当前位置:文档之家› 蛋白质药物的研究进展

蛋白质药物的研究进展

蛋白质药物的研究进展
蛋白质药物的研究进展

蛋白质药物的研究进展

生命科学系07级生物科学(3)班魏海涛

摘要:蛋白质药物是生物技术药物中重要组成部分之一。由于其成本低、成功率高、安全可靠,已成为医药产品中重要组成部分。现就蛋白质药物研究的现状做一个综述。

关键词:蛋白质合成给药系统

近年随着化学合成和生物工程技术的迅速发展,大量的多肤和蛋白质药物不断涌现[1],目前国内外此药物已批准上市的约50多种,处于早期或临床研究的也多达700多种[2]。所谓蛋白质经物,就是采用DNA重组技术或其他新生物技术生产的,在蛋白质水平对疾病进行诊断、预防和治疗的药物。

1蛋白药物的合成

1.1化学法合成蛋白质类药物

用化学法合成多肽主要依赖于固相肽自动合成仪,它是将氨基端被保护的第1个氨基酸的羧基结合到一个不溶性载体上,使之固定,然后脱掉该氨基酸的氨基端保护基,再将第2个氨基端被保护的氨基酸的羧基与固定的第1个氨基酸的游离氨基缩合形成不溶性二肽,如此反复进行,最后经化学降解和脱保护基后,从载体上脱落目的多肽。由于产率随每个氨基酸的缩合而递降,合成多肽的长度受到一定限制,一般在30~50氨基酸残基水平。目前,硫酯键介导的化学连接法已被成功地应用于较小蛋白质和蛋白质结构域的合成,其主要缺点是在连接位点需要特定的亲核性氨基酸残基。随着方法学的改进与发展,现在已经能够进行连续几个肽片断的连接,促红细胞生成素(EPO)变异体的合成就是一个成功的例子[3]。下面是用化学法合成的多肽与蛋白质。

表1化学法合成的多肽与蛋白质[4,5]

1.2化学—生物法合成蛋白质类药物

化学—生物法合成蛋白质主要是利用分子克隆与生物工程技术将化学合成的小片断经特定的介导途径连接于大片断上,例如蛋白质内含子介导法,该法既解决了生物法合成的蛋白质局限于编码氨基酸又能避免化学合成法受到片断大小限制。近年来,已成功地合成了一些多肽与蛋白质。

表2化学-生物法合成的多肽与蛋白质[6]

1.3利用(His)6标识辅助的蛋白类药物合成

最近有报道用(His)6标识辅助蛋白质合成的方法[(His)6tag-assistedprotein synthesis][5]。该方法既利用硫酯键介导又根据固相肽合成原理将2个或多个大片断缩合成多肽或蛋白质,并利用(His)6tag与Ni2+-NTA-树脂的亲和性快速纯化合成蛋白质。Bang和Kent利用该法合成了Crambin和Tetrat-rico peptide repeat(TPR)[7]。然而,利用亲和纯化柱,不可逆吸附是不可避免的,因而导致产率不够理想。

1.4蛋白质内含子介导法合成蛋白质类药物

蛋白质自剪接(protein self-splicing)是细胞内蛋白质生物合成中后转译水平上的一种加工过程,其主要元件是蛋白质内含子(intein)。自20世纪90年代蛋白质自剪接机理被阐明后[8],为利用蛋白质内含子介导蛋白质的连接(intein-mediated pro-tein ligation,IPL)奠定了基础[9]。IPL不但可以连接化学合成的肽段,也可连接2个表达的大肽片断或蛋白质,大大拓宽了蛋白类药物制备的方法学。Arnold等[10]首次成功地探索了IPL法半合成含有124个氨基酸残基的RNase A。蛋白质内含子介导的蛋白质连接法在蛋白质的合成中具有重要意义:(1)它可以直接缩合大片段肽,而且产率高,从而使合成蛋白的大小远远超过蛋白子介导的蛋白质连接[9]了化学合成法;(2)通过该方法可以对蛋白质进行模拟转录后修饰,如糖基化、磷酸化等;(3)通过该法可在蛋白质中引入非天然序列,如非天然氨基酸残基、非天然辅助因子等;(4)对大分子蛋白进行分段连接与标记如荧光、同位素、生物素等,制备高分子质量标记蛋白质,可为N M R分析蛋白质构象提供样品。

2给药系统

2.1注射类给药

2.1.1普通注射剂

临床上采用的主要剂型。对于在溶液中较稳定的多肽,通过加入适当稳定剂及控制贮存条件可制成溶液剂。某些蛋白质(特别是经纯化后)在溶液中活性丧失,可考虑制成冻干剂。

2.1.2缓释、控释类注射剂

某些半衰期短的多肽,应用缓、控释技术可以有针对性地保护其免受外部环境的破坏,减少给药次数,延缓药物释放。多肽、蛋白质类药物的剂量一般很小,但需要长期给药,这就为缓释微球制剂的应用提供了机会。将多肽、蛋白质类药物包封于微球载体中,通过皮下或肌肉给药,使药物缓慢释放,改变其体内转运的过程,延长药物在体内的作用时间(可达1~3个月),可大大减少给药次数,明显提高病人用药的顺应性。该类注射剂包括可注射的埋植剂、微球注射剂、长效脂质体。

2.2非注射给药

2.2.1鼻腔给药

鼻腔内具丰富的毛细血管和淋巴管,上皮细胞薄且间隙大,因此,通透性高、吸收较好;鼻腔蛋白酶较胃肠中少,无肝脏首过效应。低分子量的小肽极易被吸收;对分子量较大的多肽,使用适合的吸收促进剂增加吸收。但鼻腔给药也存在局部刺激性和鼻腔堵塞、对纤毛的损害、剂量不易掌握等缺点。

2.2.2口服给药

口服剂型是人们比较容易接受,也是使用比较方便的剂型。长期以来,一直认为蛋白多肽类药物在消化道中难吸收且易被破坏,难以制成口服剂型。但是,蛋白多肽类药物的吸收以及生物利用度仍是口服途径给药需要克服的问题。经过近年来的研究,对天然聚合物进行结构改造后作为药物载体,联合应用酶抑制剂,具有生物兼容性的吸收促进剂的发现等各种技术的发展都为研制口服有效的蛋白多肽类药物提供了更大的可能性。

2.2.3肺部给药

蛋白质及多肽类药物肺部给药与其他黏膜给药相比,具有以下优点:①酶的活性较低;②吸收总表面积大(100m2);③有丰富的毛细血管网;④肺泡上皮细胞层很薄,只有0.1~0.2μm;

⑤气血屏障较小,只有0.5μm左右。但是,相对于注射途径给药,蛋白质及多肽类药物肺部给药系统的生物利用度仍然很低。为了提高这类药物的生物利用度,一般采用以下方法:①吸收促进剂;②酶抑制剂;③对药物进行修饰或制成脂质体。

