当前位置:文档之家› 数据结构-二叉树-实验

数据结构-二叉树-实验

数据结构-二叉树-实验
数据结构-二叉树-实验

实验五二叉树

一、目的和要求

1. 掌握二叉树的逻辑结构定义和各种存储结构的实现。

2. 熟练运用二叉树的各种存储结构以及各种基本操作。

3. 根据实际问题的需要,选择二叉树适合的存储结构解决问题。

二、实验环境

1.WindowsXP操作系统;

2.DEV C++、Visual C++6.0语言环境;

三、实验内容

(一)验证性实验(每个同学完成,第1题必做,第2-3题中任选一题。每个小题一个文件夹,所有文件夹打在一个包中,文件名:“学号”+“姓名”,例如: 13121000张三.rar 。提交码为2014DS5。截止时间:2015年元月20日12:00时。)

1.二叉链表的验证

(1)在二叉链表类模板中增加函数成员CountLeaf (),统计二叉树中叶子结点的数目。

(2)在二叉链表类模板中增加函数成员Revolute(),实现二叉树中所有结点的左右子树交换。

(3)在二叉链表类模板中增加函数成员CountBreadth (),统计二叉树的最大宽度(二叉树的最大宽度是指二叉树所有层中结点个数的最大值)。

(4)在二叉链表类模板中,增加函数成员NonRecurringInOrder(),实现非递归中序遍历二叉树。

2.线索二叉树的验证

(1)在中序线索二叉树类模板中增加函数成员ReInOrder(),通过从中序序列最后一个结点开始依次找当前结点的前驱来逆中序遍历二叉树。

(2)在中序线索二叉树类模板中增加函数成员InsertLeftChild(p,e),实现在中序线索二叉树指定结点p上插入左孩子结点e。

(3)在中序线索二叉树类模板中增加函数成员PostOrder(),实现不用栈后序遍历二叉树。

3.堆的验证

(1)对最小堆进行测试验证,要求把测试过程截屏保存下来。

(2)修改最小堆中构造函数MinHeap(ElemType a[],int maxSize,int n),从空堆开始依次插入数组a中的元素构造堆。

(3)把最小堆的类模板改造成最大堆。

(二)设计性实验(小组完成)

4.二叉树的顺序存储

参考二叉树的二叉链表类模板,设计并实现二叉树的顺序存储表示。增加函数成员,求离两个元素(编号为i和j)最近的共同祖先。

5.二叉树的三叉链表表示

参考二叉树的二叉链表类模板,设计并实现二叉树的三叉链表表示。增加函数成员,实

现非递归先序、后序遍历二叉树。

6.后序线索二叉树的实现

参考中序线索二叉树的类模板,设计并实现后序线索二叉树。增加函数成员,利用线索求指定结点p在后序序列中的后继结点。

7.前序线索二叉树的实现

参考中序线索二叉树的类模板,设计并实现前序线索二叉树。增加函数成员,利用线索求指定结点p在先序序列中的后继结点。

(三)综合性实验(小组完成)

8.标记二叉树

【问题描述】

一棵二叉树,根节点标记为(1,1),规定:如果一个结点标记为(a,b),则它的左孩子(如果存在)标记为(a+b,b),它的右孩子(如果存在)标记为(a,a+b)。现在已知某个结点的标记为(a,b),求从根节点开始需要经过多少次左分支和多少次右分支才能到达结点(a,b)。

【输入文件】

输入文件第一行只有一个整数n,表示测试的数据组数。

接下来n行(第2-n+1行),每行包括二个整数a和b。

【输出文件】

输出文件有n行,每行包括二个整数,分别表示从根节点开始达结点(a,b)需要进过的左分支数和右分支数。

【样例输入】

2

42 1

3 4

【样例输出】

41 1

2 1

9.表达式二叉树

[问题描述]

表达式可以用一棵二叉树表示,叶子结点代表操作数,分支结点代表操作符。对于表示简单四则运算表达式(操作数只有变量和常量,没有数组元素和函数)的表达式二叉树,要求实现以下功能。

