当前位置:文档之家› 1-7.极限的计算---基本计算方法

1-7.极限的计算---基本计算方法

1-7.极限的计算---基本计算方法
1-7.极限的计算---基本计算方法

模块基本信息

一级模块名称 函数与极限

二级模块名称 计算模块 三级模块名称 极限的计算---基本计算方法

模块编号 1-7 先行知识

模块编号 知识内容

教学要求

掌握程度

1、极限的四则运算法则 1、熟练掌握极限的四则运算法则

熟练掌握

2、极限的复合运算法则 2、熟练掌握极限的复合运算

法则

能力目标 1、培养学生的计算能力 2、培养学生类比推广能力 时间分配 20分钟

编撰

陈亮

校对

王清玲

审核 危子青

修订

熊文婷

二审

危子青

一、正文编写思路及特点

思路:通过数的相互计算关系类比讲解极限的基本计算方法,让学生用已有的知识类比推导出极限的基本计算方法。

特点:通过类比讲解数的基本计算方法来讲解极限的基本计算方法,让学生掌握类比推导的能力。 二、授课部分

(一)极限基本计算的相关定义、定理 1、极限的四则运算

如果lim f (x)=A , lim g (x)=B , 那么

(1)B A x g x f x g x f ±=±=±)(lim )(lim ))()(lim( (2)B A x g x f x g x f ?=?=?)(lim )(lim ))()(lim( (3)B

A

x g x f x g x f ==)(lim )(lim )()(lim

(B ≠0). 推论1’如果)(lim x f 存在, 而c 为常数, 则

)(lim )](lim[x f c x cf =.

推论2’如果)(lim x f 存在, 而n 是正整数, 则

n n x f x f ))((lim ))(lim(=.

例1.计算极限1

3lim 322-++→x x x

x x .

解:)

13(lim )1(lim 13lim 32

2322-++=-++→→→x x x x x x x

x x x x

1

lim 3lim lim )1(lim lim 2

2

3

2

2

2→→→→→-++?=x x x x x x x x x

13

6

1232323

=-?+?=

小结:(极限的四则运算使用条件) (1)参与运算的函数极限都存在, 反例:)2(lim +∞

→x x x 不存在.

(2)参与运算的函数是有限的,

反例:)1

1()311)(211(lim 222n

n ---∞→ 不能直接利用乘法运算.

但若参与运算的函数是无限的,只要能化简为有限项,还是可以求出极限的,例如

()()22222211342231lim )11()311)(211(lim n n n n n n +?-???=---∞→∞→

2

121lim =+=∞→n n n (3)分母的极限不为零,

反例:2lim 2+-→x x

x 极限不存在.

2、数列极限的运算法则

由于数列极限为特殊的函数极限,所以数列极限也满足函数极限的四则运算法则.

3、复合函数的极限运算法则

定理2(复合函数的极限运算法则) 设函数)]([x g f y =是由函数)(u f y =与函数)(x g u =复合而成,)]([x g f 在点0x 的某去心邻域内有定义, 若0)(lim 0

u x g x x =→,A u f u u =→)(lim 0

, 且在0x 的某去心

邻域内0)(u x g ≠ 则

A u f x g f u u x x ==→→)(lim )]([lim 0

例2. 计算)2sin(lim 21

x x x +→.

分析:)2(lim 21

x x x +→的极限存在且为3,且sin3也有定义。本

题可以设x x u 22+=且3lim 1

=→u x ,所以本题可如下解得

解:3sin )sin(lim )2sin(lim 3

21

==+→→u x x u x .

注:把定理中0)(lim 0

u x g x x =→换成∞=→)(lim 0

x g x x 或

∞=∞

→)(lim x g x , 而把A u f u u =→)(lim 0

换成A u f u =∞

→)(lim 可得类似结

果.

4、总结极限运算的实质

极限运算的实质就是在极限存在时交换四则运算(复合运算)符号和极限符号.

三、能力反馈部分(考查学生对极限的基本运算的掌握情况)

(1)n n n 223lim +∞→(2)??

?

??++→x x x 11lim 21

(3))3(lim 24

+→x x x (4)2

)

5arctan(lim

1

++→x x x

(5))

1

1()

11(lim

2

x

x x -+

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;? ??≥<=∞→时当不存在,时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,)(x g ~

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

考研数学极限计算方法:利用单侧极限

https://www.doczj.com/doc/674882066.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.doczj.com/doc/674882066.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4) 五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要 摘要:极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法。极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 关键词:极限;计算;方法 Abstract:the limit is one of the most basic, the most important concept in mathematical analysis, the limit is an important foundation for the calculus, an important means to study the function of the nature of the concept description. The limit is an important trend in the infinite process function, through typical examples, infer other things from one fact,several commonly used methods for the limits. A lot of calculation method of limit, and there are rules and skills, certain of

