当前位置:文档之家› 第3章-基本概念--机器学习与应用第二版

第3章-基本概念--机器学习与应用第二版

第3章-基本概念--机器学习与应用第二版
第3章-基本概念--机器学习与应用第二版

人工智能车牌识别

车牌自动识别 近年来,随着物联网、车联网的迅猛发展,以及中国汽车数量的不断增加,这对智能交通系统提出了新的要求。作为智能交通系统一部分的集成信号处理、计算机视觉、模式识别等技术的车牌识别系统因而也有了新的应用和挑战。除传统的用于高速公路超速违章管理、停车场管理、车辆流量管理以及车辆电子收费系统外,车牌识别系统还可以用于移动机器人对停车场车辆的监管以及交通管理部门对违章车辆车牌的自动登记等。 一、车牌自动识别系统的技术说明 车牌自动识别系统采用车牌识别技术来实现技术效果的。车牌识别技术(Vehicle License Plate Recognition,VLPR) 是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。 车牌识别技术结合电子不停车收费系统(ETC)识别车辆,过往车辆通过道口时无须停车,即能够实现车辆身份自动识别、自动收费。在车场管理中,为提高出入口车辆通行效率,车牌识别针对无需收停车费的车辆(如月卡车、内部免费通行车辆),建设无人值守的快速通道,免取卡、不停车的出入体验,正改变出入停车场的管理模式。

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

人工智能与模式识别

人工智能与模式识别 摘要:信息技术的飞速发展使得人工智能的应用围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。 关键词:模式识别;数字识别;人脸识别中图分类号; Abstract: The rapid development of information technology makes the application of artificial intelligence become more and more widely. Pattern recognition, as one of the important aspects, has always been an important direction of artificial intelligence research. In the introduction of artificial intelligence and pattern recognition related knowledge at the same time, artificial intelligence in pattern recognition applications were discussed.Pattern recognition is a basic human intelligence, the emergence of the 20th century, 40 years of computer and the rise of artificial intelligence in the 1950s, pattern recognition technology has made great progress. Pattern recognition and statistics, psychology,

中英文翻译--力学的基本概念{修}

力学的基本概念 对运动,时间和作用力作出科学分析的分支被称为力学,它由静力学和动力学两部分组成。静力学对静止系统进行分析,即在静力学系统中不考虑时间这个因素,而动力学是对随时间变化的系统进行分析。 通过配合表面作用力被传送到机器的各个部件,例如从齿轮传到轴或者是从一个齿轮通过啮合传递到另一个齿轮,从三角皮带传到皮带轮,或者从凸轮传到从动件。由于很多原因,我们必须知道这些力的大小。在边界或啮合表面作用力的分布一定要合理,他们的大小必须在构成配合表面材料的工作极限以内。例如,如果施加在滑动轴承的作用力太大,那么它就会将油膜挤压出来,并且造成金属和金属的接触,使温度过高,使滑动轴承失效。如果作用在齿轮轮齿上的力过大,就会将油膜从齿间挤压出来。这将会导致金属表层的破裂和剥落,噪音增大,运动不精确,直至报废。在力学研究中,我们主要关心力的大小,方向和作用点。 当一些物体连接在一起形成一个组合或者系统时,在两个接触的物体之间作用和反作用的力被称之为约束力。这些力约束各个物体使其处于特有的状态。作用在这个物体系统外部的力叫做外力。 电力,磁力和重力是不需要直接接触就可以施加的力的实例。不是全部但是大多数,与我们有关的力都是通过直接的实际接触或者是机械接触才能产生的。 力是一个矢量。力的要素就是它的大小,它的方向和作用点,一个力的方向包括力的作用线的概念和它的指向。因此,沿着力的作用线,力的方向有正副之分。 沿着两条不重合的平行线作用在一个物体上的两个大小相等、方向相反的作用力不能合并成一个合力。任何作用在一个刚体上的两个力构成一个力偶。力偶臂就是这两个力的作用线之间的垂直距离。 力偶矩也是一个矢量,用M表示,垂直于力偶面;M的方向主要依据右手螺旋定则确定。力矩的大小是力偶臂与其中一个力的大小的乘积。 如果一个刚体满足下列条件,那么它处于平衡状态: (1)作用在它上面的所有外力的矢量和等于零。 (2)作用在它上面的所有外力对于任何一个轴的力矩之和等于零。 在数学上这两个条件被表示为 ∑=0 M F∑=0 所使用的术语“刚体”可以是整台机器,一个机器中几个相互连接的零件,一个单独的零件或者是零件的一部分。隔离体简图是一个从机器中隔离出来的物体的草图或视图,在图中标出所有作用在物体上的力和力矩。通常图中应该包括已知的力和力矩的大小、方向还有其他相关信息。 这样得到的图成为“隔离体简图”,其原因是图中的零件或物体的一部分已经从其余的机械零部件中隔离出来了,其余的机器零部件对它的作用已经用力和力矩代替。对于一个完整的机器零部件隔离体简图,图上所表示出的,作用在其上面的力和力矩是通过与其相邻或相接触零件施加的,是外力。对于一个零件的一部分的隔离体简图作用在切面上的力和力矩都是通过被切掉部分施加的,是内力。 绘制和提交简洁、清晰的隔离体简图是工程交流的核心。这是真实的,因为