2.2.4眼部给药

眼部给药简单、经济,起效迅速。一般认为多肽分子量小于5000的微克级,不需要吸收促进剂,大于6000的毫克级,则需要吸收促进剂,否则将达不到有效血药浓度。

2.3其他

其他的给药方法包括直肠、结肠、阴道、植入、经皮等方式(8),为延长作用时间、避免酶的破坏或达到某些特殊的要求,还可制成微球、纳米粒、纳米乳、聚乙二醇蛋白质结合物等。

2.3.1亚微粒载药系统

载药纳米微粒可被胃肠道派伊尔氏结大量吸收,微粒粒径越小越易被吸收。选用对pH值变化敏感和疏水性材料制作纳米微粒,可使纳米微粒在吸收前被免于降解。制成纳米粒后,不但注射的生物利用度提高,并且还可以口服给药。

2.3.2微乳及复乳

乳剂中的油相可能增加膜通透性。也可能是乳剂能够增加此类药物的淋巴转运,从而提高生物利用度。国外已有环孢菌素的微乳制剂上市。通常情况下,蛋白多肽类药物分子量大,难以通过消化系统的生物膜屏障,如肝脏的首过效应强;胃酸、消化道酶等对蛋白多肽类药物有破坏、降解或聚合作用,严重影响其稳定性。

随着分子生物学的日趋成熟,蛋白多肽的合成方法越来越多,其给药方式和给药系统也越来越多样化。随着现代制剂技术及生物材料技术的发展,蛋白多肽类药物的给药必将以更安全、方便、廉价的方式满足临床需要。

参考文献

[1]Drews,J.Quovadis,bioteeh?(partl)DrugDiseov[J」.Today,2000,5:547-553.

[2]戴婕,陈广惠. 促进多肤和蛋白质类药物透皮给药技术的研究进展[J]广东药学,2004,14(3):22-24.

[3]Kochendoerfer G G,Chen S Y,Mao F,et al.Design andchemical synthesis of a homogeneous polymer-modifiederythropoiesisprotein[J].Science,2003,299:884-887.

[4]Kent S.Novel forms of chemical protein diversity-innature and in the laboratory[J].Curr Opin Biotech,2004,15:607-614.

[5]Wilken J,Kent S B H.Chemical protein synthesis[J].CurrOpin Biotech,2006,9:412-426.

[6]A yers B,Blaschke U K,Camarero J A,et al.Introduction ofunnatural amino acids into proteins using expressed pro-teinligation[J].Biopolymers,2003,51:343-354.

[7]Bang D.Kent S B H.His6 tag-assisted chemical proteinsynthesis[J].ANAS,2005,102(14):5014 -5019.

[8]Xu M Q,Southworth M W,Mersha,F B,et al.In vitroprotein splicing of purified precursor and the identification of a branched intermediated[J].Cell,2003,75:1371-1577.

[9]Xu M Q,Evans T C.Intein-mediated ligation and cycliza-tion of expressed protein[j].Methods, 2001,24:257-277.

[10]Arnold U,Hinderaker M P,Raines R T.Semisynthesis of ribonuclease Ausing intein-mediated protein ligation[J].Sci World J,2002,2:1823-1827.

蛋白质药物口服机制及方法研究

目录 摘要 (1) 1 引文 (2) 2 蛋白质药物口服吸收的机制及途径 (2) 2.1 载体转运 (2) 2.2 胞饮作用和M 细胞途径 (2) 3 蛋白质药物吸收的主要屏障 (3) 3.1酸屏障 (3) 3.2酶屏障 (3) 3.3膜屏障 (3) 4 保护口服蛋白质药物活性的方法 (4) 参考文献 (5)

蛋白质药物口服机制及方法研究摘要:由于蛋白质药物的无损伤性传输系统以及作用位点专一等特点,已成为临床治疗疾病的重要药物,但受到酸屏障、酶屏障和膜屏障的影响,限制了这类药物的口服吸收。但蛋白质药物口服给药方便、可提高患者依从性。所以目前世界上对蛋白质口服药物研究很多。本文对蛋白质药物口服的吸收机制以及影响因素,通过查阅中外文资料,寻找一种保护口服蛋白质药物活性的方法。 关键词:蛋白质类药物,纳米脂质体,口服 1.引言 生物技术药物在人类疾病的治疗中正发挥着越来越重要的作用,而生物技术药物大多数为蛋白质类药物。该类药物在胃肠道中不稳定,易被胃肠道苛刻的pH环境和丰富的酶系统破坏,同时由于其具有分子量大、对胃肠道黏膜的渗透性低的特点,导致该类药物的胃肠道用药生物利用度极低。为了避免蛋白质在胃肠道中的降解及吸收困难的问题,蛋白质类药物主要采用注射的方式给药,给患者带来了极大不便。因而开发该类药物的无损伤性传输系统已成为药剂领域的研究热点。以往人们已投入大量的精力开发蛋白质类药物的非注射给药剂型,其中口服剂型以其良好的患者依从性吸引了大批研究者的关注,但酶和pH 环境对蛋白质的降解、破坏以及蛋白质在胃肠道的低渗透性,使得蛋白质类药物的吸收障碍亦成为蛋白质类药物胃肠道给药研究的瓶颈。为此,本文在查阅近年国内、外研究论文基础上,寻找一种不破坏蛋白质活性的药物剂型。 2.蛋白质药物口服吸收的机制及途径 2.1 载体转运 小分子药物的转运以简单扩散为主,而大分子蛋白质口服给药经过胃肠道主要依靠载体转运介导通过细胞旁路转运至小肠黏膜内,如图1 所示,随后由淋巴回流进入血液循环系统。未被消化酶降解的多肽与肠表面膜基底外侧的H+ 依赖型多肽载体结合,以H+ 梯度和膜电位差为动力,经多肽载体转运进入基底膜内侧,由于H+ 与多肽是共同通过上皮细胞膜的,这一系统又称为H+ -依赖型肠多肽转运系统。 图1 治疗用多肽与蛋白质药物分布机制: 载体转运的作用超过简单扩散. 2.2 胞饮作用和M 细胞途径

重组蛋白药物项目建议书

重组蛋白药物项目 建议书 投资分析/实施方案

摘要 重组蛋白药物是指应用基因重组技术,获得连接有可以翻译成目的蛋 白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从 而表达特定的重组蛋白分子,用于弥补机体由于先天基因缺陷或后天疾病 等造成的体内相应功能蛋白的缺失。 该重组蛋白药物项目计划总投资19539.10万元,其中:固定资产 投资15082.18万元,占项目总投资的77.19%;流动资金4456.92万元,占项目总投资的22.81%。 本期项目达产年营业收入30422.00万元,总成本费用23185.79 万元,税金及附加325.37万元,利润总额7236.21万元,利税总额8559.68万元,税后净利润5427.16万元,达产年纳税总额3132.52万元;达产年投资利润率37.03%,投资利税率43.81%,投资回报率 27.78%,全部投资回收期5.10年,提供就业职位498个。

