OSPF区域与汇总
- 格式:doc
- 大小:102.00 KB
- 文档页数:9
Ospf知识点总结与案例分析一、知识点总结1.OSPF报文有哪些?报文的作用?报文hello建立、维护和保持邻居关系DD 数据库摘要描述选举主从LSR 请求所需要的LSA,只携带了LSA的头部信息LSU 更新请求的LSA,携带了完整LSA信息LSACK 对收到的LSA做确认①影响邻居关系建立?OSPF头部:Router ID不冲突、区域ID一致、认证类型、数据一致Hello报文:网络掩码一致(P2P除外)、option选项、hello和dead时间一致、邻居列表有自己的router id②领接关系建立失败?双方开启协商MTU,如果从大主小,从卡在exchange,主卡在exstart,如果从小主大,主从都卡在exstart状态2.OSPF状态机有哪些?状态机的作用?down状态,开启了ospf,未收到对方的hello报文init状态,收到对方的hello报文,不包含自己的router id2-way状态,收到对方hello报文,包含自己的router id,邻居建立成功的标识Exstart状态,双方首包发送DD报文,进行主从关系选举,携带序列号、I、M、MS,进行比较选出主从Exchange,从以主的序列号进行发送DD,进行数据库摘要描述,主收到后,序列号+1,也会给从发送DD数据库摘要,从收到后要给予回复,从永远会比主多发一个回复给予确认Loading状态,进行实际的LSR、LSU、LSACK的交互FUll状态,SPF算法进行路径最优计算状态机作用,标识ospf协商的工作阶段,方便后续排错3.DR BDR 作用?DR作用,避免出现LSA的过度泛洪,减小LSDB数据库大小BDR作用,BDR是DR可靠,当DR出现故障时,BDR能够成为DR的角色DR选举:优先级高的为DR,优先级相同,router id大的优先4.OSPF的网络类型有哪些?broadcast广播P2P点到点NBMA 非广播多路访问P2MP 点到多点这些网络类型的作用是什么?区分二层链路,更好的构建拓扑信息5.OSPF防环原则和LSA头部和分类区域内1/2LSA 通过SPF怎么防环?//说明过程根据spf算法,以自己为根算出最短路径树,不出现环路区域间3/4LSA 通过ABR水平割防环?区域设计防环?3类lsa传递的路由信息,从非骨干区域接收的路由只接收不计算非骨干区域必须和骨干区域相连接3类描述的是区域间的路由信息,而4类描述的是asbr的cost 信息区域外5/7LSA 通过3/4防环。
OSPF多区域原理与配置【OSPF三种配置方法】1、network 192.168.1.0 0.0.0.255 area02、network 0.0.0.0 255.255.255.255 area03、network 192.168.1.1 0.0.0.0 area0【OSPF通信量分三类】域内通信量:LSA1、LSA2域间通信量:LSA3外部通信量:LSA4、LSA5、LSA7a)标准区域允许‘域内’‘域间’及‘外部’通信量。
LSA为(1.2.3.4.5)b)末梢区域不允许‘外部’通信量存在,允许‘域内’‘域间’通信量及一条默认路由。
LSA为(1.2.3)c)完全末梢只允许‘域内’通信量及一条默认路由。
LSA为(1.2)d)非纯末梢不允许其他区域的外部通信量,允许‘域内’‘域间’及‘本区域’外部通信量。
LSA为(1.2.3.7)e)完全非纯末梢只允许本区域内部,本区域外部通信量及一条默认路由存在,不允许区域间及其他区域外部通信量存在。
LSA为(1.2.7)表-LSA类型一、OSPF的多区域【使用OSPF协议经常遇到的问题】?在大型网络中,网络结构的变化是时常发生的,因些OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源?在OSPF网络中,随着多条路径的增加,路由表变得越来越庞大,每一次路径的改变都使路由器不得不花大量的时间和资源去重新计算路由表,路由器就会越来越低效?包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路由器CPU和内存资源彻底耗尽,从而导致路由器的崩溃【解决OSPF协议的以上问题】OSPF允许把大型区域划分成多个更易管理的小型区域。
这些小型区域可以交换路由汇总信息,而不是每一个路由的细节(1)、生成OSPF多区的原因1、生成OSPF多区域的原因改善网络的可扩展性快速收敛2、OSPF区域的容量?单个区域所支持路由器的范围大约是30~200?一些区域包含25台都有可能会显多了,而另一些区域却可以容纳多于500台的路由器【对于和区域相关的通信量定义了下面三种类型】域内通信量(Intra-AreaTraffic):指单个区域内路由器之间交换的数据包构成的通信量域间通信量(Inter-AreaTraffic):指由不同区域的路由器之间交换的数据包构成的通信量外部通信量(External-Traffic):指由OSPF区域内的路由器与OSPF区域外或另一个自治系统内的路由器之间交换的数据包构成的通信量【分层路由的优势】?降低了SPF运算的频率?减少了路由表?减小了链路状态更新报文(LSU)的流量(2)、路由器的类型内部路由器(Internal Router):指所有接口都属于同一个区域的路由器区域边界路由器(Areea BorderRouter):指连接一个或多个区域到骨干区域的路由器,并且这些路由器会作为夫域间通信量的路由网关。