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

机器视觉检测系统的工作原理与检测流程【干货】

机器视觉检测系统的工作原理与检测流程 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在机器视觉检测系统工作流程中,主要分为图像信息获取、图像信息处理和机电系统执行检测结果3个部分,另外根据系统需要还可以实时地通过人机界面进行参数设置和调整。 当被检测的对象运动到某一设定位置时会被位置传感器发现,位置传感器会向PLC控制器发送“探测到被检测物体”的电脉冲信号,PLC控制器经过计算得出何时物体将移动到CCD相机的采集位置,然后准确地向图像采集卡发送触发信号,采集开检测的此信号后会立即要求CCD相机采集图像。被采集到的物体图像会以BMP文件的格式送到工控机,然后调用专用的分析工具软件对图像进行分析处理,得出被检测对象是否符合预设要求的结论,根据“合格”或“不合格”信号,执行机会对被检测物体作出相应的处理。系统如此循环工作,完成对被检测物体队列连续处理。如下图所示。

机器视觉检测系统工作原理 一个完整的机器视觉检测系统的主要工作过程如下: ①工件定位传感器探测到被检测物体已经运动到接近机器视觉摄像系统的视野中心,向机器视觉检测系统的图像采集单元发送触发脉冲。 ②机器视觉检测系统的图像采集单元按照事先设定的程序和延时,分别向摄像机和照明系统发出触发脉冲。 ③机器视觉摄像机停止目前的扫描,重新开始新的一帧扫描,或者机器视觉摄像机在触发脉冲来到之前处于等待状态,触发脉冲到来后启动一帧扫描。 ④机器视觉摄像机开始新的一帧扫描之前打开电子快门,曝光时间可以事先设定。 ⑤另一个触发脉冲打开灯光照明,灯光的开启时间应该与机器视觉摄像机的曝光时间相匹配。 ⑥机器视觉摄像机曝光后,正式开始新一帧图像的扫描和输出。 ⑦机器视觉检测系统的图像采集单元接收模拟视频信号通过A/D转换器将其数字化,或者是直接接收机器视觉摄像机数字化后的数字视频信号。 ⑧处理结果控制生产流水线的动作、进行定位、纠正运动的误差等。 从上述的工作流程可以看出,机器视觉检测系统是一种相对复杂的系统。大多监控和检测对象都是运动的物体,系统与运动物体的匹配和协调动作尤为重要,所以给系统各部分的动作时间和处理速度带来了严格的要求。在某些应用领域,例如机器人、飞行物体制导等,对整个系统或者系统的一部分的重量、体积和功耗等都会有严格的要求。 尽管机器视觉应用各异,归纳一下,都包含一下几个过程: ①图像采集:光学系统采集图像,将图像转换成数字格式并传入计算机存储器。

