当前位置:文档之家› MOPA技术放大

MOPA技术放大

MOPA技术放大
MOPA技术放大

MOPA放大技术

引言

1917年,Einstein在《关于辐射的量子理论》一文中首次提出了受激辐射的概念,他认为:在物质与辐射场相互作用中,构成物质的分子或原子可以在光子激励下产生新光子,这就为激光(受激辐射光放大)概念的提出打下了最初的理论基础。但是,激光器的研究真正开始于1958年科学家Schawlow和Townes 提出的利用尺度远大于波长的开放式光学谐振腔实现激光器的思想和Bloembergen提出的利用光泵浦三能级原子系统实现原子数反转的思想。之后,全球的研究小组开始了一场研制世界上第一台激光器的激烈竞赛。很快,在1960年,世界上第一台激光器诞生于美国California州休斯实验室,Maiman等科学家成功进行了红宝石全固态激光器的实验演示,从此开启了激光器研究的大门。

光纤激光器的研究起源于1961年,当时Snitzer在纤芯为300μm的掺钕玻璃波导中发现了激光辐射现象。随后,Snitzer等人又发表了有关共掺杂光纤中光放大的论文,分别提出了光纤激光器和光纤放大器的构想。

1966年,高馄和Hockham首次讨论了研制低损耗光纤的可能性,为现代光纤通信奠定了基础,也为通信波段光纤激光光源的研究提出了迫切的要求。

大约到了1975年左右,随着低损耗光纤的研制成功和作为光纤激光器泵浦源的半导体激光器的不断实用化,光纤激光器和光纤通信的研究开始进入了快速发展时期。

1985年,英国Southampton大学的Poole等人利用化学气相沉积法制作出了第一根低损耗的单模掺铒光纤(Erbium-doped Fiber, EDF)并制作了掺铒光纤激光器,标志着稀土离子掺杂技术走向成熟,也为各种掺杂增益光纤的制作奠定了基础。

1987年,英国Southampton大学的Mears等人和美国Bell实验室的Desurvire等人先后对掺铒光纤放大器进行了研究并验证了其可行性,实现了光纤通信线路中的光放大,极大推动了光纤通信向更长中继传输距离发展。

随后的二十多年里,光纤激光技术得到了迅速的发展,已不仅仅只是用于光纤通信。随着不同掺杂稀土离子光纤激光器被提出,如:掺铒、钕、镱、铥、铒/镱共掺、铥/钬共掺等等,其应用范围已经拓展到传感、医疗、工业加工以及军事国防等领域,尤其是高功率光纤激光器的提出,可谓是光纤激光器史上的一次技术革命。

1988年,美国Massachusetts州Polaroid公司首次提出了双包层光纤设计思想,泵浦光进入包层中传输,但是圆形内包层吸收效率很低。

1994年,Pask等人首次实现了包层泵浦,并制作了包层泵浦掺镜光纤激光器,获得500mW功率输出,中心波长为1040nm,使得在光纤中实现高功率激射成为可能。

1999年,Dominic等人制作了掺镱双包层光纤激光器,功率达到了110W。

2002年,Limpert等人报道了镱/钕共掺双包层光纤激光器,得到了150W

的连续激光输出。2002年8月,IPG公司研发的连续光掺镜双包层光纤激光器

输出功率已到达2kW,在同年11月,他们又将自己的记录刷新为10 kW。

2003年,英国Southampton大学的研究人员Nilsson等人分别用掺镜双包层光纤和铒/镱共掺光纤制作出了功率为270W、波长为1080nm的单模光纤激光

器和功率为103 W、波长为1565nm的单模光纤激光器。

2004年初,英国Southampton大学和SPI公司报道了使用D型内包层的双

包层光纤可以实现单纤上千瓦的连续激光输出,纤芯直径仅为43μm,引起了

业界轰动。

同年,IPG公司研制出了200μm纤芯输出10 kW连续激光的掺镱双包层光

纤激光器,并可以实现1 kW~10kW的连续可调。

2005年,IPG又推出了2kW单模光纤激光器,还将17kW光纤激光器投入

生产线。

2007年,IPG公司实现了3kW单模光纤激光器的实用化。

2009年,IPG公司又将单模光纤激光器的功率值刷新为9.6kW。

2012年,我国武汉锐科光纤激光器公司和华中科技大学完成了4kW功率

输出全光纤激光器项目。

到2013年,IPG公司己经实现了100kW的掺镜光纤激光输出。

然而,以上介绍的高功率光纤激光器的研究主要集中在掺镱激光输出上,

主要应用领域为工业加工方面,其对于激光输出质量的要求较低,最好的也就

只达到了单横模输出。随着研究领域的不断拓展,对于各个波段的高功率光纤

激光输出的要求都变得越来越强烈,而且对于光束质量要求也变得越来越高。

目前,光纤激光器的研究主要集中在1060nm波段的掺镱光纤激光器、

1550nm波段的掺铒光纤激光器以及2μm波段的掺铥光纤激光器,而且每个波段的应用对于高功率和高光束质量的要求也都变得越来越强烈,如1060nm波段

的超小面积和超高精细度工业加工、1550nm波段的超远距离和超高精度光纤传感以及2μm波段的超远距离自由空间光通信和超高精度激光手术等应用。对于

以上提到的1550nm波段和2μm波段的应用,虽然功率要求并不像1060nm波段工业加工的那么高,但是对于输出光束质量,如光谱、亮度、频率和稳定性等,要求却相对要高很多。传统的线形腔双包层泵浦类型的高功率光纤激光器很难

在保证高功率运转的同时保持良好的光束质量,如单频、窄线宽、高稳定性、

高信噪比等,而且难以实现激光器的输出可调谐以及对激光器的调制等。

采用基于主振荡功率放大(Master-Oscillater Power Amplifier, MOPA)技术的

光纤激光系统可以在实现高功率输出的基础上保持良好的光束输出质量,而且

容易实现激光输出的可调谐和可调制,已经成为光纤激光领域的研究重点。

1、MOPA光纤激光技术

MOPA光纤激光技术,即使用具有高光束质量的低功率激光器作为种子光源,高功率光纤放大器用作种子源放大,最终实现同时具有高光束质量和高功率的激光输出,其典型的结构示意图如图1.1所示。其中,种子源可以选择固体激光器、半导体激光器以及光纤激光器。在MOPA光纤激光系统中,种子源激光器只需提供较小的功率,但是要求其具有较好的光束输出质量,比如:对于连续光需要高稳定性、高信噪比、窄线宽、单偏振等,对于脉冲光需要高重复频率和短脉冲等(对于脉冲光本文不做研究);高功率光纤放大器负责激光功率的放大,通常采用双包层大模场有源光纤作为增益介质,高功率半导体激光器作为泵浦源,其质量的优劣也会直接影响最终输出激光的质量,那么对于放大级增益光纤的选型和泵浦方式的选取也就变得尤为重要。通常,MOPA光纤激光系统都采用种子源加一级放大得到所需功率和光束质量指标,但在有些情况下需要更高功率输出等,则需要进行两级或多级放大。MOPA光纤激光系统最大的优势在于整个系统的输出激光的光谱、波长稳定性、线宽等特性,都只由种子源决定,但对种子源却不需要追求高输出功率,这就大大地增加了种子源部分的可操作灵活度,比如可以在种子源激光腔内加入各种滤波和调谐器件,从而实现最终输出激光的单频窄线宽、单偏振、波长可调谐、多波长输出等等。

2、国内外发展现状

MOPA光纤激光技术为单频高功率光纤激光器的实现提供了有力的技术基础,其在激光雷达、激光通信、相干光束合成、激光传感、原子冷却和俘获、工业制造和军事应用等领域具有非常大的潜在应用价值。从20世纪90年代初期,研究者们就已经开始对基于MOPA光纤激光技术的单频高功率光纤激光器进行研究。

