当前位置:文档之家› 单相桥式PWM逆变电路 2

单相桥式PWM逆变电路 2

单相桥式PWM逆变电路 2
单相桥式PWM逆变电路 2

单相全桥逆变电路

——过程分析与仿真

学院:电气工程学院

班级:电自卓越111班

组员:康宁李健方浩刘文娣

目录

1.摘要 (3)

2.关键词 (3)

3.问题描述 (4)

4.分析计算.............................第5-7页

5.仿真分析.............................第8-13页

6.结论 (14)

7.心得体会 (14)

8.参考文献 (18)

摘要

逆变电路的应用十分广泛,在已有的各种电源中,蓄电池、干电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,就需要逆变电路。在我们学习电力电子的最后阶段,为了更加深入的理解与掌握逆变电电路及PWM 控制技术,现针对单相VSI与PWM控制逆变分别进行研究、仿真、分析。

关键词:单相电压型逆变电路(VSI) PWM控制极性控制方式 Simulink仿真频谱分析

1.问题描述

对图1.1单相全桥逆变电路进行分析,其中U d =600V,R=10Ω,L=0.1H ,根据该电路所给参数回答下列问题:

(1)电路采用180度导电方式,控制周期T C =20mS ,求)(o t u 、)(t i o ,并给出其频谱分布。

(2)采用SPWM 导电方式,f s =5000Hz ,u nef =2202sin (100πt ),求)(o t u 、)(t i o 及其频谱分布。

2.分析计算 2.1基本原理

针对问题(1):

单相全桥逆变电路的基本原理:主要由对角两组桥臂180°交替导通的控制方式,通过电压变向实现电流方向的交变(二极管在阻感负载时起续流作用)。分析计算时,我们将电路分作两个状态,即如图示:

图1.1单相逆变电

(1)负载端加正向电压;(2)负载端加正向电压;两状态都可以列出一阶微分

R

L u iR dt di L

o ==+τ;0

)

1(2

)

1(2t 02

2

222111τ

τττC C T t T t o o o o C C

o t

t o o o o C o e R

E

e

I i I i T t T E u e R E

e I i I i T E u --------=≤≤-=-+=≤≤=;解得:初值)、时(;解得:初值)、时(

稳态后电流连续)2

();(12

21C

o o C o o T i I T i I ==

且由以上可以推测21o o I I -=则

)1()2

(22112o 1o τ

τ

C

C T T o C

o e R

E e

I T i I I ---+===-推得:2o 221o -1

1I e e R E I C C T T =+-=--ττ

带入数据解得稳态后电流初值为727.271

1

601

1-=+-?--e e 则计算得到稳定后一个周期内

??

?≤≤-≤≤=02

.001.060001.00600

t t u o ??

???

≤≤--≤≤--=--

----02.001.0)1(60727.2701.00)1(60727.27-01.001.001.001.001.001.0t e e t e e i t t t t o 接着对

o u 傅里叶分解进行谐波分析,因其是方波分解成

......)5sin 5

1

3sin 31(sin 4

+++t t t E ωωωπ 所以基波有效值为

19.5402

1200=π

电压谐波总畸变率为

%343.4819

.54019.540-60022u ==THD 可以看出电压谐波分量很大,那么电流中也

一定含有大量谐波。所以电压型逆变电路结构简单,方便可靠。但若想要在波形上与正弦电压得到更加接近,我们就可以考虑PWM 控制逆变。

针对问题(2):

单相桥式PWM逆变电路的基本原理:

PWM调制电路图

在采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。

下面分析用一系列等幅不等宽的脉冲来代替一个正弦半波。图2-1可以看到把半波分成N等份,就可以把正弦半波看成N个彼此相连的脉冲序列组成的波形,然后把脉冲序列利用相同数量的等幅而不等宽的矩形脉冲代替,使它们面积相等,就可以得到脉冲序列。根据面积等效原理,PWM波形和正弦半波是等效的。

2-1用PWM波代替正弦半波

a)正弦半波b)脉冲序列

单相桥式PWM逆变电路的控制方法有计算法与调制法两种。但计算法所需时间长,即使采用规则采样法,计算能力不足时难以快速反应信号波,于是实际中多采用调制法,它的神奇之处在于自然采样法,只要有三角波这把量尺,自然的就为不同信号波“量身定做”它的脉冲序列。

(1)单极调制法

图2-2 单极性PWM 控制方式波形

负载为阻感负载时,工作时V 1和V 2通断互补,V 3和V 4通断也互补。

单极性PWM 控制方式(单相桥逆变):在r u 和c u 的交点时刻控制IGBT 的通断, 波形见图2-2。具体控制规则我们会在仿真时进一步说明,这里只要看上图就能了解。

(2)双极调制法:采用双极性方式时,在r u 的半个周期内,+三角载波不再

是单极性,而是有正有负,所得的PWM 波也是有正有负。在r u 的一个周期内,输出的PWM 波只有 d U 两种电平不像单极性控制时还有零电平。在r u 的正负半周,对各开关器件的控制规律相同。即当r u >c u 时,1V 4V 导通,2V 3V 以关断,

r u

图2-3双极性PWM 控制方式波形

另外PWM 调制有载波比、调制度两个控制参数在之后的仿真中具体介绍。

5.仿真分析

(1)单相VSI

首先我们用Simulink搭建仿真模型,值得注意的是在仿真的运行设置不是常用的Ode45,由于用到了IGBT,而在用微分方程描述的一个变化过程中,若往往又包含着多个相互

作用但变化速度相差十分悬殊的子过程,这样一类过程就认为具有“刚性”,包括IGBT的仿真属“刚性问题”。所以这里应设置为Ode15s(Stiff/NDF)的刚性算法。