数据库的4个基本概念

数据库的4个基本概念 1.数据(Data):描述事物的符号记录称为数据。 2.数据库(DataBase,DB):长期存储在计算机内、有组织的、可共享的大量数据的集合。 3.数据库管理系统(DataBase Management System,DBMS 4.数据库系统(DataBase System,DBS) 数据模型 数据模型(data model)也是一种模型,是对现实世界数据特征的抽象。用来抽象、表示和处理现实世界中的数据和信息。数据模型是数据库系统的核心和基础。 数据模型的分类 第一类:概念模型 按用户的观点来对数据和信息建模,完全不涉及信息在计算机中的表示,主要用于数据库设计现实世界到机器世界的一个中间层次 实体(Entity): 客观存在并可相互区分的事物。可以是具体的人事物,也可以使抽象的概念或联系 实体集(Entity Set): 同类型实体的集合。每个实体集必须命名。 属性(Attribute): 实体所具有的特征和性质。 属性值(Attribute Value): 为实体的属性取值。 域(Domain): 属性值的取值范围。 码(Key): 唯一标识实体集中一个实体的属性或属性集。学号是学生的码 实体型(Entity Type): 表示实体信息结构,由实体名及其属性名集合表示。如:实体名(属性1,属性2,…) 联系(Relationship): 在现实世界中,事物内部以及事物之间是有联系的,这些联系在信息世界中反映为实体型内部的联系(各属性)和实体型之间的联系(各实体集)。有一对一,一对多,多对多等。 第二类:逻辑模型和物理模型 逻辑模型是数据在计算机中的组织方式 物理模型是数据在计算机中的存储方式 数据模型的组成要素 数据模型通常由数据结构、数据操作和数据的完整性约束条件三部分组成 关系模型(数据模型的一种,最重要的一种) 从用户观点看关系模型由一组关系组成。每个关系的数据结构是一张规范化的二维表。 ?关系(Relation):一个关系对应通常说的一张表。 ?元组(Tuple):表中的一行即为一个元组。 ?属性(Attribute):表中的一列即为一个属性,给每一个属性起一个名称即属性名。 ?码(Key):表中的某个属性组,它可以唯一确定一个元组。 ?域(Domain):一组具有相同数据类型的值的集合。属性的取值范围来自某个域。

图像识别与人工智能研究所发展规划报告

图像所学科建设与发展规划 根据学校建设世界知名高水平大学的发展目标,特制定图像所相应的学科建设与发展规划,以推动本学科的跨越式发展。 一、学科建设总体目标 (一)学科基础 图像识别与人工智能研究所(简称图像所)将继续以跻身于我国的国防科技的发展为切入点,从事发展巡航导弹中制导、末制导关键技术,承担相关预先研究和攻关科研任务为学科建设的主攻方向。 (1)目前本学科点共有五个研究方向: “计算机视觉与应用”、 “成像自动目标识别与精确制导技术”、 “多谱成像与遥感图像处理”、 “人工智能与思维科学” “面向模式识别的专用处理机与IC芯片设计”。 (2)本学科点现有科研人员26人,其中教授(含博士生导师)7人,副教授7人。科研教学梯队层次高,年龄、专业结构合理。现有教学科研用房4000 平方米。实验设备固定资产5000余万元,已初步形成先进、配套的教学、科研、开发环境和雄厚的技术储备。 (3)学科特点 模式识别与智能系统是信息科学技术领域中发展最迅速的前沿领域之一。

来自不同成像传感器的不同谱段的图像信号能全面揭示客观世界的各种特性,智能控制是人工智能与自动控制相结合的现代控制理论和技术,图像模式处理、识别与智能控制的结合构成了智能信息系统和智能自动化系统发展的基础,不仅科学意义深远而且有十分广阔的应用前景。本学科点的主要特色是紧密结合航天、航空和信息技术领域的国家目标,进行应用基础和应用技术的研究和开发,重点研究多谱段图像模式信息的获取、表示、处理、分析与智能系统领域的基础理论与关键技术,同时培养和造就本领域高层次、高质量的科技人才。本学科点具有特色和优势的研究方向是: ·计算机视觉与应用 在基于信息融合的信号处理、基于视觉、力觉和超声波接近觉的多传感器机器人系统和飞行器三维航迹规划技术方面具有特色,承担了国家重大型号XY-20末制导航迹规划攻关项目并进入型号研制。 ·成像自动目标识别与精确制导技术 开展面向复杂背景和随机环境下成像自动目标检测、识别、跟踪的新理论、新方法、新算法和新系统的研究,其特色是瞄准有关国家安全的国家目标,紧密结合航天航空高技术发展,在基于图象和图象序列的自动目标识别,景象匹配定位等精确制导领域开展应用基础和高技术的研究,并将一系列高水平成果应用于国防高技术武器系统中。 ·多谱成像与遥感图像处理 研究微波辐射特性及成像技术、激光雷达成像信号处理和遥感图像处理与

