当前位置:文档之家› 废水生物处理概述

废水生物处理概述

废水生物处理概述
废水生物处理概述

?废水生物处理概述

第一节 废水生物处理简介

一、废水生物处理的目的和重要性 1、废水生物处理的目的

废水生物处理的主要目的有以下3点:① 絮凝和去除废水中不可自然沉淀的胶体状固体物;② 稳定和去除废水中的有机物;③ 去除营养元素氮和磷。

2、废水生物处理的重要性

① 城市污水中约有60%以上的有机物只有用生物法去除才最经济; ② 废水中氮的去除一般来说只有依靠生物法;

③ 目前世界上已建成的城市污水处理厂有90%以上是生物处理法; ④ 大多数工业废水处理厂也是以生物法为主体的。

二、微生物在废水生物处理中的作用

微生物在废水生物处理中主要有三个作用:

① 去除溶解性有机物(以COD 或BOD 5表示)(将其转化成CO 2和H 2O ),去除其它溶解性无机营养元素如N (最终转化为N2气)、P (转化为富含磷的剩余污泥从水中分离出来)等;

② 絮凝沉淀和降解胶体状固体物(某些难降解颗粒或胶体状有机物,可以通过微生物产生的胞外多聚物等具有絮凝效果的物质发生沉淀,与剩余污泥一同被排出系统;或通过吸附较长期地滞留在系统内而被缓慢降解);

③ 稳定有机物(某些有毒有害难降解有机物可以被微生物初步分解或部分降解,而减轻毒性作用或得到部分稳定,或最终被完全转化为无机物而得到稳定)。

三、微生物代谢过程简介

1、废水生物处理过程中微生物代谢过程示意图

2、微生物代谢的基本要素

① 能源:化学能,或光能——化能营养型、光能营养型; ② 碳源:有机碳,或无机碳——异养型、自养型;

③ 无机营养元素——又分为宏量元素,如:N 、P 、S 、K 、C a 、M g 等,在处理工业废水时,N 、P 元素与所需要去除的有机污染物之间的营养平衡问题有时会很关键,必要时就需要在进行中投加一定量的N 、P ;以及微量元素,如Fe 、Co 、Ni 、Mo 等,微量元素对于某些特殊的细菌如产甲烷细菌等的生长十分重要,因此在设计和运行厌氧生物反应器时,应给予足够的重视,否则会出现所谓的“微量元素缺乏症”;

④ 特殊有机营养物(也称生长因子,如维生素、生物素等):对于某些特殊细菌,某些特殊的维生素对其生长的影响会很大,因此,在必要时应考虑补充。

3、废水生物处理中涉及的微生物代谢过程主要有:

有机物

微生物

新的细胞物质

CO 2、H 2O

生物残渣

内源呼吸

分解

合成

①化能异养型代谢:在废水生物处理中最主要的代谢形式,主要用于对废水中有机物的去除,包括主要的好氧细菌和厌氧细菌;

②化能自养型代谢:也是废水生物处理中常见的一种代谢形式,主要包括硝化细菌(将氨氮氧化为亚硝酸盐,或进一步氧化为硝酸盐)、氢细菌(对其的应用还处在研究阶段)、铁细菌等;

③光合异养型代谢:利用光合细菌以高浓度有机废水为基质生产菌体蛋白;

④光合自养型代谢:在废水生物处理中少有应用。

四、废水生物处理中的微生物

1、细菌:

主要包括真细菌(eubacteria)和古细菌(archaebacteria);是废水生物处理工程中最主要的微生物;

根据需氧情况不同:好氧细菌、兼性细菌和厌氧细菌;

根据能源碳源利用情况的不同:光合细菌——光能自养菌、光能异养菌;非光合细菌——化能自养菌、化能异养菌;

根据生长温度的不同:低温菌(-10oC~15 oC)、中温菌(15 oC ~45 oC)和高温菌(>45 oC)

2、真菌:

真菌的三个主要特点:

①能在低温和低pH值的条件生长;

②在生长过程中对氮的要求较低(是一般细菌的1/2);

③能降解纤维素。

真菌在废水处理中的应用:

①处理某些特殊工业废水;

②固体废弃物的堆肥处理

3、原生动物、后生动物:

原生动物主要以细菌为食;其种属和数量随处理出水的水质而变化,可作为指示生物。

后生动物以原生动物为食;也可作为指示生物。

第二节生物处理工艺在废水处理中的地位

一、有机污染物在废水中的存在形式及其主要去除方法

1、颗粒状有机物(>1μm):

可以采用机械沉淀法进行去除的颗粒物;

2、胶体状有机物(1nm~100nm):

不能采用机械沉淀法进行去除的较小的有机颗粒物;

3、溶解性有机物(<1nm):

以分散的分子状态存在于水中的有机物

4、生物法处理的主要对象:

废水中呈胶体状和溶解状态的有机物;废水中溶解状态的营养元素N和P。

二、废水处理程度的分级

废水处理程度的分级:一级处理——预处理或前处理;二级处理——生物处理;三级处理——深度处理

1、一级处理:

去除效果:E BOD≈ 30%, E SS≈ 50%;

主要功能:①去除颗粒状有机物,减轻后续生物处理的负担;②调节水量、水质、水温等,有利于后续的生物处理。

主要方法:物化法,如:沉砂、沉淀、气浮、除油、中和、调节、加热或冷却等

2、二级处理:

去除效果:E BOD≈ 85~90%,E SS≈ 90%;

主要功能:大量去除胶体状和溶解状有机物,保证出水达标排放;

主要方法:各种形式的生物处理工艺

3、三级处理:

主要目的:①去除二级处理出水中残存的SS、有机物,或脱色、杀菌,

②脱氮、除磷——防止水体富营养化;方法:

主要方法:①物化法——超滤、混凝、活性炭吸附、臭氧氧化、加氯消毒等;

②生物法——生物法脱氮除磷,等

早期,在国内还将脱氮除磷作为深度处理看待,认为在我国水环境中主要的污染物还只是有机物,对氮、磷引起的污染的严重性还认识不足;但近年来,随着国内多个大型湖泊富营养化问题和近海海域赤潮现象的日益增多,对于控制废水中的氮、磷的排放逐渐有了新的认识,因此,在新的排放标准中,也将氮、磷指标列入,并且在很多新建污水厂的设计和运行上对于氮、磷的控制都有了明确要求,因此生物脱氮除磷已经逐渐转变为二级处理的范畴,不再作为三级处理来要求了。

三、我国水环境中有机物污染的严重状况

1、我国水环境污染现状

①废水排放量巨大;

②我国水环境中量大面广的污染物是有机物;

③N、P的污染也日益严重

2、水环境中有机污染的主要来源

①生活污水:COD = 400~500mg/l,BOD5 = 200~300mg/l;

②工业废水:主要有石油化工、轻工、食品等行业,

如:啤酒废水:8~20m3废水/m3酒,COD = 2000~3500mg/l;

酒精废水:12~15 m3废水/m3酒,COD = 3~6 万mg/l;

味精废水:25~35 m3废水/吨味精,COD = 6~10 万mg/l;

造纸黑液:120~600 m3废水/吨纸浆,COD = 10~15万mg/l;等等

四、我国城市污水处理概况

1、现状:处理率低下;

2、发展趋势:全国范围内大量的城市污水厂正在建设之中,各种先进工艺在国内均有应用。

第三节废水生物处理工艺的分类

一、人工强化废水处理系统

主要包括好氧生物处理工艺和厌氧生物处理工艺,将是本课程重点介绍内容。

二、天然废水生物处理系统

主要包括生物稳定塘系统和土地处理系统,其中生物稳定塘系统是在河流自净功能的基础上发展起来的;而土地处理系统则是在污水的土地灌溉技术的基础上发展起来的。

废水生物处理基本原理

第四节 废水好氧生物处理原理

一、好氧生物处理的基本生物过程

所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;

所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。

好氧生物处理过程的生化反应方程式:

① 分解反应(又称氧化反应、异化代谢、分解代谢)

CHONS +

O 2 CO 2 + H 2O + NH 3 + SO 42- +?+能量 (有机物的组成元素)

② 合成反应(也称合成代谢、同化作用)

C 、H 、O 、N 、S + 能量 C 5H 7NO 2

③ 内源呼吸(也称细胞物质的自身氧化) C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 + SO 42- +?+能量

在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C 5H 7NO 2;真菌:C 16H 17NO 6;藻类:C 5H 8NO 2;原生动物:C 7H 14NO 3

分解与合成的相互关系:

微生物

异氧微生物

1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。

2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。

不同形式的有机物被生物降解的历程也不同:

一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。

另一方面:有机物的化学结构不同,其降解过程也会不同,如:糖类;脂类;蛋白质

二、影响好氧生物处理的主要因素

①溶解氧(DO):约1~2mg/l;

②水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度15~30?C;>40?C或< 10?C后,会有不利影响。

③营养物质:细胞组成中,C、H、O、N约占90~97%;其余3~10%为无机元素,主要的是P;生活污水一般不需再投加营养物质;而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD:N:P = 100 : 5 : 1 投加N和P;其它无机营养元素:K、Mg、Ca、S、Na等;微量元素:Fe、Cu、Mn、Mo、Si、硼等;

④pH值:一般好氧微生物的最适宜pH在6.5~8.5之间;pH< 4.5时,真菌将占优势,引起污泥膨胀;另一方面,微生物的活动也会影响混合液的pH值。

⑤有毒物质(抑制物质):重金属;氰化物;H2S;卤族元素及其化合物;酚、醇、醛等;

⑥有机负荷率:污水中的有机物本来是微生物的食物,但太多时,也会不利于微生物;

⑦氧化还原电位:好氧细菌:+300 ~ 400 mV,至少要求大于+100 mV;厌氧细菌:要求小于+100 mV,对于严格厌氧细菌,则<-100 mV,甚至<-300 mV。

第五节废水厌氧生物处理原理

废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4和CO2的过程。

一、厌氧生物处理中的基本生物过程——阶段性理论

1、两阶段理论:

20世纪30~60年代,被普遍接受的是“两阶段理论”

第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO2和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH等)强。

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。

2、三阶段理论

对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质;

厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

上世纪70年代,Bryant发现原来认为是一种被称为“奥氏产甲烷菌”的细菌,实际上是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和H2(一种产氢产乙酸细菌),另一种细菌则利用H2和CO2产生CH4(一种真正意义上的产甲烷细菌——嗜氢产甲烷细菌);因而,Bryant提出了厌氧消化过程的“三阶段理论”:

水解、发酵阶段:

产氢产乙酸阶段:产氢产乙酸菌,将丙酸、丁酸等脂肪酸和乙醇等转化为乙酸、H2/CO2;

产甲烷阶段:产甲烷菌利用乙酸和H2、CO2产生CH4;

一般认为,在厌氧生物处理过程中约有70%的CH4产自乙酸的分解,其余的则产自H2和CO2。

3、四阶段理论(四菌群学说):

几乎与Bryant提出“三阶段理论”的同时,又有人提出了厌氧消化过程的“四菌群学说”:

实际上,是在上述三阶段理论的基础上,增加了一类细菌——同型产乙酸菌,其主要功能是可以将产氢产乙酸细菌产生的H2/CO2合成为乙酸。但研究表明,实际上这一部分由H2/CO2合成而来的乙酸的量较少,只占厌氧体系中总乙酸量的5%左右。

总体来说,“三阶段理论”、“四阶段理论”是目前公认的对厌氧生物处理过程较全面和较准确的描述。

4、多阶段理论

但是,当利用厌氧生物处理工艺处理含有复杂有机物的时候,在厌氧反应器中发生的反应会远比上述“三阶段理论”、“四阶段理论”中所描述的反应过程复杂,可以参见“厌氧复杂体系示意图”。

二、厌氧消化过程中的主要微生物

主要介绍其中的发酵细菌(产酸细菌)、产氢产乙酸菌、产甲烷菌等。

1、发酵细菌(产酸细菌):

发酵产酸细菌的主要功能有两种:①水解——在胞外酶的作用下,将不溶性有机物水解成可溶性有机物;②酸化——将可溶性大分子有机物转化为脂肪酸、醇类等;

主要的发酵产酸细菌:梭菌属、拟杆菌属、丁酸弧菌属、双岐杆菌属等;水解过程较缓慢,并受多种因素影响(pH、SRT、有机物种类等),有时回成为厌氧反应的限速步骤;产酸反应的速率较快;大多数是厌氧菌,也有大量是兼性厌氧菌;可以按功能来分:纤维素分解菌、半纤维素分解菌、淀粉分解菌、蛋白质分解菌、脂肪分解菌等。

2、产氢产乙酸菌:

产氢产乙酸细菌的主要功能是将各种高级脂肪酸和醇类氧化分解为乙酸和H 2;为产甲烷细菌提供合适的基质,在厌氧系统中常常与产甲烷细菌处于共生互营关系。

主要的产氢产乙酸反应有:

乙醇: 232232H COOH CH O H OH CH CH +→+

丙酸:22322332CO H COOH CH O H COOH CH CH ++→+ 丁酸:232223222H COOH CH O H COOH CH CH CH +→+

注意:上述反应只有在乙酸浓度很低、系统中氢分压也很低时才能顺利进行,因此产氢产乙酸反应的顺利进行,常常需要后续产甲烷反应能及时将其主要的两种产物乙酸和H 2消耗掉。

主要的产氢产乙酸细菌多为:互营单胞菌属、互营杆菌属、梭菌属、暗杆菌属等;多数是严格厌氧菌或兼性厌氧菌。

3、产甲烷菌

20世纪60年代Hungate 开创了严格厌氧微生物培养技术之后,对产甲烷细菌的研究才得以广泛进行; 产甲烷细菌的主要功能是将产氢产乙酸菌的产物——乙酸和H 2/CO 2转化为CH 4和CO 2,使厌氧消化过程得以顺利进行;主要可分为两大类:乙酸营养型和H 2营养型产甲烷菌,或称为嗜乙酸产甲烷细菌和嗜氢产甲烷细菌;一般来说,在自然界中乙酸营养型产甲烷菌的种类较少,只有Methanosarcina (产甲烷八叠球菌)和Methanothrix (产甲烷丝状菌),但这两种产甲烷细菌在厌氧反应器中居多,特别是后者,因为在厌氧反应器中乙酸是主要的产甲烷基质,一般来说有70%左右的甲烷是来自乙酸的氧化分解;

典型的产甲烷反应: ① 243CO CH COOH CH +→ ② O H CH CO H 242224+→+ ③ -+-++→+324224HC CO CH H HCOO ④ 242324CO CH O H CO +→+

⑤ O H H

H C O CH OH CH 234334+++→+- ⑥ +

+-++++→+-434243343399)(4NH H HCO CH O H NH CH

⑦ S

H H H C O CH O H S CH 234233233)(2+++→+-+- ⑧ O H CH H OH CH 24234+→+

根据产甲烷菌的形态和生理生态特征,可将其分类如下:

——最新的分类(Bergy’s细菌手册第九版),共分为:三目、七科、十九属、65种;

产甲烷菌有各种不同的形态,常见的有:①产甲烷杆菌;②产甲烷球菌;③产甲烷八叠球菌;④产甲烷丝菌;等等。

在生物分类学上,产甲烷菌(Methanogens)属于古细菌(Archaebacteria),大小、外观上与普通细菌(Eubacteria)相似,但实际上,其细胞成分特殊,特别是细胞壁的结构较特殊;在自然界的分布,一般可以认为是栖息于一些极端环境中(如地热泉水、深海火山口、沉积物等),但实际上其分布极为广泛,如污泥、瘤胃、昆虫肠道、湿树木、厌氧反应器等;产甲烷菌都是严格厌氧细菌,要求氧化还原电位在-150~-400mv,氧和氧化剂对其有很强的毒害作用;产甲烷菌的增殖速率很慢,繁殖世代时间长,可达4~6天,因此,一般情况下产甲烷反应是厌氧消化的限速步骤

三、厌氧生物处理的影响因素

产甲烷反应是厌氧消化过程的控制阶段,因此,一般来说,在讨论厌氧生物处理的影响因素时主要讨论影响产甲烷菌的各项因素;主要影响因素有:温度、pH值、氧化还原电位、营养物质、F/M比、有毒物质等。

1、温度:

温度对厌氧微生物的影响尤为显著;厌氧细菌可分为嗜热菌(或高温菌)、嗜温菌(中温菌);相应地,厌氧消化分为:高温消化(55?C左右)和中温消化(35?C左右);高温消化的反应速率约为中温消化的1.5~1.9倍,产气率也较高,但气体中甲烷含量较低;当处理含有病原菌和寄生虫卵的废水或污泥时,高温消化可取得较好的卫生效果,消化后污泥的脱水性能也较好;随着新型厌氧反应器的开发研究和应用,温度对厌氧消化的影响不再非常重要(新型反应器内的生物量很大),因此可以在常温条件下(20~25?C)进行,以节省能量和运行费用。

2、pH值和碱度:

pH值是厌氧消化过程中的最重要的影响因素;重要原因:产甲烷菌对pH值的变化非常敏感,一般认为,其最适pH值范围为6.8~7.2,在<6.5或>8.2时,产甲烷菌会受到严重抑制,而进一步导致整个厌氧消化过程的恶化;厌氧体系中的pH值受多种因素的影响:进水pH值、进水水质(有机物浓度、有机物种

类等)、生化反应、酸碱平衡、气固液相间的溶解平衡等;厌氧体系是一个pH值的缓冲体系,主要由碳酸

盐体系所控制;一般来说:系统中脂肪酸含量的增加(累积),将消耗-

HCO,使pH下降;但产甲烷菌

3

的作用不但可以消耗脂肪酸,而且还会产生-

HCO,使系统的pH值回升。

3

碱度曾一度在厌氧消化中被认为是一个至关重要的影响因素,但实际上其作用主要是保证厌氧体系具有一定的缓冲能力,维持合适的pH值;厌氧体系一旦发生酸化,则需要很长的时间才能恢复。

3、氧化还原电位:

严格的厌氧环境是产甲烷菌进行正常生理活动的基本条件;非产甲烷菌可以在氧化还原电位为+100~ -100mv的环境正常生长和活动;产甲烷菌的最适氧化还原电位为-150~ -400mv,在培养产甲烷菌的初期,氧化还原电位不能高于-330mv;

4、营养要求:

厌氧微生物对N、P等营养物质的要求略低于好氧微生物,其要求COD:N:P = 200:5:1;多数厌氧菌不具有合成某些必要的维生素或氨基酸的功能,所以有时需要投加:①K、Na、Ca等金属盐类;②微量元素Ni、Co、Mo、Fe等;③有机微量物质:酵母浸出膏、生物素、维生素等。

5、F/M比:

厌氧生物处理的有机物负荷较好氧生物处理更高,一般可达5~10kgCOD/m3.d,甚至可达50~80 kgCOD/m3.d;无传氧的限制;可以积聚更高的生物量。

产酸阶段的反应速率远高于产甲烷阶段,因此必须十分谨慎地选择有机负荷;

高的有机容积负荷的前提是高的生物量,而相应较低的污泥负荷;

高的有机容积负荷可以缩短HRT,减少反应器容积。

6、有毒物质:

——常见的抑制性物质有:硫化物、氨氮、重金属、氰化物及某些有机物;

①硫化物和硫酸盐:硫酸盐和其它硫的氧化物很容易在厌氧消化过程中被还原成硫化物;可溶的硫化物达到一定浓度时,会对厌氧消化过程主要是产甲烷过程产生抑制作用;投加某些金属如F e可以去除S2-,或从系统中吹脱H2S可以减轻硫化物的抑制作用。

②氨氮:氨氮是厌氧消化的缓冲剂;但浓度过高,则会对厌氧消化过程产生毒害作用;抑制浓度为50~200mg/l,但驯化后,适应能力会得到加强。

③重金属:——使厌氧细菌的酶系统受到破坏。

④氰化物:

⑤有毒有机物:

四、厌氧生物处理的主要特征

1、厌氧生物处理过程的主要优点:

①能耗大大降低,而且还可以回收生物能(沼气);

②污泥产量很低;

——厌氧微生物的增殖速率比好氧微生物低得多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲

烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。

③厌氧微生物有可能对好氧微生物不能降解的一些有机物进行降解或部分降解;

④反应过程较为复杂——厌氧消化是由多种不同性质、不同功能的微生物协同工作的一个连续的微生物过程;

2、厌氧生物处理过程的主要缺点:

①对温度、pH等环境因素较敏感;

②处理出水水质较差,需进一步利用好氧法进行处理;

③气味较大;

