER P.How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus:a review[J].Journal of Plant Nutrition and Soil Science,2009,172(3):305- 325.[31] MALIK M A,MARSCHNER P,KHAN K S.Addition of organic and inorganic P sources to soil:effects on P pools and microorganisms[J].Soil Biology and Biochemistry,2012,49:106- 113.[32] RODRIGUES M,PAVINATO P S,WITERS P J A,et al.Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna[J].Science of the Total Environment,2016,542:1050- 1061.[33] LI Ronghua,WANG J J,ZHOU Baoyue,et al.Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J].Science of the Total Environment,2016,559:121- 129.[34] 马凯强,崔红标,范玉超,等.模拟酸雨对羟基磷灰石稳定化污染土壤磷/镉释放的影响[J].农业环境科学学报,2016,35(1):67- 74. MA Kaiqiang,CUI Hongbiao,FAN Yuchao,et al.Effects of simulated rain on release of phosphorus and cadmium in a contaminated soil immobilized by hydroxyapatite[J].Journal of Agro-Environment Science,2016,35(1):67- 74.[35] GIL-SOTRES F,TRASAR-CEPEDA C,LEIROS M,et al.Different approaches to evaluating soil quality using biochemical properties[J].Soil Biology and Biochemistry,2005,37(5):877- 887.[36] WASILKOWSKI D,MROZIK A,PIOTROWSKA-SEGET Z,et al.Changes in enzyme activities and microbial community structure in heavy metal-contaminated soil under in situ aided phytostabilization[J].Clean-Soil,Air,Water,2014,42(11):1618- 1625.。
猱2科枝Journal of Green Science and Technology第6期2019年3月生态文明视角下探索可再生资源回收体系——以丽水职业技术学院为例王璐瑶,陈颖,岳建(丽水职业技术学院,浙江丽水323000)摘要:指出了在资源过度消耗、生态文明亟需建设的大环境下,各高校作为社会的缩膨,毎年有大量可再生资源被浪费,垃圾资源化效率低下.不仅如此,大学校园资源分类回收机制也存在诸多弊端。
以我国各高校正面临的垃圾分类困局为契机,通过对比发达国家所釆取的针对城市生活垃圾分类措施.采取“互联网+”的方式,探索了适用于高校校园的垃圾分类市场化运作模式,旨在运用价格杠杆的方式引导广大师生主动进行垃圾分类,提升生态文明素养、倡导绿色环保理念。
关键词:生态文明;绿色环保;可再生资源回收体系;建设;高校中图分类号:X24文献标识码:A文章编号:1674-9944(2019)6-0090-021引言建设生态文明,关系人民福祉,关乎民族未来。
在以习近平同志为核心的党中央高度重视下,生态文明建设地位不断提升口。
现阶段,我国面临资源短缺问题,许多可再生资源得不到充分利用,而我国循环经济的发展正处于从理念倡导、局部试验、示范向全面实践推进阶段学校是社会的重要组成部分,教育是促进可持续发展和提高人民解决环境与发展问题的关键手段⑷。
在这一关键时期,垃圾问题对于校园来说是一大问题,大学校园内可再生资源的浪费较为常见,如学生的废旧书籍、衣物等一些可回收物得不到充分回收和利用.造成较为严重的浪费现象。
进行二次分类,则时间、人力成本过高,如何用全新的理念解决垃圾问题,已经成为当下大学校园不可忽视、亟待解决的重要问题。
在生态文明视角下探索高校可再生资源回收体系的建立,不但能培养学生养成垃圾分类回收的习惯.使废品得到利用、空间得以释放,更能引导广大学生树立正确的生态文明观,形成一个循环可再生资源回收机制,符合我国当前实际情况,契合国家可持续发展的政策导向,具备较好的合理性和实践价值,对于促进整个社会的生态文明建设具有重要意义。
Advances in Environmental Protection 环境保护前沿, 2012, 2, 15-19doi:10.4236/aep.2012.22003 Published Online June 2012 (/journal/aep)Influence of Alternative Drying-Wetting on PhosphorusFractions in Soils with Different Organic Matter Contentand Environmental Implications*Linlin Wei1, Gang Xu1,2#, Junna Sun2, Wenjun Xie2, Hongbo Shao1,3#1Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai2Shandong Provincial Key Laboratory of Eco-Environmental Science for Yellow River Delta (Binzhou University), Binzhou3Institute of Life Sciences, Qingdao University of Science & Technology, QingdaoEmail: {llwei, #gxu, #hbshao}@Received: Mar. 25th, 2012; revised: Apr. 9th, 2012; accepted: Apr. 12th, 2012Abstract: In the context of global change, it is of significance to study the effect of alternative drying-wetting on the soil fertility level and the environmental quality of water body. In this study, soil P was fractionated by using a modified Hedley fractionation method to examine the effect of alternative drying-wetting on phosphorus fractions in soils with different organic matter content. The results displayed no significant difference of total phosphorus between the two treatments because the coefficient of variance was less than 10%. However, there is a significant change in the distribu-tion of soil phosphorus fractions: increase the content of labile-P (especially resin-P) and organic-P (NaHCO3-Po, NaOH-Po and Con.Hcl-Po) while decreasing the content of NaOH-Pi and occlude-P. Under the alternative drying and wetting condition, resin-P increased by 121% in the organic soil, while only increasing by 31% in the sterile soil, which indicates a significant effect of alternative of drying and wetting on labile-P in soils with high organic matter content. The study indicates that alternative drying and wetting seemed to drive the phosphorus transformation from the oc-clude-P to labile-P and organic-P. In the context of global change, alternative drying and wetting can increase the con-tent of labile P in the soil to improve crop growth. However, when there is rainfall or irrigation, it may aggravate the loss of soil phosphorus, which will induce the offshore eutrophication and possibly threaten the coastal environmental quality and regional ecological security.Keywords: Phosphorus Fractionation; Drying-Wetting; Climate Change; Organic Soil; Sterile Soil干湿交替变化对土壤中磷形态影响及环境意义*魏琳琳1,徐刚1,2#,孙军娜1,谢文军2,邵宏波1,3#1中国科学院烟台海岸带研究所,烟台2山东省黄河三角洲生态环境重点实验室(滨州学院),滨州3青岛科技大学生命科学研究所,青岛Email: {llwei, #gxu, #hbshao}@收稿日期:2012年3月25日;修回日期:2012年4月9日;录用日期:2012年4月12日摘要:在全球变化的背景下,干湿交替对于土壤肥力水平和水体环境质量,具有重要的研究意义。
不同密度及林龄杉木人工林土壤磷循环功能基因phoc和phod的变化规律【知识】不同密度及林龄杉木人工林土壤磷循环功能基因phoc和phod的变化规律导语:杉木人工林作为中国主要的人工造林类型之一,对于改善生态环境和保护土壤资源起到了重要作用。