(1)输入表达式,生成其二叉树表示。

(2)对于一棵构造好的表达式二叉树,输出相应的中缀表

达式(不允许有冗余的括号)。所谓冗余的括号就是去掉括号后

不影响表达式的计算顺序。例如,“(c+b)+a”中的括号是冗余

的,它可以表示成不冗余的“c+b+a”形式。例如,图1所示的

表达式二叉树,对应的中缀表达式为:a-(b-c)/(e*(f+g))。

(3)对于一棵构造好的表达式二叉树,输出相应的后缀表

达式。例如,表达式“a-(b-c)/(e*(f+g))”的后缀表达式为:

abc-efg+*/-。

(4)对于操作数都是正数的表达式二叉树,计算该表达式的值。

(5)输出表达式二叉树的树形结构。

【输入与输出】

提供一个菜单,方便选择不同的功能。根据选择的功能输出相应的结果。

10.家谱管理系统

[问题描述]

家谱管理系统是查询家谱信息必不可少的一部分,利用家谱管理系统可以清楚的查询到家族成员的详细信息。成员的信息一般应包含以下内容:姓名、出生日期、婚姻状况(已婚、未婚等)、地址、目前状况(健在或身故)、死亡日期(若其已死亡)等,也可附加其它信息。系统要求设计合理的数据结构存储家谱中各成员的信息(一般定义结构体)和成员之间的关系(用二叉树表示)。要求系统可以插入、查询、修改、删除等功能。

[系统功能]

1.从文件输入信息,建立初始家谱树。

2.用恰当的形式显示家谱树。

3.根据代号n,显示第n 代所有人的姓名和人数。

4.按照姓名查询,输出成员信息(包括其本人、父亲、孩子的信息,以及他在家谱中的代数)。

5.按照出生日期查询成员名单。

6.输入两人姓名,确定其关系。

7.给某人添加孩子。

8.删除某人(若其还有后代,则一并删除)。

9.修改某人信息。

[实验提示]

对于成员之间的关系可以用二叉树表示。在这棵二叉树中,每一个结点的左孩子结点表示其第一个孩子信息,右孩子结点表示其下一个兄弟信息。例如,如图2所示的家谱树,其对于的二叉树结构如图3所示。

【输入】

初始数据由文件输入,自己定义输入文件的结构。系统提供菜单,让用户选择不同的功能进行处理。

【输出】

系统运行结束时,保存家谱信息到输出文件,其结构同输入文件。各功能的输出按要求完成。

11.合并果子

【问题描述】

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为1,2,9。可以先将 1、2堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

【输入文件】

输入文件fruit.in包括两行,第一行是一个整数n(1 <= n <= 10000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai(1 <= ai <= 20000)是第i 种果子的数目。

【输出文件】

输出文件fruit.out包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231。

【样例输入】

3

1 2 9

【样例输出】

15

数据结构课程实验指导书

数据结构实验指导书 一、实验目的 《数据结构》是计算机学科一门重要的专业基础课程,也是计算机学科的一门核心课程。本课程较为系统地论述了软件设计中常用的数据结构以及相应的存储结构与实现算法,并做了相应的性能分析和比较,课程内容丰富,理论系统。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: 1)理论艰深,方法灵活,给学习带来困难; 2)内容丰富,涉及的知识较多,学习有一定的难度; 3)侧重于知识的实际应用,要求学生有较好的思维以及较强的分析和解决问题的能力,因而加大了学习的难度; 根据《数据结构》课程本身的特性,通过实验实践内容的训练,突出构造性思维训练的特征,目的是提高学生分析问题,组织数据及设计大型软件的能力。 课程上机实验的目的,不仅仅是验证教材和讲课的内容,检查自己所编的程序是否正确,课程安排的上机实验的目的可以概括为如下几个方面: (1)加深对课堂讲授内容的理解 实验是对学生的一种全面综合训练。是与课堂听讲、自学和练习相辅相成的必不可少的一个教学环节。通常,实验题中的问题比平时的习题复杂得多,也更接近实际。实验着眼于原理与应用的结合点,使学生学会如何把书上学到的知识用于解决实际问题,培养软件工作所需要的动手能力;另一方面,能使书上的知识变" 活" ,起到深化理解和灵活掌握教学内容的目的。 不少学生在解答习题尤其是算法设计时,觉得无从下手。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出