Osfp 路由协议1、OSPF协议概述OSPF(Open Short Path First)开放最短路径优先协议,是一种基于链路状态的内部网协议(Interior Gateway Protocol),主要用于规模较大的网络中。
2、OSPF的特点●适应范围广:支持各种规模的网络,最多可支持数百台路由器。
●快速收敛:在网络拓扑结构发生变化后立即发送更新报文,使这一变化在自治系统中被处理。
●无环路由:根据收集到的链路状态用最短路径树算法计算路由。
●区域划分:允许自治系统内的网络被划分成区域来管理,区域间传送的路由信息被汇聚,从而减少了占用的网络资源。
●路由分级:使用4类不同的路由,按照优先顺序分别是区域间路由、区域路由、第一类路由、第二类路由。
3、OSPF的基本概念●自治系统(Autonomous System,AS):为一组路由器使用相同路由协议交换路由信息的路由器。
●路由器ID号:运行OSPF协议的路由器,每一个OSPF进程必须存在自己的Router-ID。
●OSPF邻居:OSPF路由器启动后,便会通过OSPF接口向外发送Hello报文,收到Hello报文的OSPF路由器会检查报文中所定义的参数,使双方成为邻居。
●OSPF连接:只有当OSPF路由器双方成功交换DD报文,交换LSA并达到LSDB的同步后,才能形成邻接关系。
4、OSPF路由的计算过程每台路由器根据自己周围的网络拓扑结构生成链路状态通告(State Advertisement,LSA),并通过更新报文将LSA发送给网络中的其他OSPF路由器。
每台OSPF路由器都会收到其他路由器通告的LSA,所有的LSA放在一起便组成了链路状态数据库(Link State Database,LSD)。
LSA是对路由器周围网络拓扑结构的描述,LSDB 则是对整个自治系统的网络拓扑结构的描述。
OSPF路由器将LSDB转换成一张带权的有向图,这张图便是对整个网络拓扑结构的真实反映。
OSPF区域与汇总OSPF(Open Shortest Path First)是一种用于互联网协议(IP)网络中的动态路由协议。
它使用链路状态路由算法来计算网络中最短路径,以便有效地转发数据包。
OSPF使用区域和汇总来优化网络性能和管理。
首先,让我们了解OSPF区域。
OSPF网络可以被分割成多个区域,每个区域的路由器只负责该区域内的路由计算。
这种分割减少了OSPF网络的复杂性,并提高了网络性能。
每个区域都有一个区域边界路由器(Area Border Router,ABR)用于连接不同区域。
ABR负责在区域之间转发路由信息,以便找到最佳路径。
每个区域都有一个唯一的区域号,并用32位IP地址表示。
1.减少路由器交换的路由信息数量,降低了网络开销,提高了网络性能。
2.提高网络可伸缩性。
当网络扩展时,可以简单地添加新的区域而不影响现有区域。
3.提供了更好的管理和维护。
每个区域内的路由器只需要关心本区域的路由计算,简化了网络管理和故障排除。
接下来,让我们了解OSPF的汇总功能。
在大规模的网络中,有时需要合并网段以减少路由表中的项目数量。
这可以通过汇总来实现。
OSPF提供了几种汇总方式,包括汇总路由、包含汇总和默认汇总。
1.汇总路由:将一组连续的网络合并成一个路由项目。
这样可以减少路由表中的项目数量,提高路由查询的速度。
例如,将子网192.168.1.0/24、192.168.2.0/24和192.168.3.0/24汇总成192.168.0.0/162.包含汇总:将多个网络合并到一个较长的网络范围内。
这个较长的网络范围包含所有要汇总的网络。
例如,将子网192.168.1.0/24和192.168.2.0/24包含汇总到192.168.0.0/223.默认汇总:将所有未知目的地汇总到一个默认路由上。
这样做可以减少对未知目的地的路由计算。
默认汇总通常由边界路由器执行。
例如,将所有从区域内部到外部的流量汇总到默认路由上。
R1的详细配置Router>en Router#conf t Router(config)#int lo0Router(config-if)#ip add 1.1.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int s0/0Router(config-if)#ip add 12.12.12.1 255.255.255.0 Router(config-if)#no shutRouter(config-if)#clock rate 64000 Router(config-if)#clock rate 64000S0/0 S0/0 S0/1 S0/1 S0/0 S0/012.12..12.0/24 23.23.23.0/2434.34.34.0/24R1R2R4 R31 2 2 3 3 4 Area 0Area 1Lo0:2.2.2.2/24Lo0:3.3.3.3/24R4:Lo0:4.4.4.4/24 Lo10:10.1.0.4/24 Lo11:10.1.1.4/24 Lo12:10.1.2.4/24 Lo13:10.1.3.4/24R1:Lo0:1.1.1.1/24 Lo10:172.16.0.1/24 Lo11:172.16.1.1/24 Lo12:172.16.2.1/24 Lo13:172.16.3.1/24Router(config)#int lo1Router(config-if)#ip add 