1999年,Zawischa等人采用半导体泵浦的单块非平面环形腔激光器(NPRO)作为种子源,掺钕双包层光纤构成放大级,搭建了MOPA光纤激光系统,在1064nm处得到了5.5W的单频激光输出,线宽为几kHz,光束质量因子M2值约为1.1。

2003年,Liem等人同样使用NPRO作为种子源,大模场双包层掺镱光纤作为放大级增益光纤,在1064nm波长处得到了118W的功率输出,斜率效率达到70%,激光输出M2值为1.1,线宽约为2~3kHz。

2005年,英国Southampton大学的Jeong等人报道了单频单偏振掺镱MOPA光纤激光器,在1060nm处得到了功率为264W的连续激光输出,斜率效率达到72%、输出线宽小于60kHz、偏振消光比为16dB, M2值优于1.1,使用的种子源为掺镱分布反馈(DFB)激光器,放大级为四级掺镱光纤放大器,种子光分别被放大到250mW, 2W, 7W和264W。

2006年,北京理工大学的孙文峰等人采用NPRO作为种子源、4.4m长D 型双包层掺镱光纤作为放大器增益介质搭建了MOPA光纤激光系统,得到了净输出功率为6.65W的单频激光,使用的信号光功率为200mW、放大倍数达33倍。

2007年,同一课题组的孙鑫鹏等人在前人的基础上通过使用10m长D型双包层掺镱光纤将激光输出功率提高到了16.1 W,其在输出光纤端面进行了斜8度的研抛处理。同年,英国Southampton大学的Jeong等人在2005年工作的基础上,通过在最后一级放大中分别使用6.5m保偏和9m非保偏大芯径双包层光纤获得了402W和511W的激光输出,两种情况下最后一级放大的斜率效率都达到70%以上,输出激光为单频。

同年,南开大学的郭占成等人报道了基于全国产器件的单频MOPA光纤激光系统,使用电子部46所研制的双包层D型掺镱光纤对种子光源进行放大,在1060nm处得到了1.12W的单频激光输出。

2007年,上海光学与精密机械研究所的张芳沛等人对窄线宽MOPA光纤激光系统进行了实验验证,采用超高稳定性的单频激光器作为种子光源,国产D 型大模场双包层光纤构成光纤放大器,实现了对1064nm激光的单频光放大,放大功率为7.3W,斜率效率为39%。

2008年,美国NorthropGrumman公司提出了单频掺铥MOPA光纤激光系统,最后一级放大级采用的是3.1 m长、纤芯直径25um的双包层掺铥光纤,最终实现了600W的单频激光输出,输出波长为2.04um。

以上提出的MOPA光纤激光系统放大级均采用的是泵浦光空间耦合入双包层增益光纤的方式,这样的耦合方式虽然可以得到较高的输出功率,但是导致整个MOPA激光系统结构复杂、体积大、不便于维护、稳定性差,也为其实用化带来困难,导致MOPA光纤激光系统基本处于实验研究阶段。全光纤MOPA 激光系统具有结构简单、体积小、集成度高、稳定性好、免维护、低成本等优点,是将来单频高功率光纤激光器发展的趋势和必然。

2008年清华大学先后报道了连续输出功率为175W和300W的全光纤MOPA激光系统,但是其输出并不是单频激光。

2011年,国防科技大学的董小林等人提出了122W输出的全光纤单频MOPA光纤激光器,如图1.2所示,使用的种子光源为超短腔单频掺镱磷酸盐光纤激光器,波长为1063.8nm,线宽小于20kHz;放大级为两级放大,预放大

级和主放大级分别采用11/130um和30/400um双包层掺镱光纤;激光器系统最终实现了122W的单频激光输出,光光转换效率达到72%,而且没有观察到明显的自发辐射光放大(ASE)和受激布里渊散射(SBS),光束质量优异。

2012年,国防科技大学的同一课题组的许将明等人又提出了输出功率为90.4W的全光纤单频保偏MOPA激光系统;系统中使用的种子源为环形腔单频光纤激光器,波长为1083nm,线宽为12MHz,输出功率为2.8mW;采用四级光放大器对种子光进行放大,第一级预防大采用非保偏掺镱光纤,其余三级均采用保偏掺镱光纤,最终输出的偏振消光比为13dB,光光转换效率为72.5%,并且没有观察到明显的SBS。

2013年,华南理工大学的Yang等人报道了他们设计的输出功率为10.9kW 的全光纤单频MOPA激光系统,如图1.3所示;使用的种子源为他们自行设计的1560nm超短腔窄线宽掺铒光纤激光器,输出线宽小于2kHz,偏振消光比为

26dB,信噪比优于75dB;放大级只采用一级放大,使用7m保偏铒/镱共掺光纤;最终实现了窄线宽高功率激光输出,线宽小于3.5kHz,偏振消光比大于24dB,信噪比高于70dB,光光转换效率为29.5%,而且具有很高的稳定性。

总得来说,随着各个波段光纤激光器在相关领域应用的不断拓展,在保持很好光束输出质量的同时,对于功率的要求都有了很大程度的提高。虽然目前基于全光纤MOPA激光技术的高功率单频窄线宽光纤激光器在实现上还存在诸多的技术瓶颈,其功率不可能很快提高到很高的量级,但是,相信随着不同机构的研究者们的共同努力,其在未来的不断发展中必将会不断地满足多方面应用的需求,成为高功率单频窄线宽光纤激光器的首选实现方式。

3.全光纤MOPA激光系统的应用前景和发展趋势

相比于普通的双包层线形腔高功率光纤激光器,高功率MOPA光纤激光系

统具有结构灵活、效率高、体积小和重量轻等优点,尤其是在光束输出质量方

面具有独特的优势。由于在整个MOPA光纤激光系统中,对于种子源只需要考

虑其输出光束质量,这就大大增加了种子源部分的可操作灵活度,可以通过合

理设计制得高质量的种子光纤激光器用于放大;放大级负责种子光的功率提升,

通过合理选择增益介质和设计泵浦方式,可以在基本上不影响种子源光束质量

的情况下得到高功率输出。然而,由于在早期的MOPA光纤激光系统中,种子

源到放大级以及放大级的泵浦光祸合及激光输出都是使用的自由空间光耦合,

需要用到很多透镜组合,有得甚至使用多级放大,这就大大增加了整个系统的

体积、重量以及设计难度,而且祸合效率低、成本高、光束质量也不可能达到

非常的优秀。全光纤MOPA光纤激光系统具有体积小、集成度高、免维护、输

出光束质量优秀以及祸耦合效率高等优点,将是未来MOPA光纤激光系统发展

的必然方向。

目前常用的光纤增益介质可提供的激光波长范围在1~2μm左右波段,包括

1 μm波段的掺镱光纤激光、1.5μm波段的掺铒光纤激光和2μm波段的掺铥光纤

激光。位于1 μm波段的掺镱光纤激光主要应用在工业加工领域,由于掺镱离子

光纤的高吸收效率和高光光转换效率,使得MOPA掺镱光纤激光器很容易达到

很高的输出功率量级(kW量级以上),然而由于短波长处光纤中的非线性效应较强,使得输出光束质量不是非常优秀,但是足够满足高精度的工业加工需求。

相比于掺镱激光,波长更大的掺铒和掺铥激光都处于人眼安全波段,具有高功

率和窄线宽输出的MOPA掺铒或掺铥光纤激光器在传感、医疗、军事和自由空

间光通信等领域表现出更大的优势,也有着很广阔的应用前景。另外,由于三

个波段都位于大气低损耗窗口。可见,基于全光纤MOPA激光技术的高功率单

频光纤激光器在激光雷达、测距等需要很好的相干性和高功率输出光源的领域

有着天然的优势。相比于半导体和其他激光器,单频光纤激光器的输出线宽等

特性要高出一个量级,未来在激光雷达等领域必将取代半导体和其他激光器。

由于全光纤MOPA激光系统很容易达到高功率和窄线宽甚至是超窄线宽输出,其在超远距离、超高精度和灵敏度的新型传感系统中具有重要的应用价值,是此类系统的理想光源,可应用在海底通信、管道监控、石油勘探、输油管道