现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 (2) 培养学生软件设计的综合能力 平时的练习较偏重于如何编写功能单一的" 小" 算法,而实验题是软件设计的综合训练,包括问题分析、总体结构设计、用户界面设计、程序设计基本技能和技巧,多人合作,以至一整套软件工作规范的训练和科学作风的培养。 通过实验使学生不仅能够深化理解教学内容,进一步提高灵活运用数据结构、算法和程序设计技术的能力,而且可以在需求分析、总体结构设计、算法设计、程序设计、上机操作及程序调试等基本技能方面受到综合训练。实验着眼于原理与应用的结合点,使学生学会如何把书本上和课堂上学到的知识用于解决实际问题,从而培养计算机软件工作所需要的动手能力。 (3) 熟悉程序开发环境,学习上机调试程序一个程序从编辑,编译,连接到运行,都要在一定的外部操作环境下才能进行。所谓" 环境" 就是所用的计算机系统硬件,软件条件,只有学会使用这些环境,才能进行 程序开发工作。通过上机实验,熟练地掌握程序的开发环境,为以后真正编写计算机程序解决实际问题打下基础。同时,在今后遇到其它开发环境时就会触类旁通,很快掌握新系统的使用。 完成程序的编写,决不意味着万事大吉。你认为万无一失的程序,实际上机运行时可能不断出现麻烦。如编译程序检测出一大堆语法错误。有时程序本身不存在语法错误,也能够顺利运行,但是运行结果显然是错误的。开发环境所提供的编译系统无法发现这种程序逻辑错误,只能靠自己的上机经验分析判断错误所在。程序的调试是一个技巧性很强的工作,尽快掌握程序调试方法是非常重要的。分析问题,选择算法,编好程序,只能说完成一半工作,另一半工作就是调试程序,运行程序并得到正确结果。 二、实验要求 常用的软件开发方法,是将软件开发过程划分为分析、设计、实现和维护四个阶段。虽然数据结构课程中的实验题目的远不如从实际问题中的复杂程度度高,但为了培养一个软件工作者所应具备的科学工作的方法和作风,也应遵循以下五个步骤来完成实验题目: 1) 问题分析和任务定义 在进行设计之前,首先应该充分地分析和理解问题,明确问题要求做什么?限制条件是什么。本步骤强调的是做什么?而不是怎么做。对问题的描述应避开算法和所涉及的数据类型,而是对所需完成的任务作出明确的回答。例如:输入数据的类型、值的范围以及输入的