然而,近年来人们对于杉木人工林中土壤磷循环的研究相对较少。
本文将分析不同密度及林龄杉木人工林土壤磷循环功能基因phoc和phod的变化规律,探讨其对于降低土地退化、促进土壤肥力的意义。
目录:一、磷循环在土壤生态系统中的重要性及机制二、杉木人工林对土壤磷循环功能基因的影响2.1 杉木人工林密度对磷循环功能基因的影响2.2 杉木人工林林龄对磷循环功能基因的影响三、杉木人工林土壤磷循环功能基因变化规律的解读3.1 phoc基因变化规律的分析3.2 phod基因变化规律的分析四、不同密度及林龄杉木人工林土壤磷循环功能基因变化的意义五、个人观点与总结一、磷循环在土壤生态系统中的重要性及机制磷是土壤肥力的重要指标之一,能够影响植物的生长发育和养分吸收。
在土壤生态系统中,磷的循环主要通过磷循环功能基因来实现。
磷酸根酶(phosphatase)是负责水解有机磷酯、底物是无机磷化合物生成有机磷酸酪氨酸(Pi)的酶,即phoc基因。
而磷酸二酯酶(phosphodiesterase)是负责水解底物是有机磷酯生成Pi的酶,即phod基因。
这两种酶的功能对于磷循环在土壤中的进行至关重要。
二、杉木人工林对土壤磷循环功能基因的影响2.1 杉木人工林密度对磷循环功能基因的影响杉木人工林的密度是影响磷循环功能基因的一个关键因素。
随着杉木人工林密度的增加,磷循环功能基因的丰度和活性也会相应增加。
研究表明,较高密度的杉木人工林可以提高phoc和phod基因的表达水平,加速土壤磷的循环速率,从而促进土壤磷的有效利用和提高土壤肥力。
2.2 杉木人工林林龄对磷循环功能基因的影响杉木人工林的林龄也会对磷循环功能基因产生影响。
低磷胁迫下五种苹果砧木的磷吸收与利用特性季萌萌;许海港;彭玲;任饴华;葛顺峰;姜远茂【摘要】Objectives As an essential mineral element in the plants, phosphorus can facilitate the differentiation of flower bud. However, phosphorus is easily fixed in soils when applied to soil, and mostly transferred to occluded P, which is not available to plants. Therefore, it has great significance to excavate phosphorus efficient apple rootstocks under low phosphorus stress. In this study,five one-year-old wild apple rootstocks were used as materials and their phosphorus absorption and utilization characteristics under the condition of low phosphorus stress were analyzed. [Methods]The five one-year-old apple rootstocks [M. micromalus Makino, Malus hupehensis Rehd. , M. baccata Borkh. , M. prunifolia(Willd)Borkh. and M. sievesii(Ledeb. )Roemer] were grown in low phosphorus group(LP)and control group(CK)in pots with 6 replication. The root surface area and length were determined by WinRHIZO root analysis software, and the plant phosphorus content by vanadium molybdate yellow colorimetric method. The the kinetic parameters of H2PO- 4 absorption of seedlings were determined with a water culture experiment. Firstly, the seedlings were P-starved in black bottle for 24 h and then put into the solutions of different P-concentrations for 24 h, and finally, 10 mL solutions were collected to determine the phosphorus content with Mo-Sb colorimetry. [Results]The relative phosphorus efficiencies of five rootstocks from high to low are in order of M. prunifolia(Willd)Borkh. (93. 66%) >Malus hupehensis Rehd. (87. 69%) > M. baccata Borkh. (83. 44%)> M. micromalus Makino. (74. 54%) > M. sievesii(Ledeb. )Roemer. (74. 01%). The phosphorus absorption efficiencies(PAE) from high to low are in order of M. prunifolia(Willd)Borkh. > Malus hupehensis Rehd. > M. baccata Borkh. > M. sievesii ( Ledeb. ) Roemer. > M. micromalus Makino, while the phosphorus utilization efficiencies (PUE) are in order of Malus hupehensis Rehd. > M. prunifolia (Willd) Borkh. > M. micromalus Makino > M.sievesii(Ledeb. )Roemer > M. baccata Borkh. Considering the kinetic parameters of H2PO- 4 , the values of the Vmax of the five rootstocks arein the order of M. prunifolia(Willd)Borkh. [101. 81 μmol/ (g·h) ]> Malus hupehensis Rehd. [66. 40 μmol/ (g·h) ] > M. baccata Borkh. [45. 00 μmol/ (g·h) ] > M. sievesii (Ledeb. )Roemer[44. 32 μmol/ (g·h) ] > M. micromalus Makino[41. 28 μmol/ (g·h) ]. The values of Km are arranged in turn by the following order,Malus hupehensis Rehd. (4. 05 μmol/ L) < M.prunifolia(Willd) B orkh. (8. 68 μmol/ L) < M. baccata Borkh. (12. 29 μmol/ L) < M. sievesii(Ledeb. )Roemer(12. 64 μmol/ L)< M. micromalus Makino(13. 57 μmol/ L). The total absorption surface area and length of root are highest in M. prunifolia(Willd)Borkh, lowest in M. micromalus Makino. [Conclusions]M. prunifolia(Willd)Borkh has the highest relative phosphorus efficiency and phosphorose absoprtion efficiency under phosphorus stress, exhibiting the highest growth vigor and the strongest P absorption capacity. M. prunifolia(Willd)Borkh. has the best adaptation to low phosphorus stress. Malus hupehensis Rehd has lower relative phosphorus efficiency relative to M. prunifolia (Willd) Borkh, and has the highest PUE,and its capacity to low phosphorus stress ranks after M. prunifolia (Willd) Borkh. Further analysis showed that the values of PAE in the five rootstocks were significantly and positively correlated with the surface area and length of absorption root, indicating that the root absorption area enlargement of plants could promote the acquisition of P by increasing the root surface area and length under low phosphorus stress.%【目的】磷是植物必需的矿质元素之一,能够促进植株花芽分化,但施入土壤中的磷易被固定从而变成难以利用的闭蓄态磷,使土壤中的有效磷含量降低。
不同石灰性土壤磷素形态及其有效性差异卜玉山;梁美英;张广峰;郭淑红;史晓凯;马茹茹【摘要】研究了山西中部和中西部盆地与丘陵区26个石灰性土壤的磷素总量及其形态差异,并利用通径分析分析了不同磷素形态与速效磷的关系,以了解供试土壤利用状况对土壤磷素总量、形态分布及其有效性的影响.结果表明供试土壤无机、有机磷总量均差异明显,无机磷以Ca-P为主,有机磷以MLOP为主.大棚石灰性褐土无机磷中Ca2 -P、Ca8 -P和Al-P显著高于其它供试土壤,且Ca8-P含量超过Ca10-p,有机磷中MLOP显著高于其它供试土壤,且LOP和MROP含量也较高.无机形态磷与速效磷均显著正相关,除HROP外,其余有机形态磷与速效磷均为显著正相关.通径分析进一步表明,Ca2-P对速效磷的直接影响达显著水平,其余无机形态磷的间接影响均达显著水平;MLOP和LOP对速效磷的直接影响均达显著水平,LOP和MROP的间接影响都达显著水平,HROP既无直接影响,也无间接影响.利用管理强度特别是施肥不同是导致供试石灰性土壤有机和无机磷总量及其不同形态分布差异的主要原因.通径分析不同形态磷素对土壤速效磷的影响更为简单明确.【期刊名称】《山西农业大学学报(自然科学版)》【年(卷),期】2011(031)003【总页数】7页(P193-199)【关键词】石灰性土壤;有机形态磷;无机形态磷;速效磷;相关性;通径分析【作者】卜玉山;梁美英;张广峰;郭淑红;史晓凯;马茹茹【作者单位】山西农业大学资源环境学院,山西太谷 030801;山西农业大学资源环境学院,山西太谷 030801;山西农业大学资源环境学院,山西太谷 030801;山西省农业科学院玉米研究所,山西忻州 034000;山西农业大学资源环境学院,山西太谷030801;山西省农业科学院经济作物研究所,山西汾阳 032200;山西农业大学资源环境学院,山西太谷 030801;山西农业大学资源环境学院,山西太谷 030801【正文语种】中文【中图分类】S153土壤是植物磷素营养的主要来源,而我国北方石灰性土壤缺磷现象十分普遍,施用磷肥成为提高作物产量和品质的重要农艺措施。