和军事国防等领域。另外,全光纤MOPA激光系统被认为是最佳的光纤激光合

束方案,是实现100kW放大器阵列光束合成的基础,其在军事武器领域也将发

挥巨大的价值。之前,包括MIT林肯实验室和空军研究实验室等多家美国实验

室和研究单位都在进行此方面的研究工作,足见对其的重视程度。

毫无疑问,未来MOPA光纤激光系统的发展趋势是兼具高功率和高光束质

量的全光纤系统。目前,单个全光纤MOPA激光器的功率很难突破1 kW,因

为在进行单频放大时,诸如受激布里渊散射等非线性效应的闽值较低,是放大

器突破kW量级的最大障碍。采用大模场增益光纤可以降低纤芯中功率密度,

从而降低非线性效应,但是增大纤芯直径和模场的同时会导致纤芯中能够稳定

传输的模式太多,输出光束质量又会相应地降低。因此,对放大级大模场增益

光纤的选型、设计和特性研究是MOPA光纤激光系统走向高功率实用化的必经

之路。另外,随着应用范围的不断扩大,全光纤MOPA激光系统的目标也不只是单单地达到高功率单频激光输出,它必将向更高的方向发展,那就是要同时具有高稳定性、高信噪比、超窄线宽、波长可调谐、波长可切换以及多波长运行等等,这就要求必须提供一台具有灵活可操作性的高质量光纤激光器种子光源。因此,综合考虑应用需求和未来发展趋势,全光纤MOPA激光系统将来的研究方向将主要集中在以下两个方面:放大级增益光纤的选型、设计和特性研究以及高质量种子源光纤激光器及其关键技术研究。

光放大器发展历史

历史: 1954年第一台NH3分子微波盆子放大器研制成功,人们发现,可通过原子或分子中的受激放大来获得单色的相干电磁波,称为脉塞(Maser——Microwave Amplification by Stimulated Emission of radiation)。1958年肖洛(Schawlow ) 和汤斯(Townes) 将Maser原理推广到光频波段,1960年梅曼(Mamain)利用红宝石介质的受激放大原理研制成第一台红宝石激光器,称为莱塞(Laser—Light Amplification by Stimulated Emission of Radiation) 或称激光。不管是Maser还是Laser,其产生相干电磁波辐射的机理都是基于电滋波的受激放大。自1960年以来激光器已得到了飞跃的发展和广泛的应用,然而作为激光器先导的光放大的发展却比较缓慢,直到80年代,在光纤通信发展的推动下,才开始引起足够的重视。进人90年代后光纤放大器的问世已引起了光纤通信技术的重大变革,在60年代半导体激光二极管尚未成熟,但已在77K下,首先进行了GaAs同质结行波半导体放大器的研究,开创了半导体光放大器研究的先河,确立了半导体光放大器的基本理论。至1970年,双异质结结构(DH)激光器问世后,又实现了TW半导体光放大器的室温连续工作。在1973年至1975年间,开始从光纤通信应用要求出发,研究双异质结结构TW和F-P光放大器的特性并取得重要进展。80年代初,采用消除反射光的光隔离器和精确的光频率调谐技术,深人研究了AlGaAs F-P 光放大器的增益、带宽、饱和增益与噪声特性及其对光纤通信系统性能的影响。同时开始研究半导体放大器的注人锁定现象、机理、设计和放大特性。随着光纤通信技术的发展,80年代中期开始研究适用于1. 3μm和1. 5μm波长的InGaAsP半导体光放大器 60年代初,与半导体光放大现象研究的同时,也对掺稀土元素的光纤的光谱特性进行了研究,Koesker发现了掺钕(Nd)光纤的激光辐射现象,Snitzerr发现了掺铒光纤在1.5μm处的激光辐射特性,当时这些研究都是期望研制稀土光纤激光光源而不是光纤放大器,由于稀土光纤的热悴灭效应难以解决,而半导体激光器发展迅速并日趋成熟,因此稀土光纤放大器的研究处于停步不前状态。直至80年代初,在光纤中发现了受激喇受效应,人们又开始恢复了对光纤放大器研究的兴趣,期望能用于光纤通信系统中但这种放大方案效率低,需要高功率的泵浦光源,无法在通信系统中应用。当时光纤通信的研究重点集中在高性能再生中继器和高灵敏度相干检测技术。但是在1985~ 1986年间,英国南安普顿大学的Payne等人有效地解决了掺铒光纤(EDF)的热淬灭问题,首次用MCVD方法研制成纤芯掺杂的铒光纤,并实现了1. 55μm低损耗窗口的激光辐射,1987年他们采用650nm染料激光器作为泵浦光源,获得了28dB小信号增益。同年AT&TBell实验室的Desurvire等人,采用514nm氢离子激光器作为泵浦光源,也获得了22. 4dB的小信号增益。接着在1989年,利用1. 49μm半导体激光器作为泵浦源获得了37dBE小信号增益,Laming等利用980nm, 11mW泵浦功率也得到24dB小信号增益,同年日本NTT实验室首次利用1. 48μm半导体激光泵浦的掺饵光纤放大器作为全光中继器放大5Gb/s孤子脉冲,实现了100km的无误码传输。980nm和1 480nm 半导体激光泵浦的掺铒光纤放大器具有增益高、频带宽、噪声低、效率高,连接损耗低,偏振不灵敏等特点,在90年代初得到了飞速发展,成为当时光放大器研究发展的主要方向,极大地推动了光纤通信技术的发展。自此以后,掺饵光纤放大器的研究在多方面开展,建立了多种理论分析模型,提出了增益均衡和扩大增益带宽的方案和方法,进行了多种系统应用研究,同时进行了氟化玻璃饵光纤放大、分布式光纤放大器和双向放大器的研究,使掺饵光纤放大器及其应用得到了飞速发展。此外又开展了掺镨(Pr),掺镱(Yb) ,掺钬(Ho},掺铥(Tm)等光纤放大器的研究。使光纤放大器的研究全面发展。 60年代初,在激光技术发展起来后,以高强度单色光照射光学介质,开辟了非线性光学的研究领域,揭示了受激喇曼散射、受激布里渊散射、四波混频和参量过程的物理机制。1972年Stolen等首先在光纤喇曼激光器的实验中发现了喇曼增益,初期的研究主要侧重于制成光

基层冷再生试验段总结报告

基层冷再生试验段总结 我标段依据施工设计文件及《底基层现场冷再生施工指导意见》等要求,依照本标段编写的冷再生试验段施工方案,已于2014年7月28日完成基层冷再生试验段的施工,本试验段要决定的内容为:验证设计配合比、确定铣刨厚度、确定标准施工方法和确定作业段的长度。现将试验段施工情况总结如下: 一、试验段概况 通过对原路面调查,我标段就地冷再生结构层试验段选择在具有代表性的段落,里程桩号为:K87+240~K87+440,总长度为200m,施工宽度为11.0m;选择三种剂量段落分别为:5%剂量K87+240~310,作业长度70m、4.5%剂量K87+310~370,作业长度60m、4%剂量K87+370-0~K87+440,作业长度70m。 二、验证设计配合比: 根据冷再生机对原路面材料进行铣刨取样,在室内进行筛分等试验,初步拟定了水泥剂量分别为4%、4.5%、5%的三种不同水泥含量的设计配合比,并在试验段分别进行了施工验证,根据现场试验和钻芯取样验证,上述三种配合比各项指标均符合技术规范要求,其各项试验数据详见附表。 根据《底基层现场冷再生施工指导意见》中“在满足设计强度的基础上限制水泥用量”、及设计文件要求2.5MPa,4.5%水泥含量能达到3MPa,满足规范和设计的强度要求,故可选取4.5%水泥含量的配合比作为施工配合比,其主要技术指标为:标准密度:2.098t/m3;最佳含