然后我们看到示波器输出的负载电压电流波形如图,设置的仿真时间为(0~0.06s即三个周期)

图中电压波形是600与-600两种电平的方波,和理论一致。而单相电压型逆变正是通过电压正负的交替变换实现了电流方向的交变。图中的电流波形经过一两个周期后趋于稳定,在

30与-30以内的某对称个区间来回,前述理论计算时得到电流幅值没27.727,计算与仿真接近。可见VSI 是结构简单,性能可靠的逆变方式,但要想要电流波形更加接近正弦就能力不足了。

频谱分析:首先说明一下,我们采用了simulink 自身的快速傅里叶变换工具FFT Tool ,它操作简洁,频谱分析时的基频、坐标轴单位设置方便,而且可以以图形和表格两种方式分析谐波含量,简单实用。 从频谱图中可以看到: 基波频率设为50Hz ,频谱范 围在0~5000Hz 。频谱中没有 偶次谐波,奇次谐波有效值也

随着谐波次数的增加而递减, 谐波电压总畸变率

THD=47.83% 但这是在有限 频谱范围计算的,距理论值 48.34%已经很接近。足见 FFT Tool 可信度。

(2)PWM 双极调制仿真 控制规则如下表:

r c u u >

VT1、VT4 off VT2、VT3 on r c u u <

VT1、VT4 on

VT2、VT3 off

可见双极调制规则很简单,调制电路的思路也很明显,就是一个电压比较器或类似的元件。 在此我们采用加法器Sum 和Switch 开关构成调制电路。信号波与等腰三角波同过加法器控制开关1和0状态的投切作为IGBT 门极的控制信号。

PWM 调制的精度和输出也是可调的,正是前面提到的载波比和调制度

r

c

f f N =

越大,电流的波形与信号波越接近,但它受到IGBT 开关频率的制约,否则会丢失脉冲影响输出波形,而且IGBT 有开关损耗,开关寿命也有限,单极调制正是减少损耗,延长IGBT 使用寿命的办法,下文会提到。这里具题意载波比100 调制度载波幅值

信号波幅值

=

α 影响输出电压,也可以说是电压利用率 它必须小于1,实际工作

中IGBT 开关需要时间,它会更小一点。题目中519.0600

2

220==

α

接线如图,左下为调制电路,值得注意的是因为PWM 调制后的电压冲量已经接近正弦,考虑到为了让电流迅速达到稳态值,可以将正弦信号波的初相设为基波阻抗角,计算

o 34.72)10

10(artan =π于是取初相角2π/5。运行仿真后示波器输出:

仿真时间范围0~0.03s 因为电流波形可以说几乎是直接进入稳态的。由图可见双极调制的电压脉冲序列是600与-600两种电平,电流的正弦波感觉很美,理论上幅值=100

10022202

+π=9.44 对应波形图——很接近,证明电流谐波含量低。

频谱分析:

(题意中kHz f c 5=,Hz f r 50=)

以上是电压的频谱分析,直接调用了整数倍载波频率附近的谐波分析得到电压包含以下谐波成分(以50Hz 基波作基准值)

1)奇次倍载波频以及其附近偶次倍信号频。 2)偶次倍载波频(本身没有)附近奇次倍信号频。

我们再用FFT Tool 看一下电流波形质量和谐波分析:

取0~16000Hz 真接近,总幅值9.405。且所包含的谐波分量和电压一致

(3)PWM 单极调制

上文前提到IGBT 的开关寿命和开关损耗,单极调制是个好对策(单相时应用) 首先控制规则:

0>r u

c r u u >

VT1 on VT2 off VT3 off VT4 on

c r u u <

VT1 off VT2 on

0

c r u u >

VT3 on VT4 off VT1 on VT2 off

c r u u <

VT3 off VT4 on

从规则中我们也能给发现1、2和3、4两组“工人”是在一个周期内轮流值班的,这样既减少了损耗有延长了寿命。

所以单极输出电平有0,+Ud ,-Ud 三种状态。

如图这是VT1在0~0.03s

也就是一个半周期的开关 情况。 (信号波初相角2π/5)

PWM 单极调制仿真图 (调制电路)

示波器输出(0~0.03s 、初相角2π/5): 负载电压输出电平有0,+Ud ,-Ud 三种状态。电

流波形从肉眼看去比双极调制更接近正弦(同样载波比)。

频谱分析:

类似双极调制发现单极调制电压谐波成分只包含

——整数倍载波频(本身没有)附近奇次倍信号频成分。

左为电流在0~16000Hz频谱图

同样验证了电压中的结论

还可以发现单极的THD

要低一些。

结论

单相电压型逆变结构简单,性能可靠,开关频率相对小,使用寿命长,对于波形要求不高的情况下首选。

单相PWM双极调制,调制规则简单,N能够达到足够大情况下,对信号波的调制很完美。单相PWM单极调制,相比双极,开关损耗小,能使用的寿命长,但调制电路稍复杂。输出有0,+Ud和-Ud三种情况。

单相全桥逆变电路原理

单相全桥逆变电路原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

单相全桥型逆变电路原理 电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 和基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 采用移相方式调节逆变电路的输出电压

t 1时刻前V 1和V 4导通,输出电压u o 为u d t 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零 各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o 实际就是调节输出电压脉冲的宽度 ? 各IGBT 栅极信号为180°正偏, 180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补 ? V 3的基极信号不是比V 1落后 180°,而是只落后 ( 0< <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 的前移180°- ? VD 3 VD 4