172.16.1.1 255.255.255.0 Router(config-if)#exitRouter(config)#int lo2Router(config-if)#ip add 172.16.2.1 255.255.255.0 Router(config-if)#exitRouter(config)#int lo3Router(config-if)#ip add 172.16.3.1 255.255.255.0 Router(config-if)#exitRouter(config)#int lo4Router(config-if)#ip add 172.16.4.1 255.255.255.0 Router(config-if)#exitRouter#conf tRouter(config)#router ospf 1Router(config-router)#exitRouter(config)#router ripRouter(config-router)#veRouter(config-router)#version 2Router(config-router)#no auRouter(config-router)#no auto-summaryRouter(config-router)#net 12.0.0.0Router(config-router)#net 172.16.0.0Router(config-router)#endR2的详细配置Router>enRouter#conf tRouter(config)#int lo0Router(config-if)#ip add 2.2.2.2 255.255.255.0 Router(config-if)#exitRouter(config)#int s0/0Router(config-if)#ip add 12.12.12.2 255.255.255.0 Router(config-if)#no shutRouter(config-if)#exitRouter(config)#int s0/1Router(config-if)#ip add 23.23.23.1 255.255.255.0 Router(config-if)#no shutRouter(config-if)#clock rate 64000Router(config-if)#exitRouter(config)#router ripRouter(config-router)#no auto-summaryRouter(config-router)#net 12.0.0.0Router(config-router)#exitRouter(config)#router ospf 1Router(config-router)#net 23.23.23.0 0.0.0.255 a 0Router(config-router)#net 2.2.2.0 0.0.0.255 a 0Router(config-router)#redistribute rip subnets metric-type 1 Router(config-router)#summary-address 172.16.0.0 255.255.252.0R3的详细配置Router>enRouter(config)#int lo0Router(config-if)#ip add 3.3.3.3 255.255.255.0Router(config-if)#int s0/0Router(config-if)#ip add 23.23.23.2 255.255.255.0Router(config-if)#no shutRouter(config-if)#int s 0/1Router(config-if)#ip add 34.34.34.1 255.255.255.0Router(config-if)#no shutRouter(config-if)#clock rate 64000Router(config-if)#exitRouter(config)#router ospf 1Router(config-router)#net 23.23.23.0 0.0.0.255 a 0 Router(config-router)#net 3.3.3.0 0.0.0.255 a 0 Router(config-router)#net 34.34.34.0 0.0.0.255 a 1 Router(config-router)#area 1 range 10.1.0.0 255.255.252.0 Router(config-router)#endR4的详细配置Router>enRouter#conf tRouter(config)#int lo0Router(config-if)#ip add 4.4.4.4 255.255.255.0Router(config-if)#exitRouter(config)#int s0/0Router(config-if)#ip add 34.34.34.2 255.255.255.0 Router(config-if)#no shutRouter(config-if)#clock rate 64000Router(config-if)#endRouter#Router#conf tRouter(config)#int lo1Router(config-if)#ip