水量:8.6%。 二、确定铣刨厚度 现场试验考虑到添加骨料和材料的膨胀,采取从添加的骨料顶向下铣刨20cm来控制实际铣刨老路的厚度(见下表),从实测的数据看,基

现场测定铣刨后混合料松铺厚度和压实后的厚度,得到混合料的松铺系数为1.45。 三、标准施工工艺的确定: 通过对试验段施工工艺的总结,确定以下施工工艺: 1、施工准备工作: (1)施工材料准备 ①补充填料:由西留生产1-3碎石作为添加用料存放拌合站料场,检测合格并报监理工程师批准。 ②水泥:袋装冀东牌P.C32.5缓凝型水泥,厂家购进,检测合格并报监理工程师批准。 ③水:搅拌站地下水,可饮用。 水泥的供应必须得到充分的保障, 因其工作面为现场, 水泥的堆放必须按计算量合理、足额分别堆放于现场,并且保证有足够的工作面进行机械施工。 水的供给必须充足, 它将直接影响工程的进度。 施工前进行材料试验, 且在冷再生施工之前应对旧路进行检查与整修, 旧路的施工宽度范围内不可有坚硬物( 比如旧路缘石、砼块等) 。 (2)施工机械的配备

电路基础与集成电子技术-第5章习题解答

第5章基本放大电路 习题解答 【5-1】填空、选择正确答案 1.对于阻容耦合放大电路,耦合电容器的作用是 A.将输入交流信号耦合到晶体管的输入端; √B.将输入交流信号耦合到晶体管的输入端,同时防止偏置电流被信号源旁路; C.将输入交流信号加到晶体管的基极。 2.在基本放大电路中,如果集电极的负载电阻是R c,那么R c中: A.只有直流; B.只有交流; √ C.既有直流,又有交流。 3.基本放大电路在静态时,它的集电极电流是();动态时,在不失真的条件下,它的集电极电流的平均值是()。(I CQ,I CQ) 4.下列说法哪个正确: A.基本放大电路,是将信号源的功率加以放大; √B.在基本放大电路中,晶体管受信号的控制,将直流电源的功率转换为输出的信号功率; C.基本放大电路中,输出功率是由晶体管提供的。 5.放大电路的输出电阻越小,放大电路输出电压的稳定性()。(越好) 6.放大电路的饱和失真是由于放大电路的工作点达到了晶体管特性曲线的()而引起的非线性失真。(饱和区) 7.在共漏基本放大电路中,若适当增加g m,放大电路的电压增益将()。(基本不增加) 8.在共射基本放大电路中,若适当增加,放大电路的电压增益将()。(基本不增加) 9.在共漏(或共射)基本放大电路中,适当增大R d(或R c),电压放大倍数和输出电阻将有何变化。 √ A.放大倍数变大,输出电阻变大; B.放大倍数变大,输出电阻不变; C.放大倍数变小,输出电阻变大; D.放大倍数变小,输出电阻变小。 10.有两个电压放大电路甲和乙,它们本身的电压放大倍数相同,但它们的输入输出电阻不同。对同一个具有一定内阻的信号源进行电压放大,在负载开路的条件下测得甲的输出电压小。哪个电路的输入电阻大?(对放大电路输出电压大小的影响,一是放大电路本身的输入电阻,输入电阻越大,加到放大电路输入端的信号就越大;二是输出电阻,输出电阻越小,被放大了的信号在输出电阻上的压降就越小9,输出信号就越大。在负载开路的条件下,也就是排除了输出电阻的影响,只剩下输入电阻这一个因素。甲、乙两个放大电路电压放大倍数相同,甲的输出小,说明甲的输入电阻小,乙的输入电阻大。) k负载电阻后,输出 11.某放大电路在负载开路时的输出电压的有效值为4V,接入3Ω 电压的有效值降为3V,据此计算放大电路的输出电阻。( ) k; √A.1Ω k; B.1.5Ω k; C.2Ω k。 D.4Ω 12.有一个共集组态基本放大电路,它具有如下哪些特点:( ) A.输出电压与输入电压同相,电压增益略大于1;

酸再生技术总结

硅钢酸再生工程施工技术总结

一、工程概况 酸再生站位于冷轧硅钢厂主厂外,站内共5层平台,最高平台为▽+30m,酸再生站内主要设备有外方引进、国内合作制造配套设备。主要设备有焙烧炉、文丘里除尘器、文丘里浓缩器、吸收塔、预脱硅沉淀池、脱硅沉淀池、浸溶塔、罐体、泵、风机、阀门等。本工程为节能环保项目,将生产线上的废酸处理后,生成再生酸,防止酸外排,节约成本。酸再生站的主要作用: 1、将新酸在酸罐内稀释,痛过再生酸泵送到酸轧线; 2、酸轧线的废酸经过预脱硅、脱硅、焙烧炉、文丘里浓缩器等一系列设备,生成再生酸,再送到酸轧线使用; 主要工艺流程:

二、相关专业的施工难点及应对措施 (一)机械专业 1、机械基本情况 酸再生站位于冷轧硅钢厂主厂外,站内共5层平台,最高平台为▽+30m,酸再生站内主要设备有外方引进、国内合作制造配套设备。主要设备就是罐体,最大直径为焙烧炉φ8200 x14948mm,每个罐体安装必须与土建结构穿插配合进行施工。酸再生安装的内容主要有大型、小型储罐、泵、风机、烟道、旋转阀、起重葫芦、管道等,酸储罐防腐衬胶、防腐衬砖,焙烧炉炉窑砌筑,高温储罐保温。 2、工程难点 (1)槽、罐、塔类衬胶设备的安装; (2)焙烧炉的安装; (3)其它小型储罐、泵类设备的安装 (4)风机安装 3、施工方法 (1)设备的平面定位 一般设备如罐类、塔类,应在设备吊装前在基础上依据车间轴线放出墨线,吊装后参照设备罐体上制造时做出的基准标记调整。 重要设备为了保证设备在基础上准确就位,设备吊装就位后应根据已设置的中心标板,挂设基准线。基准线的挂设应根据设备安装精度要求和挂设跨距选用直径为0.3~0.75mm的整根钢线,其拉紧力一

电路与模拟电子技术(第二版)第5章习题解答[1]

第五章 电路的暂态分析 5.1 题5.1图所示各电路在换路前都处于稳态,求换路后电流i 的初始值和稳态值。 解:(a )A i i L L 326)0()0(===-+, 换路后瞬间 A i i L 5.1)0(2 1 )0(== ++ 稳态时,电感电压为0, A i 32 6== (b )V u u C C 6)0()0(==-+, 换路后瞬间 02 ) 0(6)0(=-= ++C u i 稳态时,电容电流为0, A i 5.12 26 =+= (c )A i i L L 6)0()0(11==-+,0)0()0(22==-+L L i i 换路后瞬间 A i i i L L 606)0()0()0(21=-=-=+++ 稳态时电感相当于短路,故 0=i (d )2 (0)(0)6322 C C u u V +-==?=+ 换路后瞬间 6(0)63 (0)0.75224 C u i A ++--= ==+ (a)(b) (d) (c) C C 2Ω L 2 +6V - 题5.1图 i