单相桥式有源逆变电路设计

长江职业学院 电力电子技术课程设计报告 学院:机电学院 学生姓名:余鸿 指导教师:李莎 专业:电气自动化 班级:电气1401 日期: 2015.12 单相桥式有源逆变电路设计 摘要:整流与逆变一直都是电力电子技术的热点之一。桥式整流 是利用二极管的单向导通性进行整流的最常用的电路。常用来将 交流电转化为直流电。从整流状态变到有源逆变状态,对于特定 的实验电路需要恰到好处的时机和条和方法已成熟十几年了,随 件。基本原理着我国交直流变换器市场迅猛发展,与之相应的核 型技术应用于发展比较将成为业内企业关注的焦点。在逆变电路

中,把直流电能经过直交变换,向交流电源反馈能量的变换电路称之为有源逆变电路,相应的装置称为有源逆变器。 关键词:整流逆变桥式有源逆变。 1前言 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。逆变与整流相对应,直流电变成交流电。交流侧接电网,为有源逆变。交流侧接负载,为无源逆变。有源逆变的条件:负载侧存在一个直流电源E,由他提供能量,其电势极性与变流器的整流电压相反,对晶闸管为正向偏置电压;变流器在起直流侧输出应有一个与原整流电压相反的逆变电压U,其平均值U

单相桥式全控整流及有源逆变电路的MATLAB仿真

单相桥式全控整流及有源逆变电路的MATLAB 仿真 图1 单相桥式全控整流 知识点回顾: 整流(AC/DC)就是将交流变化为方向不变,大小为纹波的直流,相信大家都很清楚,这里就不详细介绍整流啦! 逆变(DC/AC),按负载性质的不同,逆变分为有源逆变和无源逆变。如果把逆变电路的交流侧接到交流电源上,将直流电能经过直—交变换,逆变成与交流电源同频率的交流电返回到电网上去,叫有源逆变,其相应的装置是有源逆变器。而将直流电能经过变换逆变成交流电能直接消耗在非电源性负载上者,叫无源逆变,其相应的装置是变频器。 逆变与整流是变流装置的两种不同工作状态,能在同一套变流装置上实现,只是其工作条件不一样而已。首要条件是变流装置内部,使直流电压d U 改变极性,从而使功率的流向有可能发生逆转。当控制角?<≤ 900α时, 变流装置工作在整流状态,直流电压d U 与直流电流d I 是同一方向,装置将交流电能转换成直流电能供给直流负载;当控制角?≤< ?18090α时,变流装置工作在逆变状态,由于晶闸管的单向导电性,电流d I 方向不变,而直流 电压d U 改变了极性,装置将直流电能转换成交流电能输向电网或非电源性负载。其次是外部调件,必须是提供直流能源,而且是d U E > 。 仿真环境: MATLAB (R2009b) 实验一:电感性负载整流 1.电路搭建

元件路径 晶闸管T SimPowerSystems/Power Electronics/Thyristor 交流电源AC100V SimPowerSystems/Electrical Sources/AC Voltage Source 脉冲发生器Pulse Generator Simulink/Sources/Pulse Generator 支路RLC SimPowerSystems/Elements/Series RLC Branch 电压测量Vd SimPowerSystems/Measurements/Voltage Measurement 电流测量SimPowerSystems/Measurements/Current Measurement 示波器Scope Simulink/Sinks/Scope 选择器Selector Simulink/Signal Routing/Selector 3.参数设置

单相全桥逆变电路原理

单相全桥型逆变电路原理 电压型全桥逆变电路可瞧成由两个半桥电路组合而成,共4个桥臂,桥臂1与4为一对,桥臂2与3为另一对,成对桥臂同时导通,两对交替各导通180° 电压型全桥逆变电路输出电压uo 的波形与半桥 电路的波形uo 形状相同,也就是矩型波,但幅值 高出一倍,Um=Ud 输出电流io 波形与半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1与VD4、V1与V4、VD2与VD3、V2与V3相继导通的区间 + - VD 3 VD 4

单相半桥电压型逆变电路工作波形 全桥逆变电路就是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得 其中基波幅值Uo1m 与基波有效值Uo1分别为 上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2 uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现 d d o1m 27.14U U U == π d d 1o 9.022U U U == π O ON u o U - U m i o VD 1 VD 2 VD 1 VD 2 ?? ? ??+++= t t t U u ωωωπ5sin 513sin 31sin 4d o

t 1时刻前V 1与V 4导通,输出电压u o 为u d t 1时刻V 3与V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1与VD 3同时导通,所以输出电压为零 各 IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形 u u u u u i o o ? 各IGBT 栅极信号为180°正 偏,180°反偏,且V 1与V 2栅极信号互补,V 3与V 4栅极信号互补 ? V 3的基极信号不就是比V 1落后 180°,而就是只落后θ ( 0< θ <180°) ? V 3、V 4的栅极信号分别比V 2、V 1 采用移相方式调节逆变电路的输出电压

1单相桥式全控整流和有源逆变电路实验实验报告

实验报告 课程名称:现代电力电子技术 实验项目:单相桥式全控整流及有源逆变电路实验实验时间: 2012/10/19 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院:自动化学院专业:电气工程及其自 动化 班级:成绩: 姓名:学号:组别:组员: 实验地点:电力电子实验室实验日期:10/19指导教师签名: 实验(一)项目名称:单相桥式全控整流及有源逆变电路实验1.实验目的和要求 (1)加深理解单相桥式全控整流及逆变电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。 (3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。 (4)掌握产生逆变颠覆的原因及预防方法。 2.实验原理 图3-8为单相桥式整流带电阻电感性负载,其输出负载R用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld用DJK02面板上的700mH,直流电压、电流表均在DJK02面板上。触发电路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。 图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流”是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心式变压器”的中压端Am、Bum,返回电网的电压从其高压端A、B输出,为了避免输出的逆变电压过高而损坏心式变压器,故将变压器接成Y/Y接法。图中的电阻R、电抗Ld和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。 3.主要仪器设备

