当前位置:文档之家› 地铁车体改造结构强度及模态分析

地铁车体改造结构强度及模态分析

地铁车体改造结构强度及模态分析
地铁车体改造结构强度及模态分析

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

铁路客车车体钢结构设计技术(精)

铁路客车车体钢结构设计技术 作者杜彦品 内容提要:本文叙述了铁路客车车体钢结构的特点及分类,重点介绍了25型客车碳钢车体钢结构的组成部分、结构设计及主要技术要求,对铁路客车车体钢结构材料的选用及结构设计将有积极的帮助。 ※※※ 1概述 车体钢结构是铁路客车最基本的结构,为铁路客车走行部、制动装置、连接缓冲装置、车辆内部设备以及内装提供了安装的空间和基础。新造25型客车车体钢结构为碳钢车体全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成,俗称薄壁筒形车体结构。目前我国的新造25型车有两种承载结构:一种是无中梁薄壁筒型整体承载结构,另一种是有中梁薄壁筒型整体承载结构(如行李车和邮政车。随着车辆的用途和生产工艺条件的不同,各种25型客车的结构不全相同,但其外形尺寸和结构形式则基本一致。 2 车体结构的分类 车体结构按车体所用材料分为以下三种: 碳素结构钢车体——我国新造25型客车车体; 不锈钢车体——我公司正在研制的200km/h客车车体, CRH1“和谐号”动车组的车体; 铝合金车体——部分地铁车体、CRH2、CRH3、CRH5“和谐号”动车组的车体。 3 车体钢结构组成

车体钢结构按部位可分为四个大部件:底架钢结构、侧墙钢结构、车顶钢结构、端墙钢结构。车钩缓冲装置、风挡、脚蹬等安装在大部件上。现就YZ25G(T 型硬座车(无中梁薄壁筒型整体承载结构和XL25G型行李车(有中梁薄壁筒型整体承载结构来详细说明车体钢结构的构造和特点。YZ25G硬座车车体钢结构如图1所示。 4 底架钢结构 4.1 底架结构组成 底架钢结构由端牵枕、枕内横梁、枕外横梁、枕后纵向梁、侧梁、枕外铁地板和枕内波纹地板等组成,如图2所示。 端牵枕分为端梁、牵引梁和枕梁,如图3所示。 4.2 底架结构设计 4.2.1 端梁 端梁由6mm厚钢板压制而成,断面为“[”,YZ25G型硬座车端梁高400mm靠近侧梁处高180mm,称为“转角”。在转角下翼面焊有3mm的围板,围板可以在端部遮挡脚蹬,起到美观的作用。在端梁中部开有安装车钩用的缺口,宽度为345mm,俗称“钩门”。YZ25T型硬座车端梁高度为458mm,钩门的宽 度尺寸为790mm,端梁在钩门处与牵引梁相互组焊。 4.2.2 牵引梁 自枕梁到端梁间的中梁称为牵引梁,YZ25G型硬座车牵引梁由两根30b型槽钢及牵引梁上下盖板组焊而成。其上盖板厚4mm,宽464mm,下盖板厚8mm,宽 490mm。为了符合在牵引梁腹板间安装车钩和缓冲器的尺寸要求,两槽钢腹板间距为350mm,并将牵引梁靠近端梁的一端加高到400。在牵引梁两槽钢腹板内侧铆接有前后从板座、焊有磨耗板和防跳板。YZ25T型硬座车牵引梁由两根8mm的钢板

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

160kmh欧标内燃动车组车体钢结构研究

160kmh欧标内燃动车组车体钢结构研究 摘要:本文介绍了160km/h内燃动车组车体钢结构的主要技术参数、车体钢结构组成以及主要部件所采取的新的设计理念及特点等。并进行了结构强度分析,分析表明车体结构设计满足相应标准要求。 关键词:160km/h欧标内燃动车组;车体钢结构;强度校核;有限元 中图分类号:U270.32 文献标识码:A 文章编号:1671-2064(2018)15-0059-02 1 概述 随着铁道交通装备工程实践的推进,我国铁道车辆研发水平和制造能力的进一步提升,铁道车辆技术储备不断完善,并逐步扩展了国外市场,为实现铁路交通引领世界的目标奠定了基础[1-2]。但不同国家的列车具有不同的运行环境,如编组形式,定员特点,线路条件等等,设计列车需要与之相适应的系统构造和结构形式[3]。本文介绍160km/h欧标内燃动车组车体钢结构的设计与强度校核情况,为相应新型列车设计和既有列车改进提供参考。 160km/h欧标内燃动车组(以下简称动车组)项目是中国中车唐山机车车辆有限公司为满足欧盟TSI认证而进行研究的内燃动车组项目,用动车―拖车―动车3辆车编组方式,