一,总有机碳的测定放法(消煮法)(一)实验药品:粉末状的硫酸银、0.800mol/L重铬酸钾标准溶液、邻菲哕啉、0.2mol/mL硫酸亚铁。
(二)实验仪器:精密天平、硬质大试管、5ml移液管、油浴锅、250ml锥形瓶、酸式滴定管、胶头滴管。
(三)实验步骤:1,量法称取O.1—0.59(精确到O.00019)通过0.149mm的风干土样于硬质大试管中,2,加粉末状的硫酸银0.19g,用10ml液管加入5ml 0.800mol/L重铬酸钾标准溶液,然后用注射器注入5ml浓硫酸,并小心旋转摇匀。
3,预先将油浴锅加热至185-190℃,将盛土的大试管插入铁丝笼架中,然后将其放入油锅中加热,此时应控制锅内温度在170-180。
C,并使溶液保持沸腾5min,然后取出铁丝笼架,待试管冷却后,用干净纸擦净试管外部的油液,如煮沸后的溶液呈绿色,表示重铬酸钾用量不足,应在称取较少的土样重做。
4,如溶液呈橙黄色或黄绿色,则冷却后将试管内混合物洗入250ml锥形瓶中,使瓶内体积在60.80ml 左右,加邻菲哕啉3-4滴,用0.2mol/mL硫酸亚铁滴定,溶液由橙黄经蓝绿到棕红色为终点。
变色过程由棕红色经紫至蓝绿色为终点。
记录硫酸亚铁用量(V)计算公式:W c0为有机碳含量,g/kg;0.8000为重铬酸钾标准溶液的浓度,mol·L~;5.0为重铬酸钾标准溶液的体积,ml;V。
为空白标定用去硫酸亚铁溶液体积,ml;V为滴定土样用去硫酸亚铁溶液体积,ml;0.003为1/4碳原子的摩尔质量,g-retool-1;1.1为氧化校正系数;ml为风干土样的质量,g;K2为将风干土换算到烘干的水分换算系数;二,土壤颗粒有机碳、矿质组分有机碳(MOMC)测定方法土壤中颗粒有机质组分指土壤中与沙粒结合的有机质(直径53~2000um),并进一步可能结合在土壤大团聚体(macroaggregates)与微团聚体(microaggregates)中。
REGULAR ARTICLESoil phosphorus fractions and tree phosphorus resorption in pine forests along an urban-to-rural gradient in Nanchang,ChinaXiao-Fei Hu &Fu-Sheng Chen &Gregory Nagle &Yun-Ting Fang &Ming-Quan YuReceived:30September 2010/Accepted:15April 2011/Published online:3May 2011#Springer Science+Business Media B.V .2011Abstract Urbanization has been rapid across the world but the responses of phosphorus (P)cycling to urbanization have not been well-investigated.This study was to understand the influences of rapid urbanization on forest P cycling in a developing country.Soil P fractions and P resportion were determined for nine slash pine (Pinus elliottii Engelm.)forests along a 30-km long urban-suburban-ruralgradient in Nanchang City,southern China.The total P stocks in the surface soils in urban and suburban forests were 317%and 182%higher,respectively,than levels found in rural forests.The concentrations of soil available P,labile P,slow P,occluded P and also much higher in urban and rural forests (P <0.05).Soil were highest in urban forests.Annual mean concentrations were enhanced in urban and forests compared to rural forests.The P efficiency (PRE)was higher in rural forests than in suburban and urban forests,while the P resorption proficiency (PRP)was lower in rural forests than in suburban and urban forests.Urbanization associated with high extraneous P inputs has altered soil P status and plant P uptake.Foliar P concentration,PRE and PRP were largely dependent on soil P availability in our study forests.Keywords Nutrient resorption .Soil P fractionation .Soil P leaching .Subtropical region .Urban forestsIntroductionAbout 50%of the human population now lives in urban areas,with a projected increase to 60%by 2025(Pickett et al.2001).Compared with non-urban ecosystems,the processes and functions of urbanPlant Soil (2011)346:97–106DOI 10.1007/s11104-011-0799-6Responsible Editor:Jeff R.Powell.X.-F.Hu :F.-S.ChenCollege of Life Sciences,Nanchang University,Nanchang 330031,ChinaG.NagleDepartment of Natural Resources,Cornell University,Ithaca,NY 14853,USA Y .-T.FangSouth China Botanical Garden,Chinese Academy of Sciences,Guangzhou 510650,ChinaM.-Q.YuCollege of Life Sciences,Jiangxi Science &Technology Normal University,Nanchang 330038,ChinaF.-S.Chen (*)No.999,Xuefuda Road,Honggutan New District,Nanchang 330031,People ’s Republic of China e-mail:chenfush@ecosystem are more controlled by complex interac-tions between society and environment(Kaye et al. 2006;Grimm et al.2008).Recently ecological processes along urban-rural gradients have become a focus of much ground breaking research examining the effects of urbanization(McDonnell et al.1997; Pickett et al.2001;Fang et al.2011).Soil P is one of the most important elements limiting plant growth(Cramer2010),especially in subtropical and tropical regions where primary production of many ecosystems is considered to be P rather than N limited (Walker and Syers1976;Vitousek et al.2010). However,soil P can also be a pollution source and a threat to water quality when P availability increases so substantially that P is transported to water bodies by surface runoff and groundwater infiltration(Heckrath et al.1995;Zhang et al.2001,2005).Because soil P turns over slowly,the legacy of enhanced soil P patterns may affect freshwaters for centuries(Bennett et al.2004).Soil total P levels as well as varied fractions have been reported to be elevated in urban regions compared to suburban and rural regions (Zhang et al.2001;Zhang2004;Yuan et al.2007). The accumulated P has become a potential non-point source of pollution for surface and ground water in some cities(Zhang et al.2001,2005).However,Bennett(2003)found