曲式分析基本概念

乐思:即音乐的思想材料,构成音乐语言的素材,规模可大可小,小至音调和动机,其次是乐节、乐句、乐段等,大至完整的主题。主题:鲜明的形象性,一定的完成性 动机:最小规模的乐思,是音乐结构中的最小单位,是乐节的再划分部分,典型的动机包含一个节拍重音,即相当于一小节。音调:区别不同音乐形象的乐思,与动机着眼点不同 音型:旋律、结构、和声进行的乐思,与动机着眼点不同 乐思陈述的类型:呈示性、展开性、过渡性、收束性、导入性 音乐曲式的功能:三个主要功能(陈述、对比、再现)和三个辅助功能(引子、连接、结束)主题的陈述的特点:主题的统一、调性的统一、结构的统一 乐段:是构成独立段落的最小的结构。 乐段的特征:1、建立在单一主题上的、最小的完整曲式2、乐段的组成部分是乐句3、这些乐句之间具有问答呼应的关系,乐句数量不一定4、主调音乐风格的乐段,和声和旋律的完满终止时乐段结束时的典型标志5、大多数乐段的陈述时呈示型的6、乐段可以作为独立乐曲的曲式,也可以是较大型作品的一部分 乐段的类型:单乐段、平行复乐段、三重乐段、四重乐段、乐段聚集 单乐段:是包含一个乐段的结构。划分依据:1、依据和声:开放性乐段、收拢性乐段、转调乐段。2、依据主题材料及乐思发展的状况。3、依据乐段拥有乐句数量:二乐句乐段、三乐句乐段、四乐句乐段、多乐句乐段、单乐句数段。4、依据结构的模式:方整性乐段、非方整性乐段(基数节,前后两句乐节数量不等) 两乐句乐段:平行结构和对比结构。平行结构是指两乐句开头的主题材料基本相同,而落音或终止式不同。平行两乐句乐段常见的平行情况有:两乐句开头相同、第二乐句为第一乐句的模进或移调、第二乐句是第一乐句主题旋律的反向等。对比结构是指两乐句开头的主题材料基本不同,但仍保持着一定的呼应关系 平行复乐段:(三个条件缺一不可)1、两个大乐句开头的主题材料相同或相似2、大乐句的内部能够划分小乐句3、大乐句末尾的终止式不同,形成呼应。 单二部曲式:单二部曲式由两个部分组成,通常第一部分为乐段,第二部分为乐段或规模相当于乐段的段落。图式:ab由于发展主题的不同方式,二部曲式可以分为两种基本类型:单主题二部曲式、对比主题二部曲式(ab之间的区别可达到对比的程度) 单二部曲式因第二部分是否再现第一部分的主题因素,又可分为:有再现部的单二部曲式(第二部分在收束时再现第一部分的一个乐句,整个第二部分由相当于一个乐句的规模的中部和是乐句的再现部组成)、没有再现的单二部曲式 有再现的单二部曲式与单三部曲式的区别: 1、中部和再现部能分开单独成乐段的篇幅相当的、中部可能会做更大幅度的展开的是单三;中部与再现部合并的是单二。 2、再现部规模不同 单三的中部的类型:1单主题的中部:第一部分主题移到从属调或将第一部分主题材料进行分裂展开2对比主题的中部:与第一部分形成对比的另一个呈示部的乐段3合成性的中部:中部有两个或两个以上的部分联合形成 回旋曲式:基本主题(称为“主部”或“迭句”)出现三次以上,中间插入互不相同的段落(称为“插部”)。图式:abaca……. 17世纪~18世纪上半叶:单主题回旋曲式(古回旋曲式)——各个插部通常取材于主部主题,与逐步形成不大的对比 18世纪后半叶以后的世态风俗性回旋曲:对比主题回旋曲式(古典回旋曲式)——各个插部都和主部形成对比、与古回旋曲式完全不同