单相桥式逆变电路设计

《电力电子技术》课程设计说明书单相桥式逆变电路的设计 院、部:电气与信息工程学院 学生姓名: 指导教师:桂友超职称副教授 专业:电气工程及其自动化 班级: 完成时间: 2014年6月

电力电子技术》课程设计任务书 一、课程设计的目的 通过课程设计达到以下目的 1、加强和巩固所学的知识,加深对理论知识的理解; 2、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料; 3、培养学生综合分析问题、发现问题和解决问题的能力; 4、培养学生综合运用知识的能力和工程设计能力; 5、培养学生运用仿真软件的能力和方法; 6、培养学生科技写作水平。 二、课程设计的主要内容 1、关于本课程学习情况简述 2、主电路的设计、原理分析和器件的选择; 3、控制电路的设计; 4、保护电路的设计; 5、利用MATLAB软件对自己的设计进行仿真。 三、课程设计的要求 1、通过查阅资料,确定自己的设计方案; 2、按学号尾数定课题,即课题一的学号尾数为1,以此类推。自拟参数不能雷同; 3、要求最后图纸是标准的CAD图; 4、课程设计在第18周五前交上来。 四、课题

1、课题一:单相桥式可控整流电路的设计 已知单相交流输入交流电压220V,负载自拟,要求整流电压在0~100V连续可调,其它性能指标自定。 2、课题二:三相半波可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 3、课题三:三相桥式可控整流电路的设计 已知三相交流输入线电压380V,要求整流电压在0~100V连续可调,负载自拟,其它性能指标自定。 4、课题四:直流降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在50~100V可调,其它性能指标自定。 5、课题五:直流升压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在300~400V可调,其它性能指标自定。 6、课题六:直流升降压斩波电路的设计 已知直流输入电压200V,负载自拟,要求输出电压在100~300V连续可调,其它性能指标自定。 7、课题七:单相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 8、课题八:单相交流调压电路设计 已知单相交流输入交流电压220V,负载自拟,要求输出交流电压在0~220V 可调,其它性能指标自定。 9、课题九:三相交流调压电路的设计 已知三相交流输入交流线电压380V,负载自拟,要求输出交流电压在0~200V可调,其它性能指标自定。 10、课题十:三相桥式逆变电路的设计 已知直流输入电压100V,负载自拟,要求交流输出电压频率范围在30~60HZ,电压在30~50V范围可调,其它性能指标自定。 注意:若已经按上课时我讲解的内容和安排的课题进行了设计,则不必再更改。 五、格式要求

单相半桥无源逆变器设计

电气与电子信息工程学院计算机控制课程设计

单相半桥无源逆变电路设计设计题目:(专升本)班专业班级:电气工程及其自动化2010 学号: 2 勇姓名:朱 组人:严康孙希凯同黄松柏指导教师:南光群 2011/11/21 设计时间:2011/11/13~ 电力电子室设计地点:课程设计成绩评定表电力电子 学勇 2 姓名朱单相半桥无源逆变电路设计课程设计题 26 / 1

26 / 2 指导教师签字: 日20 12 月2011年 《电力电子课程设计》课程设计任务书 1学期2012 学年第~2011 2010电气工程及其自动化勇专业班级学生姓名:朱

专升本 工作部门:电气学院电气自动化教指导教师:南光群、黄松柏研室 一、课程设计题目: 单相桥式晶闸管整流电路设计1. 2. 三相半波晶闸管整流电路设计 3. 三相桥式晶闸管整流电路设计降压斩波电路设计 4. 升压斩波电路设计5. 单相半桥无源逆变电路设计6. 7. 单相桥式无源逆变电路设计单相交流调压电路设计8. 逆变器设计SPWM9. 三相桥式26 / 3 二、课程设计内容 1. 根据具体设计课题的技术指标和给定条件,能独立而正确地进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整; 2. 学会查阅有关参考资料和手册,并能正确选择有关元器件和参数; 3. 编写设计说明书,参考毕业设计论文格式撰写设计报告(5000字以上)。

注:详细要求和技术指标见附录。 三、进度安排 1.时间安排 .执行要求2电力电子课程设计共9个选题,每组不得超过6人,要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。 四、基本要求 (1)参考毕业设计论文要求的格式书写,所有的内容一律打印;

单相桥式全控整流电路实验及有源逆变电路

单相桥式全控整流电路 实验及有源逆变电路 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

重庆三峡学院 实验报告 课程名称电力电子技术 实验名称单相桥式全控整流电路实验 实验类型验证学时 2 系别电信学院专业电气工程及自动化 年级班别 2015级2班开出学期 2016-2017下期 学生姓名袁志军学号 4228 实验教师谢辉成绩 2017 年 5 月 14 日

U2(V)220220220220 U d(计算值)(V)99 计算公式:U d=(1+cosα)/2 (2)60゜(3)90゜(1)30゜ U d =(1+cosα)/2 = U d =(1+cosα)/2 =99V U d =(1+cosα)/2 =