稳态时电容相当于开路,故 A i 12 226 =++= 5.2 题5.2图所示电路中,S 闭合前电路处于稳态,求u L 、i C 和i R 的初始值。 解:换路后瞬间 A i L 6=,V u C 1863=?= 06=-=L R i i 03 18 63=-=-=C L C u i i 0==+R C L Ri u u ,V u u C L 18-=-= 5.3 求题5.3图所示电路换路后u L 和i C 的初始值。设换路前电路已处于稳态。 解:换路后,0)0()0(==-+L L i i , 4mA 电流全部流过R 2,即 (0)4C i mA += 对右边一个网孔有: C C L u i R u R +?=+?210 由于(0)(0)0C C u u +-==,故 2(0)(0)3412L C u R i V ++==?= 5.4 题5.4图所示电路中,换路前电路已处于稳态,求换路后的i 、i L 和 u L 。 解:对RL 电路,先求i L (t),再求其它物理量。 10 (0)(0)0.520 L L i i A +-== = 电路换路后的响应为零输入响应 2 0.140||(2020) L S R τ===+,故 A e e i t i t t L L 10/5.0)0()(--+==τ 换路后两支路电阻相等,故 3Ω +u L - 题5.2图 C 题5.3图 C +u L - i L 题5.4图

活性炭再生问题总结复习进程

活性炭再生问题总结

1、活性炭来源 活性炭产品种类很多,按生产原料不同可分为:煤基活性炭、木质活性炭、果壳活性炭和、 合成活性炭等。一般活性炭产品的比表面积可达500-1200m2/g. 按孔径分: 国际纯粹与应用化学联合台(IuPAcl972)依据不同尺寸孔限中分子吸附的不同,将孔分为三类: w>50nm的为大孔 2nm<W<50nm的为中孔; w<2nm的为微孔。 2、活性炭再生 a)必要性 活性炭再生是活性炭制备的重要组成之一。活性炭使用一段时间后会吸附饱 和,从而丧失吸附能力成为“废炭”。若直接将吸附饱和的炭丢弃不仅会增 加应用成本,还可能会导致二次污染,因此从经济和环保两方面考虑,活性 炭的“再生”意义重大。 b)方法分类及其优缺点 ●热再生法 热再生法虽然有再生效率高、应用范围广的特点,但在再生过程中,须外 加能源加热,投资及运行费用较高。 ●生物再生法 ●催化再生法 ●微波再生法 c)具体工艺(微波再生,重在流程)

活性炭补充: 微波再生(机器约30万一台) 是在热再生法的基础上发展起来的新型活性炭再生技术 通过SEM照片可以很明显的看出原始活性炭与微波改性后的活性炭的差别.原始活性炭表面杂质较多,并且很多孔道被杂质堵塞;经微波处理后,活性炭表面的杂质被去除,孔道更加通畅从而保证了甲苯更加容易进入活性炭的中孔和微孔,也

情况下,会有一部分孔道因收缩而失去吸附能力,从而导致高温改性的活性炭物理吸附能力的下降,但由于高温改性会增加碱性基团的含量,因此相应的化学吸附能力会有所提高.实验中850℃改性的活性炭吸附能力最高就是证明.但由于到达一定温度(一般高于1 000℃)后活性炭表面酸性基团基本分解完毕,此时的活性炭化学吸附能力不会再有明显提高,但继续升温会导致孔道不断变小,从而导致吸附能力下降,因此一味提高改性温度是不经济也是不合理的. 4. 1 微波对活性炭的改性作用 首先活性炭是一种很好的微波吸收材料[54],它的吸附性能主要由它的孔隙结构和表面化学性质决定,活性炭本身能够有效地吸收微波能量,会烧失一部分炭成分,从而使活性炭的孔径扩大。另外,在微波的辐射下,体系温度迅速升高,以致活性炭孔道中吸附焦化废水的有机物由于在高温挥发或炭化分解,最终矿化产生CO2、水蒸气等气体重新造孔,从而使活性炭恢复到原来的吸附活性,再次吸附物质,即活性炭再生[55-57]微波再生的活性炭接近于单层吸附,原因是微波使活性炭的孔容发生变化的主要是中孔,这些再生的中孔有利于焦化废水中的小分子物质进入活性炭内部; 其次,微波辐射对活性炭表面结构也有一定的影响: 酸性官能团、酚羟基和羧基大量减少,碱性官能团增加,这些变化均有利于物质的吸附 4. 2 微波与活性炭协同作用

万里学院数字电子技术第五章习题及参考答案

第五章习题 1.题图5-1所示电路是用两片555构成的脉冲发生器,试画出Y 1和Y 2两处的输出波形,并标注主要参数(参数只需估算)。 R 1 C 133k R 233k 10 题图5-1 2.题图5-2所示的 555定时器构成的单稳态触发器及输入v I 的波形,求: (1)输出信号v O 的脉冲宽度T W ; (2)对应v I 画出v C 、v O 的波形,并标明波形幅度。 v I /V CC /3 v I v O 题图5-2 3.由555定时器组成的多谐振荡器如图5-3所示,已知V DD =12V 、C =0.1μF、R 1=15k Ω、 R 2=22k Ω。试求:(1)多谐振荡器的振荡周期;(2)画出的v C 和v O 波形。 v O /V v C /V 00 t R C v v O R 题图5-3

4.由555定时器、3位二进制加计数器、理想运算放大器A 构成如题图5-4所示电路。设计数器初始状态为000,且输出低电平V OL =0 V ,输出高电平V OH =3.2 V ,R d 为异步清零端,高电平有效。 (1)说明虚框(1)、(2)部分各构成什么功能电路?(2)虚框(3)构成几进制计器? (3)对应CP 画出v O 波形,并标出电压值。 题图5-4 5.用集成芯片555构成的施密特触发器电路及输入波形i v 如题图5-5所示,要求: (1)求出该施密特触发器的阈值电压V T +、V T -;(2)画出输出v o 的波形。 v I /V t v O /V v v O 题图5-5 6.用集成定时器555构成的电路及可产生的波形如题图5-6(a )、(b )所示,试回答: (1)该电路的名称;(2)指出(b )图中v C 波形是1~8引脚中,哪个引脚上的电压波形; (3)求出矩形波的宽度t W 。

第二章 基本放大电路

第二章基本放大电路 〖本章主要内容〗 本章重点讲述基本放大电路的组成原理和分析方法,分别由BJT和FET组成的三种组态基本放大电路的特点和应用场合。多级放大电路的耦合方式和分析方法。 首先介绍基本放大电路的组成原则。三极管的低频小信号模型。固定偏置共射放大电路的图解法和等效电路法静态和动态分析,最大不失真输出电压和波形失真分析。分压式偏置共射放大电路的分析以及稳定静态工作点的方法。共集和共基放大电路的分析,由BJT构成的三种组态放大电路的特点和应用场合。然后介绍由FET构成的共源、共漏和共栅放大电路的静态和动态分析、特点和应用场合。最后介绍多级放大电路的两种耦合方式、直接耦合多级放大电路的静态偏置以及多级放大电路的静态和动态分析。通过习题课掌握放大电路的静态偏置方法和性能指标的分析计算方法。 〖学时分配〗 本章有七讲,每讲两个学时。 第五讲放大电路的主要性能指标及基本共射放大电路组成原理 一、主要内容 1、放大的概念 在电子电路中,放大的对象是变化量,常用的测试信号是正弦波。放大电路放大的本质是在输入信号的作用下,通过有源元件(BJT或FET)对直流电源的能量进行控制和转换,使负载从电源中获得输出信号的能量,比信号源向放大电路提供的能量大的多。因此,电子电路放大的基本特征是功率放大,表现为输出电压大于输入电压,输出电流大于输入电流,或者二者兼而有之。 在放大电路中必须存在能够控制能量的元件,即有源元件,如BJT和FET 等。放大的前提是不失真,只有在不失真的情况下放大才有意义。 2、电路的主要性能指标 1)输入电阻i R:从输入端看进去的等效电阻,反映放大电路从信号源索取电流的大小。 2)输出电阻o R:从输出端看进去的等效输出信号源的内阻,说明放大电路带负载的能力。 3)放大倍数(或增益):输出变化量幅值与输入变化量幅值之比。或二者的正弦交流值之比,用以衡量电路的放大能力。根据放大电路输入量和输 出量为电压或电流的不同,有四种不同的放大倍数:电压放大倍数、电 流放大倍数、互阻放大倍数和互导放大倍数。

