当前位置:文档之家› DSP程序优化

DSP程序优化

DSP程序优化
DSP程序优化

dsp优化心得

C6XX优化经验总结 一、c6x的编译的常用选项 (一)c6x的编译程序为“”使用的方法 Cl6x [options] [filenames] Cl6x:编译程序 Options:编译选项 Filenames:C或汇编源文件 说明: 编译选项是一个字母或者两个字母,对大小写不敏感。 编译选项的前面需要有一个“-”符号。 一个字母的选项可以合并在一起。比如“-sgq”与“-s -g -q”相同。 两个字母的选项如果第一个字母相同也可以合并在一起。比如“-mgt”与“-mg -mt”相同。 (二)有关优化的选项

-mt:表示在程序中没有使用alaising技术,这使得编译器可以进行比较好的优化。 -o3:对文件级别进行最强的优化,一般在编译时应该使用这个选项。但是在个别情况下使用这个选项优化程序可能会出现 错误(-o2有相同现象,-o0和-o1不会出现错误)。可能是在优化循环,组织流水线的时候发生错误。如果有这种现象出现可以同时 使用-g选项,程序优化就不会出现错误,但是优化效果会下降。另外可以调整程序的表达方式,可能会避免编译器发生错误。 -pm:在程序级别进行优化。可以将所以文件联合在一起进行优化,主要有去掉没有被调用的函数、总是常数的变量以及没有使用的 函数返回值。建议由程序员自己进行这种优化工作。使用这个选项在win98下编译可能会出现找不到编译程序的情况。 -ms0:不使用冗余循环进行优化,减小程序的大小。一般情况下这个选项对程序大小的优化作用不明显。 -mh[n]:去掉流水线的epilog,减小程序的大小。这个选项的作用比较明显。但是有可能出现读取地址超出有效范围的问题, 所以要在数据段的开始和结尾处增加一些pading,或者在分配内存时保证数组的前面和后面一段范围内都是有效的地址。 可选的参数n给出这种pading的长度字节数。 (三)保留编译和优化信息的选项 -k:保留优化后生成汇编语言文件。

DSP实验报告

实验0 实验设备安装才CCS调试环境 实验目的: 按照实验讲义操作步骤,打开CCS软件,熟悉软件工作环境,了解整个工作环境内容,有助于提高以后实验的操作性和正确性。 实验步骤: 以演示实验一为例: 1.使用配送的并口电缆线连接好计算机并口与实验箱并口,打开实验箱电源; 2.启动CCS,点击主菜单“Project->Open”在目录“C5000QuickStart\sinewave\”下打开工程文件sinewave.pjt,然后点击主菜单“Project->Build”编译,然后点击主菜单“File->Load Program”装载debug目录下的程序sinewave.out; 3.打开源文件exer3.asm,在注释行“set breakpoint in CCS !!!”语句的NOP处单击右键弹出菜单,选择“Toggle breakpoint”加入红色的断点,如下图所示; 4.点击主菜单“View->Graph->Time/Frequency…”,屏幕会出现图形窗口设置对话框 5.双击Start Address,将其改为y0;双击Acquisition Buffer Size,将其改为1; DSP Data Type设置成16-bit signed integer,如下图所示; 6.点击主菜单“Windows->Tile Horizontally”,排列好窗口,便于观察 7.点击主菜单“Debug->Animate”或按F12键动画运行程序,即可观察到实验结果: 心得体会: 通过对演示实验的练习,让自己更进一步对CCS软件的运行环境、编译过程、装载过程、属性设置、动画演示、实验结果的观察有一个醒目的了解和熟悉的操作方法。熟悉了DSP实验箱基本模块。让我对DSP课程产生了浓厚的学习兴趣,课程学习和实验操作结合为一体的学习体系,使我更好的领悟到DSP课程的实用性和趣味性。

我的首个DSPTMSFLED灯闪烁项目实验总结

买视频资料、买书、买开发板(F28335)、各种版本开发环境安装,导入工程、创建工程、了解controlSUITE,终于创建了一个工程,且是按照自己的意愿将代码在开发板上跑起来,现总结如下: 实验目的: 将开发板上可控的两个LED灯LD3、LD4实现交替闪烁,并在RAM中仿真实验; 实验步骤: 1、创建工程、且包含main.c文件

按照上面的五步操作,然后点击【finish】。 遇到的问题:在第四步如果设置新的工作空间文件夹,在点击【finish】后,应实际的去工作空间文件夹下去看一下,是否确实创建好了。

建议:在点击完【finish】后,项目框架基本创建完成,然后关闭CCS,再次进去看看是否直接进入刚刚创建好的工程。如果不能最好分析一下原因,重建一次。我在这里反复了3次,也就是重建3次才成功。如果可以进入,进入后面的步骤。 2、复制controlSUITE下C:\ti\controlSUITE\device_support\f2833x下面的DSP2833x_common和 DSP2833x_headers两个文件夹到所创建的工程目录; 复制完成后最好仔细浏览一下每个目录下都有哪些文件。 3、在项目的属性设置对话框中设置include路径如下: 4、在main.c添加如下头文件: #include "DSP2833x_Device.h" // DSP2833x Headerfile Include File #include "DSP2833x_Examples.h" // DSP2833x Examples Include File 5、这是可以编译一下,肯定会出错,需要删除一些文件。如下 以上红圈内的文件全部删除 6、然后再编译一下,看看有什么问题就自己处理吧,呵呵。。。。。 7、现在已经有了基本的函数库、头文件,剩下就是实现LED灯的控制了。 代码如下: #include"DSP2833x_Device.h"// DSP2833x Headerfile Include File