运行环境满足EN 50125-1,线路选择意大利米兰-都灵的线路运用环境。公司按照TSI认证要求,制定了顶层设计指标。在该指标的指导下,综合限界要求、编组方式和定员特点等多因素,进行了车体钢结构的设计,并进行了强度校核和相应部分的结构优化设计,且完成了车体钢结构的模态分析,最终形成了该动车组的车体钢结构方案。 根据《TSI通用技术规范》(以下简称规范)要求,车体钢结构强度按照EN12663-1-2010《铁路应用铁路车辆车体结构要求》中P-II类的载荷规定;车体的耐碰撞性能设计及校核按照EN15227《车辆被动性安全设计》中C-I类的规定,司机室钢结构的强度按照UIC651-2002《机车、动车、动车组和带司机室拖?的司机室布置》中的载荷工况的规定设计。 2 主要技术参数 主要技术参数表1所示。 3 主要特点 本列车研发结合规范要求,结合了我国先进技术,其主要技术特点:(1)模块化设计。采用模块化设计是当今车辆的先进技术之一,为便于各个接口部位的统一,阿根廷内燃动车组采用模块化设计理念,减少了各大部件的附件的数量,零件要求尽量统一,工艺性好,生产率得到进一步提高。(2)顶置式动力包放置。以往碳钢内燃动车组车顶放置空调等设备,相比于动力包,空调重量较轻,欧标车体考虑当

第四章_货车车身结构及其设计

第4章货车车身结构及其设计 §4-1 概述 货车即载货汽车,人们也称之为卡车,是指一种主要为载运货物而设计和装备的商用车辆,它能否牵引一挂车均可。近年来,随着我国高速公路网的加快建设与不断完善,公路运输行业迎来了大变革、大发展的时代,货车已经从载运货物这一单一功能向可代表物流准时化的物流服务的运输工具这一方向发展,成为了一种社会化的服务工具,因此,货车车身的设计也需要紧跟时代的步伐,满足当今社会的需求。 货车车身包括驾驶室和车箱两部分。在高度追求运输效率的今天,货车通常是昼夜不停地行驶,驾驶员轮换驾驶,驾驶室作为驾驶员和乘员工作和休息的空间,其设计既要满足实用性、耐用性、空气动力性、安全性等基本性能要求,也要具有良好的人机工程环境。货车车箱根据不同的需要可以设计成多种形式,其结构也各不相同,在设计时需考虑的有车箱结构强度、车箱尺寸及容量、前后轴载荷分配等因素,对于厢式车箱还要考虑空气动力性能。 由此可见,在设计货车车身结构时,需要综合地考虑货车的实用性、耐用性、安全性、舒适性以及其他各方面相关的因素。 4.1.1、货车的分类 货车的种类繁多,形式各异,各国的分类标准有所不同,在我国国家标准GB/T 3730.1-2001《汽车和挂车类型的术语和定义》中,将货车分为普通货车、多用途货车、全挂牵引车、越野货车、专用作业车和专用货车六大类,具体形式及定义见表4-1。 货车分类定义示意图 普通货车 一种在敞开(平板式)或封闭(厢式) 载货空间内载运货物的货车。 多用途货车在其设计和结构上主要用于载运货物,但在驾驶员座椅后带有固定或折叠式座椅,可运载3个以上的乘客的货车。 全挂牵引车一种牵引牵引杆式挂车的货车。 它本身可在附属的载运平台上运载货物。

ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析 弹性平面问题、振动模态分析 1、弹性平面问题 1、1.题目一:(见图一所示) 图1 已知条件: 1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =; 1、1.1解题的总体思路 由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示) 图2 并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。荷载分别为均布荷载和一个集中力荷载。 1、1.2运行结果 此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。 1、各个节点的位移和扭矩 主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的

节点的位移和扭矩。 只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm 2、受力后与受力前变形图(放大)【见图3所示】 图3 3、X方向的变形图【见图4所示】 图4 4、Y方向的变形图【见图5所示】