(3)120゜ 七、注意事项 (1)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将U lf 及U lr 悬空,避免误触发。 (2)为了保证从逆变到整流不发生过流,其回路的电阻R 应取比较大的值,但也要考虑到晶闸管的维持电流,保证可靠导通。 八、思考题 实现有源逆变的条件是什么 1)外部条件:一定要有直流电源,其极性必须和晶闸管导通方向一致,其值应稍大于变流器直流侧平均电压。 2)内部条件:要求晶闸管的控制角a>90度,使Ud 为负值。 3)充分条件:电路支流回路中必须要有足够大的电感,以保证有源逆变连续进行。 九、实验总结 此次试验,进行了单相桥式全控整流电路实验,有四只晶闸管,两只桥臂,两两一组,分别采用互差180度的正反脉冲,由于要求各组晶闸管触发时间一致,对于实验精度高,要求严格。 实验前首先检查各个器件的完好性,避免接好线后盲目查找错误,特别是检查触发脉冲的情况。在实验中,出现了加脉冲后,晶闸管未工作的情况,经检查发现诸多晶闸管损坏,导致脉冲不起作用。 总之,在做实验时,要对实验熟悉,做到心中有数,严格按照实验步骤,切不可怀侥幸心理而不检查器件;在出现实验现象有误时,不要慌乱,借助实验仪器检查仪器,培养自己查错纠错的能力。 最后,我们用matlab 仿真完成了实验,完整观察了晶闸管,负载的电流,电压波形。 教师评语: U d =(1+cosα)/2 =

电流源型单相全桥逆变电路

电流源型单相全桥逆变电路的设计 摘要 本次设计说明书首先介绍了电流源型单相全桥逆变电路的特点和原理,用单相桥式电流型逆变电路的原理图说明了该电路是采用负载换相方式工作的,要求负载电流略超前于负载电压,又详细分析该电路的工作过程,并用图给出该逆变电路的工作波形。最后根据以上分析运用仿真软件PSIM对电路进行仿真设计,得到波形图。 关键词:电流源型单相电路,逆变电路,PSIM仿真 ' 目录

. 1.电流源型单相全桥逆变电路研究-----------------------------------------3 逆变电路介绍----------------------------------------------------3 电流型逆变电路的主要特点----------------------------------------3 电流源型单相全桥逆变电路----------------------------------------3 电流源型单相全桥逆变电路工作过程--------------------------------4 2.电流源型单相全桥逆变电路设计------------------------------------------7 电路设计原理----------------------------------------------------7 电路仿真图------------------------------------------------------7 3.参数设定及仿真结果----------------------------------------------------8 直流侧仿真------------------------------------------------------8 ) 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------8交流侧仿真------------------------------------------------------8 参数设定-------------------------------------------------8 仿真结果-------------------------------------------------9 4.小结------------------------------------------------------------------9 5.参考文献--------------------------------------------------------------10 :

单相全桥逆变电路毕业设计

2008级应用电子技术 毕业设计报告 设计题目单相电压型全桥逆变电路设计姓名及 学号 学院 专业应用电子技术 班级2008级3班 指导教师老师 2011年05月1日

题目:单相电压型全桥逆变电路设计

目录 第一章绪论 1.1整流技术的发展概况 (4) 第二章设计方案及其原理 2.1电压型逆变器的原理图 (5) 2.2电压型单相全桥逆变电路 (6) 第三章仿真概念及其原理简述 3.1 系统仿真概述 (6) 3.2 整流电路的概述 (8) 3.3 有源逆变的概述 (8) 3.4逆变失败原因及消除方法 (9) 第四章参数计算 4.1实验电路原理及结果图 (10) 第五章心得与总结 (14) 参考文献 (15)

第一章绪论 1.1整流技术的发展概况 正电路广泛应用于工业中。整流与逆变一直都是电力电子技术的热点之一。桥式整流是利用二极管的单向导通性进行整流的最常用的电路。常用来将交流电转化为直流电。从整流状态变到有源逆变状态,对于特定的实验电路需要恰到好处的时机和条件。基本原理和方法已成熟十几年了,随着我国交直流变换器市场迅猛发展,与之相应的核型技术应用于发展比较将成为业内企业关注的焦点。 目前,整流设备的发展具有下列特点:传统的相控整流设备已经被先进的高频开关整流设备所取代。系统的设计已经由固定式演化成模块化,以适应各种等级、各种模块通信设备的要求。加上阀控式密封铅酸蓄电池的广泛应用,为分散供电创造了条件。从而大大提高了通信网运行可靠和通信质量。高频开关整流器采用模块化设计、N1配置和热插拨技术,方便了系统的扩展,有利于设备的维护。由于整流设备和配电设备等配备了微机监控器,使系统设备具有了智能化管理功能和故障保护及自保护功能。新旗舰、新技术、新材料的应用,使高频开关整流器跃上了一个新台阶。

单相全桥和半桥无源逆变电路

单相全桥和半桥无源逆变电路 学生姓名: 学号: 学院: 信息与通信工程学院专业: 自动化题目: MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 指导教师: 职称: 2011年12月31日 中北大学 课程设计任务书 11/12 学年第一学期 学院: 信息与通信工程学院专业: 自动化学生姓名: 学号: 课程设计 题目: MOSFET单相桥式无源逆变电路设计 (纯电阻负载) 起迄日期: 12月25日, 12月31日课程设计地点: 电气工 程系实验中心指导教师: 系主任: 下达任务书日期: 2011年 12月 25 日 课程设计任务书 1(设计目的: 1)培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资 料。 2)培养学生综合分析问题、发现问题和解决问题的能力。 3)培养学生运用知识的能力和工程设计的能力。 4)提高学生课程设计报告撰写水平。 2(设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 设计内容:

1、设计一个MOSFET单相桥式无源逆变电路(纯电阻负载) 设计要求: 1)输入直流电压:U=100V; d 2)输出功率:300W; 3)输出电压波形:1KHz方波。 2、设计MOSFET单相半桥无源逆变电路(纯电阻负载) 设计要求: 1)输入直流电压:U=100V; d 2)输出功率:300W; 3)输出电压波形:1KHz方波。 3(设计工作任务及工作量的要求〔包括课程设计说明书、图纸、实物样品 等〕: 设计工作任务及工作量的要求: 1)根据课程设计题目,收集相关资料、设计主电路和触发电路; 2)用Multisim等软件制作主电路和控制电路原理图; 3)撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理,完成元器件参数计算,元器件选型,说明控制电路的工作原理,用Multisim 或EWB等软件绘出主电路典型的输出波形(比较实际波形与理论波形),绘出触发信号(驱动信号)波形,说明设计过程中遇到的问题和解决问题的方法,附参考资料。 课程设计任务书 4(主要参考文献: 1、樊立萍,王忠庆.电力电子技术.北京:北京大学出版社,2006 2、徐以荣,冷增祥.电力电子技术基础.南京:东南大学出版社,1999 3、王兆安,黄俊.电力电子技术.北京:机械工业出版社,2005 4、童诗白.模拟电子技术.北京:清华大学出版社, 2001

单相桥式全控整流电路

单相桥式全控整流电路 一、原理 图1.1为单相桥式全控整流带电阻电感性负载,图中DJK03是装置上的晶闸管触发装置。假设电路已工作于稳态。 在u2正半周期,触发角α处给晶闸管VT1和VT4加触发脉冲使其开通,ud=u2。负载中有电感存在时负载电流不能突变,电感对负载电流起平波作用,假设负载电感很大,负载电流id连续且波形近似为一水平线,u2过零变负时,由于电感的作用晶闸管VT1和VT4中仍流过电流id,并不关断。至ωt=π+α时刻,给VT3和VT2加触发脉冲,因VT3和VT2本已承受正电压,故两管导通。VT3和VT2导通后,u2通过VT3和VT2分别向VT1和VT4施加反压使VT1和VT4关断,流过VT1和VT4的电流迅速转移到VT3和VT2上,此过程成为换相,亦称换流。至下一周期重复上述过程,如此循环下去,其平均值为Ud=0.9U2。 图1.2为单相桥式有源逆变电路实验原理图,三相电源经三相不控整流,得到一个上负下正的直流电源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。图中的电阻Rp、电抗Ld和触发电路与单相桥式整流电路相同。 产生有源逆变的条件如下: (1)要有直流电动势,其极性需和晶闸管的导通方向一致,其值应大于变流电路直流侧的平均电压。 (2)要求晶闸管的控制角α>π/2.,使Ud为负值。 两者必须同时具备才能实现有源逆变。 二、实验内容 (1)单相桥式全控整流电路带电阻性负载。 (2)单相桥式有源逆变电路带电阻电感性负载。 (3)有源逆变电路逆变颠覆现象的观察。 (4)单相桥式整流、单相桥式有源逆变电路带电阻电感性负载时MATLAB的仿真。 三、实验仿真 1.带电阻电感性负载的仿真 启动MATLAB,进入SIMULINK后新建文档,绘制单相桥式全控整流电路模型,如图1.3所示。双击各模块,在出现的对话框内设置相应的参数。

IGBT单相电压型全桥无源逆变电路设计.

电子技术课程设计 说明书 IGBT 单相电压型全桥无源逆变电路 设计 学生姓名: 学号: 学 院: 专 指导教师: 2013年01月 XXX 1005044245 信息与通讯工程学院 电气工程及其自动化

中北大学 电子技术课程设计任务书 2012/2013 学年第一学期 学院:信息与通讯工程学院 专业:电气工程及其自动化 学生姓名:胡定章学号: 1005044245 课程设计题目:IGBT单相电压型全桥无源逆变电路设计 起迄日期: 12月24日~ 01月4 日 课程设计地点:电气工程系软件实验室 指导教师:石喜玲 系主任:王忠庆 下达任务书日期: 2012 年 12 月 24日

课程设计任务书

课程设计任务书

目录 1 引言 (1) 2 工作原理概论 (1) 2.1 IGBT的简述 (1) 2.2 电压型逆变电路的特点及主要类型 (2) 2.3 IGBT单相电压型全桥无源逆变电路原理分析 (2) 3 主电路设计及参数选择 (3) 3.1 主电路仿真图 (3) 3.2参数设置及计算 (3) 3.2.1参数设置 (3) 3.2.2计算 (3) 3.2.3设置主电路 (4) 4 仿真电路结果的分析 (5) 4.1 仿真电路图 (5) 1.1.14.1.1 触发电平与负载输出波的波形图 (5) 4.1.2 IGBT电流电压波形图 (6) 4.2 仿真波形分析 (6) 5 总结 (7) 参考文献 (7)

2引言 本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电 路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实 生活中有很广泛的应用。 3工作原理概论 2. 1 IGBT的简述 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C 和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下: 图1 IGBT等效电路和电气图形符号 它的开通和关断是由栅极和发射极间的电压错误!未找到引用源。所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻错误!未找到引用源。减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信

单相桥式全控整流及有源逆变电路实验实验报告记录

单相桥式全控整流及有源逆变电路实验实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验报告 课程名称:现代电力电子技术 实验项目:单相桥式全控整流及有源逆变电路实验实验时间:2012/10/19 实验班级: 总份数: 指导教师:朱鹰屏 自动化学院电力电子实验室 二〇〇年月日

