当前位置:文档之家› 常微分方程第三版课后答案

常微分方程第三版课后答案

常微分方程第三版课后答案
常微分方程第三版课后答案

常微分方程 2.1

1.

xy dx

dy

2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得

故它的特解为代入得

把即两边同时积分得:e e x

x y c y x x c y c y xdx dy y

2

2

,11,0,ln ,21

2

=====+==

,0)1(.22

=++dy x dx y 并求满足初始条件:x=0,y=1的特解.

解:对原式进行变量分离得:

故特解是

时,代入式子得。当时显然也是原方程的解当即时,两边同时积分得;当x

y c y x y x c y c y x y dy dx x y

++=====++=+=+≠=+-

1ln 11

,11,001ln 1

,11ln 0,1112

3

y

xy dx dy x y 32

1++

=

解:原式可化为:

x x y x x y

x y

x y

y

x

y

c c c c x dx x dy y y

x y

dx

dy 2

2

2

2

22

2

2

3

22

3

2

)1(1)1)(1(),0(ln 1ln 21ln 1ln 2

1

1

1,0111=++

=++

≠++-=+

+=+≠+

?

+

=+)

故原方程的解为(即两边积分得故分离变量得显然

.0;0;ln ,ln ,ln ln 0

110000

)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy y y dx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:

10ln 1ln ln 1ln 1,0

ln 0

)ln (ln :931:8.

cos ln sin ln 0

7ln sgn arcsin ln sgn arcsin 1

sgn 11,)1(,,,6ln )1ln(2

11

11,11,,,0

)()(:5332

2

22

2

22

2

22

2

c dx dy dx dy x

y

cy u

d u

u dx x x y u dx x

y

dy x y ydx dy y x x c dy y

y y

y

dx dy c x y tgxdx ctgydy ctgxdy tgydx c

x x x

y

c

x x u dx

x x du x

dx

du dx

du

x u dx dy ux y u x y y dx dy x

c x arctgu dx

x du u u u dx du x u dx

du x

u dx dy ux y u x y x y x y dx dy dx x y dy x y e e e e e e e

e x y u

u x

y x u u x y

x

y

y x x

x

+===+=+-===-?-=--+-=-=+-===-=+?=+?=?=--=+===-+=+-=++

=++-++=++===+-==-++-+--

两边积分解:变量分离:。

代回原变量得:则有:令解:方程可变为:解:变量分离,得

两边积分得:解:变量分离,得::也是方程的解。

另外,代回原来变量,得两边积分得:分离变量得:则原方程化为:

解:令:。两边积分得:变量分离,得:则令解:

c

x y x arctg c

x arctgt dx dt dx dt dx dt dx dy t y x dx

dy c

dx dy dx

dy t

t y x e e e e e x y

x

y

y

x +=++==++=+==+=+===+-)(,1

11

1

1,.112

22)(代回变量得:两边积分变量分离得:原方程可变为:则解:令两边积分得:解:变量分离,

12.2)

(1y x dx dy += 解

c x y x arctg y x c x arctgt t dx dt t t t

dx dt dx dt dx dy t y x +=+-++=-=++=-==+)(1

11122

2,代回变量,两边积分变量分离,原方程可变为,则

变量分离

,则方程可化为:令则有令的解为解:方程组U U dX dU X U X Y Y X Y

X dX dY Y y X x y x y x y x y x y x dx dy U 21222'

22,31,313

1

,31;012,0121

212.

132

-+-=

=--=+=-==

-==+-=--+---=

.

7)5(721

772

17)7(,71,1,52

5,

14)5(22

c x y x c

x t dx dt t t t

dx dt dx dt dx dy t y x y x y x dx dy y x t +-=+--+-=----=--===---+-=

+-代回变量两边积分变量分离原方程化为:则

解:令

15.1

8)14()1(22+++++=xy y x dx dy

原方程的解。

,是

,两边积分得分离变量,

,所以求导得,则关于令解:方程化为c x y x arctg dx du u u dx du dx du dx dy x u y x y x xy y y x x dx

dy

+=++=++==+=+++++=+++++++=6)38

3232(9

414

9

4141412

)14(1818161222222 16.2

252

622y

x xy x y dx dy +-= 解:,则原方程化为,,令u y x

xy x y dx dy x xy y x y dx dy =+-==+-=32

322332322232]2)[(32(2)( 126326322

2

22+-=+-=x

u x u x

xu x u dx du ,这是齐次方程,令

c

x x y x y c x y x y c x x y x y c x z z dx x dz d

z z z z z x y x y z z z z z z z dx dz x dx dz x z z z dx dz x z dx du z x u 15337333533735

372

233222)2()3(023)2()3,)2()3112062312306)1.(..........1261263=+-=-===+-=+-=--+≠---==-===--+--=+=+-+==的解为时。故原方程包含在通解中当或,又因为即(,两边积分的(时,变量分离当是方程的解。或)方程的解。即是(或,得当,,,,所以,则

17. y

y y x x xy x dx dy -+++=3

232332 解:原方程化为1

231

32;;;;;)123()132(2

2

22222222-+++=-+++=y x y x dx dy y x y y x x dx dy 令)1.......(1

231

32;;;;;;;;;;;;,22-+++===u v u v dv du v x u y 则

方程组,

,,);令,的解为(111101230

132+=-=-?

??=-+=++u Y v Z u v u v 则有???

???

?

++==+=+z y z y dz dy y z y z 23321023032)化为,,,,从而方程( 令

)2.( (232223322)

,,,,,所以,,则有t

t dz dt z t t dz dt z t dz dt z t dz dy z y t +-=++=++== 当

是原方程的解

或的解。得,是方程时,,即222222)2(1022x y x y t t -=-=±==-当

c x y x y dz z dt t

t t 522222

2)2(12223022+-=+=-+≠-两边积分的时,,分离变量得 另外

c x y x y x y x y 522222222)2(2+-=+-=-=原方程的解为,包含在其通解中,故,或

相关主题
文本预览
相关文档 最新文档