that extractable P concentrations showed no significant differences in soils along urban-rural gradients in Dane County, Wisconsin,USA.She argued that it is sometimes difficult to quantify urban-rural gradients due to differences in the many factors playing a role in soil P accumulation and storage such as soil parent material,land use,land cover,fertilizer use,manure applications,historical land use,and management.An examination of urban-rural gradients,an emerging experimental design in urban ecology,may be more useful and effective if sampling is focused on just one particular land use(Carreiro and Tripler2005).In urban forests,soil P can be imported with animal droppings,vehicles,dustfall,precipitation and various anthropogenic waste deposits(Waller1977; Zhang et al.2001).Therefore,soil P transformation and plant P uptake(P cycling)may be altered with urbanization.China has been experiencing a dramatic and unprecedented level of urbanization associated with rapid economic growth since the initiation of economic reforms in1978.Urban areas in most less-developed regions of China are experiencing popula-tion growth,industrialization and a rapid increase in motor vehicle transportation(Chen et al.2010b).The urban population in China rose from18%in1978to 45%in2008and is projected to be65%by2030(Ni 2008).Increased soil P availability has been observed in some cities in southern China,such as Hangzhou (Zhang2004)and Nanjing(Yuan et al.2007). However,little information is available on the nature and accumulations in soil P and its cycling in forests along urban–rural gradients.We have a limited understanding of the P leaching risk caused by P accumulation in urban forests and tree nutrient uptake responses to the alteration of soil P availability.In this study nine slash pine(Pinus elliottii Engelm.)forests along a short urban-suburban-rural gradient in Nanchang,southern China were selected to investigate the influences of rapid urbanization on ecosystem P cycling with measurements of soil P fractions and foliar P concentrations in different seasons.We hypothesized that(1)soil total P pools and various P fractions in the studied forests would decrease along the gradient from urban to rural,and increased soil extractable P in urban forests might become a potential risk for P leaching;and(2)foliar P concentration and P resorption proficiency(PRP) would decrease,while P resorption efficiency(PRE) would increase along the gradient from urban to rural due to leaf-level P use efficiency which mostly depends upon soil P availability(Ostertag2010). Materials and methodsStudy areaThis study was conducted in Nanchang City(115°27′–116°35′E,28°09′–29°11′N),the capital of Jiangxi Province.The total metropolitan area is7,402km2witha population that increased from2.4million in1970,to4.0million in1996and 4.8million in2009.The number of motor vehicles increased almost8-fold between1995and2006(Chen et al.2010a).The study region has a subtropical monsoon climate(wet and mild)with mean annual precipitation of about 1700mm and mean annual relative humidity of about 77%.Mean annual air temperature is17.5°C with an annual frost free period averaging291days.In order to avoid the complicating influences of vegetation type and soil types on P cycling,in thisstudy we only chose slash pine forests along a30-km long gradient in Nanchang extending from urban, through suburban,and to rural areas.In2007,nine slash pine plantations were chosen along this gradient, with three each in urban,suburban and rural areas(Chen et al.2010a).The ages of the pine forests ranged from 16to20years old,with stand density from600to800 trees ha−1,mean diameter at breast height(DBH)from 10to16cm and canopy height from12to16m(Yu 2009).All forests are located on low hills at an elevation range of30–80m.All the soils on the study sites are red soil formed from arenaceous shale (Ultisols),which is a typical soil type in the subtropical region of China(Zhao et al.1988).In the urban forests the collection of surface detritus by humans has mostly eliminated the litter layer,while litter accumulates to levels of4.1–6.3t ha−1(approximately4-cm depth)in the suburban and rural sites(Chen et al.2010a).Soil sampling and chemical analysisIn each forest,a20×20m plot was established and divided into four subplots(10×10m).In each subplot, after removing the litter layer,five soil cores(2.5cm in diameter)were randomly collected from the0–15cm layer in August2007for total P analysis.Soil total P were analyzed by a phosphomolybdic acid blue colour method after sulphuric acid digestion(320°C)using a selenium mixture as catalyst(Liu et al.1996).In addition,soil samples were collected within each subplot using a5.0-cm sampling cylinder for determi-nation of soil bulk density at each of three layers:0–5, 5–10,and10–15cm.Five soil cores(4.8cm in diameter)to a15cm depth were collected randomly from each subplot in April2008 (spring),July2008(summer),October2008(autumn), and January(winter)2009,respectively.The soils from each subplot were composited into a single sample for each sampling event and air-dried.After removal of visible plant residue,all soil samples were sieved through a2-mm screen,mixed and stored at room temperature.The soil P fractionation technique has been widely used to study soil P transformation processes since the method was first presented by Hedley et al.