数据结构中二叉树中序遍历的教学分析

数据结构中二叉树中序遍历的教学分析 袁宇丽, 胡 玲 Ξ(内江师范学院计算机与信息科学系, 四川 内江 641112) 摘 要:数据结构的教学应注重方法的应用,在二叉树的中序遍历中使用投影法可以使遍历过程简单化, 再由其中的一种遍历递归算法(先序)推导得到另外两种(中序,后序)的遍历递归算法,让学生加深对整个遍 历过程的了解与掌握。 关键词:数据结构;二叉树;遍历;算法 中图分类号:G 642 文献标识码:A 文章编号:1671-1785(2006)04-0109-03 1 引言 《数据结构》是计算机学科的一门专业技术基础课,也是计算机程序设计的重要理论技术基础课。目的是在于让学生学会分析研究计算机加工的数据结构的特性,以便为应用涉及的数据结构选择适当的逻辑结构,存储结构及其相应的算法;并初步掌握算法的时间分析和空间分析的技术;培养学生进行复杂程序设计的能力和数据抽象的能力。但从学生角度而言,在学习该门课程时普遍反映较难,总觉得课程内容抽象,不易理解,好些具体算法不知从何下手。针对以上情况,任课教师在讲授该门课程时更应注重方法的应用,从多角度,多侧面展现知识点,化抽象为具体,化特殊为一般,不应只局限于教材上的一种解题模式,应结合自己的理解,补充新方法,这样才能更好的拓宽学生的思路,达到化难为易,举一反三的效果。下面以具体实例说明。 2 二叉树中序遍历的投影法 在二叉树的一些应用中,常常要求在树中查找具有某种特征的结点,或者对树中全部结点逐一进行某种处理。这就提出了一个遍历二叉树的问题,即如何按某条搜索路径巡访树中每个结点,使得每个结点均被访问一次,而且仅被访问一次。“访问”的含义很广,可以是对结点作各种处理,如输出结点的信息等。遍历对线性结构来说,是一个容易解决的问题。而对二叉树则不然,由于二叉树是一种非线性结构,每个结点都可能有两棵子树,因而需要寻找一种规律,以便使二叉树上的结点能排列在一个线性队列上,从而便于访问。 回顾二叉树的定义可知,二叉树是由三个基本单元组成:根结点、左子树、右子树。因此,若能依次遍历这三部分,便是遍历了整个二叉树。若限定先左后右的顺序,则分为三种情况:先(根)序遍历,中(根)序遍历,后(根)序遍历。二叉树的遍历及其应用是数据结构中一个很重要的知识点,要求学生能根据所给二叉树得到相应的三种遍历序列(前序,中序,后序),并能写出这三种遍历算法。以中序遍历而言,教材[1]结合图给出了中序遍历过程示意图,并具体分析了该遍历的递归执行过程。但递归调用及返回对学生来说本身就是一个较难掌握的知识,往往出现进入递归后不知怎样层层返回,所图1 二叉树 以书上在说明二叉树的中序遍历时借用递归调用与返回的 方法向学生展示整个遍历过程对初学者总感觉有一定难度。 我们在这里补充一种教材上没有提到的二叉树中序遍历的 直观方法:投影法。分析中序遍历的实质,是按先中序访问左子树,再访问根结点,最后中序访问右子树的顺序进行的。直 观上想,处于二叉树最左下方的结点应该是第一个要访问的结点,再结合二叉树本身的构造特点,是有严格的左右子树 之分的,所以投影法就是根据二叉树的结构特征得来的。对 于一棵二叉树,从根结点所在的层开始,将所有非空左子树 完全位于当前根结点的左方,将所有非空右子树完全位于当? 901?第21卷第4期N o 14V o l 121 内江师范学院学报JOU RNAL O F N E I J I AN G T EA CH ER S COLL EGE 收稿日期:2005-11-11  作者简介:袁字丽(1979-),女,四川自贡人,内江师范学院助教,硕士。

数据结构实验

数据结构实验指导书

实验一线性表的顺序存储结构 一、实验学时 4学时 二、背景知识:顺序表的插入、删除及应用。 三、目的要求: 1.掌握顺序存储结构的特点。 2.掌握顺序存储结构的常见算法。 四、实验内容 1.从键盘随机输入一组整型元素序列,建立顺序表。(注意:不可将元素个数和元素值写死在程序中) 2.实现该顺序表的遍历(也即依次打印出每个数据元素的值)。 3.在该顺序表中顺序查找某一元素,如果查找成功返回1,否则返回0。 4.实现把该表中某个数据元素删除。 5.实现在该表中插入某个数据元素。 6.实现两个线性表的归并(仿照课本上P26 算法2.7)。 7. 编写一个主函数,调试上述6个算法。 五、实现提示 1.存储定义 #include #include #define MAXSIZE 100 //表中元素的最大个数

typedef int ElemType;//元素类型 typedef struct list{ ElemType *elem;//静态线性表 int length; //表的实际长度 int listsize; //表的存储容量 }SqList;//顺序表的类型名 2.建立顺序表时可利用随机函数自动产生数据。 3.为每个算法功能建立相应的函数分别调试,最后在主函数中调用它们。 六、注意问题 插入、删除元素时对于元素合法位置的判断。 七、测试过程 1.先从键盘输入元素个数,假设为6。 2.从键盘依次输入6个元素的值(注意:最好给出输入每个元素的提示,否则除了你自己知道之外,别人只见光标在闪却不知道要干什么),假设是:10,3,8,39,48,2。 3.遍历该顺序表。 4.输入待查元素的值例如39(而不是待查元素的位置)进行查找,因为它在表中所以返回1。假如要查找15,因为它不存在,所以返回0。 5.输入待删元素的位置将其从表中删掉。此处需要注意判断删位置是否合法,若表中有n个元素,则合法的删除位