图5 5、内力图【见图6所示】 图6 结论: 节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。 1、1.3命令流 /PREP7 N,1,0,0!确定第一个节点 N,31,300,0!确定第31个节点 FILL,1,31!在1到31节点中插入节点 NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10 ET,1,PLANE42!常量的设置 MP,EX,1,200E9 MP,NUXY,1,0.3 E,1,2,33,32 !创建第一个单元 EGEN,30,1,1 !复制1到31个单元的建立 EGEN,14,31,1,30 !所有的单元创建 EDELE,151,165 !下面都是挖去中间的面 EDELE,181,195 EDELE,211,225 EDELE,241,255

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

25型客车车体结构

2型客车车体结 一、车体结构特点 25型客车车体钢结构为全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成。在侧墙、端墙、车顶钢骨架外面,在底架钢骨架的上面分别焊有侧墙板、端墙板、车顶板和纵向波纹地板及平地板,形成一个上部带圆弧,下部为矩形的封闭壳体,俗称薄壁筒形车体结构。壳体内面或外面用纵向梁和横向梁、柱加强,形成整体承载的合理结构。 二、车体各部分构成 1996年以后生产的25型硬座车车体钢结构,如图1所示。 1、底架底架由牵引梁、枕梁、缓冲梁、下围梁(或称下侧梁)、枕梁间的纵向金属波纹地板及枕外金属平地板等组成。如图2所示。 底架自上心盘中心到缓冲梁间的中梁称为牵引梁,由两根30a型槽钢及牵引梁上下盖板组焊而成。缓冲梁由6mm厚钢板压制而成的槽形断面。枕梁、缓冲梁与牵引梁组成的结构被称为牵枕缓结构,如图3所示。 由于两枕梁间无贯通的中梁,因而作用于底架上的纵向拉压力均由波纹地板和底架侧梁来承担。由车体钢结构静强度试验表明,纵向波纹地板能承受三分之一以上的总纵向拉伸或压缩力,这种结构的底架称为无中梁底 架。. 图1 硬座车车体钢结构 1—底架钢结构;2—侧墙钢结构;3—车顶钢结构;4—端墙钢结构; 5—风挡;6—一、四位翻板安装;7—二、三位翻板安装;8—脚蹬组成; 水箱吊梁—12横梁;—11水箱横梁;—10钩缓装置;—

9. 图2 底架 1—缓冲梁;2—牵引梁;3—端梁;4—枕梁;5—侧梁;6—枕外横梁; 加强板—10纵向梁;—9纵向加强梁;—8横梁;—7. 图3 底架牵枕缓组成 1—枕梁组成;2—缓冲梁组成;3—牵引梁组成;4、5、6—补强板;7—冲击座;8—上心盘;9、10—铆钉 2、侧墙25型客车车体钢结构的侧墙外表面为平板无压筋,在理整的外墙板内侧

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

振动系统的模态分析

理论力学振动系统模态分析实验 一.实验目的: 1.了解数字化测试技术的原理和做法。学习模态分析原理。 2.学会用“锤击发”测量振动系统的模态参数与振型。 二.实验仪器: 1.MSC-1型弹性力锤。 2.Yj9A压电加速度传感器。 3.Zj-601A型震动教学试验仪。 三.实验装置示意图: 四、实验原理: 本实验测试对象是弹性梁。实验步骤与原理是:由力锤锤击被测物体,锤体内的力传感器与被测物体上的加速度计同时记录下脉冲激励与被测物体的响应,震动教学试验仪放大并转化为电压,经接口箱,传入计算机的采集分析系统记录。数据采集完毕后,动用分析系统,首先对数据进行传递函数分析,然后,进入模态分析,根据振动理论,分析系统在确定阶数后,进行质量或振型归一,自动生成分析结果并可以生成振动的动画显示,各阶频率、模态质量、模态刚度、模态阻尼比同时列出。

五、实验步骤: 1.准备工作:先将梁分画成所需的单元格,节点编号,将加速度计固定在梁的 五分之二处(避免放在节点处)。 2. 设备连接:将力锤与加速度计与电荷放大器连接,按力锤与加速度计的灵 敏度分别调好电荷放大器上的旋钮,并选好相应的滤波上限开关。再将二信号输出端与接口箱相应频道相连。 3. 进入计算机采集分析系统参数设置部分,设定实验名称与各频道单位。 4. 进入计算机采集分析系统菜单中模态分析部分,画出被测对象的几何图形 及节点号,给出约束条件。 5. 进入计算机采集分析系统的信号采集部分,开始实验。 6.对17个测试位置依次进行敲击,没一个测试点进行三次。以减小误差。 7.调用采集的数据,打开分析界面,调入波形。进行函数分析,模态拟合。 8.振型编辑,质量归一,至此分析完毕,显示动画 9输出数据及计算结果,保存动画截图。