(1982)with later development by Crews et al.(1995)and Motavalli and Miles(2002).This study employed those methods to quantify soil P composition.Air-dried soil samples were ground to pass a0.5mm sieve and processed following the soil P fractionation sequential procedure(Chen et al.,2010b).The corresponding supernatants sequentially exacted with anion exchange resin,0.5M NaHCO3, 0.1M NaOH,0.1M NaOH with sonication,1.0M HCl were collected by centrifuging samples at1.7×104m s−2 (3,200rpm)for5min in a centrifuge,followed by filtering samples through a0.45-μm micropore filter. Resin-P,NaHCO3-P,NaOH-P,sonication-P and HCl-P are defined as available P,labile P,slow P,occluded P and weathered mineral P,respectively(Motavalli and Miles2002).Bio-available P is the sum of available P and labile P,while the extractable P includes available P, labile P,slow P,occluded P and weathered mineral P. Phosphorus concentration in each supernatant was determined by the phosphomolybdic acid blue color method(Liu et al.1996).Leaf and litter sampling and chemical analysisNeedles were collected monthly from September2007to August2008.First,three representative trees(with DBH and heights close to the average levels for each plot) were selected for sampling in each plot.Then for each selected tree,the needles from one first order branch were collected from each of the four cardinal directions and combined them together to obtain a composite sample.We also collected fresh litter under each selected tree with six0.5×0.5m nylon traps,and mixed these together as a composite sample for each plot.The needles and fresh litter samples were washed with deionized water to remove dust,oven-dried at70°C for48h,ground in a mill and screened with a0.25mm sieve.Total P concentration was measured using the phosphomolybdic acid blue color method.Their organic C was determined by dichromate oxidation and titration with ferrous ammonium sulfate(Liu et al.1996).Calculation and statisticsSoil P stocks for the0–15cm layer was calculated based on total P concentrations and bulk density. Nutrient resorption efficiency was calculated as a percentage of the amount of nutrient present in the leaf before senescence(Aerts1996).PRE¼½P of fresh leafÀ½P of senescent leafðÞ=½P of fresh leafÂ100Where,[P]of fresh leaf is the observed maximum P concentration in a year;[P]of senescent leaf is theaverage P concentration of the litterfall (during the period from December to March in the present study).The change in leaf mass during senescence varied from 5%to 10%(Aerts 1996).In this study the effect induced by leaf mass change on P resorption was not considered.PRP was defined as the concentration of P remaining in senesced leaves (litterfall)throughout a year (Killingbeck 1996).In this study,PRP is the average P concentration of the litterfall collected from December to March.The averages to the plot level were used for the variables measured at subplot level.One-way ANOV A with location as the fixed main factor was performed for concentrations and stocks of total P ,foliar P concentra-tion,PRE and PRP.Two-way ANOV A was used to examine the effects of location,season and their interactions on soil various P fractions,foliar C,P concentrations and foliar C:P ratio over the course of a year.Tukey ’s multiple comparisons method was used to identify significant differences among gradients.Pear-son ’s tests were used for comparing the significance of correlations among soil P fractions and leaf P traits.Alldata were used to test for normalized distributions and transformed by log 10if required.All analysis was performed using SPSS software (SPSS Inc.2001,V ersion 11.0).Statistically significant differences were set at P values<0.05unless otherwise stated.ResultsSoil P stockTotal P concentrations in the surface soils were the highest in urban forests and the lowest in rural forests (P =0.097,Fig.1).Soil total P stocks were 66.5g m −2and 38.3g m −2in urban and suburban forests,respectively,which were 317%and 182%higher than that in rural forests (21.0g m −2)(Fig.1).Soil P fractionsThe location effects on all soil P fractions were significant,while seasonal effects were not except on soil weathered P.No interactions of location and season on any soil P fractions were found (Table 1).The concentrations of available P,labile P,slow P,occluded P and extractable P (sum of five P fractions)were significantly higher in urban and suburban forests than in rural forests (P <0.05),but were