重组蛋白药物项目建议书目录 第一章项目概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设必要性分析 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章建设规划 一、产品规划 二、建设规模 第四章选址可行性研究 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

蛋白质药物的研究现状

蛋白质药物的研究现状 郭世江20123762 制药二班 摘要:蛋白质药物可分为多肽和基因工程药物、单克隆抗体和基因工程抗体、重组疫苗;本文主要着重讲解多肽和基因工程药物。与以往的小分子药物相比,蛋白质药物具有高活性、特异性强、低毒性、生物功能明确、有利于临床应用的特点。由于其成本低、成功率高、安全可靠,已成为医药产品中的重要组成部分。1982年美国Likky公司首先将重组胰岛素投放市场,标志着第一个重组蛋白质药物的诞生。一种新型生物技术候选药物,它具有高效抗肿瘤、抗病毒功能。经中国药品生物制品标准化研究中心检测证实,其抗肿瘤活性较同类产品高246.7倍,抗病毒活性高10倍以上,可用于治疗多种恶性肿瘤和病毒感染性疾病。 关键词:多肽,基因工程药物,单克隆抗体,基因工程抗体,重组疫苗,高活性,低毒性,抗肿瘤,抗病毒。 Abstract:Polypeptide and protein drugs can be divided into genetic engineering drugs, monoclonal antibodies and genetically engineered antibodies, recombinant vaccine; paper mainly focuses on explaining polypeptides and genetic engineering drugs. Compared with conventional small molecule drugs, protein drugs with high activity and specificity, low toxicity, biological features a clear, beneficial characteristics of clinical applications. Because of its low cost, high success rate, safe and reliable pharmaceutical products has become an important part. 1982 United States Likky company first recombinant insulin market, marking the birth of the first recombinant protein drugs. A new biotech drug candidates, it is an efficient anti-tumor, anti-viral function. By the China Research Center of Pharmaceutical and Biological Products Standardization tests confirmed that the anti-tumor activity of 246.7 times higher than similar products, high antiviral activity more than 10 times, can be used to treat a variety of malignancies and viral infections. Keywords:Peptides, genetic engineering drugs, monoclonal antibodies, genetically engineered antibodies, recombinant vaccine, high activity and low toxicity, anti-tumor, anti-viral 一、前言 生物技术的发展促进了大分子生物活性物质的发现,用于治疗或诊断的多肽、蛋白质、酶、激素、疫苗、细胞生长因子及单克隆抗体等药物不断出现,国外已批准上市的生物技术药物产品约90 多种,进入临床实验的生物技术药品有369种,占美国临床实验药品的1/3,正在研究发展的大分子活性物质或药物达千种以上,生物技术药物的销售增长率在1998 年到2004 年每年增长12%~15%,生物技术药物已涉足于200多种疾病,其研究多数是针对癌症治疗,以及传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、艾滋病、自体免疫性疾病、皮肤病等。早在上世纪90年代,美国FDA即已批准可以进行临床研究的基因疗法达72种,年初国家食品药品监督管理局也批准了重组人p53腺病毒注射液的生产。由于半衰期短,生物技术药物的基本剂型是冻干注射剂或注射液,需要长期频繁注射给药,面对生物大分子在稳定性及吸收等方面的困难,在研究和生产高质量的冻干粉针及溶液型注射剂的同时,发展多种途径给药的新剂型是制剂工业和研究的重要任务[1]。

氨基酸、多肽及蛋白质类药物

氨基酸、多肽及蛋白质类药物 山东药品食品职业学院张慧婧 第一部分氨基酸、多肽及蛋白质基本知识 一、蛋白质基本知识 蛋白质是一切生命的物质基础,是生物体的重要组成成分之一。无论是病毒、细菌、寄生虫等简单的低等生物,还是植物、动物等复杂的高等生物,均含有蛋白质。蛋白质占人体重量的16%~20%,约达人体固体总量的45%,肌肉、血液、毛发、韧带和内脏等都以蛋白质为主要成分的形式存在;植物体内蛋白质含量较动物偏低,但在植物细胞的原生质和种子中蛋白质含量较高,如大豆中蛋白含量约为38%,而黄豆中高达40%;微生物中蛋白质含量也很高,细菌中的蛋白质含量一般为50%~80%,干酵母中蛋白质含量也高达46.6%,病毒除少量核酸外几乎都由蛋白质组成,疯牛病的病原体——朊病毒仅由蛋白质组成。 这些不同种类的蛋白质,具有独特的生物学功能,几乎参与了所有的生命现象和生理过程,可以说一切生命现象都是蛋白质功能的体现。 1.生物催化作用 作为生命体新陈代谢的催化剂——酶,是被认识最早和研究最多的一大类蛋白质,它的特点是催化生物体内的几乎所有的化学反应。生物催化作用是蛋白质最重要的生物功能之一。正是这些酶类决定了生物的代谢类型,从而才有可能表现出不同的各种生命现象。 2.结构功能 第二大类蛋白质是结构蛋白,它们构成动、植物机体的组织和细胞。在高等动物中,纤维状胶原蛋白是结缔组织及骨骼的结构蛋白,α-角蛋白是组成毛发、羽毛、角质、皮肤的结构蛋白。丝心蛋白是蚕丝纤维和蜘蛛网的主要组成成分。膜蛋白是细胞各种生物膜的重要成分,它与带极性的脂类组成膜结构。 3.运动收缩功能 另一类蛋白质在生物的运动和收缩系统中执行重要功能。肌动蛋白和肌球蛋白是肌肉收缩系统的两种主要成分。细菌的鞭毛或纤毛蛋白同样可以驱动细胞作相应的运动。 4.运输功能 有些蛋白质具有运输功能,属于运载蛋白,它们能够结合并且运输特殊的分子。如脊椎动物红细胞中的血红蛋白和无脊椎动物的血蓝蛋白起运输氧的功能,血液中的血清蛋白运输脂肪酸,β-脂蛋白运输脂类。许多营养物质(如葡萄糖、氨基酸等)的跨膜输送需要载体蛋白的协助,细胞色素类蛋白在线粒体和叶绿体中担负传递电子的功能。 5.代谢调节功能 执行该功能的主要是激素类蛋白质,如胰岛素可以调节糖代谢。细胞对许多激素信号的响应通常由GTP结合蛋白(G蛋白)介导。 6.保护防御功能 细胞因子、补体和抗体等是参与机体免疫防御和免疫保护最为直接和最为有效的功能分子,其化学本质大都为蛋白质,免疫细胞因子、补体和抗体等目前也已用于免疫性疾病和一些非免疫性疾病的预防和治疗。

新药研发的定义及过程(精.选)