DSP学习心得笔记

DSP学习心得笔记 ---------------- 白建成.baijc.icekoor 建立新工程过程中: 问题1: "GPIO_Study.c", line 61: fatal error: could not open source file "DSP280x_Device.h" 1 fatal error detected in the compilation of "GPIO_Study.c". 解决方法: 因为project →build options→compiler→preprocessor中,要包含的头文件的地址没有加进去,你可以找到头文件的地址,然后加进去。 问题2: undefined first referenced symbol in file --------- ---------------- _c_int00 D:\DSP study\test3\Debug\DSP280x_CodeStartBranch.obj FS$$MPY D:\DSP study\test3\Debug\DSP280x_CpuTimers.obj FS$$TOL D:\DSP study\test3\Debug\DSP280x_CpuTimers.obj >> error: symbol referencing errors - './Debug/test3.out' not built 或者下面的问题: undefined first referenced symbol in file --------- ---------------- _c_int00 D:\DSP study\GPIO_Study\Debug\DSP280x_CodeStartBranch.obj >> error: symbol referencing errors - './Debug/GPIO_Study.out' not built 解决办法都是下面: 这个问题是因为没有加在库文件,请在project →build options→linker→libraries 中加入rts2800.lib。 问题3: >> warning: creating .stack section with default size of 400 (hex) words. Use -stack option to change the default size. >> error: can't allocate .stack, size 00000400 (page 1) in RAMM1 (avail: 00000380) >> error: errors in input - ./Debug/GPIO_Study.out not built 解决办法:

dsp优化心得

iPone 的一句大家都耳熟能详的广告词:“一直被模仿,从未被超越” 。笔者认为主要是因为他们掌握着核心的算法和机器的优化策略。因为一般的硬件我们都买的回来,但是能否将该硬件发挥到极致,就会公司之间的差别,因为同样的硬件,如果软件执行的速度不同,那结果就会有很大的差别,所以说:真正的技术是买不来的。 所以,我们进行嵌入式开发的时候,一旦选定了DSP6000系列的芯片,就不能把它当成单片机来用,必须发挥dsp 与众不同,独一无二的性能。也就是说如何调整c 语言才能够适应这么强悍的硬件就是我们考虑的重点内容,即我们应该按照哪种既定的原则去编写C 代码才能够让dsp 真正作为dsp 在工作,发挥到dsp 的优势。 dsp 的优势在于:速度! 所以,dsp 的优化成为一门专业。 所以,我们一定要使自己在dsp 上编写的c 代码高效运行。因为制约运行速度的因素是硬件和软件。因为dsp 一旦选定,硬件也就确定了。所以,我们首先要注意如何提升软件的效率。对于软件来说,一般情况下有3 个优化等级。第一:算法上优化。第二:程序结构上的优化。第三:汇编级的优化。 我们需要的是研究前两个等级的优化。所以,在这篇文章中,我们需要研究的重点有两个:dsp 的硬件结构和在dsp 上如何优化c 代码。 dsp 的硬件结构 关于dsp 硬件结构的特色有几个:哈佛结构,流水线结构,带宽和运算方式的高效等。1.1.1 哈佛结构 哈佛结构的本质属性是数据存储器(RAM存储数据的存储器)和程序存储器(存储指令)分开。Cpu可以一边取指令,一边取数据。这样会极大的提高处理的速度,因为以前是冯诺依曼结构,总线是分时复用的,这样会降低处理的速度。 而且,dsp6000系列是基于VLIW结构的,具体来讲就说CPU可以提取通过程序从程序存储器中一次提取256bit的指令,即CPU可以一次取8条指令放在处理中。加上和8级流水线的配合,相当于8个传统的CPU一起工作。 1.1.2 流水线结构 流水线结构涉及的CPU 单元包括取指令单元(fetch ),分配指令单元(dispatch )和执行指令单元(executive )。

dsp学习心得体会

dsp学习心得体会 篇一:DSP学习总结 DSP学习总结 摘要:本总结介绍了数字信号技术(DSP)的基本结构,特点,发展及应用现状。通过分析与观察,寄予了DSP 美好发展前景的希望。 关键字:数字信号处理器,DSP,特点,应用 1 DSP介绍 数字信号处理简称DSP,是进行数字信号处理的专用芯片,是伴随着微电子学、数字信号处理技术、计算机技术的发展而产生的新器件,是对信号和图像实现实时处理的一类高性能的CPU。所谓“实时实现”,是指一个实际的系统能在人们听觉、视觉或按要求所允许的时间范围内对输入信号进行处理,并输出处理结果。 数字信号是利用计算机或专用的处理设备,以数值计算的方式对信号进行采集、变换、综合、估计与识别等加工处理,从而达到提取信息和方便应用的目的。数字信号处理的实现是以数字信号处理理论和计算技术为基础的。 2 结构