1202001-0000-06 光功率放大器专用技术规范(合并)

(2009年版) 国家电网公司物资采购标准 (光纤通信设备卷光路子系统单元册) 光功率放大器 专用技术规范 (编号:1202001-0000-06) 国家电网公司 二〇一〇年一月

目录 1. 标准技术参数表 0 2. 项目需求部分 0 2.1 图纸资料提交单位 (1) 2.2 工程概况 (1) 2.3 使用条件 (2) 2.4 可选技术参数表 (2) 2.5 项目单位技术差异表 (2) 2.6 招标人提出的其他资料 (2) 3. 投标人提供信息 (3) 3.1 投标人技术偏差表 (3) 3.2 投标人应提供的其他资料 (4)

1. 标准技术参数表 投标人应认真逐项填写技术参数表(见表1)中投标人保证值,不能空格,也不能以“响应”两字代替,不允许改动招标人要求值。如有差异,请填写表12:投标人技术偏差表。 注: 1. 打“*”的项目,如不能满足要求,将被视为实质性不符合招标文件要求。 2. 空载和负载损耗单项超过要求值15%或总损耗超过10%,将被视为实质性不符合招标文件要求。 表1 技术参数和性能要求响应表 2. 项目需求部分 表2 货物需求及供货范围一览表

表3 必备的备品备件、专用工具和仪器仪表供货表 2.1 图纸资料提交单位 需确认的图纸、资料应由卖方提交到表4所列单位。 表4 卖方提交的需经确认的图纸资料及其接收单位 2.2 工程概况 2.2.1 项目名称: 2.2.2 项目单位: 2.2.3 工程规模: 2.2.4 工程地址: 2.2.5 运输方式:

2.3 使用条件 表5 使用条件参数表 2.4 可选技术参数表 表6 可选技术参数表 2.5 项目单位技术差异表 项目单位原则上不能改动通用部分条款及专用部分固化的参数,根据工程实际情况,使用条件及相关技术参数如有差异,应逐项在“项目单位技术差异表”中列出。 表7 项目单位技术差异表(项目单位填写) (本表是对技术规范的补充和修改,如有冲突,应以本表为准) 2.6 招标人提出的其他资料

冷再生水稳总结

G105、S319六安段路面大中修工程(K1151+500~K1151+700水稳冷再生) 试 验 段 总 结 报 告 G105六安段路面大中修工程02标项目部 二0一0年四月二十八日

水稳基层冷再生试验段总结报告 路面结构层水稳冷再生的工作原理,就是在原有旧路的基础上,按设计的要求,加入碎石、水泥、水等外加材料,利用冷再生设备,就地完成对旧路的铣刨、破碎、添加料、拌和、摊铺等工序,随后进行整平与碾压,最后修建出一种特殊级配的道路基层。2010年4月27日我项目部在K1151+500—K1151+700段右幅进行冷再生基层试验段施工,这是我路桥公司第一次新的尝试,为了更好的掌握施工方法,并指导以后大面积施工,特做施工总结如下: 一、人员组合 配备施工总负责1人、技术负责1人、现场施工技术员1人、质检人员2人、后勤保障及其他人员2人、施工生产人员25人。 二、施工组合 投入冷再生机1台,5T装载机1台,平地机1台,振动压路机2台,光轮压路机1台,洒水车3台,自卸车辆若干。 三、水稳冷再生施工方法 1. 水泥稳定就地冷再生工艺流程: 封闭交通→施工放样→准备原道路→准备新加料→冷再生机组就位 →摆放和撒布水泥→冷再生机组铣刨与拌和→整平碾压→接缝和调头处 处理→养生 整个施工及养护过程中,应对再生路段封闭交通,各路口设置警牌。 2. 施工放样 在道路的两侧放置一系列的标桩作为基线,用来恢复道路中心线。标桩的间距,曲线距离为20m。直线距离为40m。 3. 原道路清扫 挖除后的基层顶面进行清扫,如存在泥土时,用洒水车冲刷和人工用钢丝刷清理,等路面干燥后用鼓风机清除表面浮灰,保证表面清洁无污染。

电路与电子学基础-科学出版社课后参考答案第五章答案

5.1 (a)因为基极通过R b 与发射极等电位,发射结零偏,所以不能放大 (b) 没有基极电阻,不能放大 (c)因为基极电位高于发射极电位,使发射结反偏,所以不能放大 (d)因为基极在动态时将交流电源短路,所以不能放大 (e)因为当电路工作在动态时,C将交流电源短路,所以不能放大 (f)可以 (g)因为电容C阻直导交,所以当工作在静态时,集电极无电位,故不能放大 (h)当工作在动态时,输出被短路,所以不能放大 5.2 (a)放大(b)饱和(c)截止(d)放大 5.3 (1)I BQ =-0.13mA I CQ =? I BQ =-5.2mA U CEQ =-8.2V (2)若管子坏了,换上?=80的晶体管,则I CQ =? I BQ =-11.2mA, U CEQ=-0.8V<0 所以电路工作在饱和区,不能达到放大效果 5.4 (1) I BQ =0.0314mA I CQ =?I BQ =1.53mA U CEQ =8.94V改为:I BQ =0.0314mA I CQ =? I BQ =1.57mA U CEQ =8.86V (2)u A.=-43改为:-44 R i=1.1KΩR o=2 KΩ (3)u i 的有效值大于25.2mV时将出现失真,首先出现截止失真 5.5 (1) I BQ =20.4μA I CQ =? I BQ =1.632mA U CEQ ≈4V (2) u A.= -13.6 R i=1.6KΩR o=3.3 KΩ (3)U max o =3V (4)R b =122KΩ 5.6 (1) I BQ =24μA I EQ =1.224mA I CQ =? I BQ =1.2mA U CEQ =16.8V (2) u A.= -62.5 R i=1.2KΩR o=3 KΩ (3)U max o =1.8V U max i =28.8mV 所以U i 有效值大于28.8mV时将首先出现截止失真 5.7 (1) I BQ =20μA I CQ =? I BQ =1mA U CEQ ≈3.6V (2) u A.= -12.7 R i=5.8KΩR o=6 KΩ (3) 若C e 开路,则u A.= -1.21 R i=10.3KΩR o=6 KΩ 5.8 (1) I BQ =96μA I CQ =? I BQ =7.68mA U CEQ ≈-4.06V

水处理技术工作总结

水处理技术工作总结 本人**年毕业于**大学化工分析专业,参加工作以来,一直在***厂动力分厂工作,担任化学水处理工段长,主要负责化学水处理工段(以下简称化水)的技术工作,本工段主要任务是为锅炉提供合格的给水,补给水;监督水、汽运行质量;防止锅炉结垢、腐蚀,保证锅炉安全,经济地运行。几年来,我在这个岗位上一直刻苦钻研,勤奋努力,致力于专业技术水平和业务工作水平的提高,下面把几年来的工作回顾总结,汇报如下: 一、开车前精心准备,化水工段试车一次成功。 化水工段基建安装期间,我认真研读图纸,消化资料,监督施工质量,熟练掌握了本工段的工艺流程,设备布局、设备构造和安装,并积极提出一些合理化建议。安装结束后,同基建处、车间一起对工程进行验收。仔细检查每一根管道,每一个阀门,每一台设备,为化水工段一次试车成功打下良好的基础。年底,为了开好车,被公司派到江苏无锡热电厂实习,实习期间深入透彻地学习了化水处理的工艺特点,理论同实际相结合,经常向跟班师傅学习实际操作,化验分析,及工作中容易出现问题,处理方法等,并得到了实习工厂的一致好评。实习回厂后,结合本厂实际进行开车试车前的准备工作,从树脂的预处理,化验药剂配制,阴、阳离子交换剂的再生到编写操作规程,人员上岗前培训。由于从理论上、实践上精心准备,使化水工段试车一