.2新药研发的定义及过程 从新化合物的发现到新药成功上市的过程通常被称为新药研发。新药研发是 一项系统的技术创新工程,其通过试验不断改进药物性能,并证明该药物的有效 性和安全性,同时经过严格的科学审查,最后取得发给的允许上市的证明文件。 从完整意义上说,新药的研发过程需要历经“药物发现”、“药物临床前研究”及 “药物临床研究”三个阶段。通常,“药物临床前研究”及“药物临床研究”这 两个研究阶段又被统称为“开发阶段”,这三个阶段的工作相互关联并且各有侧 重点。 “药物发现”环节是药物研发活动的开始,具有浓厚的科研探索性质,旨在 找到并确定针对某一疾病具有活性的先导化合物。此阶段工作内容包括作用机理 的研究、大量化合物的合成、活性研究等以寻找先导化合物为目的的研究工作, 涉及到分子生物学、微生物学、生物化学、有机化学甚至基因组学等学科。药物 发现处于新药研发早期,是一项创新程度及偶然性极高的科研活动,失败率极高, 不但需要极高的科研水平,且投入巨大,所以往往由高校或者科研院所在从事基 础研究中完成,研发经费来源主要依靠政府资助学校科研经费拨款,各级政府科 研计划资助等,以及部分制药公司的资金投入。 “药物临床前研究”是药物研发过程中最为复杂的环节,是承上启下的关键阶段,其主要目的是针对己经确定的先导化合物进行一系列非人体试验的研究, 这一阶段的工作完成后需要向政府监管部门提出临床试验申请并接受技术审评, 审评通过后方可进入下一研究阶段。此阶段工作内容包括药学研究,安全性评价、 药代动力学评价等成药性研究内容参见图一,涉及到药物化学、药剂学、药物分 析学、药理学、药物代谢动力学、药理毒理学等学科。

重组蛋白药物项目规划方案

重组蛋白药物项目规划方案 规划设计/投资方案/产业运营

报告说明— 该重组蛋白药物项目计划总投资13094.30万元,其中:固定资产投资10361.50万元,占项目总投资的79.13%;流动资金2732.80万元,占项目总投资的20.87%。 达产年营业收入27035.00万元,总成本费用21261.96万元,税金及附加249.39万元,利润总额5773.04万元,利税总额6818.71万元,税后净利润4329.78万元,达产年纳税总额2488.93万元;达产年投资利润率44.09%,投资利税率52.07%,投资回报率33.07%,全部投资回收期4.52年,提供就业职位421个。 重组蛋白药物是指应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子,用于弥补机体由于先天基因缺陷或后天疾病等造成的体内相应功能蛋白的缺失。

第一章项目概况 一、项目概况 (一)项目名称及背景 重组蛋白药物项目 (二)项目选址 xxx工业新城 场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。对周围环境不应产生污染或对周围环境污染不超过国家有关法律和现行标准的允许范围,不会引起当地居民的不满,不会造成不良的社会影响。 (三)项目用地规模 项目总用地面积38459.22平方米(折合约57.66亩)。 (四)项目用地控制指标 该工程规划建筑系数76.78%,建筑容积率1.02,建设区域绿化覆盖率7.97%,固定资产投资强度179.70万元/亩。 (五)土建工程指标

重组蛋白药物项目规划设计方案

重组蛋白药物项目规划设计方案 规划设计/投资分析/产业运营

重组蛋白药物项目规划设计方案 重组蛋白药物是指应用基因重组技术,获得连接有可以翻译成目的蛋 白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从 而表达特定的重组蛋白分子,用于弥补机体由于先天基因缺陷或后天疾病 等造成的体内相应功能蛋白的缺失。 该重组蛋白药物项目计划总投资20320.87万元,其中:固定资产投资14356.61万元,占项目总投资的70.65%;流动资金5964.26万元,占项目 总投资的29.35%。 达产年营业收入50080.00万元,总成本费用39907.27万元,税金及 附加404.31万元,利润总额10172.73万元,利税总额11980.18万元,税 后净利润7629.55万元,达产年纳税总额4350.63万元;达产年投资利润 率50.06%,投资利税率58.96%,投资回报率37.55%,全部投资回收期 4.16年,提供就业职位761个。 报告依据国家产业发展政策和有关部门的行业发展规划以及项目承办 单位的实际情况,按照项目的建设要求,对项目的实施在技术、经济、社 会和环境保护、安全生产等领域的科学性、合理性和可行性进行研究论证;本报告通过对项目进行技术化和经济化比较和分析,阐述投资项目的市场 必要性、技术可行性与经济合理性。

......

重组蛋白药物项目规划设计方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

长效重组蛋白药物的研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(2):79~82 综 述 长效重组蛋白药物的研究进展 戚 楠3  马清钧 (军事医学科学院生物工程所 北京 100850) 摘要 重组蛋白药物经静脉和皮下注射后通常半衰期较短,目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物分子量;2、利用血浆药物平衡;3、减少免疫原性。针对构建突变体、PEG 化修饰和与血清白蛋白融合三种延长重组蛋白药物半衰期的方法,及其已上市的和正在研发中的长效重组蛋白药物的特征、半衰期和免疫原性问题进行了综述。 关键词 长效重组蛋白药物 半衰期 分子量 药物平衡 免疫原性 突变体 PEG 化 血清 白蛋白 中图分类号 Q819 收稿日期:2005212223 修回日期:20052122263电子信箱:qinan_8@hot m ail .com 重组蛋白药物是生物技术药物中很重要的一类,临床上一般通过静脉和皮下注射给药。经静脉和皮下注射后常伴有蛋白质降解,导致活性降低,生物利用度低,要达到需要的血药浓度和治疗效果需要反复给药,不仅给患者带来不便,且易产生耐受性,耐药性及免疫原性等不良反应,因此临床上需要研制长效的重组蛋白药物。 目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物的分子量,减少肾小球滤过率;2、利用游离型药物和结合型药物在血浆内形成平衡的特点,缓慢释放游离型蛋白药物,使结合型药物和游离型药物的平衡向游离型药物方向移动;3、减少异源蛋白的免疫原性,从而减少其体内清除率。现将常用延长半衰期技术应用于重组蛋白药物的进展作一介绍。 1 构建突变体 通过构建突变体延长蛋白药物半衰期,常用方法有1、增加蛋白药物的糖基化程度,通过糖基化一方面在蛋白药物表面增加了侧链,增加蛋白质稳定性,阻碍了蛋白酶对蛋白药物的降解作用,另一方面使蛋白药 物分子量增大,减少了肾小球滤过;2、通过形成缓释的微沉淀物,使释放游离型药物的时间延长。其已经研制成功并上市的药物如重组人EPO 突变体(Amgen 公司的A ranes p )和重组人胰岛素的突变体(Aventis 公司的Lantus )。 重组人EP O 有3个N 糖基化位点(as p24,as p38, as p83),1个O 糖基化位点(Ser126)。重组人EP O 的O 糖基化与否与体内外活性及体内清除速率无关,而N 糖基化不完全的重组人EPO 体外活性正常,体内活性则降低到体外活性的1/500,且其体内清除率也明显加快。N 糖基化EPO 对热和pH 变化稳定,等电点P I 为 4.2~4.6,而未经糖基化EP O 等电点P I 为9.2 [1,2] 。由 此可以看出,N 糖基化对维持重组人EP O 活性和减少体内清除率有重要作用,在此基础上构建了重组人 EPO 突变体A ranesp 。A ranes p 有165个氨基酸,采用定 点突变技术,将其中5个氨基酸位点进行了改变,而与重组人EPO 不同,即A la30A sn,H is32Thr,Pro87Val, Trp88A sn 和Pro90Thr,N 连接的寡糖链从原来的3条增 加到5条 [3] ,除as p24,asp38,as p83位点外,在30和 88两个位点多了两个N 连接寡糖链,从而使分子量从 原来的30kDa 增加到50kDa,在慢性肾衰病人中半衰期 由原来的4~13h 延长到平均49h [4] (27~89h )。 Lantus 是从大肠杆菌K12株表达的重组人胰岛素