32位的C28xDSP整合了DSP和微控制器的最佳特性,能够在一个周期内完成32*32位的乘法累加运算。 所有的C28x芯片都含一个CPU、仿真逻辑以及内存和片内外设备的接口信号(具体结构图见有关书籍)。CPU的主要组成部分有: 程序和数据控制逻辑。该逻辑用来从程序存储器取回的一串指令。实时和可视性的仿真逻辑。 地址寄存器算数单元(ARAU)。ARAU为从数据存储器取回的数据分配地址。算术逻辑单元(ALU)。32位的ALU执行二进制的补码布尔运算。 预取对列和指令译码。 为程序和数据而设的地址发生器。 定点MPY/ALU。乘法器执行32位*32位的二进制补码乘法,并产生64位的计算结果。中断处理。 3 特点 采用哈佛结构。传统的冯·诺曼结构的数据总线和指令总线是公用的,因此在高运算时在传输通道上会出拥堵现象。而采用哈佛结构的DSP 芯片片内至少有4 套总线:程序的地址总线与数据总线,数据的地址总线与数据总线。由于这

DSP技术及应用实习报告

目录 1绪论 (2) 1.1实习题目 (2) 1.2课题研究的目的 (2) 1.3 DSP简介 (2) 2开发运行环境CCS (3) 3实验原理 (4) 4软件设计 (8) 4.1程序流程图 (8) 4.2源程序 (8) 4.3设计步骤 (8) 5实习心得 (19) 6参考文献 (19) 附录 (20)

1. 绪论 1.1实习题目 傅立叶变换是一种将信号从时域变换到频域的变换形式,是声学,语音,电信和信号处理等领域中一种重要的分析工具。快速傅立叶变换(FFT)是快速计算DFT的一种高效方法,FFT的出现使DFT的运算大大简化,运算时间缩短一至两个数量级之多,DSP芯片的出现使FFT的实现变得更加方便。 1.2课题研究的目的 随着电子技术和集成电路技术的飞速发展,数字信号处理已经广泛地应用于通信、信号处理、生物医学以及自动控制等领域中。离散傅立叶变换(DFT)及其快速算法FFT作为数字信号处理的基本变换,有着广泛的应用。特别是近年来,基于FFT的ODFM技术的兴起,进一步推动了对高速FFT处理器的研究。FFT算法从出现到现在已有四十多年代历史,算法理论已经趋于成熟,但是其具体实现方法却值得研究。面向高速、大容量数据流的FFT实时处理,可以通过数据并行处理或者采用多级流水线结构来实现。特别是流水线结构使得FFT处理器在进行不同点数的FFT计算时可以通过对模板级数的控制很容易的实现。分析和比较了各种FFT算法后,选择基2和基4混合频域抽取算法作为FFT处理器的而实现算法,一种高速、处理点数可变的流水线结构FFT处理器的实现方法。 1.3 DSP简介 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。DSP有两种含义:Digital Signal Processing(数字信号处理)、Digital Signal Processor (数字信号处理器)。我们常说的DSP指的是数字信号处理器。数字信号处理器是一种适合完成数字信号处理运算的处理器。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 数字信号处理是以众多学科为理论基础的,它所涉及的范围及其广泛。例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信

DSP实验二

实验三 IIR 滤波器设计 一、实验目的: 1.认真复习滤波器幅度平方函数的特性,模拟低通滤波器的巴特沃思逼近、切比雪夫型逼近方法;复习从模拟低通到模拟高通、带通、带阻的频率变换法;从模拟滤波器到数字滤波器的脉冲响应不变法、双线性变换法的基本概念、基本理论和基本方法。 2掌握巴特沃思、切比雪夫模拟低通滤波器的设计方法;利用模拟域频率变换设计模拟高通、带通、带阻滤波器的方法.。 3.掌握利用脉冲响应不变法、双线性变换法设计数字滤波器的基本方法;能熟练设计巴特沃思、切比雪夫低通、带通、高通、带阻数字滤波器。 4.熟悉利用MATLAB 直接进行各类数字滤波器的设计方法。 二、实验内容 a. 设计模拟低通滤波器,通带截止频率为10KHz,阻带截止频率为16KHz,通带最大衰减1dB,阻带最小衰减20dB。 (1) 分别用巴特沃思、切比雪夫I、切比雪夫II 型、椭圆型滤波器分别进行设计,并绘制所设计滤波器的幅频和相频特性图。 (2) 在通带截止频率不变的情况下,分别用n=3,4,5,6 阶贝塞尔滤波器设计所需的低通滤波器,并绘制其相应的幅频响应和相频响应图。 %%%%%%%%%----巴特沃思-----%%%%%%% clc;clear all; omegap=10000*2*pi;omegas=16*10^3*2*pi; Rp=1;As=20; [N,omegac]=buttord(omegap,omegas,Rp,As,'s');%低通的节次 [b,a]=butter(N,omegac,'s'); [H,w]=freqs(b,a); %设计滤波器的幅频和相频特性图 subplot(211) plot(w/2*pi/1000,20*log10(abs(H)))