次成功,个人工作也得到车间及公司领导的认可。 二、运行中精心维护,保障正常运行。 在生产正常进行时,精心维护,经常巡查各设备,发现跑、冒、滴、漏等现象,立即组织人员维修,指导运行人员精心操作,发现不正确,及时指正,消除事故隐患。查看水汽分析报表,发现不正常时指导化验人员找出原因并采取相应的对策,防止锅炉热力腐蚀例如,一次生产中发现炉水PH值较低,重新取样检验PH仍较低,而仪器分析方法均正常,查找原因,采取对策,关小锅炉连排,排水,换水,自汽包内加入磷酸盐等,PH仍较低。查看水系统,发现中间水箱有大量泡沫。经查是由于酒精车间热交换器漏,导致醪液进入冷却水,经给水站送至化水工段,醪液中的一些有机物过滤不净,经阴阳离子交换又交换不掉,送到锅炉后在高温高压导致炉水水质PH较低,在热交换器暂时不能维修,生产又不停的情况下,我建议向锅炉中加入碳酸钠以提高炉水的PH。建议架临时管道给化水供水等。从而防止锅炉酸性腐蚀,保证生产正常进行为公司减少了损失。 三、刻苦钻研,精心技术改造,方便操作。 在几年的`工作实践中,结合实际工作经验,本着经济方便实用的原则,对一些设备管道进行了技术改造。如设计中,中和池的排水系统使用虹吸器,但实际操作不方便。于是改为管道下接止回阀抽水,排水。阳离子交换器的进酸管,计量箱出酸管等由于经常接触酸,内部衬胶层破裂,导致再生时酸从管道内喷出,于是改用耐酸的PVC管。高位碱槽中NaOH由于浓度高,冬天易凝固结晶,使阴离子交换器不

《电工与电子技术基础》第5章基本放大电路习题解答(重庆科技学院免费版)

习题 5.1试判断如题5.1 图所示的各电路能否放大交流电压信号?为什么? 题5.1图 解:(a)能(b)不能(c)不能(d)能 5.2已知如题5.2图所示电路中,三极管均为硅管,且β=50,试估算静态值I B 、I C 、U CE 。解:(a)751)501(1007.012=×++?=B I (μA)75.3==B C I I β(mA) 825.3)1(=+=B E I I β(mA) 75.01825.3275.312=×?×?=CE U (V) (b)CC B C C B B BE ()U I I R I R U =+×++CC BE B C 120.716(1)200(150)10 B U U I R R β??===++++×(μA) C B 0.8I I β==(mA)CE 12(0.80.016)10 3.84U =?+×=(V) 5.3晶体管放大电路如题5.3图所示,已知U CC =15V ,R B =500k Ω,R C =5k Ω,R L =5k Ω, β=50,r be =1k Ω。 (1)求静态工作点;(2)画出微变等效电路;(3)求电压放大倍数A u 、输入电阻r i 、输出电阻r o 。 题5.2图题5.3图 解:(1)CC BE B B 1530500 U U I R ?=≈=(μA)C B 5030 1.5I I β==×=(mA) CE CC C C 15 1.557.5 U U I R =??=?×= (V)

第5章基本放大电路119 (2)(3)C L u be //125R R A r β=?=?i B be //1R R r =≈(KΩ) O C 5R R ==(KΩ) 5.4 在题5.3图的电路中,已知I C =1.5mA ,U CC =12V ,β=37.5,r be =1k Ω,输出端开路,若要求u A =-150,求该电路的R B 和R C 值。 解:由于C L C u be be //150R R R A r r ββ=?=?=?C u be 150R A r β ==则C 1501437.5 R ×==(KΩ)CC B 6B 12300 (K ?)4010 U R I ?===×5.5试问在题5.5 图所示的各电路中,三极管工作在什么状态? 题5.5图 解:(a)B 60.12 (mA)50I ==12121 CS I ==(mA)

冷再生试验段总结报告

S101合相路固镇段沥青路面大修工程 冷再生底基层试验段总结 S101线是全省路网结构中重要骨架路线,其承担着省会合肥至蚌埠、宿州、淮北等皖北重镇交通运输的任务。S101合相路固镇段沥青路面大修工程合同段全长18.621公里,路面宽12米,路基均宽为15米,二级公路,其经济地理位臵十分重要。固镇境内历经几次大修改建。 路面冷再生的工作原理,就是在原有旧路的基础上,按设计的要求,加入碎石、水泥、水等外加材料,利用冷再生设备,就地完成对旧路的铣刨、破碎、添加料、拌和等工序,随后进行整平与碾压,养生完毕作为道路底基层。 为了更好的为以后的冷再生大面积施工,我标段依据《设计图纸》、《技术规范》及冷再生指导意见等要求,已完成了底基层冷再生前期的各项试验指标,根据本合同段的特点编写了冷再生施工方案,制定的合理机械效率和组合方法及各项施工工艺。 2014年5月15日本合同段对K166+700—K167+200右幅进行了冷再生底基层试验段施工,在施工中严格按照冷再生施工工艺及指导意见要求进行施工。在试验段开工前,项目部确定了施工机械的机型,完善了各种机械的配套组合及施工人员的配备,完成了施工中各种参数的选定,现将试验段的各项指标总结如下: 一、前期的配合比试验: 路面基层用碎石技术性能检测试验,各项指标见下表:

根据设计文件要求及现场级配拌和,项目部试验室采用水泥剂量5.0%进行了击实试验,具体见下表: 上述各项指标均符合技术规范要求,其各项试验数据已记录成果。 二、人员工料组合 1、人员组织安排 S101试验段及施工人员安排表 3、材料

(1)水泥:凤阳海螺P.C32.5(袋装) (2)水:饮用水 三、施工工艺的确定: 通过对试验段施工的总结,确定以下施工工艺流程: 1、施工准备工作: 水泥的供应必须得到充分的保障, 因其工作面为现场, 水泥的堆放必须按计算量合理、足额分别堆放于现场,并且保证有足够的工作面进行机械施工。 水的供给必须充足, 它将直接影响工程的进度,含水量控制在6.5%,以减少平整过程的水分散失。 2、测量放线 根据设计图纸对路线中心线、边线进行测量放线。在路线两旁布设临时水准点, 每隔100m 左右设臵一个, 便于施工时就近对路面进行标高复核。 3、布水泥 在纵向每隔10m 放出施工控制线, 并在原地面上画线, 利于冷再生机边线控制。摊铺水泥前按路线前进方向每3m为一格, 然后人工按格摊铺水泥, 将水泥均匀布满方格, 确保水泥布撒均匀、一致, 等厚。本工程冷再生底基层的水泥剂量为5.0%, 设计宽度为6m。具体摊铺水泥量本试验段最后确定5%水泥剂量每2.8平方米50kg水泥。 剂量问题,反复抽检,从取混合料进行滴定,结果均满足规范要求,后附试验记录表;