极限的几种计算方法论文

极限的几种计算方法 摘要:极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法. 关键词:极限;计算;方法 极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 一、 利用极限定义求极限 设{}n a 为数列, a 为定数.若对任给的正数ε ,总存在正整N ,使得当n N > ,n a a ε-<则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限, 并记作lim n n a a →∞ =或()n a a n →→∞. 例1 证明33545 lim 232 n n n n →∞+-=- 分析: 成立.从中解n 很困 难 ,因为要找的N 不是唯一的,所以可以用“放大”不等式的方法,再解不等式,并可限定正整数n 大于某个正常数,当然“放大”和“限定”的也不是唯一的. 证明:限定7n >,从而3 30n ->,要使不等式 ()()333333 54527272232222323n n n n n n n n n n n +-+++-==<--+- 3232 2n n n ε= << 成立,

从不等式 22n ε<,解得 n >取N = 于是, N = , N ,有33 545 232 n n n +---ε< , 即 . 例2 证明 ! lim 0n n n n →∞= 证明: 由于 !!10n n n n n n n -=≤,故对0ε>,取N =+1,则当n N >时,有 !1 0n n n n ε-≤<,因此!lim 0n n n n →∞=. 二、利用两个重要极限求极限 例3 求 2lim 1x n x -→∞ ?? - ??? 分析: 此题是一道比较典型的应用第二个重要极限的问题. 解: 2 2221lim 112x x t x n x x -?--=→∞ ??????- =+ ?? ??? ?? -? ? 2 21lim 1t t e t →∞ ?? ??+=?? ?????? ?. 例4 求 2 c o s l i m 2 x x x π π → - 解: 202cos cos 2lim lim 2 x t t x t x t x π πππ-=→→ ?? + ???→←???- 0sin lim 1t t t →=-=-. 例5 求30tan sin lim x x x x →- 解: 3200tan sin tan 1cos lim lim()x x x x x x x x x →→--=?

极限计算方法总结

极限计算方法总结 靳一东 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+∞ →3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

爆炸极限的计算方法-1

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0 式中0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算:c×Q=k 式中c——爆炸下限浓度; Q——该物质每靡尔的燃烧热或每克的燃烧热; k——常数。 第 1 页共1 页

考研数列极限计算汇总

数列极限及其计算(习题部分) 数列极限存在性的证明以及数列极限的计算,是考研数学的重难点,有时会命制成压轴题。 在考研范围内,数列极限计算常用的方法主要有单调有界准则、夹逼准则、初等变形、定积分定义、归结原理、级数收敛的必要条件、转化为幂级数求和等。本章部分题目涉及到后续章节的知识(如利用定积分定义求极限),自学本讲义的同学可暂时跳过。 题型一、递推数列的极限 (一)单调有界准则 例题1收敛并求极限值 注:利用单调有界准则证明递推数列的收敛性,是常考题型。在具体证明单调性和有界性时,常用到一些经典的不等式放缩,如均值不等式,柯西不等式等等;有时也可用数学归纳法证明。(在进行含有自然数的命题的证明时,我们常常可以考虑数学归纳法,这是一个很好用也很流氓的一个方法。) 类题1 ,证明收敛并求极限值 类题2 ,证明收敛并求极限值 ,问此时是否收敛,该如何 证明?若将,又该如何证明? 类题3 ,证明收敛并求极限值 [注]:此题对于极限值的取舍才是关键点,这是很多辅导书都没有讲清楚的地方,希望大家好好思考。 类题4 设数列,证明收敛并求极限 类题5设可导,且,对于数列收敛, 且极限值满足方程 类题6 收敛并求极限值 类题7 (2018年数学二压轴题)设,证明收敛并求极限 注:这题是我当年考研时的原题,当时考完以后,很多人就在吹这个题多么的不常规,是考研史上最难的数列极限题。也正常,弱者总喜欢找各种理由。 例题2设收敛 注:①.该题说明,某些不是递推型的数列,也可以用单调有界准则来证明 ②.是一个非常重要的极限,我们将这个极限值定义为欧拉常数, 和是等价无穷

是发散的。() 例题3问数列的单调性和函数的单调性之间有无必然联系?请猜想并证明你的判断。 例题4 (2013年数学二压轴题)设函数 (1) 求的最小值 (2)设数列收敛并求极限 注:本题的解法值得借鉴。该题说明,即使某些数列的递推关系由不等式给出,也能使用单调有界准则。 类题1 收敛并求极限 类题2 ,证明收敛并求极限 (二)非单调的迭代数列 例题1收敛并求极限值 注:对付这种不单调的数列,我们可以采取“先斩后奏”的办法——即先把极限值找出来,然后再用递推放缩的方法,证明这个数字就是该数列的极限。以下还有几道类似的题—— 类题1 ,证明收敛并求极限值 类题2 收敛并求极限值 例题2 压缩映像原理 设当,满足——对于上任意两点和,都有 ,试证明—— (1) ,使得 (2) ,证明收敛,且 注:压缩映像原理根本就不要求数列是单调的——只要函数是一个压缩映射,那么就一定收 若题目还告知了可导,那么在具体使用压缩映像原理证明数列收敛时,更常用的是下面这个推论:推论成立,则一定收敛。 (在利用压缩映像原理解题时,最常见的错误就是忽略了 ——正是因为,才能保证数列收敛。这里的相当于是一个“压缩比例” 或“压缩因子”。所以,如果只是证明出来了,是证明不出数列收敛的;, 才能说明数列收敛,也就是说,这个是不可缺少的,在解题时一定要找到这个具体的,切记!)

相关主题
文本预览
相关文档 最新文档