add 10.1.1.1 255.255.255.0Router(config-if)#exitRouter(config)#int lo2Router(config-if)#ip add 10.1.2.1 255.255.255.0Router(config-if)#exitRouter(config)#int lo3Router(config-if)#ip add 10.1.3.1 255.255.255.0Router(config-if)#exitRouter(config)#int lo4Router(config-if)#ip add 10.1.4.1 255.255.255.0Router(config-if)#exitRouter(config)#router ospf 1Router(config-router)#net 34.34.34.0 0.0.0.255 a 1Router(config-router)#net 4.4.4.0 0.0.0.255 a 1Router(config-router)#net 10.1.0.0 0.0.3.255 a 1Router(config-router)#end各个路由器的基本配置完成使用show ip rou 和show ip ospf database查看各路由器如下R1的R2的R3的R4的. .。
OSPF的区域划分随着网络规模日益扩大,当一个大型网络中的路由器都运行OSPF 路由协议时,路由器数量的增多会导致LSDB 非常庞大,占用大量的存储空间,并使得运行SPF 算法的复杂度增加,导致CPU 负担很重。
在网络规模增大之后,拓扑结构发生变化的概率也增大,网络会经常处于“动荡”之中,造成网络中会有大量的OSPF 协议报文在传递,降低了网络的带宽利用率。
更为严重的是,每一次变化都会导致网络中所有的路由器重新进行路由计算。
OSPF 协议通过将自治系统划分成不同的区域(Area)来解决上述问题。
区域是从逻辑上将路由器划分为不同的组,每个组用区域号(Area ID)来标识。
区域的边界是路由器,而不是链路。
一个网段(链路)只能属于一个区域,或者说每个运行OSPF 的接口必须指明属于哪一个区域。
如图4-1 所示。
图1 OSPF区域划分划分区域后,可以在区域边界路由器上进行路由聚合,减少通告到其他区域的LSA 数量。
另外,还可以最小化由于网络拓扑变化带来的影响。
1. OSPF区域类型2. LSA(链路状态通告)类型3. 区域类型与LSA 类型关系4. OSPF 的路径类型●区域内路径(Intra-area Path):指Router 所在的区域内就可以到达目的地的Path●区域间路径(Inter-area Path):指目的地在其它区域但仍在OSPF AS内的Path●类型 1 的外部路径(type 1 external Path,E1):指目的地在OSPF AS 外部的Path●类型 2 的外部路径(Type 2 external Path,E2):指目的地在OSPF AS 外部的Path,但在计算外部路由的度量时不再计入到达ASBR Router 的Path 代价(OSPF 外部路由在默认条件下是类型 2 的外部Path,即E2 Path)●。
OSPF协议总结OSPF:开发式最短路径优先协议OSPF是⼀个动态路由选择协议:O是OPEN、开放的路由选择协议,⽀持华为、思科、H3C;SPF是他的算法最短路径(树)优先算法,根据接⼝带宽计算。
OSPF是IGP内部⽹关协议的⼀种,基于LS链路状态算法,与其相近的协议有ISIS。
OSPF企业⼴泛使⽤,ISIS运营商使⽤较多。
1.适⽤范围:IGP⽆类别链路状态型IGP协议: 由于其基于拓扑进⾏更新收敛,故更新量会随着拓扑的变⼤⽽成指数上升故OSPF协议为了能在⼤、中型⽹络中运⾏,需要结构化的部署----合理的区域划分、良好的地址规划正常等开销负载均衡2.协议算法特点:链路状态型路由协议,SPF算法3.协议是否传递⽹络掩码:传递⽹络掩码4.协议封装:基于IP协议封装(跨层封装,三层),协议号89⼀ . OSPF的数据包 -- 5种(1) hello包 -- 组播收发,⽤于邻居、邻接关系的发现、建⽴、周期保活周期性发送:之所以周期发送是由于触发更新,只是为了保活,维持我们之间的通信,占⽤资源不⼤周期时间位10s或者30s;不同的⽹络类型发送周期不同(只与⽹络类型有关),链路带宽⾼时10s⼀个,链路带宽低时30s⼀个死亡时间:10s更新则为40s;30s更新为120s⽬的:建⽴并维持OSPF 邻居关系邻居关系建⽴之后重当保活包功能(2) DBD -- 数据库描述包-- 本地LSDB(链路状态数据库)⽬录功能主从选举:为什么选举主从:由主来控制LSA后期传问题数据库的描述包:给⾃⼰的LSA数据写⼀个⽬录主从选举完成后,发送携带LSA头部信息的DBD包(3) LSR---链路状态请求 -- ⽤于询问对端本地未知的LSA信息链路状态请求按照DBD中报⽂的未知LSA头部进⾏请(4) LSU-- 链路状态更新 -- ⽤于共享具体的每⼀条LSA信息(5) LSack 链路状态确认 -- 确认包⼆. OSPF的状态机 -- 两台OSPF路由器间不同关系的阶段down:关闭状态停留这⼀状态原因:条件不匹配ospf邻居还没有建⽴:在建⽴过程中出现问题,邻居没有建⽴成功;⽐如40sHello包未回应,退回down状态,不再10s保活,则是在 