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

数据结构实验报告代码

线性表 代码一 #include "stdio.h" #include "malloc.h" #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef struct { int * elem; int length; int listsize; }SqList; int InitList_Sq(SqList *L) { L->elem = (int*)malloc(LIST_INIT_SIZE*sizeof(int)); if (!L->elem) return ERROR; L->length = 0; L->listsize = LIST_INIT_SIZE; return OK; } int ListInsert_Sq(SqList *L, int i,int e) { int *p,*newbase,*q; if (i < 1 || i > L->length+1) return ERROR; if (L->length >= L->listsize) { newbase = (int *)realloc(L->elem,(L->listsize+LISTINCREMENT)*sizeof (int)); if (!newbase) return ERROR; L->elem = newbase; L->listsize += LISTINCREMENT; } q = &(L->elem[i-1]); //插入后元素后移for(p=&(L->elem[L->length-1]);p>=q;p--) *(p+1)=*p; *q=e; L->length++; return OK; } int ListDelete_Sq(SqList *L, int i, int *e) {

数据结构 二叉树练习题答案

数据结构第6章树和二叉树 一、下面是有关二叉树的叙述,请判断正误 (√)1.若二叉树用二叉链表作存贮结构,则在n个结点的二叉树链表中只有n-1个非空指针域。 n个结点的二叉树有n-1条分支 (×)2.二叉树中每个结点的两棵子树的高度差等于1。 (√)3.二叉树中每个结点的两棵子树是有序的。 (×)4.二叉树中每个结点有两棵非空子树或有两棵空子树。 (×)5.二叉树中每个结点的关键字值大于其左非空子树(若存在的话)所有结点的关键字值,且小于其右非空子树 (若存在的话)所有结点的关键字值。 (应当是二叉排序树的特点) (×)6.二叉树中所有结点个数是2k-1-1,其中k是树的深度。(应2k-1) (×)7.二叉树中所有结点,如果不存在非空左子树,则不存在非空右子树。 (×)8.对于一棵非空二叉树,它的根结点作为第一层,则它的第i层上最多能有2i -1个结点。

(应2i-1) (√)9.用二叉链表法(link-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n+1个为空指针。(用二叉链表存储包含n个结点的二叉树,结点共有2n个链域。由于二叉树中,除根结点外,每一个结点有且仅有一个双亲,所以只有n-1个结点的链域存放指向非空子女结点的指针,即有后继链接的指针仅n-1个,还有n+1个空指针。)采用二叉链表存储有2n个链域,空链域为:2n-(n-1)=n+1 (√)10.具有12个结点的完全二叉树有5个度为2的结点。 最快方法:用叶子数=[ n/2] =6,再求n2=n0-1=5 [n/2] 除的结果四舍五入 二、填空 1.由3个结点所构成的二叉树有5种形态。 2. 一棵深度为6的满二叉树有n1+n2=0+ n2= n0-1=31 个分支结点和26-1 =32个叶子。 注:满二叉树没有度为1的结点,所以分支结点数就是二度结点数。 (或:总结点数为n=2k-1=26-1=63,叶子数为n0= [ n/2] =32,满二叉数没有度为1的结点,由n0=n2+1得n2=n0-1=32-1=31)