铁路客车车体钢结构设计技术

铁路客车车体钢结构设计技术 作者 杜彦品 内容提要:本文叙述了铁路客车车体钢结构的特点及分类,重点介绍了25型客车碳钢车体钢结构的组成部分、结构设计及主要技术要求,对铁路客车车体钢结构材料的选用及结构设计将有积极的帮助。 ※ ※ ※ 1概述 车体钢结构是铁路客车最基本的结构,为铁路客车走行部、制动装置、连接缓冲装置、车辆内部设备以及内装提供了安装的空间和基础。新造25型客车车体钢结构为碳钢车体全钢焊接结构,由底架、侧墙、车顶和端墙等四部分焊接而成,俗称薄壁筒形车体结构。目前我国的新造25型车有两种承载结构:一种是无中梁薄壁筒型整体承载结构,另一种是有中梁薄壁筒型整体承载结构(如行李车和邮政车)。随着车辆的用途和生产工艺条件的不同,各种25型客车的结构不全相同,但其外形尺寸和结构形式则基本一致。 2 车体结构的分类 车体结构按车体所用材料分为以下三种: 碳素结构钢车体——我国新造25型客车车体; 不锈钢车体——我公司正在研制的200km/h客车车体, CRH1“和谐号”动车组的车体; 铝合金车体——部分地铁车体、CRH2、CRH3、CRH5“和谐号”动车组的车体。 3 车体钢结构组成 车体钢结构按部位可分为四个大部件:底架钢结构、侧墙钢结构、车顶钢结构、端墙钢结构。车钩缓冲装置、风挡、脚蹬等安装在大部件上。现就YZ25G(T)型硬座车(无中梁薄壁筒型整体承载结构)和XL25G型行李车(有中梁薄壁筒型整体承载结构)来详细说明车体钢结构的构造和特点。YZ25G硬座车车体钢结构如图1所示。 4 底架钢结构 4.1 底架结构组成 底架钢结构由端牵枕、枕内横梁、枕外横梁、枕后纵向梁、侧梁、枕外铁地板和枕内波纹地板等组成,如图2所示。 端牵枕分为端梁、牵引梁和枕梁,如图3所示。 4.2 底架结构设计 4.2.1 端梁 端梁由6mm厚钢板压制而成,断面为“[”,YZ25G型硬座车端梁高400mm靠近侧梁处高180mm,称为“转角”。在转角下翼面焊有3mm的围板,围板可以在端部遮挡脚蹬,起到美观的作用。在端梁中部开有安装车钩用的缺口,宽度为345mm,俗称 “钩门”。YZ25T型硬座车端梁高度为458mm,钩门的宽

基于ANSYS WORKBENCH轴承的模态分析

基于ANSYS WORKBENCH轴承的模态分析 1有限元模型的建立 利用proe软件进行建模,可以从原件库里面直接调用,也可以重新建模,建模无需建立装配模型,只需要在单体零件中直接建立轴承内外圈和球体,选择不合并实体,从而形 成多实体的单体零件。轴承元件之间的间隙可以消除。 ?三维模型的建立 三维模型的建立是数值模拟分析中重要、关键的环节。UG软件能够方便地建立复杂的 三维模型,企业提供的初始的轴承三维模型主体钢结构是由不同厚度的钢板焊接而成,模 型钢板之间存在较多的焊缝,导致模型存在不同大小的间隙,给后继有限元分析带来困难,而且模型结构复杂,且为三维实体,建立有限元模型的过程中,要在符合结构力学特性的 前提下建立模型,有必要对结构做合理的简化。其主要简化说明如下: (1).忽略零件中一些微小特征。螺栓孔、倒圆角等一些微小的结构对结果准确性的 影响很小,所以建模时不考虑这些微小几何图元; (2).所有焊接位置不允许出现裂缝、虚焊等工艺缺陷,认为在焊接位置材料是连续的,直接填充间隙; (3).轴承模型附件品种繁多,形状复杂,且对机架的刚度和强度影响不大,在计算 模型中只要考虑其自重即可,例如料斗、辊子、走台、链板等其它辅助设备。 ?材料属性 结构用钢均采用Q235碳素结构钢材,Q235的弹性模量E=2.1e11N/m2,密度7830 kg/m3,剪切模量为81000MPa,泊松比为0.3,模型材料为各向同性。 表1 材料Q235许用应力一览表: MPa (N/mm2) Tab.1 List of Material Q235 Allowable stress: MPa (N/mm2)