DSP实习报告模板

DSP应用技术实习报告 课程课题:基于DSP的键盘控制数字图像处理 方式及LCD显示 专业班级:电子信息科学与技术 学生姓名: 指导教师:邹修国李林徐友杨红兵 完成时间:

一、课程内容: ?掌握直方图统计的原理和程序设计 ?了解边缘检测的算法和用途 ?了解锐化的算法和用途 ?了解取反的算法和用途 ?掌握直方图均衡化增强的原理和程序设计 ?了解液晶显示器的显示控制原理及编程方法 ?了解键盘的使用原理及编程方法 二、设计功能及工作原理 能够实现功能: ?数字图像直方图统计 ?数字图像边缘检测(Sobel算子) ?数字图像的锐化(LAPLACE算子) ?数字图像的取反 ?数字图像直方图均衡化增强 通过键盘的输入可以控制图像处理的方式,并且LCD显示何种处理方式。 工作原理: ◆灰度直方图是灰度值的函数,描述的是图像中具有该灰度值的像素的个数,其横坐标表 示像素的灰度级别,纵坐标表示的是该灰度出现的频率。 ◆边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,也包括方向的确定。大多 数使用基于方向导数掩模求卷积的方法。 ◆图像的锐化处理就是使模糊的图像变得更加清晰起来,拉普拉斯锐化法属于常用的一种 微分锐化方法。 ◆求反处理的图像与原来的图像黑白颠倒,取得类似照片底片的效果。 ◆直方图增强的方法就是压缩直方图中比例少的像素所占用的灰度范围,多出来的灰度空 间按照统计比例分配给直方图中比例高的像素使用。 三、设计过程 1.各种功能工程的分别建立: ?数字图像直方图统计 ?数字图像边缘检测(Sobel算子) ?数字图像的锐化(LAPLACE算子) ?数字图像的取反 ?数字图像直方图均衡化增强 ?键盘输入 ?液晶显示器控制显示 2.将各个功能模块进行组合: 1)打开键盘输入的工程文件,浏览key.c文件内容; 2)打开数字图像直方图统计的工程文件,将Histo.c主函数内的处理部分的代码复制到 key.c文件的case1语句后; 3)打开数字图像边缘检测的工程文件,将Image.c主函数内的处理不放入内的代码复制 到key.c文件的case2语句后;

DSP-AD学习心得

DSP-AD模块学习的心得 1.AD采样的高级教程 经过这几天的忙碌,我感觉我对2812的AD模块又有了一些新的理解,感觉AD的框架已经被我架出,现在来说明这几天对其中的理解。 1.1.AD的结构 首先还是要接受一下AD的基本结构吧!把几个容易混淆哦概念重新的定位,让大家看看我自己的理解, ①双排序和级联工作模式 ②顺序采样和同步采样 ③启停/连续工作模式 这三个概念是我自己学习的时候容易混淆或是不知道如何才能很好运用的一个门槛 下面以一个图形来表示他们之间的关系 所以2812AD总共有8种工作方式可以实现,在实际运用中可以根据自己的需要选择合适的工作方式。 1.2.AD模块时钟问题的提出 ①高速时钟 ②ADCLK-AD模块时钟 ③事件管理器时钟(如果要用到EVA/B来触发AD启动的时候)

以上就是整个和系统、AD模块相关的所有时钟的信息。当然里面涉及很多寄存器,各个寄存器的设置可以查相关的资料得出自己想要的合适的时钟和相应的采样保持脉冲的宽度。 1.3几个基本概念 接下来解释几个常混的概念,但是都是本人个人的理解不一定准确。 ①AD采样频率 ②AD启动频率 ③AD的采样保持宽度 ④AD的转换时间 以及这些跟ADCclk之间的联系? 首先来说明一下AD采样频率,我个人认为AD采样频率就是1S中采样多少个点,那么根据实际运用AD模块的经验,你自己启动几次AD模块,它就采样几次,意味着其实AD的采样频率就是AD的启动频率,如果你用事件管理器来触发的话,那么触发频率也同样是AD的采样频率,也就是你所用的通用定时器的定时时间。其次,AD的采样保持时间,这个是一定AD启动就马上开始采样,由于采样这个过程就是给电容充电的过程,那么就是意味着要需要一段的时间电容才可以电荷把电荷储存起来,采样保持时间就是起到这个作用的,但是和AD的启动频率有什么关系呢?个人认为AD的采样频率就是相邻两个采样点之间的时间间隔应该要大于采样保持器保持的时间,这样才可以保证在下一次采样触发到来之前把信号可靠的保持下来。最后讲到,AD的转换时间,这个就是采样保持后,要将保持的模拟量转换成数字量,就要通过内部的转换器,转换器的时间跟ADCclk有关。因为大家都知道AD转换器转换需要给他提供时钟,那么时钟频率越高,转换的速度越快,这样转换时间就越小。 这些关系希望大家可以理解清楚,不过以上都是本人自己的理解,希望可以帮我指出错误的地方。 ⑤合理的安排计算这些频率和时间是AD采样的关键,比如一个正弦信号如果您要求他要在一个正弦波的一个周期内采样24个点,那么首先要确定AD