生物制药报告之重组蛋白篇

生物制药报告之重组蛋白篇 2007-03-28 19:09:12来源: 长江证券进入生物制药贴吧共0 条黑马推荐 报告要点 重组蛋白质是指利用DNA重组技术生产的蛋白质。最早的一批生物制药公司主要就是利用基因工程的技术来获得蛋白质。我们称为“采用基因工程的加工技术来生产蛋白质”。 重组蛋白药物安全性显著高于小分子药物。虽然生产条件苛刻,服用程序复杂且价格昂贵,但对某些疾病具有不可替代的治疗作用,因而具有较高的批准率。同时,重组蛋白药物的临床试验期要短于小分子药物,专利保护相对延长,给了制药公司更长的独家盈利时间。这些特点成为重组蛋白药物研发的重要动力。 基因工程重组蛋白药物是新药开发的重要发展方向之一。如今,重组蛋白药物虽然仅占全球处方药市场的7-8%,但发展非常迅速,其中排名前10位的“重磅炸弹”药占总销售额60%以上。 未来5-10年中国生物制药领域仍将以重组蛋白为主流,这与世界生物制药领域的发展趋势吻合。中国重组蛋白药物仍将以跟踪型研发、改进型研发为主,在研发品种选择上,“重磅炸弹”产品仍将是主要的研究起点,这并不完全归因于国内生物制药企业“一哄而上”,从世界范围来看,对现有“重磅炸弹”蛋白药品进行改造是一大发展趋势。 另一个值得注意的方面是生产能力的提高。不仅在中国,世界范围内生物制药行业生产能力不足已经成为重组药物发展的瓶颈。生产能力不足导致生产成本提高,在一定程度上限制了产业化,换个角度说,在生产能力方面具有优势就是壁垒。 重点公司方面,我们看好双鹭药业(行情论坛)的上下游垂直一体化的研发优势和通化东宝(行情论坛)胰岛素的市场前景,分别维持“推荐”评级。 基因重组蛋白药物——原理、市场、发展方向 一、重组蛋白药物生产原理 1

重组蛋白药物研究进展解析

转自<丁香园> 重组蛋白药物也称rDNA药物,不包括重组疫苗、单克隆抗体药物(抗体药物的市场和研发趋势另有文章详述[1]、检测用重组蛋白和生化提取的天然蛋白,也不包括仿制药物。重组蛋白药物虽然仅占全球处方药市场的7-8%左右,但是发展非常迅速,尤其到了21世纪其发展更是进入黄金时节,1989年的销售额为47亿美元,2001年为285亿美元,2004年达到347亿美元[2],2005年约410亿美元,是1989年的9倍。 相对小分子药物,重组蛋白药物生产条件苛刻、服用复杂和价格昂贵,但对于有些疾病的治疗是不可替代的。绝大部分重组蛋白药物是人体蛋白或其突变体,以弥补某些体内功能蛋白的缺陷或增加人体内蛋白功能为主要作用机理,其安全性显著大于小分子药物,因而具有较高的批准率,同时,重组蛋白药物的临床试验期要短于小 分子药物,专利保护相对延长,给制药公司更长的独家销售时间[3]。这些特点成为重组蛋白药物研发的重要动力。从重组蛋白药物市场的地理分布角度,美国和欧洲占有全球市场的81% [4]。重组蛋白药物研发公司6强(Amgen, Biogen IDEC, Johnson & Johnson,Eli Lily,Novo Nordisk和Roche全部来自美国或欧洲,占有75%市场份额[2]。从新药上市的数量和速度看,美国居首位,这与美国拥有较自由的药物价格环境 以及医生接受新药的需求和高速度有明显关系。欧洲近几年发展也较快,率先批准上市了转基因动物(羊生产的重组人抗凝血酶(美国GTC生物治疗公司[5],以及第一个重组蛋白药物的仿制药物(Biosimilar,通用名生物药,下通称重组药物仿制药[6,7],后者结束了多年来重组蛋白药物是否能有仿制药的争论。鉴于美国和欧洲实际上主 导着全球市场,分析其市场和研发趋势,也就能准确把握重组蛋白药物整体发展的脉搏。专家们对“新”重组蛋白药物的定义不尽相同,所以,不同文献中的新重组蛋白药 物统计数量可能存在较大的差别。 本文以在美国和/或欧洲新上市的重组蛋白药物注册品名为准(以下通称重组药 后者2005年销售额即达278亿美元,占销售总物,计有82个,包括15个“重磅炸弹”, 额的66%。目前的研发重点在于解决生产能力不足、更加合理的改变重组药物结 构和给药途径多样化。尽管重组药物发展面临着种种挑战,但是我们认为该市场会