not significantly different between urban and suburban forests.The average stocks of available P,labile P,slow P,occluded P and the extractable P were 0.67g m −2,2.33g m −2,11.43g m −2,4.28g m −2,22.02g m −2,respectively,in urban forests,0.83g m −2,2.28g m −2,11.67g m −2, 4.54g m −2,20.23g m −2,in suburban forests,and 0.20g m −2,0.20g m −2,2.07gT o t a l P c o n c e n t r a t i o n (g k g -1)20406080100120P s t o c k (g m -2)P concentrationP stockFig.1Concentrations and stocks of P in top soil (0–15cm)under the pine forests along an urban-rural gradient in Nanchang City,China.Shown are mean ±one SE (n =3).Different lowercase and uppercase letters indicate significant differences in total P concentration and P stock,respectively,among three locations at 0.1levelsTable 1ANOVA of effects of location and season on the concentrations of various P fractions in pine forests along the urban-suburban-rural gradient in Nanchang City,China FactordfF values Available PLabile P Slow P Occluded P Weathered P Extractable P Location 2 4.86* 2.93* 4.70* 4.67*8.30*** 5.20**Season30.89NS 0.30NS 0.61NS 1.44NS 2.77*0.15NS Location×season60.04NS0.13NS0.10NS0.27NS0.71NS0.01NSNSnot significant,*P <0.05,**P <0.01,***P <0.001.m −2,0.82g m −2,3.95g m −2,respectively in rural forests.Soil weathered P was higher in urban forests than in suburban and rural forests in all four seasons (Fig.2),with levels of 3.31,0.91and 0.66g m −2in urban,suburban and rural forests,respectively (Fig.2).Slow P was the dominant form in the extractable P in all forests,and the proportion of weathered P to the extractable P was increased in urban forests (Fig.3).Foliar P concentrations and P resorption Foliar P concentrations generally displayed a season-ality (F 11,72=2.22,P <0.05),with the lowest values in later winter or early spring in the suburban and rural forests (Fig.4).The annual mean concentrations of foliar P were higher in urban (0.94g kg −1)and suburban (1.03g kg −1)forests than in rural forests (0.78g kg −1)with no significant difference betweenthe urban and suburban forests (Fig.4).Foliar C concentrations (F 2,72=10.77,P <0.001)and foliar C:P values (F 2,72=10.94,P <0.001)also varied with location.The averaged foliar C:P value was signifi-cantly higher in rural forests (625)than suburban (476)and urban (505)forests with no significant differences between the suburban and urban.246810SeasonA v a i l a b l e P (m g k g -1)Rural714212835L a b i l e P (m g k g -1)Rural255075100125S l o w P (m g k g -1)Rural1224364860 O c c l u d e d P (m g k g -1)Rural714212835W e a t h e r e d P (m g k g -1)Rural4080120160200Spring Summer Autumn WinterSeasonSeasonSpring Summer Autumn WinterSeasonSeasonSeasonE x a c t a b l e P (m g k g -1)RuralFig.2Seasonal variations in soil phosphorus concen-trations of the top soils in pine forests along the urban-rural gradient in Nanchang City,China.Shown are mean ±one SE (n =3)510152025Rural Suburban UrbanE x a c t a b l e P s t o c k (g m -2)Fig.3The accumulative stocks of annual average extractable P and their fractions in top soil (0–15cm)under pine forests along the urban-suburban-rural gradient in Nanchang City,ChinaThe PRE was higher in rural forests (84%)than in suburban (75%)and urban (76%)forests,while the PRP was lower in rural forests (0.20g kg −1)than in the suburban (0.32g kg −1)and urban (0.29g kg −1).The differences in PRE and PRP between suburban and urban forests were not significant (Fig.5).The relationships between foliar P and soil extractable PFoliar P concentrations and PRP were positively correlated with all soil P fractions except forweathered P and the total extractable P (P <0.05)while PRP was positively correlated with soil total P.Both foliar C:P and PRE were negatively correlated with available P,labile P,bio-available P and extractable P.Additionally,foliar C:P was negatively correlated with slow P and occluded P,and PRE was negatively correlated with soil total P.Foliar P properties did not correlate with soil weathered P (Table 2).DiscussionAs urban ecology matures,the spatial heterogeneity of urban landscapes,soil resources,temperature and plant communities has been reported (Bennett 2003,Kaye et al.2008;Zhu et al.2008).We narrowed our study focus on a simple urban-suburban-rural gradient to understand what variables in P cycling along the gradient can or cannot be predicted.We found that total P stock in the topsoil was substantially enhanced in urban and suburban forests,with levels 317%and 182%higher than levels found in rural forests (Fig.1).Correspondingly,we also observed enrich-ment in extractable P,including available P and labile P (Figs.2and 3).These results demonstrate that P status and availability were elevated during urbaniza-tion.Our results are consistent with some previous studies,which used mixed land use types as sampling0.00.40.81.21.6F o l i a r P c o n c e n t ra t i o n (g k g -1)RuralSuburbanUrbanFig.4The monthly