④对氨氮的去除效果不好;等等

第六节废水可生化性原理及其判别

一、废水可生化性的定义

生物降解性能是指在微生物的作用下,使某一物质改变原来的化学和物理性质,在结构上引起的变化程度。

二、废水可生化性的分类

可分为三类:

①初级生物降解——指有机物原来的化学结构发生了部分变化,改变了分子的完整性;

②环境可接受的生物降解——指有机物失去了对环境有害的特性;

③完全降解——在好氧条件下,有机物被完全无机化;在厌氧条件下,有机物被完全转化为CH4、CO2等。

有机物生物降解性能的分类:

①易生物降解——易于被微生物作为碳源和能源物质而被利用;

②可生物降解——能够逐步被微生物所利用;

③难生物降解——降解速率很慢或根本不降解。

三、鉴定和评价废水中有机污染物的好氧生物降解性的方法:

1、水质指标法:采用BOD5/COD作为有机物评价指标。

2、瓦呼仪法:根据有机物的生化呼吸线与内源呼吸线的比较来判断有机物的生物降解性能。测试时,接种物可采用活性污泥,接种量为1 3 gSS/l;

四、影响有机物生物降解性能的因素:

1、与化学物质的种类性质有关的因素(化学组成、理化性质、浓度、与它种基质的共存);

2、与微生物的种类、性质有关的因素(微生物的来源、数量、种属间的关系);

3、与有机物、微生物所处的环境有关的因素(pH值、DO、温度、营养物等)。

第三章废水好氧生物处理工艺(1)——活性污泥法

第一节活性污泥法的基本原理

一、活性污泥法的基本工艺流程

1、活性污泥法的基本组成

①曝气池:反应主体

②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。

③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。

④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。

⑤供氧系统:提供足够的溶解氧

2、活性污泥系统有效运行的基本条件是:

①废水中含有足够的可容性易降解有机物;

②混合液含有足够的溶解氧;

③活性污泥在池内呈悬浮状态;

④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥;

⑤无有毒有害的物质流入。

二、活性污泥的性质与性能指标

1、活性污泥的基本性质

①物理性能:“菌胶团”、“生物絮凝体”:

颜色:褐色、(土)黄色、铁红色;

气味:泥土味(城市污水);

比重:略大于1,(1.002~1.006);

粒径:0.02~0.2 mm;

比表面积:20~100cm2/ml。

②生化性能:

1) 活性污泥的含水率:99.2~99.8%;

固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。

2、活性污泥中的微生物:

①细菌:是活性污泥净化功能最活跃的成分,

主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等;

基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌;

2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟;

4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。

② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml

3、活性污泥的性能指标:

① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ):

MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3

② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed V olatile Liquor Suspended Solids ):

MLVSS = M a + M e + M i ;

在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85

③ 污泥沉降比(SV )(Sludge V olume ):

是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge V olume Index ):

曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。

)/()

/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?=

= 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过

高,说明其沉降性能不好,将要或已经发生膨胀现象;

城市污水的SVI 一般为50~150 ml/g ;

三、活性污泥法的基本工艺参数

1、容积负荷(V olumetric Organic Loading Rate ):

V

C Q L i

vCOD ?=

)(3

d m k g C O D ?; V

B Q L i

vBOD ?=

5 )(35d m k g B O D ?

2、污泥负荷(Sludge Organic Loading Rate ):

V MLSS C Q L i sCOD ??=

d k g M L S S k g C O D ?; V

MLSS B Q L i

sBOD ??=

5 d k g M L S S k g B O D ?5

3、水力停留时间(Hydraulic Retention Time ): Q V H R T = (h )

4、污泥龄或污泥停留时间(Sludge Retention Time ):r

w X Q X

V S

R T ??=

(h 或 d )

5、回流比:r

Q Q R =

第二节活性污泥法的主要运行方式

一、各种活性污泥法工艺

迄今为止,在活性污泥法工程领域,应用着多种各具特色的运行方式。主要有以下几种:①传统推流式活性污泥法;②完全混合活性污泥法;③阶段曝气活性污泥法;④吸附—再生活性污泥法;⑤延时曝气活性污泥法;⑥高负荷活性污泥法;⑦纯氧曝气活性污泥法;⑧浅层低压曝气活性污泥法;⑨深水曝气活性污泥法;⑩深井曝气活性污泥法。

1、传统推流式活性污泥法:

①工艺流程:

②供需氧曲线:

③主要优点:1) 处理效果好:BOD5的去除率可达90-95%;2) 对废水的处理程度比较灵活,可根据要求进行调节。

④主要问题:1) 为了避免池首端形成厌氧状态,不宜采用过高的有机负荷,因而池容较大,占地面积较大;2) 在池末端可能出现供氧速率高于需氧速率的现象,会浪费了动力费用;3) 对冲击负荷的适应性较弱。

⑤一般所采用的设计参数(处理城市污水):

2、完全混合活性污泥法

①主要特点:a.可以方便地通过对F/M的调节,使反应器内的有机物降解反应控制在最佳状态;b.进水一进入曝气池,就立即被大量混合液所稀释,所以对冲击负荷有一定的抵抗能力;c.适合于处理较高浓度的有机工业废水。

②主要结构形式:a.合建式(曝气沉淀池):b.分建式

3、阶段曝气活性污泥法——又称分段进水活性污泥法或多点进水活性污泥法

①工艺流程:

②主要特点:a.废水沿池长分段注入曝气池,有机物负荷分布较均衡,改善了供养速率与需氧速率间的矛盾,有利于降低能耗;b.废水分段注入,提高了曝气池对冲击负荷的适应能力;

③主要设计参数:

4、吸附再生活性污泥法——又称生物吸附法或接触稳定法。

主要特点是将活性污泥法对有机污染物降解的两个过程——吸附、代谢稳定,分别在各自的反应器内进行。

①工艺流程:

②主要优点:

a.废水与活性污泥在吸附池的接触时间较短,吸附池容积较小,再生池接纳的仅是浓度较高的回流污泥,因此,再生池的容积也较小。吸附池与再生池容积之和低于传统法曝气池的容积,基建费用较低;

b.具有一定的承受冲击负荷的能力,当吸附池的活性污泥遭到破坏时,可由再生池的污泥予以补充。

③主要缺点:处理效果低于传统法,特别是对于溶解性有机物含量较高的废水,处理效果更差。

④主要设计参数:

5、延时曝气活性污泥法——完全氧化活性污泥法

①主要特点:

a.有机负荷率非常低,污泥持续处于内源代谢状态,剩余污泥少且稳定,勿需再进行处理;

b.处理出水出水水质稳定性较好,对废水冲击负荷有较强的适应性;

c.在某些情况下,可以不设初次沉淀池。

②主要缺点:

池容大、曝气时间长,建设费用和运行费用都较高,而且占地大;一般适用于处理水质要求高的小型城镇污水和工业污水,水量一般在1000m3/d以下。

③主要设计参数:

6、高负荷活性污泥法——又称短时曝气法或不完全曝气活性污泥法

①主要特点:有机负荷率高,曝气时间短,处理效果较差;而在工艺流程和曝气池的构造等方面与传统法基本相同。

②主要设计参数:

7、纯氧曝气活性污泥法

①主要特点:

a.纯氧中氧的分压比空气约高5倍,纯氧曝气可大大提高氧的转移效率;

b.氧的转移率可提高到80~90%,而一般的鼓风曝气仅为10%左右;

c.可使曝气池内活性污泥浓度高达4000~7000mg/l,能够大大提高曝气池的容积负荷;

d.剩余污泥产量少,SVI值也低,一般无污泥膨胀之虑。

②曝气池结构:

③主要设计参数:

8、浅层低压曝气法

①理论基础:只有在气泡形成和破碎的瞬间,氧的转移率最高,因此,没有必要延长气泡在水中的上升距离;

②其曝气装置一般安装在水下0.8~0.9米处,因此可以采用风压在1米以下的低压风机,动力效率较高,可达1.80~2.60kgO2/kw.h;

③其氧转移率较低,一般只有2.5%;

④池中设有导流板,可使混合液呈循环流动状态。

9、深水曝气活性污泥法

①主要特点:a.曝气池水深在7~8m以上,b.由于水压较大,洋的转移率可以提高,相应也能加快有机物的降解速率;c.占地面积较小。

②一般有两种形式:a.深水中层曝气法:b.深水深层曝气法:

10、深井曝气活性污泥法——又称超深水曝气法

①工艺流程:一般平面呈圆形,直径约介于1~6m,深度一般为50~150m。

②主要特点:a.氧转移率高,约为常规法的10倍以上;b.动力效率高,占地少,易于维护运行;c.耐冲击负荷,产泥量少;d.一般可以不建初次沉淀池;e.但受地质条件的限制。

③主要设计参数

各种活性污泥法的设计参数(处理城市污水,仅为参考值)

二、曝气池的型式与构造

1、曝气池的类型

①根据混合液在曝气池内的流态,可分为推流式、完全混合式和循环混合式三种;

②根据曝气方式,可分为鼓风曝气池、机械曝气池以及二者联合使用的机械??鼓风曝气池;

③根据曝气池的形状,可分为长方廊道形、圆形、方形以及环状跑道形等四种;

④根据曝气池与二沉池之间的关系,可分为合建式(即曝气沉淀池)和分建式两种。

2、曝气池的流态

①推流式曝气池

②完全混合式曝气池

③循环混合式曝气池:??氧化沟

3、曝气池的构造

曝气池在构造上应满足曝气充氧、混合的要求,因此,曝气池的构造首先取决于曝气方式和所采用的曝气装置。

第三节活性污泥法的运行管理及常见问题与对策

一、活性污泥法的启动与试运行

1、活性污泥的培养与驯化:

??接种污泥:①同类污水厂的剩余污泥;②粪便污水等。

方法:①全流量连续直接培养法;②流量分阶段直接培养法;③间歇培养法;

活性污泥的驯化: a.异步驯化法;b.同步驯化法

2、活性污泥法的试运行:

试运行的目的是确定最佳的运行条件;作为变数考虑的因素:①MLSS、空气量、污水注入方式;②如是吸附再生法,则吸附与再生的时间比;③N、P的投加。根据上述各种参数的组合运行结果,找出最佳运行条件。

二、活性污泥系统重要运行参数的调节与观测

1、对活性污泥状况的镜检观察;

2、对曝气时间(HRT)的调节;