临床试验分期.doc

药物临床试验 药物临床试验是指任何在人体(病人或健康志愿者)进行的药物的系统性研究,以证实或发现试验药物的临床、药理和/或其他药效学方面的作用、不良反应和/或吸收、分布、代谢及排泄,目的是确定试验药物的安全性和有效性。药物临床试验一般分为I、II、III、IV期临床试验和药物生物等效性试验以及人体生物利用度。 概述 药物临床试验是确证新药有效性和安全性必不可少的步骤。进行药物临床试验需要多种专业技术人员的合作。一个好的临床研究队伍不仅应包括医学、药学、药理学、生物学、生物统计学等专业人员,还应包括非医学专业的但富有经验的文档管理人员。为了充分发挥这些人员的作用,他们应当充分了解药物临床试验的研究过程和有关的法规、标准和原则。由于药物临床研究的方法、手段、目的的特殊性,例如,需要人类受试者的参与、药物临床试验的资料和结果需要经过药品监督管理部门的审批等,药物临床研究与一般的科学研究不同,需要满足更多的条条框框,遵循更多的原则。可以讲,一个富有临床治疗经验的好医生,未必就是一个合格的临床研究者。准备和正在参与临床研究的医生及有关人员应当首先了解开展临床研究的基本原则、理念和法规要求,才能保证在将来的工作中处于主动地位。 概括地讲,所有药物临床试验必须遵循下列三项基本原则:伦理道德原则;科学性原则;GCP与现行法律法规。 分期试验 I期临床试验 初步的临床药理学及人体安全性评价试验,为新药人体试验的起始期,又称为早期人体试验。I期临床试验包括耐受性试验和药代动力学研究,一般在健康受试者中进行。其目的是研究人体对药物的耐受程度,并通过药物代谢动力学研究,了解药物在人体内的吸收、分布、消除的规律,为制定给药方案提供依据,以便进一步进行治疗试验。 人体耐受性试验(clinical tolerance test) 是在经过详细的动物实验研究的基础上,观察人体对该药的耐受程度,也就是要找出人体对新药的最大耐受剂量及其产生的不良反应,是人体的安全性试验,为确定II期临床试验用药剂量提供重要的科学依据。 人体药代动力学研究( clinical pharmacokinetics) 是通过研究药物在人体内的吸收、分布、生物转化及排泄过程的规律,为II 期临床试验给药方案的制订提供科学的依据。人体药代动力学观察的是药物及其代谢物在人体内的含量随时间变化的动态过程,这一过程主要通过数学模型和统计学方法进行定量描述。药代动力学的基本假设是药物的药效或毒性与其所达到的浓度(如血液中的浓度)有关。 I 期临床试验一般从单剂量开始,在严格控制的条件下,给少量试验药物于少数(10?100例)经过谨慎选择和筛选出的健康志愿者(对肿瘤药物而言通常为肿瘤病人),然后仔细监测药物的血液浓度、排泄性质和任何有益反应或不良作用,以评价药物在人体内的药代动力学和耐受性。通常要求志愿者在研究期间住院,每天对其进行24h的密切监护。随着对新药的安全性了解的增加,给药的剂量可逐渐提高,并可以多剂量给药。 II期临床试验

蛋白质组学技术与药物作用新靶点研究进展

蛋白质组学技术与药物作用新靶点研究进展 [关键词]:蛋白质组学,新药发现,药物作用靶点,研究进展 药物开发是一个漫长的过程,包括以下步骤:样品制备、新化学实体的发现、靶的探测与验证、先导物选择、小分子筛选和优化以及临床前、临床试验研究等。其中药物作用靶点的探测与验证是新药发现阶段中的重点和难点,成为制约新药开发速度的瓶颈。基因组学研究表明,人体中全部药靶蛋白为1万~2万种,而在过去100年中发现的靶点,仅约有500种。因此,自1994年Wilkins等提出蛋白质组(pro- teome)和蛋白质组学(proteormcs)概念后,就迅速引起广大研究者和制药公司的兴趣和投资。近几年来,蛋白质组学技术和研究思路都有了令人鼓舞的进展,新技术的出现和发展,如多维色质联用(multidimensional liquid chromatography and tan- dem mass spectrometry, MudLC-MS/MS)、表面增强激光解吸离子化-蛋白质芯片系统(surface enhanced laser desorption ion- ization-proteinchip, SELDI-ProteinChip)、同位素亲和标签(iso- tope-coded affinity tags, ICAT)、胶上差示电泳(differential in- gel electrophoresis, DIGE)等技术,弥补了普通双向电泳上样量和检测极限的局限,自动化、特异性和重复性都得到了加强。 蛋白质组学是研究疾病发生过程中蛋白质变化、生化代谢途径改变和鉴定的有力工具。在药物开发中的作用主要表现在疾病检测、药物靶点发现、药物代谢转化、药物不良反应研究等方面。通过比较正常体与病变体、给药前后蛋白质谱的变化,蛋白质组学技术可提供疾病发生、药物作用和药物不良反应的分子机制信息。通过蛋白质组学鉴定的特异生物标记可作为排查药物的功效、抗性和优选。因此,蛋白质组学在药物研究开发中的各个方面得到了细化,如化学蛋白质组学(chemical proteomics),拓扑蛋白质组学(topological proteomics),临床蛋白质组学(clinical proteomics),毒性蛋白质组学(toxicoproteomics)和药物蛋白质组学(phamiaco- proteormcs),这些“亚蛋白质组学”技术的发展,与基因组学结合,将对药物靶标验正和药物开发引起重大变革。笔者就蛋白质组学及相关技术在药物作用靶 点的探测和验证方面的应用作一概述。 1药靶的探测 与药物作用相关的靶或蛋白质主要有3类:①疾病相关(特异性)蛋白质;②生物标记分子;③信号传导分子。蛋白质组学探测药物作用相关靶点的基本策略是蛋白质 组的比较,即健康与病变组织、细胞或体液(如血清、脊髓液、尿液和气管呼出物等)的蛋白质表达谱差异和表达量变化。蛋白质组学已成功用于肿瘤、糖尿病、艾滋病、关节炎等多种疾病相关蛋白或标记蛋白的检测,成为疾病诊断、监测、治疗的有力工具。例如丹麦人类基因组研究中心Julio Celis实验室从膀胱鳞片状细胞癌(SCC)患者的尿液中分离鉴定了一个生物标记—牛皮癣素(psoriasin),免疫组织化学分析表明该蛋白质在正常人的泌尿系统中不存在,因而成为临床检测膀胱鳞片状细胞癌的标记蛋白。 给药前后蛋白质组比较,是比较蛋白质组学的另一个重要内容,是探测新靶蛋白,深入了解药物作用机制,评价药物不良反应,更合理地设计药物的一个新途径。Chen等利用这个方法,找到了抗MCF-7人乳腺癌药物阿霉素的一个作用靶—Hsp27。 类似的方法也用于探测信号传导途径中 的药物作用靶。信号级联放大系统中信号的传递一般与蛋白质磷酸化/去磷酸化密切 相关。通过合适的预分离技术,如亚细胞蛋白质组制备或用免疫色谱分离磷酸化的亚 蛋白质组,得到与信号传导途径相关的蛋白质组以及在细胞中的定位信息,然后通过双向电泳技术分析蛋白质修饰和表达变化。利用这个方法,Stancato等在人原淋巴细胞