数据结构_实验六_报告

实验报告 实验六图的应用及其实现 一、实验目的 1.进一步功固图常用的存储结构。 2.熟练掌握在图的邻接表实现图的基本操作。 3.理解掌握AOV网、AOE网在邻接表上的实现以及解决简单的应用问题。 二、实验内容 一>.基础题目:(本类题目属于验证性的,要求学生独立完成) [题目一]:从键盘上输入AOV网的顶点和有向边的信息,建立其邻接表存储结构,然后对该图拓扑排序,并输出拓扑序列. 试设计程序实现上述AOV网 的类型定义和基本操作,完成上述功能。 [题目二]:从键盘上输入AOE网的顶点和有向边的信息,建立其邻接表存储结构,输出其关键路径和关键路径长度。试设计程序实现上述AOE网类型定义和基本操作,完成上述功能。 测试数据:教材图7.29 【题目五】连通OR 不连通 描述:给定一个无向图,一共n个点,请编写一个程序实现两种操作: D x y 从原图中删除连接x,y节点的边。 Q x y 询问x,y节点是否连通 输入 第一行两个数n,m(5<=n<=40000,1<=m<=100000) 接下来m行,每行一对整数 x y (x,y<=n),表示x,y之间有边相连。保证没有重复的边。 接下来一行一个整数 q(q<=100000) 以下q行每行一种操作,保证不会有非法删除。 输出 按询问次序输出所有Q操作的回答,连通的回答C,不连通的回答D 样例输入

3 3 1 2 1 3 2 3 5 Q 1 2 D 1 2 Q 1 2 D 3 2 Q 1 2 样例输出 C C D 【题目六】 Sort Problem An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not. 【Input】 Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n<= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. 1 <= m <= 100. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input. 【Output】 For each problem instance, output consists of one line. This line should be one of the following three: Sorted sequence determined: y y y… y. Sorted sequence cannot be determined. Inconsistency found.

数据结构实验一的源代码

#include #include typedef struct Node { int key;//密码 int num;//编号 struct Node *next;//指向下一个节点 } Node, *Link; void InitList(Link &L) //创建一个空的链表{ L = (Node *)malloc(sizeof(Node)); if (!L) exit(1); L->key = 0; L->num = 0; L->next = L; } void Creatlinklist(int n, Link &L) //初始化链表{ Link p, q; q = L; for (int i = 1; i <= n; i++) { p = (Node *)malloc(sizeof(Node)); if (!p) exit(1); scanf("%d", &p->key); p->num = i; L->next = p; L = p; } L->next = q->next; free(q); } Link Locate_m(Link &p, int m)//找到第m个 { Link q; for (int j = 1; jnext; q = p->next; m = q->key;

return q; } void Delete_m(Link &L, Link p, Link q)//删除第m个{ p->next = q->next; free(q); } void main() { Link L, p, q; int n, m; L = NULL; InitList(L);//构造出一个只有头结点的空链表 printf("请输入初始密码人数每个人的密码:\n"); scanf("%d", &m);//初始密码为m scanf("%d", &n);// Creatlinklist(n, L);//构建 p = L; for (int i = 1; i <= n; i++) { q = Locate_m(p, m);//找到第m个 printf("%d", q->num); Delete_m(L, p, q);//删除第m个 } system("pause"); }

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告 学生姓名 学生班级 学生学号 指导老师

一、实验内容 1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序 以及按层次遍历的操作,求所有叶子及结点总数的操作。 2) 输出树的深度,最大元,最小元。 二、需求分析 遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。 递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。直到递归全部结束。 下面重点来讲述非递归方法: 首先介绍先序遍历: 先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。 再次介绍中序遍历: 中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。如此循环直至结点指针和栈均为空,遍历结束。 最后介绍后序遍历: 后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。 三、详细设计 源代码:

数据结构实验程序

顺序表的基本操作 #include using namespace std; typedef int datatype; #define maxsize 1024 #define NULL -1 typedef struct { datatype *data; int last; }sequenlist; void SETNULL(sequenlist &L) { L.data=new datatype[maxsize]; for(int i=0;i>https://www.doczj.com/doc/674392600.html,st; cout<<"请输入"<>L.data[i]; } int LENGTH(sequenlist &L) { int i=0; while(L.data[i]!=NULL) i++; return i; } datatype GET(sequenlist &L,int i) { if(i<1||i>https://www.doczj.com/doc/674392600.html,st) { cout<<"error1"<