3、对供气量的调节:

4、SV的测定与调节:

5、剩余污泥排放量的调节:

6、回流污泥量的调节

三、活性污泥系统的水质管理

四、活性污泥系统的常见异常现象与对策

1、污泥腐化:

现象:活性污泥呈灰黑色、污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化;

原因:1)负荷量增高;2)曝气不足;3)工业废水的流入等;

对策:1)控制负荷量;2)增大曝气量;3)切断或控制工业废水的流入。

2、污泥上浮:

现象:污泥沉淀30~60分钟后呈层状上浮,多发生在夏季;

原因:硝化作用导致在二沉池中被还原成N2,引起污泥上浮;

对策:1)减少污泥在二沉池的HRT;2)减少曝气量。

3、污泥解体:

现象:在沉淀后的上清液中含有大量的悬浮微小絮体,出水透明度下降;

原因:污泥解体;曝气过度;负荷下降,活性污泥自身氧化过度;

对策:减少曝气;增大负荷量。

4、泥水界面不明显:

原因:高浓度有机废水的流入,使微生物处于对数增长期;污泥形成的絮体性能较差;

对策:降低负荷;增大回流量以提高曝气池中的MLSS,降低F/M值。

5、污泥膨胀:

是指活性污泥质量变轻、膨大,沉降性能恶化,在二沉池中不能正常沉淀下来,SVI异常增高,可达400以上。

①因丝状菌异常增殖而导致的丝状菌性膨胀;

主要是由于丝状菌异常增殖而引起的,主要的丝状菌有:球衣菌属、贝氏硫细菌、以及正常活性污泥中的某些丝状菌如芽孢杆菌属等、某些霉菌;

1) 污泥膨胀理论:

(1) 低F/M比(即低基质浓度)引起的营养缺乏型膨胀;

(2) 低溶解氧浓度引起的溶解氧缺乏型膨胀;

(3) 高H2S浓度引起的硫细菌型膨胀。

3) 污泥膨胀的对策

①临时控制措施:

(l) 污泥助沉法:①改善、提高活性污泥的絮凝性,投加絮凝剂如:硫酸铝等;②改善、提高活性污泥的沉降性、密实性,投加粘土、消石灰等;

(2) 灭菌法:①杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂;②投加硫酸铜,可控制有球衣菌引起的膨胀。

②工艺运行调节措施:

(1) 加强曝气:①加强曝气,提高混合液的DO值;②使污泥常处于好氧状态,防止污泥腐化,加强预曝气或再生性曝气;(2) 调节运行条件:①调整进水pH值;②调整混合液中的营养物质;③如有可能,可考虑调节水温——丝状菌膨胀多发生在20°C以上;④调整污泥负荷,当超过

0.35kgBOD/kgMLSS.d时,易发生丝状菌膨胀。

③永久性控制措施:

对现有设施进行改造,或新厂设计时就加以考虑,从工艺运行上确保污泥膨胀不会发生;在工艺中增加一个生物选择器,该法主要针对低基质浓度下引起的营养缺乏型污泥膨胀,其出发点就是造成曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制抑制丝状菌的过度增殖,从而控制污泥膨胀。

好氧选择器:在曝气池之前增加一个具有推流特点的预曝气池,其停留时间(HRT为5~30min,多采用20min)的选择非常重要;

缺氧选择器:高的基质浓度;菌胶团细菌在缺氧条件下(但有NO3-)有比丝状菌高得多的基质利用

率和硝酸盐还原率;

厌氧选择器:其作用机制与缺氧选择器相似,即在厌氧条件下,丝状菌具有较低的多聚磷酸盐的释放速度而受到抑制。

②因粘性物质大量积累而导致的非丝状菌性膨胀。

高粘性污泥膨胀:

现象:废水净化效果良好,但污泥难于沉淀,污泥颗粒大量随出水流失;

原因:

①进水中溶解性有机物浓度高,F/M值太高;

②氮、磷缺乏,或溶解氧不足;

③细菌将大量有机物吸入体内,不能及时降解,分泌过量的凝胶状的多糖类物质;

④这些物质中含有很多氢氧基而具有很高的亲水性,导致污泥中含有很高的结合水,使泥水分离困难。对策:降低负荷,调整工况,加强曝气等。

低粘性污泥膨胀:

原因:

进水中含有毒性物质,使污泥中毒,使细菌不能分泌出足够的粘性物质,从而不能有效形成絮凝体,导致泥水分离困难;

对策:

控制进水水质,加强上游工业废水的预处理。

6、泡沫

主要有两种,即化学泡沫和生物

①化学泡沫

成因:洗涤剂或工业用表面活性物质等引起,呈乳白色

控制对策:水冲消泡;消泡剂

成因:诺卡氏菌属的一类丝状菌引起;呈褐色

问题:可能致病;卫生、环境;影响曝气

控制对策:水冲或消泡剂无效;加氯;排泥,缩短SRT

根本原因:诺卡氏菌在较高温、富油脂类物质的环境中易于繁殖

四、活性污泥系统的常见异常现象与对策

1、污泥腐化:

现象:活性污泥呈灰黑色、污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化;

原因:1) 负荷量增高;2) 曝气不足;3) 工业废水的流入等;

对策:1) 控制负荷量;2) 增大曝气量;3) 切断或控制工业废水的流入。

2、污泥上浮:

现象:污泥沉淀30 60分钟后呈层状上浮,多发生在夏季;

原因:硝化作用导致在二沉池中被还原成N2,引起污泥上浮;

对策:1) 减少污泥在二沉池的HRT;2) 减少曝气量。

3、污泥解体:

现象:在沉淀后的上清液中含有大量的悬浮微小絮体,出水透明度下降;

原因:污泥解体;曝气过度;负荷下降,活性污泥自身氧化过度;

对策:减少曝气;增大负荷量。

4、泥水界面不明显:

原因:高浓度有机废水的流入,使微生物处于对数增长期;污泥形成的絮体性能较差;

对策:降低负荷;增大回流量以提高曝气池中的MLSS,降低F/M值。

5、污泥膨胀:

是指活性污泥质量变轻、膨大,沉降性能恶化,在二沉池中不能正常沉淀下来,SVI异常增高,可达400以上。

1) 因丝状菌异常增殖而导致的丝状菌性膨胀;

主要是由于丝状菌异常增殖而引起的,主要的丝状菌有:球衣菌属、贝氏硫细菌、以及正常活性污泥中的某些丝状菌如芽孢杆菌属等、某些霉菌;

(1) 污泥膨胀理论:

①低F/M比(即低基质浓度)引起的营养缺乏型膨胀;

②低溶解氧浓度引起的溶解氧缺乏型膨胀;

③高H2S浓度引起的硫细菌型膨胀。

活性污泥中存在着两大类群微生物,一是菌胶团细菌;一是丝状菌。二者的生长速率与基质浓度的关系正好相反,即:在低基质浓度下,丝状菌的生长速率要高于菌胶团细菌;而在高基质浓度条件下,菌胶团细菌的生长速率则要高于丝状菌。在常规的活性污泥系统中,由于需要获得较高的出水水质,即至少在曝气池的出口处要求其中的有机物浓度要达到很低水平,即维持在很低的基质浓度,因此常常会引起丝状菌的生长占优,而引起丝状菌性污泥膨胀的问题。

(3) 污泥膨胀的对策

①临时控制措施:

a. 污泥助沉法:

①改善、提高活性污泥的絮凝性,投加絮凝剂如:硫酸铝等;

②改善、提高活性污泥的沉降性、密实性,投加粘土、消石灰等;

b. 灭菌法:

①杀灭丝状菌,如投加氯、臭氧、过氧化氢等的药剂;

②投加硫酸铜,可控制有球衣菌引起的膨胀。

②工艺运行调节措施:

a. 加强曝气:

①加强曝气,提高混合液的DO值;

②使污泥常处于好氧状态,防止污泥腐化,加强预曝气或再生性曝气;

b. 调节运行条件:

①调整进水pH值;

②调整混合液中的营养物质;

③如有可能,可考虑调节水温——丝状菌膨胀多发生在20°C以上;

④调整污泥负荷。

③永久性控制措施:

对现有设施进行改造,或新厂设计时就加以考虑,从工艺运行上确保污泥膨胀不会发生;在工艺中增加一个生物选择器,该法主要针对低基质浓度下引起的营养缺乏型污泥膨胀,其出发点就是造成曝气池中的生态环境有利于选择性地发展菌胶团细菌,应用生物竞争的机制抑制丝状菌的过度增殖,从而控制污泥膨胀。

a. 好氧选择器:在曝气池之前增加一个具有推流特点的预曝气池,其停留时间(HRT为5~30min,多采用20min)的选择非常重要;

b. 缺氧选择器:高的基质浓度;菌胶团细菌在缺氧条件下(但有NO3 )有比丝状菌高得多的基质利用率和硝酸盐还原率;

c. 厌氧选择器:其作用机制与缺氧选择器相似,即在厌氧条件下,丝状菌具有较低的多聚磷酸盐的释放速度而受到抑制。

废水的生物处理

废水的生物处理 废水是环境污染“三废”之一,利用微生物的代谢作用可除去废水中的有机污染物,其方法简单、科学,常分为需氧生物处理法和厌氧生物处理法两种,现对其机制简述如下: 一、需氧生物处理废水 生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为C H O N S。  生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:1)氧化还原酶在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合成脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由输酶将氢传给被还原的物质,使基质氧化,受氢体还原;2)水解酶对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为甘油和脂肪酸,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。 在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分3个阶段:第1阶段,大的有机物分子降解成为构成单元——单糖、氨基酸或甘油和脂肪酸。在第2阶段中,第1阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A,酮戊二酸和草醋酸。第3阶段(即三羧酸循环)是乙酰基辅酶A、酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。 在有机物降解的同时,还发生微生物原生质的合成反应。在第1阶段中由被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程