第一章 编程的基本概念

第一章,编程的基本概念 首先,作为介绍编程的基础章节,第一点要明白的就是什么是编程。 编程,简单来说就是为了让笨笨的计算机理解我们想让他干什么而编写程序(指令)。如果计算机没有了我们为他设定好的程序,那么它连“吃奶”都不懂得是什么回事,它的最初形态是只认识1和0的怪家伙,傻得很~ 我们通过编程,教会计算机在什么样的情况下应该如何处理问题,教会他1+1的情况是等于2,我们甚至不用跟他说为什么会这样,因为它不需要理解,它只需要按照我们编写的程序去执行,就可以了。 那么如何可以让计算机按照我们所想的去工作呢? 文中红色部分由小甲鱼提供,在此表示感谢。 1.1计算机语言 如果我们现在去百度搜索一下,什么是计算机语言,网上一定会有很多的答案。但是他们无非是介绍一门语言的作用,语法啊,优缺点等等。但是对于没有编程基础的人来说,这些简直就是天书。下面要先介绍一下什么是计算机语言。 首先,我们抛去“计算机语言”中的前三个字,只剩下“语言”。我相信这个词汇一定很熟悉。什么是语言?语言的作用是什么? 像中文,英文,俄文,日文这些都是语言,几乎每个国家或者地区都有自己的语言。语言是用来沟通的,如果我们都会同一门语言,那么我们的交流与沟通是很方便的。但是如果我们使用不同的语言,沟通的难度可想而知。 那么,在刚开始我提到过,计算机只不过是一个很笨的工具,我们需要告诉计算机怎么样去做。可以让计算机明白人的意思的语言便叫计算机语言。 1.2计算机可以“听”的懂什么语言? 和我们学习英语一样,首先要学习字母,然后学习单词,然后学习词组和句子,最后可以用句子来组成文章。通过一篇完成的文章可以表达出我们的意思,别人也可以看的明白。 计算机也是一样,但是计算机不可能像我们人类一样,计算机不可能学习一下汉语来和我们交流。计算机只能识别由1和0组成的二进制代码,也称为机器语言。也就是说,在计算机语言中,字母就是0和1,单词或者词组,就是0和1的各种组合,句子就是更多的0和1的组合所组成的。在计算机语言中,

人工智能YOLO V2 图像识别实验报告

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。 深度学习是机器学习中的一个新的研究领域,通过深度学习的方法构建深度网络来抽取特征是目前目标和行为识别中得到关注的研究方向,引起更多计算机视觉领域研究者对深度学习进行探索和讨论,并推动了目标和行为识别的研究,推动了深度学习及其在目标和行为识别中的新进展。基于这个发展趋势,我们小组选择了基于回归方法的深度学习目标识别算法YOLO的研究。 1.1.2课程项目研究的意义 众所周知,当前是信息时代,信息的获得、加工、处理以及应用都有了飞跃

机器视觉基本介绍

机器视觉基本概念 2018.1.29 机器视觉系统 作用:利用机器代替人眼来做各种测量和判断。 它是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。 机器视觉系统的特点:是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。可以在最快的生产线上对产品进行测量、引导、检测、和识别,并能保质保量的完成生产任务 视觉检测:指通过机器视觉产品(即图像摄取装置,分CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。是用于生产、装配或包装的有价值的机制。它在检测缺陷和防止缺陷产品被配送到消费者的功能方面具有不可估量的价值。 照明 照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。 光源可分为可见光和不可见光。常用的几种可见光源是白帜灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。 照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。 镜头 FOV(Field of Vision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比) 镜头选择应注意: ①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变