蛋白质药物的研究进展

蛋白质药物的研究进展 生命科学系07级生物科学(3)班魏海涛 摘要:蛋白质药物是生物技术药物中重要组成部分之一。由于其成本低、成功率高、安全可靠,已成为医药产品中重要组成部分。现就蛋白质药物研究的现状做一个综述。 关键词:蛋白质合成给药系统 近年随着化学合成和生物工程技术的迅速发展,大量的多肤和蛋白质药物不断涌现[1],目前国内外此药物已批准上市的约50多种,处于早期或临床研究的也多达700多种[2]。所谓蛋白质经物,就是采用DNA重组技术或其他新生物技术生产的,在蛋白质水平对疾病进行诊断、预防和治疗的药物。 1蛋白药物的合成 1.1化学法合成蛋白质类药物 用化学法合成多肽主要依赖于固相肽自动合成仪,它是将氨基端被保护的第1个氨基酸的羧基结合到一个不溶性载体上,使之固定,然后脱掉该氨基酸的氨基端保护基,再将第2个氨基端被保护的氨基酸的羧基与固定的第1个氨基酸的游离氨基缩合形成不溶性二肽,如此反复进行,最后经化学降解和脱保护基后,从载体上脱落目的多肽。由于产率随每个氨基酸的缩合而递降,合成多肽的长度受到一定限制,一般在30~50氨基酸残基水平。目前,硫酯键介导的化学连接法已被成功地应用于较小蛋白质和蛋白质结构域的合成,其主要缺点是在连接位点需要特定的亲核性氨基酸残基。随着方法学的改进与发展,现在已经能够进行连续几个肽片断的连接,促红细胞生成素(EPO)变异体的合成就是一个成功的例子[3]。下面是用化学法合成的多肽与蛋白质。 表1化学法合成的多肽与蛋白质[4,5]

1.2化学—生物法合成蛋白质类药物 化学—生物法合成蛋白质主要是利用分子克隆与生物工程技术将化学合成的小片断经特定的介导途径连接于大片断上,例如蛋白质内含子介导法,该法既解决了生物法合成的蛋白质局限于编码氨基酸又能避免化学合成法受到片断大小限制。近年来,已成功地合成了一些多肽与蛋白质。 表2化学-生物法合成的多肽与蛋白质[6] 1.3利用(His)6标识辅助的蛋白类药物合成 最近有报道用(His)6标识辅助蛋白质合成的方法[(His)6tag-assistedprotein synthesis][5]。该方法既利用硫酯键介导又根据固相肽合成原理将2个或多个大片断缩合成多肽或蛋白质,并利用(His)6tag与Ni2+-NTA-树脂的亲和性快速纯化合成蛋白质。Bang和Kent利用该法合成了Crambin和Tetrat-rico peptide repeat(TPR)[7]。然而,利用亲和纯化柱,不可逆吸附是不可避免的,因而导致产率不够理想。 1.4蛋白质内含子介导法合成蛋白质类药物 蛋白质自剪接(protein self-splicing)是细胞内蛋白质生物合成中后转译水平上的一种加工过程,其主要元件是蛋白质内含子(intein)。自20世纪90年代蛋白质自剪接机理被阐明后[8],为利用蛋白质内含子介导蛋白质的连接(intein-mediated pro-tein ligation,IPL)奠定了基础[9]。IPL不但可以连接化学合成的肽段,也可连接2个表达的大肽片断或蛋白质,大大拓宽了蛋白类药物制备的方法学。Arnold等[10]首次成功地探索了IPL法半合成含有124个氨基酸残基的RNase A。蛋白质内含子介导的蛋白质连接法在蛋白质的合成中具有重要意义:(1)它可以直接缩合大片段肽,而且产率高,从而使合成蛋白的大小远远超过蛋白子介导的蛋白质连接[9]了化学合成法;(2)通过该方法可以对蛋白质进行模拟转录后修饰,如糖基化、磷酸化等;(3)通过该法可在蛋白质中引入非天然序列,如非天然氨基酸残基、非天然辅助因子等;(4)对大分子蛋白进行分段连接与标记如荧光、同位素、生物素等,制备高分子质量标记蛋白质,可为N M R分析蛋白质构象提供样品。 2给药系统 2.1注射类给药

临床候选药物的研究开发

第四节临床候选药物的研究与开发 徐文方教授 13章新药设计与开发

新药从发现到上市的过程及所需要的大致时间…

一、临床前体内外药效学评价 ?有效性是新药治病救人的首要条件,也是评价新药的基础。 一个化合物首先必需有效才有可能成为药物。所以,药效评价是新药评价中重要而且必须及早完成的工作。药效的评价应该在从生物实验到临床试验的所有阶段进行。药物是否有效最终是由临床试验决定的,但未经临床前药理学评价的物质不能直接用于临床,这不但存在着该物质是否有效的问题,还涉及安全性、伦理道德与人权的问题。 ?药效学实验也是新药的药理研究的一部分。药理学通过定向筛选、普遍筛选、高通量筛选等药理筛选试验可以筛选出有效而毒性小的药物,供药效学比较研究;也可能意外的发现创新型药物、新的药物结构类型或新的作用机制。因此新药药效学评价一方面评选新药,另一方面是发现新药。

1.药效学研究的内容: ?新药的药效学研究是研究药物的生化、生理效应及机制以及剂量和效应之间的关系,主要评价拟用于临床预防、诊断、治疗作用有关的新药的药理作用的观测和作用机理的探讨。

2.药效学研究的目的 ?药效学研究的目的: –①确定新药预期用于临床防、诊、治目的药效 –②确定新药的作用强度 –③阐明新药的作用部位和机制 –④发现预期用于临床以外的广泛药理作用。 ?从而为新药临床试用时选择合适的适应症和治疗人群以及有效安全剂量和给药途径,为新药申报提供可靠的试验依据及促进新药的开发。

3.药效学评价实验设计 ?药效研究的基本要求如下: –方法应有两种以上,其中必须有整体实验或动物模型实验,所用方法和模型要能反应药理作用的本质 –指标应能反映主要药效作用的药理本质,应明确、客观、可定量 –剂量设计能反应量效关系,尽量求出ED50或有效剂量范围 –实验应用不同形式的对照(如溶剂对照、阳性药对照) –给药途径应与临床用药途径一致。

2019年中国重组蛋白药物市场现状及需求趋势分析报告

关注公众号“三个皮匠”获取最新行业资讯 更多行业研究投资报告下载请搜索https://www.doczj.com/doc/673080713.html,/hybg.html