dsp心得体会

dsp心得体会 篇一:dsp实验报告心得体会 TMS320F2812x DSP原理及应用技术实验心得体会 1. 设置环境时分为软件设置和硬件设置,根据实验的需要设置,这次实验只是 软件仿真,可以不设置硬件,但是要为日后的实验做准备,还是要学习和熟悉硬件设置的过程。 2. 在设置硬件时,不是按实验书上的型号选择,而是应该按照实验设备上的型 号去添加。 3. 不管是硬件还是软件的设置,都应该将之前设置好的删去,重新添加。设置好的配置中 只能有一项。 4. CCS可以工作在纯软件仿真环境中,就是由软件在PC机内存中构造一个虚拟的 DSP环境,可以调试、运行程序。但是一般无法构造DSP 中的外设,所以软件仿真通常用于调试纯软件算法和进行效率分析等。 5. 这次实验采用软件仿真,不需要打开电源箱的电源。 6. 在软件仿真工作时,无需连接板卡和仿真器等硬件。 7. 执行write_buffer一行时。如果按F10执行程序,则程序在mian主函数中运行,

如果按F11,则程序进入write_buffe函数内部的程序运行。 8. 把str变量加到观察窗口中,点击变量左边的“+”,观察窗口可以展开结构变 量,就可以看到结构体变量中的每个元素了。 9. 在实验时,显示图形出现问题,不能显示,后来在Graph Title 把Input的大写 改为input,在对volume进行编译执行后,就可以看到显示的正弦波图形了。 10. 在修改了实验2-1的程序后,要重新编译、连接执行程序,并且必须对.OUT 文件进行重新加载,因为此时.OUT文件已经改变了。如果不重新加载,那么修改执行程序后,其结果将不会改变。 11. 再观察结果时,可将data和data1的窗口同时打开,这样可以便于比较,观察 结果。 12. 通过这次实验,对TMS320F2812x DSP软件仿真及调试有了初步的了解与认识,因为做 实验的时候都是按照实验指导书按部就班的,与真正的理解和掌握还是有些距离的。但是这也为我们日后运用这些知识打下了基础,我觉得实验中遇到的问题,不要急于问老师或者同学,先自己想办法分析原因,想办法解决,这样对

dsp实验报告5

一、实验原理: 1、无限冲击响数字滤波器的基础理论; 2、模拟滤波器原理(巴特沃斯滤波器、切比雪夫滤波器、贝塞尔滤波器); 3、双线性变换的设计原理。 二、实验内容: 1、复习有关巴特沃斯滤波器设计和用双线性变换法设计IIR数字滤波器的知识; 2、阅读本实验所提供的样例子程序; 3、运行CCS软件,对样例程序进行跟踪,分析结果; 4、填写实验报告。 5、样例程序实验操作说明 1)正确完成计算机、DSP仿真器和实验箱连接后,开关K9拨到右边,即仿真器选择连接右边的CPU:CPU2; 2)“A/D转换单元”的拨码开关设置: JP3 3)检查:计算机、DSP仿真器、实验箱是否正确连接,系统上电; 4)置拨码开关S23的1、2拨到OFF,用示波器分别观测模拟信号源单元的2号孔“信号源1”和“信号源2”输出的模拟信号,分别调节信号波形选择、信号频率、信号输出幅值等旋钮,直至满意,置拨码开关S23的1到ON,两信号混频输出; 三、程序分析: cpu_init(); //CPU初始化 fs = 25000; //设置采样频率为2500HZ nlpass = 0.18; //设置通带上限频率归一化参数为0.18 nlstop = 0.29; //设置阻带下限截止频率归一化参数为0.29 biir2lpdes(fs,nlpass,nlstop,a,b); 根据双线性变换法求滤波器的系数a和b set_int(); //调用低通滤波器子程序对信号进行滤波 中断程序注释: interrupt void int1()

{ in_x[m] = port8002; //读取port8002端口的数值 in_x[m] &= 0x00FF; //取后八位送入X[m] m++; //每取一个数字m加1 intnum = m; if (intnum == Len) //当取到128个字节时,重新读取port8002端口的数值 { intnum = 0; xmean = 0.0; for (i=0; i

dsp课程设计实验报告总结

DSP课程设计总结(2013-2014学年第2学期) 题目: 专业班级:电子1103 学生姓名:万蒙 学号:11052304 指导教师: 设计成绩: 2014 年6 月

目录 一设计目的----------------------------------------------------------------------3 二系统分析----------------------------------------------------------------------3 三硬件设计 3.1 硬件总体结构-----------------------------------------------------------3 3.2 DSP模块设计-----------------------------------------------------------4 3.3 电源模块设计----------------------------------------------------------4 3.4 时钟模块设计----------------------------------------------------------5 3.5 存储器模块设计--------------------------------------------------------6 3.6 复位模块设计----------------------------------------------------------6 3.7 JTAG模块设计--------------------------------------------------------7 四软件设计 4.1 软件总体流程-----------------------------------------------------7 4.2 核心模块及实现代码---------------------------------------8 五课程设计总结-----------------------------------------------------14