电路与模拟电子技术第5章复习题解答

第五章 电路的暂态分析 5.1 题5.1图所示各电路在换路前都处于稳态,求换路后电流i 的初始值和稳态值。 解:(a )A i i L L 326)0()0(===-+, 换路后瞬间 A i i L 5.1)0(2 1 )0(== ++ 稳态时,电感电压为0, A i 32 6== (b )V u u C C 6)0()0(==-+, 换路后瞬间 02 ) 0(6)0(=-= ++C u i 稳态时,电容电流为0, A i 5.12 26 =+= (c )A i i L L 6)0()0(11==-+,0)0()0(22==-+L L i i 换路后瞬间 A i i i L L 606)0()0()0(21=-=-=+++ 稳态时电感相当于短路,故 0=i (d )2 (0)(0)6322 C C u u V +-==?=+ 换路后瞬间 6(0)63 (0)0.75224 C u i A ++--= ==+ (a)(b) (d) (c) C C 2Ω 2 +6V - 题5.1图 i

稳态时电容相当于开路,故 A i 12 226 =++= 5.2 题5.2图所示电路中,S 闭合前电路处于稳态,求u L 、i C 和i R 的初始值。 解:换路后瞬间 A i L 6=,V u C 1863=?= 06=-=L R i i 03 18 63=-=-=C L C u i i 0==+R C L Ri u u ,V u u C L 18-=-= 5.3 求题5.3图所示电路换路后u L 和i C 的初始值。设换路前电路已处于稳态。 解:换路后,0)0()0(==-+L L i i , 4mA 电流全部流过R 2,即 (0)4C i mA += 对右边一个网孔有: C C L u i R u R +?=+?210 由于(0)(0)0C C u u +-==,故 2(0)(0)3412L C u R i V ++==?= 5.4 题5.4图所示电路中,换路前电路已处于稳态,求换路后的i 、i L 和 u L 。 解:对RL 电路,先求i L (t),再求其它物理量。 10 (0)(0)0.520 L L i i A +-== = 电路换路后的响应为零输入响应 2 0.140||(2020) L S R τ===+,故 A e e i t i t t L L 10/5.0)0()(--+==τ 换路后两支路电阻相等,故 Ω +u L - 题5.2图 题5.3图 C +u L - i L 题5.4图

MOPA技术放大

MOPA放大技术 引言 1917年,Einstein在《关于辐射的量子理论》一文中首次提出了受激辐射的概念,他认为:在物质与辐射场相互作用中,构成物质的分子或原子可以在光子激励下产生新光子,这就为激光(受激辐射光放大)概念的提出打下了最初的理论基础。但是,激光器的研究真正开始于1958年科学家Schawlow和Townes 提出的利用尺度远大于波长的开放式光学谐振腔实现激光器的思想和Bloembergen提出的利用光泵浦三能级原子系统实现原子数反转的思想。之后,全球的研究小组开始了一场研制世界上第一台激光器的激烈竞赛。很快,在1960年,世界上第一台激光器诞生于美国California州休斯实验室,Maiman等科学家成功进行了红宝石全固态激光器的实验演示,从此开启了激光器研究的大门。 光纤激光器的研究起源于1961年,当时Snitzer在纤芯为300μm的掺钕玻璃波导中发现了激光辐射现象。随后,Snitzer等人又发表了有关共掺杂光纤中光放大的论文,分别提出了光纤激光器和光纤放大器的构想。 1966年,高馄和Hockham首次讨论了研制低损耗光纤的可能性,为现代光纤通信奠定了基础,也为通信波段光纤激光光源的研究提出了迫切的要求。 大约到了1975年左右,随着低损耗光纤的研制成功和作为光纤激光器泵浦源的半导体激光器的不断实用化,光纤激光器和光纤通信的研究开始进入了快速发展时期。 1985年,英国Southampton大学的Poole等人利用化学气相沉积法制作出了第一根低损耗的单模掺铒光纤(Erbium-doped Fiber, EDF)并制作了掺铒光纤激光器,标志着稀土离子掺杂技术走向成熟,也为各种掺杂增益光纤的制作奠定了基础。 1987年,英国Southampton大学的Mears等人和美国Bell实验室的Desurvire等人先后对掺铒光纤放大器进行了研究并验证了其可行性,实现了光纤通信线路中的光放大,极大推动了光纤通信向更长中继传输距离发展。 随后的二十多年里,光纤激光技术得到了迅速的发展,已不仅仅只是用于光纤通信。随着不同掺杂稀土离子光纤激光器被提出,如:掺铒、钕、镱、铥、铒/镱共掺、铥/钬共掺等等,其应用范围已经拓展到传感、医疗、工业加工以及军事国防等领域,尤其是高功率光纤激光器的提出,可谓是光纤激光器史上的一次技术革命。 1988年,美国Massachusetts州Polaroid公司首次提出了双包层光纤设计思想,泵浦光进入包层中传输,但是圆形内包层吸收效率很低。 1994年,Pask等人首次实现了包层泵浦,并制作了包层泵浦掺镜光纤激光器,获得500mW功率输出,中心波长为1040nm,使得在光纤中实现高功率激射成为可能。

再生水技术总结

再生水技术总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

奥运村再生水热泵冷热源循环水管线工程 施工总结 一、工程概况 本工程工程名称为奥运村再生水热泵冷热源项目输水循环管线及退水管线工程。本工程采用两根Φ800m m(循环水管)及Φ 800m m(退水管)玻璃纤维缠绕增强热固性树脂夹砂管,中心间距1800m m,开槽施工,管基础为砂石基础。 根据《北京奥运村再生水热泵冷热源项目输水循环管线及退水管线工程》要求,“绿色奥运、科技奥运、人文奥运”是我国政府在申奥时对世界的郑重承诺,为落实这三个奥运理念,履行奥运公园地区使用清洁能源的环保承诺,本工程引用清河污水处理场二级排放水结合热泵技术,利用制冷剂的气一液物态循环变化的放热、吸热原理进行热量置换,达到为奥运村内建筑提供采暖、制冷的目的。 二、施工过程控制 主要设计参数 本工程结构安全等级为二级,按Ⅷ度地震烈度设防(a=0.2g,设计地震分组为第一组),设计使用年限为50年。 供水水管输水工作压力a,退水管输水工作压力。 循环供回水管工作温度:夏季供回水温度29/39℃;冬季 5/10℃。 保温条件:管道覆土大于1.5米,小于1.5米时,采用保温管。循环水两管道外皮之间间距为1米,小于0.5米时采用保温管。 流量:循环供水回水管3200m3/h,退水管3500m3/h 本工程设计内容为双排D N800管中心到管中心的间距为1.8米,两管间外皮净距大于0.9米。 管材:本工程采用玻璃纤维缠绕增强热固性树脂夹砂管,双密封胶圈承插式柔性接口。 施工工艺

玻璃纤维缠绕增强热固性树脂夹砂管在北京地区使用比较少,在施工中可以借鉴的经验少,分析管材本身刚度及强度较钢管低、重量轻的特点,对管腔回填的填料和压实度要求比较高,理论上实现“管土一体化”的目标。另外,为保证管口的接口的可靠性,本管道设置了逐口试压的工序,配合管道分段试压。 沟槽开挖 本管道沟槽开挖深度在-5.0米之间,采用机械配合人工开挖的方式,在开挖过程中,根据不同地段的土质情况,采取1::的边坡坡率控制,没有采取其他的边坡防护措施,可以保证边坡的稳定。挖掘机开挖过程中,保留10厘米用人工挖除,保证沟槽底不受扰动。 2.3.1现况管线的保护 在沟槽开挖过程中,遇到的最大困难是,与本工程沟槽横向交叉的市政管线较多,各种类型的市政管线保护工作需要特别重视。在施工过程中,我们根据不同管线的类型,通过与管线业主单位勾通,采取了不同的悬吊保护措施。 1)电信块的保护形式 2)普通管道的保护形式 进行各种悬吊保护的管道在施工过程中,要随时进行观察管线是否有下沉、开裂、变形等情况,要随时对拉筋进行加固,防止出现事

相关主题
文本预览
相关文档 最新文档