down状态下以Poll时间发送Hello包init:初始化状态⼀旦开始发送hello后则进⼊此状态变为此状态后,等待对⽅恢复的⼀个Hello包,其中要是携带⾃⼰的router-id ,则进⼊下⼀状态Attempt:尝试连接的状态(只会出现在NBMA⽹络中)Two-way:双向通信状态(邻居状态建⽴完成)停留这⼀状态原因:选不出DR/BDR接收到包含⾃⼰router-id 的对⽅hello报⽂点对点⽹络:不需要选取,可以继续进⼊下⼀状态MA⽹络中会选举DR(指定路由器) BDR(备份指定路由器);⼀个区域只能有⼀个DR和⼀个BDR选举DR(接⼝概念)⽐较优先级(范围:0-255,默认优先级为1 ,越⼤越优)⽐较各⾃的router-id,越⼤越优等待时间与死亡时间⼀样多,40s之内选举,没有⽐⾃⼰⼤的则认为⾃⼰为D先选出⼀个BDR,看40s之内是否还有⽐⾃⼰优的,没有则升级为DRExstart:预启动使⽤不携带数据库⽬录信息的DBD包,进⾏主从关系的选举,RID数值⼤为主,优先进⼊下⼀个状态机Exchange:准交换主从选举完成,则发送携带LSA头部信息的DBD(⽬录),进⼊预交换状态,会发送LSR数据包。
OSPF(Open Shortest Path First开放式最短路径优先)是一个内部网关协议(Interio r Gateway Protocol,简称IGP),用于在单一自治系统(autonomous system,AS)内决策路由。
与RIP相对,OSPF是链路状态路由协议,而RIP是距离矢量路由协议。
一。
OSPF起源I E T F为了满足建造越来越大基于I P网络的需要,形成了一个工作组,专门用于开发开放式的、链路状态路由协议,以便用在大型、异构的I P网络中。
新的路由协议以已经取得一些成功的一系列私人的、和生产商相关的、最短路径优先( S P F )路由协议为基础,S P F在市场上广泛使用。
包括O S P F在内,所有的S P F路由协议基于一个数学算法—D i j k s t r a算法。
这个算法能使路由选择基于链路-状态,而不是距离向量。
O S P F由I E T F在2 0世纪8 0年代末期开发,O S P F是S P F类路由协议中的开放式版本。
最初的O S P F规范体现在RFC 11 3 1中。
这个第1版( O S P F版本1 )很快被进行了重大改进的版本所代替,这个新版本体现在RFC 1247文档中。
RFC 1247 OSPF称为O S P F版本2是为了明确指出其在稳定性和功能性方面的实质性改进。
这个O S P F版本有许多更新文档,每一个更新都是对开放标准的精心改进。
接下来的一些规范出现在RFC 1583、2 1 7 8和2 3 2 8中。
O S P F版本2的最新版体现在RFC 2328中。
最新版只会和由RFC 2138、1 5 8 3和1 2 4 7所规范的版本进行互操作。
链路是路由器接口的另一种说法,因此OSPF也称为接口状态路由协议。
OSPF 通过路由器之间通告网络接口的状态来建立链路状态数据库,生成最短路径树,每个OSPF路由器使用这些最短路径构造路由表。
OSPF 手工汇总:区域间汇总、外部路由汇总1.实验目的通过本实验可以掌握:(1)路由汇总的目的(2)区域间路由汇总(3)外部自治系统路由汇总2.实验拓扑本实验的拓扑结构如图7-3 所示。
图7-3 OSPF 手工汇总路由器R1、R2 和R3 之间运行OSPF,路由器R3 和R4 之间运行RIPv2,路由器R1 上的四个环回接口是为在路由器R2 上做区域间路由汇总准备的,路由器R4 上的四个环回接口是为在路由器R3 上做外部路由汇总准备的。
由于路由器R3 是边界路由器,所以要完成双向重分布。
3.实验步骤(1)步骤1:配置路由器R1R1(config)#router ospf 1R1(config-router)#router-id 1.1.1.1R1(config-router)#network 1.1.4.0 0.0.0.255 area 1R1(config-router)#network 1.1.5.0 0.0.0.255 area 1R1(config-router)#network 1.1.6.0 0.0.0.255 area 1R1(config-router)#network 1.1.7.0 0.0.0.255 area 1R1(config-router)#network 192.168.12.0 0.0.0.255 area 1(2)步骤2:配置路由器R2R2(config)#router ospf 1R2(config-router)#router-id 2.2.2.2R2(config-router)#network 192.168.12.0 0.0.0.255 area 1R2(config-router)#network 192.168.23.0 0.0.0.255 area 0R2(config-router)#network 2.2.2.0 0.0.0.255 area 0R2(config-router)#area 1 range 1.1.4.0 255.255.252.0 //配置区域间路由汇总(3)步骤3:配置路由器R3R3(config)#router ospf 1R3(config-router)#router-id 3.3.3.3R3(config-router)#network 3.3.3.0 0.0.0.255 area 0R3(config-router)#network 