图像处理与识别论文.doc

辽宁工业大学 关于图像识别技术的论述 --图像处理与识别结课论文 学院:电子与信息工程学院 班级:电子102班 学号:100404054 姓名:包媛

关于图像识别技术的论述 随着科学技术的不断发展,计算机应用领域的不断开拓,一种全新的图像处理方法应运而生,这就是数字图像处理技术,即利用计算机设备将图像转变成数字信息来进行保存、处理、传输和重现。数字图像识别技术则是从数字图像处理技术中延伸出来的一个重要的研究方向。目前,数字图像处理与识别的应用范围越来越广。但就目前的水平而言,计算机对外部的感知能力还比较薄弱,还需要投入大量人力、物力从事数字图像处理与识别的理论和应用的研究。图像处理与识别的应用有很多种,如指纹识别,条码识别,人脸识别,车牌识别,残损纸币识别等等在生活,生产中,和警方侦破案件中都有很多很重要的应用。数字图像处理方法的分类以及数字图像处理系统的基本部件,“数字图像处理的基本方法”、“人脸识别”及“残损纸币识别”进行详细叙述。一些数字图像处理的基本方法,包括图像增强与图像检测两部分。人脸识别”当中,可采用SN-tuple神经网络的方法进行识别,同时网络参数的变化对识别率也会有所影响影响。对于“残损纸币识别”,可以选择边缘检测、Fisher判别和神经网络三种方法进行识别。其中,边缘检测需要区分纸币的面值和正反,之后方可识别,但性能较为稳定,识别效果较好;Fisher判别无需区分纸币的面值和正反,但识别率受样本选择的影响,不同样本,识别率有可能相差较大;神经网络方法也可不区分纸币的面值与正反,但识别率较低,若区分面值与正反,则可获得较高的识别率。下面分别对车牌识别,纸币、票据识别和手势识别做陈述。 随着我国国民经济的迅速增长,机动车的规模与流量大幅增加,随之而来的管理问题也日益严重。因此迫切需要采用高科技手段,对这些违法违章车辆牌照进行登记,汽车牌照识别系统的出现成为了交通管制必不可少的有力武器。汽车牌照的识别系统在公共安全,交通管理,及相关军事部门有着重要的应用价值。它是一个基于数字图像处理和字符识别的智能化交通管理系统,该系统先通过图像采集,再对图像进行处理以克服图像干扰,改善识别效果,而后进行二值化,归一化等处理,最后进行识别。车牌识别系统使得车辆管理更趋于数字化,网络化,大大提高了交通管理的有效性与方便性。车牌识别系统作为整个智能交通系统的一部分,其重要性不言而喻。 车牌识别是一项涉及到数字图像处理、计算机视觉、模式识别、人工智能等多门学科的技术,它在交通监视和控制中占有很重要的地位,已成为现代交通工程领域中研究的重点和热点之一。该项技术应用前景广泛,例如用在自动收费系统、不停车缴费、失窃车辆的查寻、停车场车辆管理、特殊部门车辆的出入控制

谓词逻辑的基础概念及其应用

谓词逻辑的基础概念及其应用 张谦惠 摘要:数学逻辑学是研究数学教育中所需的逻辑知识及如何应用于数学教育和解决数学教育问题的一门学科。本文主要讨论谓词逻辑的基础概念及其在数学教育中的应用。谓词逻辑分很多种,而这里要研究的是狭义谓词逻辑或称一阶谓词逻辑。研究它的三个基础知识及其在教育学中的应用。 关键词:谓词的概念公式等价式应用 数学逻辑学是研究数学教育中所需的逻辑知识及如何应用于数学教育和解决数学教育问题的一门学科。是一门逻辑学与数学教育学相结合的边缘学科,属于应用逻辑,其核心内容属于数理统计。它的基本内容主要分为命题逻辑,简单命题的分解与概念,谓词逻辑和归纳逻辑及其在数学教育中的应用。 我们为进一步讨论命题和推理需要把简单命题分解为个体词,谓词和量词。谓词逻辑就是研究它们的形式结构,逻辑性质,谓词关系及从中导出的规律。而本文主要讨论谓词逻辑的基础概念及其在数学教育中的应用。 谓词逻辑包括命题逻辑,它除了命题变元外,还有个体变元和谓词变元等。如果量词只作用于个体变元,并且谓词都是关于个体的性质和关系,而不涉及关系的性质和关系之间的关系,那么这样限制下的谓词逻辑称为狭义谓词逻辑或一阶谓词逻辑,它是最基础的谓词逻辑。 本文即将讨论谓词的概念,公式,谓词逻辑的等价式及其在教育学中的应用实例。 一.谓词逻辑的预备知识 ㈠个体(主词)与谓词的概念 简单命题可分解为个体与谓词,其中个体又叫主词。 1。。。。。 由个体组成的集合成为个体域或论域。所由个体组成的个体域称为全总个体域。如果变元在某个体域中取值,则称为个体变元。 2. 谓词:指个体的性质或若干个个体之间的关系。前者是一元谓词,后者当个体数为n时为n元谓词。 谓词变元:可以在由谓词变元组成的集合中取值的变元。单独一个谓词是改有意义的。如:。。。。。。是无理数,。。。。。。大于。。。。。。,它们必须与个体结合在一起 (真),“5大于2”(真),“2大于3”(假)。 3.谓词用以下符号表示:F,G,R,为明确各是几元谓词,可用谓词后面带有若干个空位表示,如F(),G(),R()等。在谓词后面的空位填以个位就是谓词填式,空位中填以个体变元就是谓词命名式。例如:若用F(x)表示“x是无理数”,R(x,y)表示“x大于y”, 个体域为实数集,x,y为个体变元。则为谓词填式,R(x,y)为谓词命名式。例如:

(完整版)机器视觉思考题及其答案

什么是机器视觉技术?试论述其基本概念和目的。 答:机器视觉技术是是一门涉及人工智能、神经生物学、心理物理学、计算机科学、图像处理、模式识别等诸多领域的交叉学科。机器视觉主要用计算机来模拟人的视觉功能,从客观事物的图像中提取信息,进行处理并加以理解,最终用于实际检测、测量和控制。机器视觉技术最大的特点是速度快、信息量大、功能多。 机器视觉是用机器代替人眼来完成观测和判断,常用于大批量生产过程汇总的产品质量检测,不适合人的危险环境和人眼视觉难以满足的场合。机器视觉可以大大提高检测精度和速度,从而提高生产效率,并且可以避免人眼视觉检测所带来的偏差和误差。 机器视觉系统一般由哪几部分组成?试详细论述之。 答:机器视觉系统主要包括三大部分:图像获取、图像处理和识别、输出显示或控制。 图像获取:是将被检测物体的可视化图像和内在特征转换成能被计算机处理的一系列数据。该部分主要包括,照明系统、图像聚焦光学系统、图像敏感元件(主要是CCD和CMOS)采集物体影像。 图像处理和识别:视觉信息的处理主要包括滤波去噪、图像增强、平滑、边缘锐化、分割、图像识别与理解等内容。经过图像处理后,图像的质量得到提高,既改善了图像的视觉效果又便于计算机对图像进行分析、处理和识别。 输出显示或控制:主要是将分析结果输出到显示器或控制机构等输出设备。 试论述机器视觉技术的现状和发展前景。 答:。机器视觉技术的现状:机器视觉是近20~30年出现的新技术,由于其固有的柔性好、非接触、快速等特点,在各个领域得到很广泛的应用,如航空航天、工业、军事、民用等等领域。 发展前景:随着光学传感器、信息技术、信号处理、人工智能、模式识别研究的不断深入和计算机性价比的不断提高,机器视觉技术越来越成熟,特别是市面上已经有针对机器视觉系统开发的企业提供配套的软硬件服务,相信越来越多的客户会选择机器视觉系统代替人力进行工作,既便于管理又节省了成本。价格持续下降、功能逐渐增多、成品小型化、集成产品增多。 机器视觉技术在很多领域已得到广泛的应用。请给出机器视觉技术应用的三个实例并叙述之。答:一、在激光焊接中的应用。通过机器视觉系统,实时跟踪焊缝位置,实现实时控制,防止偏离焊缝,造成产品报废。 二、在火车轮对检测中的应用,通过机器视觉系统抓拍轮对图像,找出轮对中有缺陷的轮对,提高检测精度和速度,提高效率。 三、大批量生产过程中的质量检查,通过机器视觉系统,对生产过程中的产品进行质量检查跟踪,提高生产效率和准确度。 什么是傅里叶变换,分别绘出一维和二维的连续及离散傅里叶变换的数学表达式。论述图像傅立叶变换的基本概念、作用和目的。 答:傅里叶变换是将时域信号分解为不同频率的正弦信号或余弦函数叠加之和。 一维连续函数的傅里叶变换为: 一维离散傅里叶变换为: 二维连续函数的傅里叶变换为: 二维离散傅里叶变换为: 图像傅立叶变换的基本概念:傅立叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图

浅析人工智能中的图像识别技术

浅析人工智能中的图像识别技术 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 图像识别技术是信息时代的一门重要的技术,其产生目的是为了让计算机代替人类去处理大量的物理信息。随着计算机技术的发展,人类对图像识别技术的认识越来越深刻。图像识别技术的过程分为信息的获取、预处理、特征抽取和选择、分类器设计和分类决策。文章简单分析了图像识别技术的引入、其技术原理以及模式识别等,之后介绍了神经网络的图像识别技术和非线性降维的图像识别技术及图像识别技术的应用。从中可以总结出图像处理技术的应用广泛,人类的生活将无法离开图像识别技术,研究图像识别技术具有重大意义。 1 图像识别技术的引入 图像识别是人工智能科技的一个重要领域。图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。图像识别,顾名思义,就是对图像做出各种处理、分析,最终识别我们所要研究的