varia-tions in foliar P concentra-tions of Pinus elliottii in the pine forests along the urban-suburban-rural gradient in Nanchang City,China during 2007and 2008.Shown are mean ±one SE (n =3)Rural Suburban UrbanP R E (%)P R P (g k g -1)PREPRPFig.5Phosphorus resorption efficiency (PRE)and phosphorus resorption proficiency (PRP)of Pinus elliottii along the urban-suburban-rural gradient in Nanchang City,China.Shown are mean ±one SE (n =3).Different lowercase and uppercase letters mean significant difference in PRE and PRP,respectively,among three locations at 0.05levelssites (Foy et al.2003;Zhang 2004;Yuan et al.2007).For example,total P concentrations in urban,subur-ban and rural surface soils were reported as 1.78,1.24and 0.51g kg −1,respectively in Hangzhou City (Zhang 2004),while levels of 2.50,1.25and 0.35g kg −1,respectively were reported in Nanjing City,southern China (Yuan et al.2007).In contrast,Baxter et al.(2002)compared soil P availability (labile inorganic P determined by Bray ’s dilute acid extrac-tion)in oak stands located in either an urban or a rural area,NY ,USA,and found that soil P availability was lower in the urban than the rural stands.Many differences including soil type,tree species,land use history and climate condition between Baxter et al.(2002)and our study could explain the different results.However,high extraneous P inputs from various anthropogenic waste deposits (such as solid and organic waste)in our urban study sites could be a determining factor for the higher P levels we found.Nanchang is a rapidly developing city where domestic wastes increased from 800t d −1in 1997to 1800t d −1in 2007,accompanying with the rapid increases in the urban population (Gazette of the People ’s Government of Jiangxi Province,2007;/2007-8/20078171845568.htm ).Compared with devel-oped countries,the intensity of urbanization in develop-ing countries is likely stronger,which needs further attention.The component of P fractions is an important issue for urban mangers.Our results showed that soil slow P was the dominant fraction among the five extractable fractions,accounting for 52–58%of the total extractable P (Fig.3).This is in agreement with results reported by Tiessen et al.(1984)and Beck and Sanchez (1994),who found that slow P plays an important role in plant nutrition in highly weathered ultisols.Additionally,our data indicate that soil P fractions are closely related to soil P availability;with significantly positive correla-tions among available P,labile P,slow P,occluded P and the extractable P (r >0.88,P <0.001,n =36for all).Neufeldt et al.(2000)found that soil available P and labile P displayed the same trends as the slow P and suggested that slow P is,at least in part,readily plant available.This finding agreed with the results of Sharpley et al.(1987)who also reported that slow P was well correlated with the most common standard P tests in highly weathered soils.Interestingly,the stock of weathered P and its percentage of the extractable P were significantly higher in urban forests (3.31g m −2and 15.0%)than in suburban forests (0.91g m −2and 4.5%)(Fig.3).Soil weathered P is usually present at a very low level or nondetectable in highly weathered acidic soils (Agbenin and Tiessen 1995).In our study,the great increase in soil weathered P observed in urban soils probably results from the inputs of material with abundant Ca-phosphates (Tiessen and Moir 1993).The higher soil pH in urban forests (5.63)compared to suburban forests (4.47)(Chen et al.2010a ),and the close relationship between soil pH and weathered P (r =0.75,P =0.019,n =9)further support this speculation.It was surprising that there were no differences in total P and all the P fractions except weathered P,between urban and suburban forests in our study.Much higher weathered P in urban forests than suburban forests indicates that urban forests may have accumulated more materials with abundant Ca-phosphates than suburban forests.Phosphorus released by aggressive extractants (e.g.HCl or H 2SO 4solution)may be unavailable to plants over a short period;however,they can be transformed to other soil P fractions and made available on a slightly longer time frame (Tiessen and Moir 1993;Cross and Schleshinger 1995).Similarly,there wereSoil P variables Foliar P concentration Foliar C:P PRE PRP Available P 0.88**−0.74*−0.72*0.73*Labile P 0.84**−0.74*−0.73*0.68*Bio-available P 0.85**−0.74*−0.73*0.69*Slow P 0.87**−0.74*−0.66NS 0.72*Occluded P 0.87**−0.75*−0.63NS 0.73*Weathered P 0.43NS−0.52NS−0.66NS0.42NS Extractable P 0.87**−0.77*−0.71*0.73*Total P0.58NS−0.66NS−0.90***0.72*Table 2Pearson correla-tions (n =9)between tree P resorption efficiency (PRE),P resorption proficiency (PRP)and top soil average annual concentrations of each P fraction in nine pine forests along the urban-suburban-rural gradient in Nanchang City,ChinaNSnot significant,*P <0.05,**P <0.01and ***P <0.001.no significant