192.168.23.0 0.0.0.255 area 0R3(config-router)#summary-address 4.4.0.0 255.255.252.0//配置外部自治系统路由汇总R3(config-router)#redistribute rip subnets //将RIP 路由重分布到OSPF 中R3(config)#router ripR3(config-router)#version 2R3(config-router)#no auto-summaryR3(config-router)#network 192.168.34.0R3(config-router)#redistribute ospf 1 metric 2 //将OSPF 路由重分布到RIP 中(4)步骤4:配置路由器R4R4(config)#router ripR4(config-router)#version 2R4(config-router)#no auto-summaryR4(config-router)#network 4.0.0.0R4(config-router)#network 192.168.34.0【技术要点】(1)区域间路由汇总必须在ABR 上完成;(2)外部路由汇总必须在ASBR 上完成。
特性1.骨干区域:起到了让其他非骨干区域能够知道别的区域的网络情况的作用。
也就是说,所有非骨干区域的路由信息都要流经骨干区域。
2.虚拟链路:是一个通过非骨干区域到骨干区域的链路。
使用目的:连接一个非骨干区域到一个骨干区域通过一个非骨干区域通过一个非骨干区,连接分开的两个骨干区部分规则:必须在两个ABR之间进行配置虚链路通过的区域作为传输区域,必须有完整的路由信息中间传输区不能是存根区。
编辑本段|回到顶部操作,基本概念1. O SPF的分层拓扑的优势:1)降低SPF的计算频率2)减小路由表3)降低LSU更新的开销2. OSPF路由器的类型1)内部路由器:所有接口都在同一AREA内的路由器2)主干路由器AREA0:至少有一个接口连接到AREA0的路由器。
3)区域边界路由器ABR:连接多个区域的路由器4)自治系统边界路由器ASBR:至少有一个到外部网络的接口的路由器。
3. OSPF的区域类型1)标准区域:能接收链路状态更新和汇总。
2)主干区域:AREA0,其他区域必须连接到该区域,以交换路由信息。
3)末节区域:不接收TYPE 5的链路状态更新。
4)完全末节区域:不接收TYPE 3 4 5的链路状态更新5)次末节区域:接收TYPE 7的链路状态更新,可以在ABR对TYPE 7的LSA进行汇总。
4. OSPF的LSA类型1) TYPE 1:各路由器为他所属的区域生成,描述该区域的链路状态,只在特定AREA内进行FLOODING。
2) TYPE 2:在多路访问网络中,由DR生成。
3) TYPE 3:由ABR生成,描述ABR和某个本地区域的内部路由器之间的链路,这些条目,通过AREA0泛洪到外部的ABR。
4) TYPE 4:由ABR生成,描述到ASBR的可达性。
5) TYPE 5:由ASBR生成,描述AS外部目的地的路由,被FLOODING到除“末节区域”以外的整个AS内。
E1:使用“内部开销+外部开销” E2(默认):使用“外部开销”6) TYPE 6:MOSPF,路由器用他们的“链路状态数据库”为转发“组播数据流”建立“组播分发树”,来增强OSPF的功能。
OSPF的区域结构意义在于:1)减小SPF算法的运算量,使SPF运算只涉及Area内的链路,减少CPU和内存的负荷。
2)缩小LSA的洪泛区域,有效利用带宽3)在边界易于做流量控制,比如汇总和过滤。
OSPF要求所有普通区域(Regular Area)都要与骨干区域(Transmit Area)直连,也就意味着Area间的流量都必须经过Area 0,这样一方面便于进行流量控制,另一方面也是出于避免环路的考虑。
因为虽然OSPF是一种链路状态路由协议,但是仍然运用距离矢量的算法来查找Area间路由,Area 0 内的路由器收到ABR通告的一条网络汇总LSA,并不进行SPF运算,只是简单的加上自己到ABR的路径开销,就记录进路由表,这是典型的Distance Vectors行为。
由此可以总结出这样的观点:OSPF路由器对自己所属Area的了解是“链路和拓扑”,而对其他Area的了解仅仅是“可达的路由”,ABR比较特殊,同属两个Area,所以对两个Area的拓扑都了解,但是对其他Area也是仅仅知道路由而已。
OSPF有两种汇总:Area间路由汇总(Area summary)在ABR执行:area 1 range address mask 外部路由汇总(AS summary)(指重发布进OSPF的路由)在ASBR上执行:summary-address address mask。
OSPF的汇总一定要精确,如果有交叉,比如Area间的路由汇总包含了外部路由的明细条目,这样会出现LSA 5通告的转发地址不可达的现象。
而另外要注意的是,当一个Area存在冗余的ABR,ABR之间应该有直连链路,并将该链路通告到骨干区域中使其得到充分利用。
Virtual-link是在网络设计有误或出现故障的情况下,Area 0本身出现分离或者有区域没和Area 0直连,通过Virtual-link来进行补救,再就是出于冗余链路的考虑使用。
配置的前提是必须在共享一个Area 的两台Router之间建立,且至少有一台连接着Area 0 。