广东技术师范学院实验报告 学院: 自动化学院 专业: 电气工程及其自动化 班级: 成绩: 姓名: 学号: 组别: 组员: 实验地点: 电力电子实验室 实验日期: 10/19 指导教师签名: 实验 (一) 项目名称:单相桥式全控整流及有源逆变电路实验 1. 实验目的和要求 (1)加深理解单相桥式全控整流及逆变电路的工作原理。 (2)研究单相桥式变流电路整流的全过程。 (3)研究单相桥式变流电路逆变的全过程,掌握实现有源逆变的条件。 (4)掌握产生逆变颠覆的原因及预防方法。 2. 实验原理 图3-8为单相桥式整流带电阻电感性负载,其输出负载R 用D42三相可调电阻器,将两个900Ω接成并联形式,电抗Ld 用DJK02面板上的700mH ,直流电压、电流表均在DJK02面板上。触发电 路采用DJK03-1组件挂箱上的“锯齿波同步移相触发电路Ⅰ”和“Ⅱ”。 图3-9为单相桥式有源逆变原理图,三相电源经三相不控整流,得到一个上负下正的直流电 源,供逆变桥路使用,逆变桥路逆变出的交流电压经升压变压器反馈回电网。“三相不控整流” 是DJK10上的一个模块,其“心式变压器”在此做为升压变压器用,从晶闸管逆变出的电压接“心 式变压器”的中压端Am 、Bum ,返回电网的电压从其高压端A 、B 输出,为了避免输出的逆变电压过 高而损坏心式变压器,故将变压器接成Y/Y 接法。图中的电阻R 、电抗Ld 和触发电路与整流所用相同。有关实现有源逆变的必要条件等内容可参见电力电子技术教材的有关内容。 3. 主要仪器设备 预习情况 操作情况 考勤情况 数据处理情况

MOSFET单相桥式无源逆变电路设计

目录 MOSFET和电压型无源逆变电路简介 (1) 1.MOSFET简介 (1) 2.电压型无源逆变电路简介 (1) 主电路图设计和参数计算 (2) 1.主电路图设计 (2) 2.相关参数计算 (2) 驱动电路的设计和选型 (4) 1.驱动电路简介 (4) 2.驱动电路的选用 (4) 电路的过电压保护和过电流保护设计 (5) 1.过电压保护 (5) 2.过电流保护 (7) 3.保护电路的选择以及参数计算 (8) MATLAB仿真 (10) 1.主电路图以及参数设定 (10) 2.仿真结果 (14) 总结与体会 (15) 附录:电路图 (16)

一、MOSFET和电压型无源逆变电路的介绍 1.MOSFET简介 金属-氧化层半导体场效晶体管,简称金氧半场效晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)是一种可以广泛使用在模拟电路与数字电路的场效晶体管(field-effect transistor)。MOSFET依照其“通道”的极性不同,可分为“N型”与“P型”的MOSFET,通常又称为NMOSFET与PMOSFET,其他简称尚包括NMOS FET、PMOS FET、nMOSFET、pMOSFET等。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR,但其电流容量小,耐压低,一般只适用于功率不超过10kW 的电力电子装置。 2.电压型无源逆变电路简介 把直流电变成交流电称为逆变。逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 如果将逆变电路的交流侧接到交流电网上,把直流电逆变成同频率的交流电反送到电网去,称为有源逆变。 无源逆变是指逆变器的交流侧不与电网连接,而是直接接到负载,即将直流电逆变为某一频率或可变频率的交流电供给负载。它在交流电机变频调速、感应加热、不停电电源等方面应用十分广泛,是构成电力电子技术的重要内容。 电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。

单相桥式PWM逆变电路设计

指导教师评定成绩: 审定成绩: 重庆邮电大学 自动化学院 综合设计报告 设计题目:单相桥式PWM逆变电路设计 单位(二级学院):自动化学院 学生姓名:梁勇 专业:电气工程与自动化 班级:0830702 学号:07350225 指导教师:罗萍 设计时间:2010年10月 重庆邮电大学自动化学院制

目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19) 3.电路图 (22)

摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。 这一系列脉冲波形就是所期望的逆变器输出SPWM波形。由于各脉冲的幅值相等,所以逆变器可由恒定的直流电源供电,逆变器输出脉冲的幅值就是整流器的输出电压。当逆变器各开关器件都是在理想状态下工作时,驱动相应开关器件的信号也应为与形状相似的一系列脉冲波形,这是很容易推断出来的。 从理论上讲,这一系列脉冲波形的宽度可以严格地用计算方法求得,作为控制逆变器中各开关器件通断的依据。但较为实用的办法是引用通信技术中的“调制”这一概念,以所期望的波形(在这里是正弦波)作为调制波(ModulationWave ),而受它调制的信号称为载波(Carrier Wave )。在SPWM中

单相桥式PWM逆变电路设计说明

文理学院芙蓉学院课程设计报告 课程名称: 系部:电气与信息工程学院 专业班级:自动化0902班 学生:小龙 指导教师:熬章洪 完成时间: 报告成绩:

目录 一、课程设计任务 (2) 二、SPWM逆变器的工作原理 (2) 1.工作原 理 (3) 2.控制方式 (4) 3.单片机电源与程序下载模块 (7) 4.正弦脉宽调制的调制算法 (8) 5.基于STC系列单片机的SPWM波形实现 (11) 三、总结 (14) 四、心得体会 (15) 五、附录: (17) 1.程序 (17) 2.模拟电路图 (19)