目标。今天所指的图像识别并不仅仅是用人类的肉眼,而是借助计算机技术进行识别。虽然人类的识别能力很强大,但是对于高速发展的社会,人类自身识别能力已经满足不了我们的需求,于是就产生了基于计算机的图像识别技术。这就像人类研究生物细胞,完全靠肉眼观察细胞是不现实的,这样自然就产生了显微镜等用于精确观测的仪器。通常一个领域有固有技术无法解决的需求时,就会产生相应的新技术。图像识别技术也是如此,此技术的产生就是为了让计算机代替人类去处理大量的物理信息,解决人类无法识别或者识别率特别低的信息。 图像识别技术原理 其实,图像识别技术背后的原理并不是很难,只是其要处理的信息比较繁琐。计算机的任何处理技术都不是凭空产生的,它都是学者们从生活实践中得到启发而利用程序将其模拟实现的。计算机的图像识别技术和人类的图像识别在原理上并没有本质的区别,只是机器缺少人类在感觉与视觉差上的影响罢了。人类的图像识别也不单单是凭借整个图像存储在脑海中的记忆来识别的,我们识别图像都是依靠图像所具有

lesson 1 力学基本概念

Basic Concepts in Mechanics[mi’k?niks] 第一课力学基本概念The branch of scientific analysis [?’n?l?sis] which deals with motions,time,and forces is called mechanics and is made up of two parts,statics and dynamics.Statics deals with the analysis of stationary systems, i.e.,those in which time is not a factor, and dynamics deals with systems which change with time. 对运动、时间和作用力作出科学分析的分支称为力学。它由静力学和动力学两部分组成。静力学对静止系统进行分析,即在其中不考虑时间这个因素,动力学对随时间而变的系统进行分析。 [扩展1]:静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建立各种力系的平衡条件。平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态都称为平衡。静力学在工程技术中有着广泛的应用。例如对房屋、桥梁的受力分析,有效载荷的分析计算等。 [扩展2]:动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。动力学的研究对象是运动速度远小于光速的宏观物体。动力学是物理学和天文学的基础,也是许多工程学科的基础。对动力学的研究使人们掌握了物体的运动规律,并能够为人类进行更好的服务。例如,牛顿发现了万有引力定律,解释了开普勒定律,为近代星际航行,发射飞行器考察月球、火星、金星等等开辟了道路。 Forces are transmitted into machine members through mating surfaces,e.g.,from a gear to a shaft or from one gear through meshing teeth to anther gear, from a connecting rod 连杆through a bearing to a lever, from a V belt to a pulley[‘puli]滑轮、皮带轮,or from a cam 凸轮[k?m] to a follower从动件. 力通过配合表面(啮合面)传到机器中的各构件上。例如,从齿轮传到轴或者从齿轮通过啮合的轮齿传到另一齿轮,从连杆通过轴承传到另一杆件,从三角皮带传到皮带轮,或者从凸轮传到从动件。 [扩展3]:mate 和mesh。mate [????] n.配偶, 对手, 助手;vt.使配对, 使一致, 结伴;vi.成配偶, 紧密配合,使啮合。mesh[???] n.网孔, 网丝, 网眼, 圈套, 陷阱, [机]啮合vt.以网捕捉, 啮合, 编织vi.落网, 相啮合。 It is necessary to know the magnitudes of these forces for a variety of reasons. The distribution of the forces at the boundaries or mating surfaces must be reasonable, and their intensities must be within the working limits of the materials composing the surfaces. For example,if the force operating on a sleeve bearing becomes too high, it will squeeze out the oil film薄膜and cause metal-to-metal contact, overheating,and rapid failure of the bearing轴承.If the forces between gear teeth are too large, the oil film may be squeezed out from between them.This could result in flaking剥落and spalling碎裂of the metal,noise,rough motion,and eventual failure.In the study of mechanics we are principally interested in determining the magnitude,direction,and location of the forces.由于很多原因,人们必须知道这些力的大小。这些力在边界或在配合表面(啮合面)的分布必须合理,它们的太小必须在构成配合表面(啮合面)的材料的工作极限以内。例如,如果作用在一个套筒轴承上的力太大,它就会将油膜挤出,造成金属与金属的直接接触产生过热和使轴承快速失效。如果齿轮相啮合的齿之间的力过大,就会将油膜从齿间挤压出来。这会造成金属的剥落和碎裂,噪音增大,运动不精确,直至报废。在力学研究中,我们主要关心力的大小、方向和作用点。

相关主题
文本预览
相关文档 最新文档