Virtual-Link的Cost等于其依托的物理链路实际Cost的总和,如果存在多条链路则选Cost最小的。
注意如果Area 0 配置认证,Virtual-link也要配,否则会Down掉,因为Virtual-link逻辑上是Area0 的一部分。
OSPF的特殊区域:1.末节区域(stub area):只接收OSPF内部的路由更新,而不接收任何的lsa-5信息。
2.完全末节(stub area totally):只接收本区域内的路由更新,不接收LSA-3,LSA-4和LSA-5的信息(除了一个特例,就是用来通告缺省路由的那种类型3的LSA)3.次末节区域(nssa):他是为了安全的考虑而出现的,他会把所有的从外部过来的LSA-5的信息转换为LSA-7的信息,而不把OSPF内的信息,向外部传递,只传递一条汇总信息,这样外部的用户就看不到详细的路由表项,只是一条汇总信息,增强了网络内部的安全性。
OSPF末节区域和完全末节区域的特点:1.stub 和totally stub必须是单独的ABR所连接的2.如果你把某一个区域配置成这个类型,那么区域中的所有设备都是这个类型。
3.ASBR不能在这些区域里4.这些区域不能是主干区域05.虚链路不能穿越这些区域OSPF的末节区域、完全末节区域末节区域不会接收LSA-5的信息,他最终会产生一条默认的路由到达外部的地方去。
完全末节区域:R2(config-router)#area 200 stub no-summary(不允许LSA-3)完全末节区域不接收任何本区域外的信息,他将会产生一条默认路由到达所有的区域外。
OSPF完全末节区域的特点:1.不接收外部信息2.不接收汇总信息3.保持路由表的最少条目4.所有的区域中的路由器都被配置成完全末节5.ABR必须被配置为完全末节模式6.这个是cisco独有的次末节区域:NSSA区域=次末节区域他是为了安全的考虑而出现的,他会把所有的从外部过来的LSA-5的信息转换为LSA-7的信息,而不把OSPF内的不信息,向外部传递,只传递一条汇总信息,这样外部的用户就看不到详细的路由表项,只是一条汇总信息,增强了网络内部的安全性。
area 100 nssa no-redistribution default-information-originateno-summary区域100 为NSSA区域,不允许传递再发布信息和汇总信息,只能够产生一条默认路由过去版权声明:原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处、作者信息和本声明。
否则将追究法律责任。
/77728/38558OSPF实验6:OSPF汇总实验等级:Professional实验拓扑:实验说明:在OSPF骨干区域当中,一个区域的所有地址都会被通告进来。
但是如果某个子网忽好忽坏不稳定,那么在它每次改变状态的时候,都会引起LSA在整个网络中泛洪。
为了解决这个问题,我们可以对网络地址进行汇总。
Cisco路由器的汇总有两种类型:区域汇总和外部路由汇总。
区域汇总就是区域之间的地址汇总,一般配置在ABR上;外部路由汇总就是一组外部路由通过重发布进入OSPF中,将这些外部路由进行汇总。
一般配置在ASBR上。
实验基本配置:R1:interface Loopback0ip address 1.1.1.1 255.255.255.0ip ospf network point-to-point!interface Serial1/0ip address 10.1.1.1 255.255.255.0serial restart-delay 0!router ospf 10router-id 1.1.1.1log-adjacency-changesnetwork 1.1.1.0 0.0.0.255 area 0network 10.1.1.0 0.0.0.255 area 0R2:interface Loopback0ip address 2.2.2.2 255.255.255.0!interface Loopback1ip address 12.1.0.1 255.255.255.0 secondaryip address 12.2.0.1 255.255.255.0 secondaryip address 12.3.0.1 255.255.255.0 secondaryip address 12.4.0.1 255.255.255.0 secondaryip address 12.5.0.1 255.255.255.0 secondaryip address 12.6.0.1 255.255.255.0 secondaryip address 12.7.0.1 255.255.255.0 secondaryip address 12.0.0.1 255.255.255.0!interface Serial1/0ip address 10.1.1.2 255.255.255.0serial restart-delay 0!interface Serial1/1ip address 11.1.1.1 255.255.255.0serial restart-delay 0!router ospf 10router-id 2.2.2.2log-adjacency-changesarea 1 virtual-link 3.3.3.3network 10.1.1.0 