污水的生物处理方法生物膜法

污水的生物处理方法生 物膜法 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

污水的生物处理方法——生物膜法 教学要求: 1)掌握生物膜法的微生物学特征和工艺特征 2)掌握高负荷生物滤池、曝气生物滤池、塔式生物滤池以及生物转盘三 相传质和工艺运行特点。 3)掌握生物接触氧化特点及其工艺设计 第一节概述 生物膜——是使细菌、放线菌、蓝绿细菌一类的微生物和原生动 物、后生动物、藻类、真菌一类的真核微生物附着在滤料或某些载体上 生长繁殖,并在其上形成膜状生物污泥。 生物膜法:污水经过从前往后具有细菌→原生动物→后生动物、从 表至里具好氧→兼氧→厌氧的生物处理系统而得到净化的生物处理技 术。 一、生物构造及其对有机物的降解 1 生物膜的构造特征 生物膜(好氧层+兼氧层+厌氧层) Array+附着水层(高亲水性)。 2 降解有机物的机理 1)微生物:沿水流方向为细菌—— 原生动物——后生动物的食物链 或生态系统。具体生物以菌胶团 为主、辅以球衣菌、藻类等,含

有大量固着型纤毛虫(钟虫、等枝虫、独缩虫等)和游泳型纤毛虫(楯纤虫、豆形虫、斜管虫等),它们起到了污染物净化和清除池内生物(防堵塞)作用。 2) 污染物:重→轻(相当多污带→α中污带→β中污带→寡污带). 3) 供氧:借助流动水层厚薄变化以及气水逆向流动,向生物膜表面供 氧。 4) 传质与降解:有机物降解主要是在好氧层进行,部分难降解有机物经 兼氧层和厌氧层分解,分解后产生的H 2S ,NH 3等以及代谢产物由内向外传递而进入空气中,好氧层形成的NO 3--N 、NO 2--N 等经厌氧层发生反硝化,产生的N2也向外而散入大气中。 5) 生物膜更新:经水力冲刷,使膜表面不断更新(DO 及污染物),维持 生物活性(老化膜固着不紧)。 二、生物膜的主要特征 1 微生物相方面的特征 1) 参与净化反应微生物多样化; 2) 食物链长,污泥产率低; 3) 能够存活世代较长的微生物; 4) 可分段运行,形成优势微生物种群,提高降解能力。 2 工艺方面的特征 1) 对水质水量变动有较强适应性; 2) 污泥沉降性能好,宜于固液分离; 3) 能处理低浓度污水;

ao生物接触氧化污水处理工艺介绍

A/O生物接触氧化污水处理工艺介绍 A/O生物接触氧化工艺,操作简单,运转费用低,处理效果好,运行稳定,是目前较为成熟的生活污水处理工艺,能有效地确保污水达标排放。 1、工艺流程 见下图: 经处理后的餐饮污水 2、工艺说明 污水由排水系统收集后,进入污水处理站的格栅井,去除颗粒杂物后,进入调节池,进行均质均量,调节池中设置预曝气系统,再经液位控制仪传递信号,由提升泵送至初沉池沉淀,废水自流至A级生物接触氧化池,进行酸化水解和硝化反硝化,降低有机物浓度,去除部分氨氮,然后入流O级生物接触氧化池进行好氧生化反应,在此绝大部分有机污染物通过生物氧化、吸附得以降解,出水自流至二沉池进行固液分离后,沉淀池上清液流入消毒池,经投加氯片接触溶解,杀灭水中有害菌种后达标外排。 由格栅截留下的杂物定期装入小车倾倒至垃圾场,二沉池中的污泥部分回流至A级生物处理池,另一部分污泥至污泥池进行污泥消化后定期抽吸外运,污泥池上清液回流至调节池再处理。 3、工艺设施 (1)格栅井 设置目的: 在生活污水进入调节池前设置一道格栅,用以去除生活污水中的软性缠绕物、较大固颗粒杂物及飘浮物,从而保护后续工作水泵使用寿命并降低系统处理工作负荷。 设置特点: 格栅井设置钢筋砼结构,格栅采用手动机械框式。 (2)调节池 设置目的: 生活污水经格栅处理后进入调节池进行水量、水质的调节均化,保证后续生化处理系统水量、水质的均衡、稳定,并设置预曝气系统,用于充氧搅拌,以防止污水中悬浮颗粒沉淀而发臭,又对污水中有机物起到一定的降解功效,提高整个系统的抗冲击性能和处理效果。 设计特点:

调节池设计为钢筋砼结构。 (3)调节池提升水泵 设置目的: 调节池内设置潜污泵,经均量,均质的污水提升至后级处理。 设计特点: 潜污泵设置二台,液位控制,水泵采用无堵塞撕裂杂物泵。 (4)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。 设计特点: 设计为竖流式沉淀池,其污泥降解效果好。 采用三角堰出水,使出水效果稳定。 污泥采用气提法定时排泥至污泥池,并设污泥气提回流装置,部分污泥回流至A级生物处理池进行硝化和反硝化,也减少了污泥的生成,也利于污水中氨氮的去除。 该池设计为A3钢结构。 (5)A级生物处理池(缺氧池) 设置目的: 将污水进一步混合,充分利用池内高效生物弹性填料作为细菌载体,靠兼氧微生物将污水中难溶解有机物转化为可溶解性有机物,将大分子有机物水解成小分子有机物,以利于后道O级生物处理池进一步氧化分解,同时通过回流的硝炭氮在硝化菌的作用下,可进行部分硝化和反硝化,去除氨氮。 设计特点: 内置高效生物弹性填料,又具有水解酸化功能,同时可调节成为O级生物氧化池,以增加生化停留时间,提高处理效率。 该池设计为A3钢结构。 (6)O级生物处理池(生物接触氧化池) 设置目的: 该池为本污水处理的核心部分,分二段,前一段在较高的有机负荷下,通过附着于填料上的大量不同种属的微生物群落共同参与下的生化降解和吸附作用,去除污水中的各种有机物质,使污水中的有机物含量大幅度降低。后段在有机负荷较低的情况下,通过硝化菌的作用,在氧量充足的条件下降解污水中的氨氮,同时也使污水中的COD值降低到更低的水平,使污水得以净化。 设计特点: 该池由池体、填料、布水装置和充氧曝气系统等部分组成。 该池以生物膜法为主,兼有活性污泥法的特点。 池中填料采用弹性立体组合填料,该填料具有比表面积大,使用寿命长,易挂膜耐腐蚀不结团堵塞。填料在水中自由舒展,对水中气泡作多层次切割,更相对增加了曝气效果,填料成笼式安装,拆卸、检修方便。 该池分二级,使水质降解成梯度,达到良好的处理效果,同时设计采用相应导流紊流措施,使整体设计更趋合理化。 池中曝气管路选用优质ABS管,耐腐蚀。不堵塞,氧利用率高。 该池设计为A3钢结构。 (7)沉淀池 设置目的: 进行固液分离去除生化池中剥落下来的生物膜和悬浮污泥,使污水真正净化。 设计特点: 设计为竖流式沉淀池,其污泥降解效果好。

工业废水分类处理原则及处理方法

工业废水分类处理原则及处理方法 工业废水是指工业生产排放的废水、污水和废液,对环境的污染非常严重,必须做到工业废水的有效治理。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。因此,对于保护环境来说,工业废水处理比城市污水处理更为重要。 一、工业废水分类及处理的基本原则 工业废水分类通常有以下三种:第一种是按工业废水中所含主要污染物的化学性质分类,含无机污染物为主的为无机废水,含有机污染物为主的为有机废水。例如电镀废水和矿物加工过程的废水,是无机废水;食品或石油加工过程的废水,是有机废水。第二种是按工业企业的产品和加工对象分类,如冶金废水、造纸废水、炼焦煤气废水、金属酸洗废水、化学肥料废水、纺织印染废水、染料废水、制革废水、农药废水、电站废水等。第三种是按废水中所含污染物的主要成分分类,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等。前两种分类法不涉及废水中所含污染物的主要成分,也不能表明废水的危害性。第三种分类法,明确地指出废水中主要污染物的成分,能表明废水一定的危害性。

处理的基本原则: (一)优先选用无毒生产工艺代替或改革落后生产工艺,尽可能在生产过程中杜绝或减少有毒有害废水的产生。 (二)在使用有毒原料以及产生有毒中间产物和产品过程中,应严格操作、监督,消除滴漏,减少流失,尽可能采用合理流程和设备。 (三)含有剧毒物质废水,如含有一些重金属、放射性物质、高浓度酚、氰废水应与其它废水分流,以便处理和回收有用物质。 (四)流量较大而污染较轻的废水,应经适当处理循环使用, 不宜排入下水道,以免增加城市下水道和城市污水处理负荷。 (五)类似城市污水的有机废水,如食品加工废水、制糖废水、造纸废水,可排入城市污水系统进行处理。 (六)一些可以生物降解的有毒废水,如酚、氰废水,应先经处理后,按允许排放标准排入城市下水道,再进一步生化处理。 (七)含有难以生物降解的有毒废水,应单独处理,不应排入 城市下水道。工业废水处理的发展趋势是把废水和污染物作为有用资源回收利用或实行闭路循环。