目录 1. 生物制药:持续高景气的朝阳产业 (6) 1.1 结构复杂、壁垒更高的大分子药 (6) 1.2 长期持续高景气的制药细分领域 (7) 1.2.1 产品优化疗效致胜,全球市场高速发展 (7) 1.2.2 政策利好渗透加强,国内迎来庞大机遇 (9) 1.2.3 生物新药研发投入加大,拉动相关产业发展 (10) 2. 抗体药物:政策支持国产上市,迎来高速发展黄金期 (11) 2.1 生物药物领域的璀璨明珠 (11) 2.1.1 技术升级打造出的重磅炸弹 (11) 2.1.2 主要应用于肿瘤和免疫疾病领域 (12) 2.2 国内市场尚未充分打开,迎来高速发展黄金期 (12) 2.2.1 全球市场持续领跑,国内市场尚未充分打开 (13) 2.2.2 政策支持叠加国产上市,迎来高速发展黄金期 (13) 2.3 先发优势形成领先梯队,质量与速度构成制胜要素 (14) 2.3.1 早期布局初见曙光,领先梯队逐步形成 (14) 2.3.2 临床价值制胜关键,重点跟踪研发进度 (14) 3. 重组蛋白药物:潜在市场巨大,关注国产替代与产品升级 (16) 3.1 生物药物领域的专科王牌 (16) 3.1.1 重组蛋白药物,细分领域各具特色 (16) 3.1.2 重组人生长激素,增高领域的王牌 (17) 3.2 潜在市场巨大,关注国产替代与产品升级 (18) 3.2.1 国内市场增长放缓,水针粉针增速均有下滑 (18) 3.2.2 国产品种优势明显,金赛药业龙头地位稳固 (19) 3.2.3 治疗渗透率相对较低,潜在市场空间巨大 (20) 3.2.4 长效、水针更具优势,产品迭代升级大势所趋 (20) 4. 血液制品:行业平稳发展,渠道恢复强者恒强 (21) 4.1 生物药物领域的资源稀缺品 (21) 4.1.1 单采血浆,国内血制品企业唯一采浆途径 (21) 4.1.2 血液制品,长期供不应求的资源稀缺品 (22) 4.2 渠道恢复平稳发展,血制品持续高景气 (23) 4.2.1 全球市场稳定增长,行业集中度较高 (23) 4.2.2 历经整顿到规范,国内市场恢复平稳 (24) 4.2.3 两票制带来一过性的高库存逐渐恢复 (26) 4.3 浆站资源为王,龙头强者恒强 (27) 4.3.1 受制于严格的政策监管,国内采浆量增长空间巨大 (27) 4.3.2 千吨级别采浆量领先梯队,有望实现强者恒强 (28)

医疗保健:特宝生物 聚焦重组蛋白质及其长效修饰药物研发

证券研究报告2019年05月20日

核心观点 ?重组蛋白类药物领军企业:公司主要从事重组蛋白质及其长效修饰药物研发、生产及销售的创新型生物医药 企业,以免疫相关细胞因子药物为主要研发方向,致力于病毒性肝炎、恶性肿瘤等重大疾病和免疫治疗领域。 历时20余年,公司已开发完成派格宾、特尔立、特尔津和特尔康4个治疗性的生物技术产品,其中派格宾是我国自主研发的1类新药,打破国外巨头在长效干扰素领域的封锁。 ?派格宾上市初期,业绩快速增长期:公司2016-2018年收入分别为2.80、3.23、4.48亿元,2015-2018 年复 合增速为27.58%。其中长效干扰素派格宾2016年获批上市,打破外资垄断并实现销售额快速增长,2018年实现营收187.37百万元,同比增长115.67%,毛利率84.55%,未来将强力带动公司利润增长。 ?加大研发投入,聚焦蛋白修饰:公司具有成熟的PEG重组蛋白修饰平台,在重组蛋白质及长效修饰领域投入 大量的精力,2018年研发费用40.61百万元,同比增长114.87%,研发投入占收入比重9.06%,显著高于行业平均水平。 ?募集资金进一步推动研发:公司本次拟发行不超过4650万股,不超过发行后总股本的11.43%,募集资金 6.08亿元,主要用于蛋白质药物生产扩建和研发中心建设、新药研发项目和慢性乙肝临床治愈研究三个项目。

01 公司基本情况 02 乙肝大国,看好派格宾未来市场 03 细胞造血因子产品剖析 04 研发投入大,在研项目有序推进 05 募集资金用途 06 风险提示

01 公司介绍及财务分析

1、公司成立于1996年,是一家主要从事重组蛋白质及其长效修饰药物研发、生产及销售的创新型生物医药企业。公司以免疫相关细胞因子药物为主要研发方向,致力于病毒性肝炎、恶性肿瘤等重大疾病和免疫治疗领域。 2、历时20余年,公司已开发完成派格宾、特尔立、特尔津和特尔康4个治疗性的生物技术产品,其中派格宾是我国自主研发的1类新药,打破国外巨头在长效干扰素领域的封锁。 3、此外,公司是重组人粒细胞巨噬刺激因子、重组人粒细胞刺激因子、重组人白介素-11、重组人干扰素a2a 、重组人干扰素a2b 等国家标准物质的原料提供单位 恶性肿瘤 病毒性肝炎 重组蛋白及 长效修饰 资料来源:公司官网,招股说明书,方正证券 公司业务概况及主要产品线

国际重组蛋白药物的市场与研发趋势(

国际重组蛋白药物的市场和研发趋势分析(ZT) 作者: 吴卫星1 张毓2 王小宁3 詹启敏1 1、分子肿瘤学国家重点实验室北京100730 2、北京大学医学部免疫系北京100083 3、华南理工大学生物科学与工程学院广州510640 摘要从1982年美国批准第一个重组蛋白药物(重组人胰岛素Humulin)上市,至今已经整整四分之一个世纪了。重组蛋白药物虽仅占全球处方药市场的7-8%左右,但却是增长最快的一类。目前,共有82个重组蛋白药物用于临床,其中"重磅炸弹"15个,占总数的18%。2005年重组蛋白药物销售总额约410亿美元,"重磅炸弹"销售额合计约270亿美元,占总额的66%。2006年,美国和欧洲批准了第一个肺吸入型胰岛素上市;欧洲批准了第一个由转基因羊生产的重组人抗凝血酶用于临床,并批准了第一个重组蛋白仿制药物上市。重组蛋白药物市场已经从蛹发育为美丽的蝴蝶,但是,这只蝴蝶能够美丽多久,还受到多种因素的制约。本文以美国和欧洲重组蛋白药物市场为主,采用市场细分的方法,从重组蛋白药物种类的销售额入手,分析了市场及研发趋势,将对我们判断市场走向、提供创新思维和制定创新战略有着实际的参考价值。

关键词:重组药物市场研发趋势 作者简介:吴卫星,男,博士,合作研究教授wuweixing@https://www.doczj.com/doc/673080713.html, Market Analysis and the R&D Trend for Recombinant Protein Therapeutics WU Wei-xing1, ZHANG Yu2, WANG Xiao-ning3 ZHAN Qi-min1 1、State Key Laboratory of Molecular Oncology Beijing 100730, China 2、Department of Immunology, Peking University Health Science Center Beijing 100083 3、School of Bioscience and Bioengineering, South China University of Technology Guangzhou 510640 The first of its kind drug, recombinant human insulin (Humulin) received administrative approval in America in 1982. A quarter of a century later, recombinant protein drug represents a sector undergoing the fastest growth, accounting for 7-8% of today's market of prescription drugs. Among the 82 recombinant proteins therapeutics licensed so far, 18 are block-busters with the annual sale of 27 billion dollars in 2005, which is 66% of the total sale of 41 billion for the whole sector. Year 2006 observed several landmark events in this field, including the approval of the first inhalational insulin by US and EU, and the marketing of the first recombinant drug produced in transgenic animals and the first generic recombinant drug in EU. While it is blooming, how long will the blossom last? In this article, we dissected the market of the recombinant protein therapeutics launched in US and EU by their group sale. In addition, we reviewed the ongoing research and development efforts in

相关主题
文本预览
相关文档 最新文档