int j=0; while(L.data[j]!=x) j++; if(j==https://www.doczj.com/doc/674392600.html,st) { cout<<"所查找值不存在!"<=maxsize-1) { cout<<"overflow"; return NULL; } else if(i<1||(i>https://www.doczj.com/doc/674392600.html,st)) { cout<<"error2"<=i-1;j--) L.data[j+1]=L.data[j]; L.data[i-1]=x; https://www.doczj.com/doc/674392600.html,st++; } return 1; } int DELETE(sequenlist &L,int i) { int j; if((i<1)||(i>https://www.doczj.com/doc/674392600.html,st+1)) { cout<<"error3"<

数据结构第六章实验

#include #include #include typedef struct{ unsigned int weight; unsigned int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * *HuffmanCode; /*void Select(HuffmanTree &HT,int n,int &s1,int &s2) { s1=1;int j; for(j=1;j<=n;j++) { while(HT[j].parent==0) { if(HT[s1].weight>HT[j].weight) s1=j; } } HT[s1].parent=1; if(s1!=1)s2=1;else s2=2; for( j=1;j<=n;j++) { while(HT[j].parent==0) { if(HT[s2].weight>HT[j].weight) s2=j; } } }错误,未查出原因*/ int min(HuffmanTree t,int i) { int j,flag; unsigned int k; for(j=1;j<=i;j++) if(t[j].weight

数据结构实验-二叉树的操作

******************************* 实验题目:二叉树的操作 实验者信息:班级13007102,姓名庞文正,学号1300710226 实验完成的时间3:00 ****************************** 一、实验目的 1,掌握二叉树链表的结构和二叉树的建立过程。 2,掌握队列的先进先出的运算原则在解决实际问题中的应用。 3,进一步掌握指针变量、指针数组、动态变量的含义。 4,掌握递归程序设计的特点和编程方法。 二、实验内容 已知以二叉链表作存储结构,试编写按层次遍历二叉树的算法。(所谓层次遍历,是指从二叉树的根结点开始从上到下逐层遍历二叉树,在同一层次中从左到右依次访问各个节点。)调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果。加深对算法的理解。 三、算法设计与编码 1.本实验用到的理论知识 总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,最好能加上自己的解释。 本算法要采用一个循环队列que,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。因为队列的特点是先进先出,从而达到按层次顺序遍历二叉的目的。2.算法概要设计 给出实验的数据结构描述,程序模块、功能及调用关系 #include #include #define M 100 typedef struct node //二叉链表节点结构 {int data; //数据域 struct node *lchild,*rchild; //左孩子右孩子链 }bitree; bitree *que[M]; //定义一个指针数组,说明队列中的元素bitree 指针类型 int front=0, rear=0; //初始化循环列队 bitree *creat() //建立二叉树的递归算法 {bitree *t; int x; scanf("%d",&x); if(x==0) t=NULL; //以x=0 表示输入结束 else {t=malloc(sizeof(bitree)); //动态生成节点t,分别给节点t 的数据域,t->data=x; //左右孩子域赋值,给左右孩子赋值时用到 t->lchild=creat(); // 了递归思想 t->rchild=creat(); }

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include >验目的 掌握顺序栈的基本操作:初始化栈、判栈空否、入栈、出栈、取栈顶数据元素等运算以及程序实现方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)分析问题的要求,编写和调试完成程序。 (3)保存和打印出程序的运行结果,并分析程序的运行结果。 3.实验内容 利用栈的基本操作实现一个判断算术表达式中包含圆括号、方括号是否正确配对的程序。具体完成如下:

(1)定义栈的顺序存取结构。 (2)分别定义顺序栈的基本操作(初始化栈、判栈空否、入栈、出栈等)。 (3)定义一个函数用来判断算术表达式中包含圆括号、方括号是否正确配对。其中,括号配对共有四种情况:左右括号配对次序不正确;右括号多于左括号;左括号多于右括号;左右括号匹配正确。 (4)设计一个测试主函数进行测试。 (5)对程序的运行结果进行分析。 实验代码: #include < > #define MaxSize 100 typedef struct { ??? int data[MaxSize]; ??? int top; }SqStack; void InitStack(SqStack *st) 验目的 (1)进一步掌握指针变量的用途和程序设计方法。 (2)掌握二叉树的结构特征,以及链式存储结构的特点及程序设计方法。 (3)掌握构造二叉树的基本方法。 (4)掌握二叉树遍历算法的设计方法。 3.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)掌握一个实际二叉树的创建方法。 (3)掌握二叉链存储结构下二叉树操作的设计方法和遍历操作设计方法。 4.实验内容 (1)定义二叉链存储结构。

数据结构之二叉树概述

数据结构之二叉树 第一篇:数据结构之链表 第二篇:数据结构之栈和队列 在这篇文章里面,我们主要探讨和树相关的话题。 首先,我们来对树进行定义:树是n(n>= 0)个节点的有限集。在任何一个非空树中:(1)有且仅有一个特定的称为“根”的节点;(2)当n>1时,其余节点可分为m(m>0)个互相相关的有限集T1、T2、T3……,其中每一个集合本身又是一棵树,并且称为根的子树。 对于我们这篇文章里讨论的二叉树,它是一种特殊的树形结构,每个节点至多只有两颗子树,并且子树有左右之分,其次序不能随意颠倒。 接下来,我们使用java代码来定义一棵树: 1public class BinNode { 2private int m_Value; 3private BinNode m_Left; 4private BinNode m_Right; 5public void setValue(int m_Value) { 6this.m_Value = m_Value; 7 } 8public int getValue() { 9return m_Value; 10 } 11public void setLeft(BinNode m_Left) { 12this.m_Left = m_Left; 13 } 14public BinNode getLeft() { 15return m_Left; 16 } 17public void setRight(BinNode m_Right) { 18this.m_Right = m_Right; 19 } 20public BinNode getRight() { 21return m_Right; 22 } 23 24public boolean isLeaf() 25 { 26return m_Left == null && m_Right == null; 27 } 28 }

数据结构实验六 图的应用及其实现

实验六图的应用及其实现 一、实验目的 1.进一步功固图常用的存储结构。 2.熟练掌握在图的邻接表实现图的基本操作。 3.理解掌握AOE网在邻接表上的实现及解决简单的应用问题。 二、实验内容 [题目]:从键盘上输入AOE网的顶点和有向边的信息,建立其邻接表存储结构,输出其关键路径和关键路径长度。试设计程序实现上述AOE网类型定义和基本操作,完成上述功能。 三、实验步骤 (一)、数据结构与核心算法的设计描述 本实验题目是基于图的基本操作以及邻接表的存储结构之上,着重拓扑排序算法的应用,做好本实验的关键在于理解拓扑排序算法的实质及其代码的实现。 (二)、函数调用及主函数设计 以下是头文件中数据结构的设计和相关函数的声明: typedef struct ArcNode // 弧结点 { int adjvex; struct ArcNode *nextarc; InfoType info; }ArcNode; typedef struct VNode //表头结点 { VertexType vexdata; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct //图的定义 { AdjList vertices; int vexnum,arcnum; int kind; }MGraph; typedef struct SqStack //栈的定义 { SElemType *base; SElemType *top; int stacksize;

}SqStack; int CreateGraph(MGraph &G);//AOE网的创建 int CriticalPath(MGraph &G);//输出关键路径 (三)、程序调试及运行结果分析 (四)、实验总结 在做本实验的过程中,拓扑排具体代码的实现起着很重要的作用,反复的调试和测试占据着实验大量的时间,每次对错误的修改都加深了对实验和具体算法的理解,自己的查错能力以及其他各方面的能力也都得到了很好的提高。最终实验结果也符合实验的预期效果。 四、主要算法流程图及程序清单 1、主要算法流程图: 2、程序清单: 创建AOE网模块: int CreateGraph(MGraph &G) //创建有向网 { int i,j,k,Vi,Vj; ArcNode *p; cout<<"\n请输入顶点的数目、边的数目"<

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

相关主题
文本预览
相关文档 最新文档