DSP实验报告

学校代码学号分类号密级 DSP实验报告 院系名称 专业名称 年级 学生姓名 指导老师 年月日

实验一数据存储实验 一、实验目的 1. 掌握 TMS320C54X 程序空间的分配; 2. 掌握 TMS320C54X 数据空间的分配; 3. 能够熟练运用TMS320C54X 数据空间的指令。 二、实验设备 计算机,CCS 3.1版软件,DSP仿真器,E300实验箱,DSP-54XP CPU板。 三、实验系统相关资源介绍 1. 本实验指导书是以TMS320VC5416为例,介绍其相关的内部和外部存储器资源。对于其他类型的CPU请参考查阅相关的数据手册。) 下面给出TMS320VC5416的存储器分配表: 对于数据存储空间而言,映射表相对固定。值得注意的是内部寄存器都映射到数据存储器空间内。因此在编程时这些特定的空间不能作其他用途。 对于程序空间而言,其映射表和CPU 的工作模式有关。当MP/MC 引脚为高电平时,CPU 工作在微处理器模式;当MP/MC引脚为低电平时,CPU工作在微计算机模式。具体的MP和MC模式下的程序和数据映射关系如上图所示。 2. 样例程序实验操作简单说明: 本实验程序将对0x1000 开始的8 个地址空间,填写入0xAAAA 的数据,然后读出,并存储到以0x1008开始的8个地址空间,在CCS中可以观察DATA存储器空间地址0x1000~0x100F 值的变化。 四、实验步骤与内容 1. 在进行 DSP实验之前,需先连接好仿真器、实验箱及计算机,连接方法如下所示: 2. E300 底板的开关SW4 的第1位置ON,其余位置OFF,SW5全部置ON,其余开关不做设置要求。 3. 上电复位 在硬件安装完成后,确认安装正确、各实验部件及电源连接无误后,启动计算机,接通仿真器电源,此时,仿真器上的“红色指示灯”应点亮,否则DSP开发系统与计算机连接存

DSP实验报告

数字信号处理课程实验报告 题目:P30-2-6和P63-3-22-d 信道编码 专业:xxx 学号:xxx 姓名:xx

一、书上习题运算 一、实验内容 2.6一个特定的线性和时不变系统,描述它的差分方程如下:y(n)+0.1y(n-1)-0.06y(n-2) = x(n)-2x(n-1)求系统脉冲响应的前10个样本。 如果此系统输入为x(n)=[5+3cos(0.2πn)+4sin(0.6πn)]μ(n),在0≤n≤20求出y(n)的响应。 3.22计算下列序列的N点循环卷积z(n)。 D x1(n)=nR N(n);x2=(N-n)R N(n);N=10 二、实验程序代码 2.6程序: function[x,n]=impseq(np,ns,nf) if ns>np|ns>nf|np>nf error('输入位置参数不满足ns<=np<=nf') else n=[ns:nf]; x=[(n-np)==0]; end a=[1,0.1,0.06];b=[1-2]; x=impseq(0,0,20); h=filter(b,a,x); n=0:20; x=5+3*cos(0.2*pi*n)+4*sin(0.6*pi*n); y=conv(h,x) stem(y) 3.22程序: function y=circonvt(x1,x2,N) x1=[x1,zeros(1,N-length(x1))]; x2=[x2,zeros(1,N-length(x2))]; m=[0:N-1]; x2m=x2(mod(-m,N)+1); H=toeplitz(x2m,[0,x2(2:N)]); y=x1*H; n=0:9; x1=n; x2=10-n; y=circonvt(x1,x2,10) stem(y) 三、实验结果 2.6

DSP实习实验报告

M A T L A B上机实习报告 姓名: 班级: 指导老师: 2009.12.13

一、实验课程名称:数字信号处理 二、实验目的 掌握应用MATLAB 解决数字信号处理问题的方法,即熟悉应用MATLAB 处理数字信号处理问题相关的函数。 三、实验设备 安装有MATLAB 软件的计算机 四、实验内容 编写MATLAB 程序,实现下列题目: 实验一: 设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x(n) 1、h(n)=(0.8)n ,0≤n ≤4; x(n)=u(n)-u(n-4) 2、h(n)=(0.8)n u(n), x(n)=u(n)-u(n-4) 3、h(n)=(0.8)n u(n), x(n)=u(n) 求以上三种情况下系统的输出y(n)。 实验二: 1、设有离散序列 x(n)=cos(0.48πn)+cos(0.52πn) 分析下列三种情况下的幅频特性。 (1) 采集数据长度N=16,分析16点的频谱,并画出幅频特性。采集数据长度N=16,并 补零到64点,分析其频谱,并画出幅频特性。 (2) 采集数据长度N=64,分析64点的频谱,并画出幅频特性。 观察三幅不同的幅频特性图,分析和比较它们的特点及形成原因。 2、实现序列的内插和抽取所对应的离散傅里叶变换。(选做) ()()n R n n n x 128]365.1cos 36[cos ?? ? ??+??? ??=ππ 求()()n x n x 41=和()?? ? ??=42n x n x 对应的128点傅里叶变换,比较三个结果所得到的幅频特性,分析其差别产生的原因。 实验三: 1、设计一个Butterworth 数字低通滤波器,设计指标如下: 通带截止频率:0.2π,幅度衰减不大于1分贝 阻带截止频率:0.3π,幅度衰减大于15分贝 2、让不同频率的正弦波通过滤波器,验证滤波器性能。 3、分析不同滤波器的特点和结果。 4、编程设计实现IIR 滤波器。