城市污水生物处理

城市生活污水生物处理 利用微生物的代谢作用除去废水中有机污染物的一种方法,亦称废水生物处理法,简称废水生物法,分需氧生物处理法和厌氧生物处理法两种。需氧生物处理法是利用需氧微生物在有氧条件下将废水中复杂的有机物分解的方法。 生活污水中的典型有机物是碳水化合物、合成洗涤剂、脂肪、蛋白质及其分解产物如尿素、甘氨酸、脂肪酸等。这些有机物可按生物体系中所含元素量的多寡顺序表示为COHNS。在废水需氧生物处理中全部反应可用以下两式表示:微生物细胞+COHNS+O2—→较多的细胞+CO2+H2O+NH3 生物体系中这些反应有赖于生物体系中的酶来加速。酶按其催化反应分为:氧化还原酶:在细胞内催化有机物的氧化还原反应,促进电子转移,使其与氧化合或脱氢。可分为氧化酶和还原酶。氧化酶可活化分子氧,作为受氢体而形成水或过氧化氢。还原酶包括各种脱氢酶,可活化基质上的氢,并由辅酶将氢传给被还原的物质,使基质氧化,受氢体还原。水解酶:对有机物的加水分解反应起催化作用。水解反应是在细胞外产生的最基本的反应,能将复杂的高分子有机物分解为小分子,使之易于透过细胞壁。如将蛋白质分解为氨基酸,将脂肪分解为脂肪酸和甘油,将复杂的多糖分解为单糖等。此外还有脱氨基、脱羧基、磷酸化和脱磷酸等酶。 许多酶只有在一些称为辅酶和活化剂的特殊物质存在时才能进行催化反应,钾、钙、镁、锌、钴、锰、氯化物、磷酸盐离子在许多种酶的催化反应中是不可缺少的辅酶或活化剂。在需氧生物处理过程中,污水中的有机物在微生物酶的催化作用下被氧化降解,分三个阶段:第一阶段,大的有机物分子降解为构成单元——单糖、氨基酸或甘油和脂肪酸。在第二阶段中,第一阶段的产物部分地被氧化为下列物质中的一种或几种:二氧化碳、水、乙酰基辅酶A、α-酮戊二酸(或称α-氧化戊二酸)和草醋酸(又称草酰乙酸)。第三阶段(即三羧酸循环,是有机物氧化的最终阶段)是乙酰基辅酶A、α-酮戊二酸和草醋酸被氧化为二氧化碳和水。有机物在氧化降解的各个阶段,都释放出一定的能量。 在有机物降解的同时,还发生微生物原生质的合成反应。在第一阶段中由 被作用物分解成的构成单元可以合成碳水化合物、蛋白质和脂肪,再进一步合成细胞原生质。合成能量是微生物在有机物的氧化过程中获得的。 厌氧生物处理法:主要用于处理污水中的沉淀污泥,因而又称污泥消化,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。中国大量建设的沼气池就是具体应用这种方法的典型实例。消化后的污泥比原生污泥容易脱水,所含致病菌大大减少,臭味显著减弱,肥分变成速效的,体积缩小,易于处置。 城市污水沉淀污泥和高浓度有机废水的完全厌氧消化过程可分为三个阶段。在第一阶段,污泥中的固态有机化合物借助于从厌氧菌分泌出的细胞外水解酶得到溶解,并通过细胞壁进入细胞中进行代谢的生化反应。在水解酶的催化下,将复杂的多糖类水解为单糖类,将蛋白质水解为缩氨酸和氨基酸,并将脂肪水解为甘油和脂肪酸。第二阶段是在产酸菌的作用下将第一阶段的产物进一步降解为比

微生物处理污水方法资料

1、流离生物床(FSBB) “流离”是近年出现的有机废水处理新技术,填料为表面经过特殊处理的碎石球的集合体(流离球)。污水在流动中存在着球体外流速快,球体内流速慢的场所,污水中漂浮物集中在流速慢的地方产生流离。经过无数次流离作用,使污水中的固形物和有机物胶体与水分离。 填料:由聚乙烯外壳和填料组成,直径100mm。其中厌氧流离球填料使用化学改性火山岩,池内填充比例40%,粒径15mm~25mm;曝气流离球填料使用化学涂层的碎石块,池内填充比例70%,粒径12mm~20mm。 驯化:(1)驯化阶段:采用逐渐提高合成污水浓度的方式对种污泥进行预驯化,氨氮与COD 最终达到垃圾渗滤液进水水质浓度;(2)实际垃圾渗滤液生化处理阶段:垃圾渗滤液分别经过厌氧流离生化池、曝气流离生化池生化处理之后进入中间水池。 驯化具体步骤如下:取垃圾渗滤液和自来水一齐注入均质池,CODcr控制范围为1000~1200mg/L,搅拌机混合搅拌约30min。水泵启动,加入接种污泥,控制MLSS范围7800~9620mg/L。注满厌氧池和曝气池,控制MLSS为3560~4560mg/L。厌氧池面的水由进水泵送入十字形布水器,形成内循环搅拌,至CODcr值低于2000mg/L时,关闭进水泵。静置2h后再次启动进水泵,向厌氧池中注入约1/3进水量以及适量的种泥,同样由进水泵进行内循环。直至填料和从池底排放出的污泥呈现致密的橙黑色,至此厌氧流离生化池启动成功。启动回转式鼓风机对曝气池进行闷曝,溶解氧浓度应控制在2~4mg/L间。检测CODcr低至500mg/L时,采用低负荷间歇法,通过进水泵向均质池中适当进水和接种污泥,日进水时间相对增长,直到填料上呈橙黄色膜,说明生物膜培养完成。此时,厌氧池和曝气池均停止接种污泥,按设计量20%的进水量持续向均质池输注垃圾渗滤液,检测CODcr低至500mg/L后,进水量提升至设计量的30%~40%,反复运作,直到达成设计处理量。再按同等比例增加进水浓度,直至到达垃圾

生物法处理废水

生物法处理废水 研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。目前,常用于污水治理的方法可归纳为物理法、化学法、生物法。物理法常作为一种预处理的手段应用于废水处理;化学处理法是指向废水中加入化学药剂如明矾等,使其与污染物发生化学反应而生成无害物的过程,这种方法也常常作为预处理方法使用;而生物处理法是利用微生物降解代有机物为无机物来处理废水。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。根据使用微生物的种类,可分为好氧法、厌氧法和生物酶法等。 一好氧处理法 该办法是根据需好氧微生物生活的特点,提供充足的氧气,使好氧微生物大量繁殖, 通过微生物的新代活动使废水中的有机物最 终氧化分解成CO2 、水、硝酸盐等简单的无机物,已达到净化污水的目的。好氧处理方法包括: 活性污泥法、生物膜法 (一)活性污泥法 1912年英国人Clark and Cage发现对废水进行长时间曝气会产生污泥并使水质明显改善,其后Arden and Lackett进一步研究,发现由于实验容器洗不干净,瓶壁留下残渣反而使处理效果提高,从而发现活性微生物菌胶团,定名为活性污泥。活性污泥法是利用悬浮在废水中人工培养的微生物群体——活性污泥,对废水中

的有机物和某些无机物产生吸附、氧化分解而使废水得到净化,是目前较为经济、应用广泛、处理效果较好的净化废水方法。 1影响活性污泥性能的环境因素 (1)溶解 生化处理的基本要素:营养物、活性微生物、溶解氧,所以要使生化处理正常运行,供氧是重要因素。一般说,溶解氧浓度以不低于2mg/L为宜(2—4mg/L)。 (2)水温 维持在15~25摄氏度,低于5摄氏度微生物生长缓慢。 (3)营养料 细菌的化学组成实验式为C 5H 7 O 2 N,霉菌为C 10 H 17 O 6 原生动物为 C 7H 14 O 3 N,所以在培养微生物时,可按菌体的主要成分比例供给营养。 微生物赖以生活的主要外界营养为碳和氮,此外,还需要微量的钾,镁,铁,维生素等。碳源--异氧菌利用有机碳源,自氧菌利用无机 碳源。氮源--无机氮(NH 3及NH 4 +)和有机氮(尿素,氨基酸,蛋白 质等)。一般比例关系:BOD:N:P=100:5:1。好氧生物处 BOD 5 =500——1000mg/l (4)有毒物质 主要毒物有重金属离子(如锌,铜,镍,铅,铬等)和一些非金属化合物(如酚,醛,氰化物,硫化物等)。 2基本流程 典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。1916年英国建成第一座污水处理厂,下图为活

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

废水好氧生物处理工艺其它工艺水处理教案

第五章 废水好氧生物处理工艺(3)——其它工艺 第一节 氧化沟工艺 氧化沟也称氧化渠,又称循环曝气池,是活性污泥法的一种变形;是20世纪50年代荷兰的Pasveer 首先设计的;最初一般用于日处理水量在5000m 3以下的城市污水。 一、氧化沟的工作原理与特征 1、氧化沟的工艺流程 图1 氧化沟及氧化沟系统平面图 图2 以氧化沟为主的废水处理流程 2、氧化沟的特征 ① 池体狭长,(可达数十米甚至上百米);池深度较浅,一般在2米左右; ② 曝气装置多采用表面机械曝气器,竖轴、横轴曝气器都可以; ③ 进、出水装置简单; ??构造上的特征 ④ 氧化沟呈完全混合?推流式;沟内的混合液呈推流式快速流动(0.4~0.5m/s ),由于流速高,原废水很快就与沟内混合液相混合,因此氧化沟又是完全混合的; ⑤ BOD 负荷低,类似于活性污泥法的延时曝气法,处理出水水质良好; ⑥ 对水温、水质和水量的变动有较强的适应性; ⑦ 污泥产率低,剩余污泥产量少; ⑧ 污泥龄长,可达15~30d ,为传统活性污泥法的3~6倍; ⑨ 世代时间很长的细菌如硝化细菌能在反应器内得以生存,从而使氧化沟具有脱氮的功能。 二、氧化沟的几种典型的构造型式 原废水 格栅 氧 化 沟 出水

目前主要的氧化沟形式有:Carrousel氧化沟、Orbal氧化沟、交替工作式 氧化沟、曝气—沉淀一体化氧化沟等四种。 1、Carrousel 式氧化沟(图3) Carrousel 式氧化沟又称平行多渠形氧化沟;是60年代末荷兰DHV公司开 创的。采用竖轴低速表面曝气器;水深可达4~4.5m,沟内流速达0.3~0.4m/s; 混合液在沟内每5~20min循环一次;沟内混合液总量是入流废水量的30~50倍; BOD5去除率可达95%以上,脱氮率可达90%,除磷效率可达50%;应用广泛,最大规模为650000m3/d;在国内主要有昆明兰花沟污水处理厂、上海龙华肉联厂、桂林市东区废水厂等。 2、Orbal氧化沟(图4) Orbal氧化沟又称同心圆型氧化沟,其主要特点如下: ①圆形或椭圆形的沟渠,能更好地利用水流惯性,可节省能耗; ②多沟串联可减少水流短路现象; ③最外层第一沟的容积为总容积的60~70%,其中的DO接近于 零,为反硝化和磷的释放创造了条件; ④第二、三沟的容积分别为总容积的20~30%和10%,而DO则 分别为1和2mg/l; ⑤这种沟渠间的DO浓度差,有利于提高充氧效率; Orbal氧化沟在国内的主要工程实例有:①抚顺石油二厂废水处理站(28,800m3/d);②北京燕山石化公司新建废水处理厂(60000m3/d);③成都市天彭镇污水处理厂。 3、交替工作氧化沟 交替工作氧化沟由丹麦Kruger公司所开发的,有二沟和三沟式两种形式;其主要特点是其中的每一条沟均交替用做曝气池和沉淀池,而无需二沉池和污泥回流装置;但其中的曝气转刷的利用率较低,D型二沟只有40%,三沟式则提高到了58%; 图5:VR型氧化沟图6:D型氧化沟