0.0.0.255 area 0network 11.1.1.0 0.0.0.255 area 1R3:interface Loopback0ip address 3.3.3.3 255.255.255.0!interface Loopback1ip address 13.1.0.1 255.255.255.0 secondary ip address 13.2.0.1 255.255.255.0 secondary ip address 13.3.0.1 255.255.255.0 secondary ip address 13.4.0.1 255.255.255.0 secondary ip address 13.5.0.1 255.255.255.0 secondary ip address 13.6.0.1 255.255.255.0 secondary ip address 13.7.0.1 255.255.255.0 secondary ip address 13.0.0.1 255.255.255.0!!interface Serial1/0ip address 11.1.1.2 255.255.255.0serial restart-delay 0!router ospf 10router-id 3.3.3.3log-adjacency-changesarea 1 virtual-link 2.2.2.2network 3.3.3.0 0.0.0.255 area 2network 11.1.1.0 0.0.0.255 area 1network 13.0.0.0 0.0.255.255 area 2 network 13.1.0.0 0.0.255.255 area 2 network 13.2.0.0 0.0.255.255 area 2 network 13.3.0.0 0.0.255.255 area 2 network 13.4.0.0 0.0.255.255 area 2 network 13.5.0.0 0.0.255.255 area 2 network 13.6.0.0 0.0.255.255 area 2 network 13.7.0.0 0.0.255.255 area 21.OSPF区域路由汇总:我们在R1上查看路由表R1#sho ip rouCodes: C - connected, S - static, R - RIP, M - mobile, B - BGPD - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter areaN1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2E1 - OSPF external type 1, E2 - OSPF external type 2i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2ia - IS-IS inter area, * - candidate default, U - per-user static routeo - ODR, P - periodic downloaded static routeGateway of last resort is not set1.0.0.0/24 is subnetted, 1 subnetsC 1.1.1.0 is directly connected, Loopback03.0.0.0/32 is subnetted, 1 subnetsO IA 3.3.3.3 [110/129] via 10.1.1.2, 00:02:51, Serial1/010.0.0.0/24 is subnetted, 1 subnetsC 10.1.1.0 is directly connected, Serial1/011.0.0.0/24 is subnetted, 1 subnetsO IA 11.1.1.0 [110/128] via 10.1.1.2, 00:02:51, Serial1/013.0.0.0/8 is variably subnetted, 8 subnets, 2 masksO IA 13.5.0.0/24 [110/129] via 10.1.1.2, 00:02:40, Serial1/0O IA 13.4.0.0/24 [110/129] via 10.1.1.2, 00:02:40, Serial1/0O IA 13.7.0.0/24 [110/129] via 10.1.1.2, 00:02:30, Serial1/0O IA 13.6.0.0/24 [110/129] via 10.1.1.2, 00:02:41, Serial1/0O IA 13.1.0.0/24 [110/129] via 10.1.1.2, 00:02:51, Serial1/0O IA 13.0.0.1/32 [110/129] via 10.1.1.2, 00:02:52, Serial1/0O IA 13.3.0.0/24 [110/129] via 10.1.1.2, 00:02:41, Serial1/0O IA 13.2.0.0/24 [110/129] via 10.1.1.2, 00:02:51, Serial1/0路由表中粗体的内容就是我们要进行汇总的路由。