dsp课程设计心得体会

dsp课程设计心得体会 篇一:DSP课程设计报告 JIU JIANG UNIVERSITY DSP应用课程设计报告 题目利用按键任意输入一个数值控制的转动角度院系电子工程学院 专业电子信息工程 姓名 班级1211 学号35 日期 - I - 内容提要 步进电机作为一种电脉冲—角位移的转换元件,由于具有价格低廉、易于控制、无积累误差和计算机接口方便等优点,在机械、仪表、工业控制等领域中获得了广泛的应用。通过DSP对步进电机的控制可以实现系统实时、精确、高效、安全的设计要求,从而实现了自动化生产过程。作为重要部件的DSP是否实现控制要求是应用系统能否可靠工作的关键。 许多研究机构和电机生产厂家对于用单片机和用功率器件来设计步进电机驱动系统作了大量的研究,如把MCS-51系列的8031单片机、美国Microchip公司的PIC系列的

PIC16C5X、各类PLC和VMOS管等功率器件作为控制系统都是比较成熟的。这些方面的资料和经验对于将更高速的DSP 器件用在驱动系统上都是很有帮助的。现在流行的方法是将一系列外围设备如数模转换器(A/D)、脉宽调制发生器(PWM)和数字信号处理器(DSP)内核集成在一起,就获得一个强大又非常经济的电机控制专用的的DSP。许多厂家开发出了电机专用的DSP器件和支持各种通用算法的模拟软件。不仅芯片的运算速度越来越快,且软件中集成和固化在硬件中的算法模块越来越多,使得实现各种功能和进行电机性能研究变得现实和容易,能够实现更加理想的控制要求,随着对步进电机的研究更加深入与芯片价格的降低和功能的增加以及随着半导体工艺,尤其是高密度CMOS工艺的发展和进步,芯片的价格日益下降,而性能却不断提高,软件和开发工具越来越多,越来越好,应用范围日益广泛。DSP作为一种高速处理器件在驱动系统中的应用也会更加广泛和普及,研究DSP在控制领域中的应用也有着重大现实意义。 目录 一课程设计要求 ................................................ .. (4) 二总体方案 ................................................

DSP学习心得

数字信号处理—DSP课程学习的认识 今年学习了DSP这门课程后,有了一些自己的认识和见解,并且体会到了它强 大的功能和作用,它不但在高端的技术领域有很重要的地位,如通信、雷达、声纳、语音合成和识别、图像处理、高速控制等;而且在生活中有它不小的作用,如,影视、仪器仪表、医疗设备、家用电器等众多领域。 但是,由于DSP技术发展很快,生产DSP芯片的厂家又多,这既是它的优点同时又是缺点,因为这样会导致产品更新换代的周期越来越短,还有,每一种芯片,都有其独特的硬件结构和一套专门的指令系统与开发工具,这更加的带来了学习DSP技术的困难。在我自己的学习体系里,有自己的一点经验可以用来辅助的学习这门课程。古时候的一个习语说的是“窥一斑而知全豹”这个同时可以用来指导学习DSP,尽管它的更新换代很快,但也只是为了完善它而更好用和借助其它的技术为它添加一些别的功能而使其更强大,其实质的理论还没有变话,所以,我们可以就其某一个芯片的知识来指导其它的芯片的学习和利用。这里,以TMS320系列DSP芯片为例来进行知识的梳理。 x(t)→抗混叠滤波器→A/D→数字信号处理器→D/A→低通滤波器→y(t) 数字信号处理系统简化框图 这个作为基本的理论模型,然后开始主要内容:1.1,TMS320系列DSP芯片的概述﹑分类及应用、平台;1.2,主要特性有①CPU,②存储器,③指令系统,④在片外围电路,⑤电源,⑥在片仿真接口,⑦速度、组成框图;1.3,总线结构; 1.4,存储器空间分配、存储器(程序存储器、数据存储器);1.5,中央处理单元中,算术逻辑运算单元①ALU的输入,②ALU的输出,③溢出处理,④进位位,⑤双16 位算术运算,累加器A和B(保存累加器的内容、累加器移位和循环移位、专用指令),桶形移位器乘法器/加法器单元,比较、选择和存储单元,指数编码器,CPU状态和控制寄存器;1.6,数据寻址方式①立即寻址,②绝对寻址,③累加器寻址,④直接寻