3.电路图 (22) 摘要: 单片机控制逆变电路,以逆变器为主要元件,稳压、稳频输出的电源保护设备。采用面积等效的SPWM波,又单片机为主导,输出三角波和正弦波再由这两个波相叠加输出spwm波来控制逆变电路的触发,使其把直流编程频率可变的交流电 关键字:单片机逆变电源正弦波脉冲触发 单相桥式PWM逆变电路设计 一、课程设计任务 对单相桥式pwm逆变电路的主电路及控制电路进行设计,参数要求如下:直流电压为12 V,L=1mH,要求频率可调,输出为5V的正弦交流电。 设计要求:1.理论设计:了解掌握单相桥式PWM逆变电路的工作原理,设计单相桥式PWM逆变电路的主电路和控制电路。包括: IGBT电流,电压额定的选择 驱动电路的设计 画出完整的主电路原理图和控制原理图 列出主电路所用元器件的明细表 二、SPWM逆变器的工作原理 由于期望的逆变器输出是一个正弦电压波形,可以把一个正弦半波分作N 等分。然后把每一等分的正弦曲线与横轴所包围的面积都用个与此面积相等的等高矩形脉冲来代替,矩形脉冲的中点与正弦波每一等分的中点重合。这样,由N 个等幅不等宽的矩形脉冲所组成的波形为正弦的半周等效。同样,正弦波的负半周也可用相同的方法来等效。

电力电子课程设计---单相桥式晶闸管有源逆变电路设计

课程设计说明书 学院:信息与通信工程学院 专业:自动化 题目:单相桥式晶闸管有源逆变电路设计 (反电势阻感负载) 2011年12月31日

课程设计任务书

一、绪论 1.逆变技术介绍: 逆变技术的原理早在1931 年就有人研究过,从1948 年美国西屋电气公司研制出第一台3KHZ 感应加热逆变器至今已有近60 年历史了,而晶闸

管SCR 的诞生为正弦波逆变器的发展创造了条件,到了20 世纪70 年代,可关断晶闸管(GTO)、电力晶体管(BJT)的问世使得逆变技术得到发展应用。到了20 世纪80 年代,功率场效应管(MOSFET)、绝缘栅极晶体管(IGBT)、MOS 控制晶闸管(MCT)以及静电感应功率器件的诞生为逆变器向大容量方向发展奠定了基础,因此电力电子器件的发展为逆变技术高频化,大容量化创造了条件。进入80 年代后,逆变技术从应用低速器件、低开关频率逐渐向采用高速器件,提高开关频率方向发展。逆变器的体积进一步减小,逆变效率进一步提高,正弦波逆变器的品质指标也得到很大提高。 2.软件介绍: NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim,可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。借助专业的高级SPICE分析和虚拟仪器,能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。 二、原理概述 在电力电子技术中,把直流电能变换成为交流电能的过程称为逆变。 当交流侧为供电电源时称为有源逆变。要使负载侧反过来通过变流器向交流电源供电(即能量反传递)而且电流流向不变,则在负载侧必须存在一个直流电源E(电动势),这个电源可以是电池,也可以是直流发电机或直流电动机运行在发电状态,这个电源的极性与整流电压极性相反。两个电源之间的能量交换必须使这两电源同极性相连接。这样,欲使负载中直流电源的能量反流回交流电源中去,则必须要求变流器能产生一个与原整流 电压U αd 极性相反的电压,称之为逆变电压U βd ,且U βd

电力电子课程设计-IGBT单相电压型全桥无源逆变电路

1引言 本次课程设计的题目是IGBT单相电压型全桥无源逆变电路设计,根据电力电子技术的相关知识,单相桥式逆变电路是一种常见的逆变电路,与整流电路相比较,把直流电变成交流电的电路成为逆变电路。当交流侧接在电网上,称为有源逆变;当交流侧直接和负载相接时,称为无源逆变,逆变电路在现实生活中有很广泛的应用。 2工作原理概论 2. 1 IGBT的简述 绝缘栅双极晶体管(Insulated-gate Bipolar Transistor),英文简写为IGBT。它是一种典型的全控器件。它综合了GTR和MOSFET的优点,因而具有良好的特性。现已成为中、大功率电力电子设备的主导器件。IGBT是三端器件,具有栅极G、集电极C 和发射极E。它可以看成是一个晶体管的基极通过电阻与MOSFET相连接所构成的一种器件。其等效电路和电气符号如下: 图1 IGBT等效电路和电气图形符号

它的开通和关断是由栅极和发射极间的电压所决定的。当UGE为正且大于开启电压UGE时,MOSFET内形成沟道,并为晶体管提供基极电流进而是IGBT导通。由于前面提到的电导调制效应,使得电阻减小,这样高耐压的IGBT也具有很小的通态压降。当山脊与发射极间施加反向电压或不加信号时,MOSFET内的沟道消失,晶体管的积极电流被切断,使得IGBT关断。 2.2 电压型逆变电路的特点及主要类型 根据直流侧电源性质的不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的则称为电流型逆变电路。电压型逆变电路有以下特点:直流侧为电压源,或并联有大电容,相当于电压源。直流侧电压基本无脉动,直流回路呈现低阻抗。 由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。而交流侧输出电流波形和相位因为负载阻抗的情况不同而不同。 当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧想直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。又称为续流二极管。 逆变电路分为三相和单相两大类。其中,单相逆变电路主要采用桥式接法。主要有:单相半桥和单相全桥逆变电路。而三相电压型逆变电路则是由三个单相逆变电路组成。 2.3 IGBT单相电压型全桥无源逆变电路原理分析 单相逆变电路主要采用桥式接法。它的电路结构主要由四个桥臂组成,其中 每个桥臂都有一个全控器件IGBT和一个反向并接的续流二极管,在直流侧并联有 大电容而负载接在桥臂之间。其中桥臂1,4为一对,桥臂2,3为一对。可以看成 由两个半桥电路组合而成。其基本电路连接图如下所示:

相关主题
文本预览
相关文档 最新文档