含油工业废水的生物处理方法.doc

含油工业废水的生物处理方法4 含油工业废水的生物处理方法 摘要:工业生产过程中产生的含油工业废水,如果不及时处理会对环境造成非常严重的污染。含油类物质废水的处理方法与油类物质在水中的存在状态有密切关系,分离起来较困难。处理含油类物质的废水的方法与污水常规处理方法基本相同,主要有物理、化学、物理化学和生化处理四种。生物法具体的方法有接触氧化法、好氧处理法和厌氧处理法。 1、前言 全球经济的快速发展,使我国的经济飞速发展,人们的生活水平也得到了较大改善,同时也存在不足。例如,工业生产中环境污染的问题日益严重,工业生产含油废水的污染问题如不进行正确处理,将会影响到我国的水体复氧问题、影响到水体的自净能力,严重时,导致水体的生态系统失衡、环境受到污染,威胁人类的生活健康。为此,探讨工业生产含油废水的生物处理工艺、研究其的未来发展趋势很有必要,有助于改善我国的环境质量,进一步促进人们生活水平、促进我国经济的健康发展。 2、含油工业废水的特点及危害 含油废水主要来源于石油、石油化工、钢铁、焦化、煤气发生站、机械加工等工业部门。油类物质在废水中通常以四种状态存在。浮上油:油滴粒径大于100μm,易于从废水中分离出来。油品在废水中分散的颗粒较大,粒径大于100微米,易于从废水中分离出来。在石油污水中,这种油占水中总含油量60~80%。

分散油:油滴粒径介于10一100μm之间,悬浮于水中。 乳化油:油滴粒径小于10μm,油品在废水中分散的粒径很小,呈乳化状态,不易从废水中分离出来。溶解油:油类溶解于水中的状态。含油废水中所含的油类物质,包括天然石油、石油产品、焦油及其分馏物,以及食用动植物油和脂肪类。从对水体的污染来说,主要是石油和焦油。由于不同工业部门排出的废水中含油浓度差异很大,如炼油过程中产生废水,含油量约为150一1000mg/L,焦化废水中焦油含量约为500一800mg/L,煤气发生站排出废水中的焦油含量可达2000一3000mg/L。因此,含油废水的治理应首先利用隔油池,回收浮油或重油,处理效率为60%一80%,出水中含油量约为100一200mg/L;废水中的乳化油和分散油较难处理,故应防止或减轻乳化现象。方法之一,是在生产过程中注意减轻废水中油的乳化;其二,是在处理过程中,尽量减少用泵提升废水的次数、以免增加乳化程度。处理方法通常采用气浮法和破乳法。 含油废水如果不加以回收处理,会造成浪费;排入河流、湖泊或海湾,会污染水体,影响水生生物生存;用于农业灌溉,则会堵塞土壤空隙,妨碍农作物生长。对企业的危害。含乳化油的废水,会在工艺设施和管道设备中与废水中悬浮颗粒及氧化铁皮一起沉降,形成具有较大黏性的油泥团,堵塞管道和设备影响生产的正常进行。对环境的危害。油类物质对环境的影响是多方面的,如污染水体,在水面上形成油膜,能阻碍水体复氧作用,水体中 由于溶解氧减少,藻类光合作用受到限制,影响水生生物的正常生长,使水生动植物有油味或毒性,甚至使水体变臭,破坏水资源的利用价值;油类黏附在鱼鳃上,可使鱼窒息,浓度为

生物制药污水处理方案

重庆英特安制药有限责任公司 制药废水处理设计方案 (二)

目录 第一章………………………………………………………概况第二章……………………………………设计依据及设计范围第三章…………………………………………………设计参数第四章……………………………………………工艺方案选择第五章…………………………………………………设计说明第六章…………………………………………………工艺设计第七章………………………………………………电气及控制第八章……………………………环境保护、安全及节能措施第九章…………………………………………………应急措施第十章…………………………………………总图及建筑结构第十一章……………………………………………人员及其他第十二章…………………………………………工程投资估算第十三章………………………………………运行成本分析第十四章……………………………………………结论及建议第十五章………………………………………………售后服务

第一章概况 1.1前言 一家生产药品中间体的厂家,制药废水为高浓度的苯系物、醇类、酯类、有机酸、卤代烃等有机物和极高浓度的钠盐、钾盐等无机盐构成的混合废水,成分极为复杂。其产生的医药废水有三高,1.高COD,2.高盐,3.高磷。其中盐的成分比较复杂占20%以上,COD 在100000左右,磷3000多。处理量在100吨,再加上部分辅助用水(设备冲洗用水和职工生活用水)。该公司医药废水处理后排入园区管网进入污水处理厂,园区污水厂对水排放提出三个排放标准,1、COD指标500ppm, 2、氨氮指标为45 ,3、磷酸盐达到2级标准1PPM。设计水量:150T。 这类废水COD、磷含量高,如果直接排放将对环境造成严重污染,必须经处理后,才能达标排放。 1.2项目改造的必要性 由于生产废水COD、磷含量高, 如果不能达标排放,造成水域环境的恶化给流域内的工农业生产和居民生活带来了严重的后果,妨碍地区经济持续、稳定地发展;值得注意的是如不尽早实施污染治理工程措施,环境质量的恶化将进一步加剧。因此,对该污染源进行治理,使其达到国家排放标准后再排入水体和回收利用,具有良好的环境效益、社会效益和一定的经济效益;新建废水处理站,已成为经济发展步入良性循环所面临的重大问题,势在必行,有利于保护环境,保障人民的身体健康,促进社会全面发展。

微生物在污水生物处理中的作用_New

微生物在污水生物处理中的作用

微生物在污水生物处理中的作用 一、污水生物处理的特征 (一)、污水与污水生物处理 污水中的污染物质成分极其复杂。一般生活污水的主要成分是代谢废物和食物残渣。工业废水可能含有较多的金属、酚类、甲醛等化学物质。此外污水中还含有大量非病原微生物和少量病原菌及病毒。污水的生物处理就是以污水中的混合微生物群体作为工作主体,对污水中的各种有机污染物进行吸收、转化,同时通过扩散、吸附、凝聚、氧化分解、沉淀等作用,以去除水中的污染物。因此,污水生物处理实际上是水体自净的强化,不同的是,在去除了污水中的污染物后,必须将微生物从出水中分离出来,这种分离主要是通过微生物本身的絮凝和原生动物、轮虫等的吞食作用完成的。 (二)、生化需氧量及生物处理的应用 在污水处理中,通常是以有机物在氧化过程中所消耗的氧量这一综合性指标来表示有机污染物的浓度,如生化需氧量(BOD)和化学需氧量(COD)。生化需氧量是指在特定的温度和时间(通常这5 d、20℃下,微生物分解污水中有机物所消耗的氧量,称为BOD5。BOD5约占生化需氧总量的2/3,故采用BOD5来表示污水中可降解有机物的浓度是比较合适的。但污水中有机物并不是 都能较快降解的,在工业废水中,可以结合COD等指标表示有机污染物的浓度。只有BOD高的废水才适宜采用生物处理,COD很高但BOD不高的废

水不宜采用生物处理。对于有毒的废水,只要毒物能降解,就可用生物法处理,关键是控制毒物浓度和驯化微生物。 (三)、污水生物处理的效果 污水经过生物处理后,其中的杂质和污染物质能以某种形式(如生物絮凝作用)被分离除去,或被转为无害的物质。例如,城市生活污水经生物处理后,活性污泥法的BOD和SS(悬浮性固体)去除率都在90%左右;生物滤池法BOD去除率在80%、SS去除率在90%左右。 生物处理还能减少城市污水中的病原微生物和病毒,但浓度仍然较高,因此,出水和剩余污泥都要消毒。 二、污水生物处理方法 根据微生物对O2的需求不同,污水生物处理可分为好氧处理和厌氧处理两大类。根据构筑物的不同类型以可分为多种方法(表10-1)。 (一)、好氧生物处理 好氧生物处理是在水中有溶解氧存在的条件下,借好氧和兼性厌氧微生物(其中主要是好氧菌)的作用来进行的。在处理过程中,绝大多数的有机物都能被相应的微生物氧化分解。整个好氧分解过程可分为两个阶段。第一阶段,主要是有机物被转化为CO2、H2O、NH3等;第二阶段,主要是NH3转化为NO2和NO3。用好氧法处理污水,基本上没有臭气,处理所需的时间比较短,如果条件适宜,一般可去除BOD580~90%以上。 根据处理构筑物的不同,好氧生物处理的方法可分为活性污泥法、生物膜法、氧化塘等。其中活性污泥法和生物膜法应用最广泛。

污水处理方法-生物处理法

污水处理方法-生物处理法 环境10-2 郑兴14 摘要:研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。 关键词:污水处理生物处理活性污泥生物膜法效率 正文 一生物处理法的分类 1好氧生物处理2 活性污泥3 普通活性污泥法3 高浓度活性污泥法4 接触稳定法5氧化沟6 SBR 7生物膜法8普通生物滤池9 生物转盘10生物接触氧化法11厌氧生物处理法12 厌氧滤器工艺 好氧生物处理:利用好氧微生物(包括兼性微生物)在有氧气存在的条件下进行生物代谢以降解有机物,使其稳定、无害化的处理方法。微生物利用水中存在的有机污染物为底物进行好氧代谢,经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求,以便返回自然环境或进一步处理。污水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 活性污泥:活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微

生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。 生物膜法:生物膜法是一种处理污水的好氧生物方法,是一大类生物处理方法的统称。共同的特点是微生物附着在作为介质的滤料表面,生长成为一层由微生物构成的膜。污水与之接触后,其中的溶解性有机污染物被生物膜吸附,进而被为什么氧化分解,转化为H2O、CO2、NH3和微生物细胞质,污水得以净化。生物膜法通常无需曝气,微生物所需氧气直接来自大气。 二常用的两种方法:活性污泥和生物膜发 1影响活性污泥性能的环境因素 溶解氧——溶解氧浓度以不低于2mg/L为宜(2—4mg/L)。 水温——维持在15~25摄氏度,低于5摄氏度微生物生长缓慢。 营养料——细菌的化学组成实验式为C5H7O2N,霉菌为C10H17O6原生动物为C7H14O3N,所以在培养微生物时,可按菌体的主要成分比例供给营养。微生物赖以生活的主要外界营养为碳和氮,此外,还需要微量的钾,镁,铁,维生素等。碳源--异氧菌利用有机碳源,自氧菌利用无机碳源。 2活性污泥法工艺原理: 1)曝气池:作用:降解有机物(BOD5) 2) 二沉池:作用:泥水分离。 3) 曝气装置:作用于①充氧化②搅拌混合 4) 回流装置:作用:接种污泥