DSP实验学习心得

DSP实验学习心得 论DSP发展前景

DSP 即为数字信号处理器(Digital Signal Processing),是在模拟信号变换成数字信号以后进行高速实时处理的专用处理器。它的工作原理是将现实世界的模拟信号转换成数字信号,再用数学方法处理此信号,得到相应的结果。自从数字信号处理器(Digital Signal Processor)问世以来,由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。DSP 数字信号处理器DSP 芯片采用了数据总线和程序总线分离的 哈佛结构及改进的哈佛结构,较传统处理器的冯?诺依曼结构具有更高的指令执行速度。其处理速度比最快的CPU 快10-50 倍。在当今数字化时代背景下,DSP 已成为通信、计算机、消费类电子产品等领域的基础器件,被誉为信息社会革命的“旗手”。 最初的DSP 器件只是被设计成用以完成复杂数字信号处理的算法。DSP 器件紧随着数字信号理论的发展而不断发展。DSP发展最快,现在的DSP 属于第五代产品,它与第四代相比,系统集成度更高,将DSP 芯核及外围组件综合集成在单一芯片上。这种集成度极高的DSP 芯片不仅在通信、计算机领域大显身手,而且逐渐渗透到人们日常消费领域,前景十分可观。近年来,随着通信技术的飞速发展,DSP已经成为信号与信息处理领域里一门十分重要的新兴学科,它代表着当今无线系统的主流发展方向。现在,通信领域中许多产品

都与DSP 密切联系,例如,Modem、数据加密、扩频通信、可视电话等。而寻找DSP 芯片来实现算法最开始的目标是在可以接受的时间内对算法做仿真,随后是将波形存储起来,然后再加以处理。 在短短的十多年时间,DSP芯片已经在信号处理、通信、雷达等许多领域得到广泛的应用。目前, DSP 芯片的价格也越来越低,性能价格比日益提高,具有巨大的应用潜力。DSP 芯片的应用主要有:(1)信号处理--如,数字滤波、自适应滤波、快速傅里叶变换、相关运算、频谱分析、卷积等。(2)通信--如,调制解调器、自适应均衡、数据加密、数据压缩、回坡抵消、多路复用、传真、扩频通信、纠错编码、波形产生等。(3)语音--如语音编码、语音合成、语音识别、语音增强、说话人辨认、说话人确认、语音邮件、语音储存等。(4)图像/图形--如二维和三维图形处理、图像压缩与传输、图像增强、动画、机器人视觉等。(5)军事--如保密通信、雷达处理、声纳处理、导航等。(6)仪器仪表--如频谱分析、函数发生、锁相环、地震处理等。(7)自动控制--如引擎控制、深空、自动驾驶、机器人控制、磁盘控制。(8)医疗--如助听、超声设备、诊断工具、病人监护等。(9)家用电器--如高保真音响、音乐合成、音调控制、玩具与游戏、数字电话/电视等DSP 的发展前景DSP 的功能越来越强,应用越来越广,达到甚至超过了微控制器的功能,比微控制器做得更好而且价格更便宜,许多家电用第二代DSP 来控制大功率电机就是一个很好的例子。汽车、个人通信装置、家用电器以及数以百万计的工厂使用DSP 系统。数码相机、IP 电话和手持电子设备的热销带来了对DSP 芯片的巨大需求。而手机、

dsp实习心得体会

dsp实习心得体会 DSP大家注意和传统的概念区分一下,传统我们经常说的DSP(Digital Signal Processing(数字信号处理))的缩写也就是说是一些功能算法,这里的DSP是指(Digital Signal Process(数字信号处理器))的缩写,也就是说他是一个集成一些外设的一个芯片,类似我们的单片机。我们通过程序实现一些特定的功能。 和传统单片机比较的区别? DSP功能比普通单片机高出很多,当然价格也比较高。所以直接用DSP和单片机比较是不合适的。我们这里比较不是从他的应用领域来比较,我们是从开发的角度来比较,为了是使那些熟练使用单片机的朋友可以很快上手。当然我的主要目的的大家可以比较学习,达到 熟悉一种CPU其他就可以很快上手。下面从几个方面比较一下 1,硬件上比较 从硬件上比较DSP和传统的单片机主要有几个方面不一样,很多DSP电源系统比传统的复杂,但是这个并不影响我们因为如TI的DSP都提供相关的测试电路。开始的时候大家可以完全按照他来设计。调试方式上有很大不同,DSP一

般通过JTAG来进行仿真和烧写的,而单片机是通过直接仿真器来仿真的(这里讲的单片机是比较早的,现在的单片机也有很多采用JTAG调试方式)。其他设计比如重要的时序设计所以CPU系统是一样的只要满足时序就可以达到目标。 2,软件上比较 相比硬件软件应该是DSP差别比较大的DSP的软件需要CMD文件,一般的单片机编译器编译以后就可以了不需要。并且CMD也是DSP学习过程中比较困难的一个方面。后面我们简单说明一下。 dsp实习心得体会(二) 小系统的是任何DSP系统开发前必须要完成的,你可以从一下几个方面获得小系统。一、购买一个市场上比较成熟的小系统产品;二、自己动手设计一个小系统。我们这里主要告诉大家怎么自己设计一个最小系统。 首先我给最小系统一个定义,我按照我个人的习惯把最小系统分成2个方面 1,狭义的最小系统 所谓狭义最小系统是指就是能够完成一个独立功能,并且方便观察的一个系统。比如我们常见的通过DSP控制一个LCD灯让它闪起来。完成这个功能我们可以认为狭义的最小系统完成。 独立完成功能,我们很容易想到要一个系统能够独立完

相关主题
文本预览
相关文档 最新文档