differences found in foliar P concen-trations,C:P,PRP,and PRE between urban and suburban forests.In the present study,we found several indicators of plant luxury P consumption under relatively high P availability in the urban and suburban soils.First, foliar P concentrations were significantly enhanced by urbanization,with levels20–30%higher in urban and suburban forests than in rural forests(Fig.4).This also points to the high sensitivity of foliar nutrition to changing P availability.We suggest that the effect of increasing soil P availability on foliar P accumula-tions in urban and suburban forests could propagate further up the food web,affecting herbivore P and the abundance of P-rich RNA in herbivores(Schade et al. 2003).Second,our results showed that the senesced needles from the pine trees grown in urban and suburban soils accumulated more P(i.e.,higher P concentration in litterfall)than those in rural soils. Third,as a consequence,PRE was much lower in urban and suburban forests than that in rural forests and PRE was negatively correlated with soil available P,labile P, bio-available P and the extractable P.This result is consistent with the expectation that nutrient resorption will decrease along the rural–urban gradient,associated with increasing soil P availability and foliar P concen-tration(Kobe et al.2005).Increased soil P availability and changes in foliar P properties in urban and suburban forests are likely a result of increased P inputs from animal droppings, vehicles,dustfall,precipitation(Pett-Ridge2009)and various anthropogenic waste deposits(Zhang et al. 2001;Chen et al.2010b),although they have not yet been quantified in our study area.However,this P enhancement is also likely due to increased decompo-sition of organic matter and accelerated weathering induced by elevated N deposition,CO2,O3and temperature as separate process or in combination (Isebrands et al.2001;de Groot et al.2003;Campbell and Sage2006;Ghannoum et al.2010).For example, in examining data on foliar N concentrations(Chen et al.2010a),we found that fresh foliar N:P ratios were higher in urban forests(13.1)than in suburban(12.2) and rural forests(12.7),while the senesced foliar N:P ratios showed the opposite tendency(16.4,19.5and 17.8in urban,suburban and rural forests,respectively). These results indicate N enrichment in urban forests, which results from elevated atmospheric N deposition. However,since we are not able to distinguish the contributions of extraneous P input from other factors, this requires more detailed research.High P accumulation in urban and suburban soil is a potential non-point pollution source for surface and ground waters(Zhang et al.2001).Scientists have been interested in quantitatively assessing high soil P storage as an indicator of the potential for P leaching (Hesketh and Brookes2000).Zhang et al.(2005) sampled urban soils in Nanjing(118°22′−119°14′E, 31°14′−32°37′N,~500km from Nanchang),southern China,to investigate the relationship between extract-able P and soil P mobility,and found that25mg kg−1 Olsen-P was the threshold value for P leaching,which could be an important criteria for assessing the potential risks for P leaching from urban soils.In this study,the average concentrations of bio-available P(available P+labile P),equivalent to Olsen-P,were16.8,18.4and2.6mg kg−1in urban, suburban and rural forests,respectively.While these values are all lower than the threshold value of25mg kg−1for potential P leaching proposed by Zhang et al. (2005),the concentrations of leachable bio-available P varied with season(Fig.2)and plot(Note:see SE of mean in Fig.2).Among the36samples of bio-available P averaged per plot each season,more than half,especially in summer,were much higher than this threshold value in urban and suburban forests, while no samples were above the threshold value in rural forests.Thus,our data strongly suggests that the seasonal P leaching could potentially occur in urban and suburban slash pine forests in Nanchang,China.In conclusion,urbanization increased the stock of all soil P fractions and total P in slash pine forests in urban and suburban areas in Nanchang City,southern China.Many P enhanced forest soils in urban and suburban areas show a potential seasonal risk for P leaching.The responses of slash pine to urbanization showed higher foliar P concentrations,higher PRP, and lower PRE in urban and suburban forests than rural forests,and leaf-level P use efficiency dependent upon soil P availability.Due to the great temporal and spatial heterogeneity of P inputs in urban sites and complicated urban environ-mental factors,P cycling in forests along urban-to-rural gradient needs further study.Since urban forests have been exposed to elevated atmospheric deposition, temperature,ozone and other pollutants,they may be ahead of the global change“response curve”(Carreiro and Tripler2005).Understanding element cycling in。