污水处理工艺流程

污水处理工艺流程 工业废水处理理论 一、工业废水(Industrial Wastewater)的含义和分类 定义:指工业企业各行业生产过程中产生和排放的废水。 包括:生产污水(包括生活污水)和生产废水两大类。 二、工业废水的分类、种类、指标 1分类 按行业的产品加工对象:冶金、造纸、纺织、印染等。 按工业废水中主要污染物分:无机废水(电镀、矿物加工),有机废水(食品加工) 按废水中污染物的主要成分:酸性、碱性、含酚等 按处理难易程度和危害性分:易处理危害性小的废水,易生物降解无明显毒性的废水,难生物降解又有毒性的废水。 2工业废水造成环境污染的种类 1)含无毒物质的有机废水和无机废水的污染; 2)含有毒物质的有机废水和无机废水的污染; 3)含有大量不溶性悬浮物废水的污染; 4)含油废水产生的污染; 5)含高浊度和高色度废水产生的污染; 6)酸性和碱性废水产生的污染; 7)含有多种污染物质废水产生的污染; 8)含有氮、磷等工业废水产生的污染。 三、工业废水处理方法概述 1 工业废水的物理处理(Physical Treatment) 定义:应用物理作用没有改变废水成分的处理方法称为物理处理法; 操作单元(Operating Units):调节(Adjust)、离心分离(CentrifugalSeparation)、除油(Oil Elimination)、过滤(Filtration)等。 废水经过物理处理过程后并没有改变污染物的化学本性,而仅使污染物和水分离。 2 工业废水的化学处理(Chemical Treatment) 定义:应用化学原理和化学作用将废水中的污染物成分转化为无害物质,使废水得到净化的方法称为化学处理。 操作单元(Operating Units):中和( Neutralization)、化学沉淀( Chemical Precipitation)、药剂氧化还原(Chemical Oxidation Reduction)、臭氧氧化(Ozone Oxidation )、电解(Electrolysis)、光氧化法(Photo- Oxidation)等。 污染物在经过化学处理过程后改变了化学本性,处理过程中总是伴随着化学变化。 3工业废水的物理化学处理(Physic-chemicalTreatment) 定义:废水中的污染物在处理过程中是通过相转移的变化而达到去除的目的的处理方法称为物理化学处理。 操作单元(Operating Units):混凝(Coagulation)、气浮(Floatation)、吸附(Adsorption)、离子交换(Ion Exchange)、电渗析(Electro-dialysis)、扩散渗析(Diffusion Dialysis)、反渗透(Reverse Osmosis)、超滤(Ultra Filtrate)等。 污染物在物化过程中可以不参与化学变化或化学反应,直接从一相转移到另一相,也可以经过化学反应后再转移。

废水生物处理工艺概况

废水生物处理工艺概况 一、生物吸附法 利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。利用胞外聚合物分离金属离子,有些细菌在生长过程中释放的蛋白质,能使溶液中可溶性的重金属离子转化为沉淀物而去除。 废水中的污染物种类繁多,不可能只用一种处理方法就能把所有的污染物质除净,所以一般往往要通过几种方法处理系统进行处理才能达到要求。对于某一种废水来说,采用哪种方法好,须根据废水的水质和水量、排放标准,处理方法的特点、成本等,通过调査,分析对比后才能决定。 二、生物化学法 通过微生物处理含重金属废水,将可溶性离子转化为不溶性化合物而去除。 三、需氧生物处理法 利用需氧微生物在有氧条件下将废水中复杂的有机物分解的方法。当废水同微生物接触后,水中的有机物进入菌体内,在菌体内通过分解代谢过程被氧化降解,产生的能量供细菌生命活动的需要;一部分氧化中间产物通过合成代谢成为新的细胞物质,使细菌得以生长繁殖。最终产物是二氧化碳、水、氨、硫酸盐和磷酸盐等,处理彻底时,还可产生硝酸盐。 四、生物絮凝法 利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。微生物絮凝剂是一类由微生物产生并分泌到细胞外,具有絮凝活性的代谢物。一般由多糖、蛋白质、DNA、纤维素、糖蛋白、聚氨基酸等高分子物质构成,分子中含有多种官能团,能使水中胶体悬浮物相互凝聚沉淀。 五、厌氧生物处理法 主要用于处理污水中的沉淀污泥,因而又称污泥消化,也用于处理高浓度的有机废水。这种方法是在厌氧细菌或兼性(好氧兼厌氧)细菌的作用下将污泥中的有机物分解,最后产生甲烷和二氧化碳等气体,这些气体是有经济价值的能源。

常见的污水生物处理方法

常见的污水生物处理方法 (1)传统活性污泥法。传统活性污泥处理法是一种最古老的工业污水处理工艺,其工业污水处理的关键组成部分为沼气池与沉淀池,主要处理部分关系框图如图2-1所示。 图2-1传统活性污泥法工艺流程图 污水中的有机物在曝气池停留的过程中,曝气池中的微生物吸附污水中的大部分有机物,并且在曝气池中被氧化成无机物,然后在沉淀池中经过沉淀后的部分活性泥需要回流到曝气池中。该工艺的优点有:有机物去除率高,污泥负荷高,池的容积小,耗电省,运行成本低。该工艺的缺点有:普通曝气池占地多,建设投资大,满足国家标准相关指标范围小、易产生污泥膨胀现象,磷和氮的去除率低。 (2)A/O法。A/O法是在传统活性污泥法的基础上发展起来的一种工业污水处理工艺,其中A代表Anoxic(缺氧的),O代表Oxic(好氧的)。A/O法是一种缺氧----好氧生物工业污水处理工艺。该工艺通过增加好氧池与缺氧池所形成的硝化----反硝化反应系统,很好的处理了污水中的氮含量,具有明显的脱氮效果。但是此硝化----反硝化反应系统需要得到很好的控制,这样就对该工艺提出了更高的管理要求,这也成为了该工艺的一大缺点。其工艺流程图如下:

(3)A2/O法。A2/O法也是在传统活性污泥法的基础上发展起来的一种工业污水处理工艺,其中A2,即A-A,前一个A代表Anaerobic(厌氧的),后一个A代表Anoxic(缺氧的);O代表(好氧的)。A2/O是一种厌氧—缺氧—好氧工业污水处理工艺。A2O法的除磷脱氮效果非常好,非常适合用于对除磷脱氮有要求的工业污水处理。因此,在对除磷脱氮有特别要求的城市工业污水处理厂,一般首选A2/O工艺。其工艺流程图如图2.3所示。 图2-3 A2/O法工艺流程图 (4)A/B法。A/B法是吸附生物降解法的简称,该工艺没有初沉淀,将曝气池分为高低负荷两段,并分别有独立的沉淀和污泥回流系统。高负荷段停留时间约为20~40min,以生物絮凝吸附作用为主,同时发生不完全氧化反应,去除BOD 达50%以上。B段与常规活性污泥法相识,负荷较低。AB法中A段效率很高,并有较强的缓冲能力。B段起到出水把关作用,处理稳定性较好。对于高浓度的工业污水处理,AB法具有很好的适用性,并有较高的节能效益。尤其在采用污泥消化和沼气利用工艺时,优势最为明显。但是,AB法污泥产量较大,A段污泥有机物含量极高,因此必须添加污泥后续稳定化处理,这样就将增加一定的投资和费用。另外,由于A段去除了较多的BOD,造成了碳源不足,难以实现脱氮工艺的要求。对于污水浓度低的场合,B段也比较困难,也难以发挥优势。 总体而言,AB法工艺较适合于污水浓度高,具有污泥消化等后续处理设施的大中规模的城市工业污水处理厂,且有明显的节能效果,而对于有脱氮要求的城市工业污水处理厂,一般不宜采用。 (5)SBR法。SBR法是歇式活性污泥法的简称,是一种按照一定的时间顺序间歇式操作的污水生物处理技术,也是一种按间歇曝气方式来运行的活性污泥工业污水处理技术,又称序批式活性污泥法。其反应机理及去除污染物的机理与传统的活性污泥法基本相同,只是运行操作方式不尽相同。SBR法与传统的水处理工艺的最大区别在于它是以时间顺序来分割流程各单元,以时间分割操作代替空间分割操作,非稳态生化反应代替生化反应,静置理想沉淀代替动态沉淀等。整个过程对于单个操作单元而言是间歇进行的,但是通过多个单元组合调度后又是连续的,在运行上实现了有序和间歇操作相结合。

生物法处理废水

生物法处理废水

————————————————————————————————作者: ————————————————————————————————日期: ?

生物法处理废水 研究污水的微生物处理就是研究微生物对废水中的有机物、营养盐类及重金属等物质去处的微生物学原理及其规律,并加以实际应用的一门科学。目前,常用于污水治理的方法可归纳为物理法、化学法、生物法。物理法常作为一种预处理的手段应用于废水处理;化学处理法是指向废水中加入化学药剂如明矾等,使其与污染物发生化学反应而生成无害物的过程,这种方法也常常作为预处理方法使用;而生物处理法是利用微生物降解代谢有机物为无机物来处理废水。通过人为的创造适于微生物生存和繁殖的环境,使之大量繁殖,以提高其氧化分解有机物的效率。它则作为末端处理装置广泛应用于各行业的废水处理中。与物理法、化学法相比,微生物处理法具有经济、高效的优点,并可实现无害化、资源化,所以长期以来始终占重要位置。根据使用微生物的种类,可分为好氧法、厌氧法和生物酶法等。 一好氧处理法 该办法是根据需好氧微生物生活的特点,提供充足的氧气,使好氧微生物大量繁殖, 通过微生物的新陈代谢活动使废水中的有机物最终氧化分解成CO2、水、硝酸盐等简单的无机物,已达到净化污水的目的。好氧处理方法包括: 活性污泥法、生物膜法 (一)活性污泥法 1912年英国人Clark andCage发现对废水进行长时间曝气会产生污泥并使水质明显改善,其后Arden and Lackett进一步研究,发现由于实验容器洗不干净,瓶壁留下残渣反而使处理效果提高,从而发现活性微生物菌胶团,定名为活性污泥。活性污泥法是利用悬浮在废水中人工培养的微生物群体——活性污泥,

相关主题
文本预览
相关文档 最新文档