车辆系统振动的理论模态分析

振 动 与 冲 击 第20卷第2期 JOURNA L OF VI BRATION AND SHOCK V ol.20N o.22001  工程应用 车辆系统振动的理论模态分析 Ξ 陶泽光 李润方 林腾蛟 (重庆大学机械传动国家重点实验室,重庆 400044) 摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力 学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。 关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41 0 引 言 高速铁路运输以快速、节能、经济、安全和污染小 等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。 车辆系统是由车体、转向架构架、轮对,通过悬挂 元件联接起来的机械系统。通常,把车体及装载、转 向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。 本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础 。 图1 车辆振动系统的有限元模型 1 车辆的动力学模型 将车辆振动系统简化为图1所示的分析模型,即 由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每 Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目 收稿日期:2000-10-10 修改稿收到日期:2000-11-20 第一作者 陶泽光 男,博士,副教授1963年12月生

钢结构(2018年郑州大学考试题和答案)

相同直径,相同摩擦系数情况下,高强度螺栓摩擦型连接与承压性连接的承载能力完全一样,只是变形不一样。 收藏 错误 正确 实腹式偏心受压构件在弯矩作用平面内整体稳定验算公式中的γx主要是考虑 收藏 A. 初偏心的影响 B. 残余应力的影响 C. 初弯矩的影响 D. 截面塑性发展对承载力的影响 图示T型截面拉弯构件弯曲正应力强度计算的最不利点为() 收藏 A. 截面中和轴处3点 B. 可能是1点也可能是2点 C. 截面上边缘1点 D. 截面下边缘2点 需要进行疲劳计算条件是:直接承受动力荷载重复作用的应力循环次数n大于或等于()收藏 A. 5×105 B. 5×104 C. 2×104 D. 若轴心受压构件的截面形式为焊接圆管,则该构件对x轴、对y轴的截面分类分别是() A.

b类和b类 B. a类和a类 C. a类和b类 D. b类和a类 当截面为T形截面,弯矩作用在非对称轴,并使翼缘受压的压弯杆件,计算截面抵抗矩Wx时,应当计算()。 A. 受拉翼缘 B. 受压腹板 C. 受拉腹板 D. 受压翼缘 钢结构对动力荷载适应性较强,是由于钢材具有() A. 高强度 B. 良好的韧性 C. 质地均匀、各向同性 D. 良好的塑性 计算梁的()时,应用净截面的几何参数。 A. 稳定应力 B. 正应力 C. 局部应力 D. 剪应力 高强度螺栓的抗剪承载能力与螺栓直径无关() 错误 正确 由于剪切变形使格构式柱轴压刚度降低。 正确 错误 钢材的容重大,所以结构的自重大。 错误 正确

下列用于区分同牌号钢材的不同质量等级的力学性能指标是()A. 冲击韧性 B. 冷弯试验 C. 屈服强度 D. 抗拉强度 轴压杆的承载能力由下面哪一个确定() A. 由A、B、C确定 B. 由杆件截面形状及几何尺寸 C. 由杆件长细比 D. 由材料强度及截面积 钢结构设计采用的是容许应力法 正确 错误 对于承重焊接结构的钢材质量要求必须合格保证的有() A. 抗拉强度,屈服强度,伸长率,硫、磷含量,含碳量,冷弯试验合格; B. 抗拉强度,伸长率,硫、磷含量,冷弯试验合格; C. 屈服强度,伸长率,硫、磷含量,含碳量,冷弯试验合格; D. 抗拉强度,屈服强度,伸长率,硫、磷含量,含碳量,冲击韧性合格; 轴心受压构件整体稳定的计算公式N/(φA)≤f,其物理意义是()。 A. 截面最大应力不超过钢材强度设计值 B. 截面平均应力不超过钢材强度设计值 C. 构件轴力设计值不超过构件稳定极限承载力设计值 D. 截面平均应力不超过构件欧拉临界应力设计值 高强度螺栓的材料强度大,承载能力比普通螺栓大。 正确 错误

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

结构模态分析研究生论文

课程论文题目:模态分析技术在机械 领域中的运用 课程名称结构模态分析 课程类别□学位课□非学位课 任课教师 所在学院 学科专业 姓名 学号 提交日期2010年6月18日

模态分析技术在机械领域中的运用 摘要:本文首先系统地解析了模态分析技术的基本定义,以模态分析技术的理论为基础,查阅了大量的文献和资料后介绍了模态分析技术在国内、外机械领域的中的研究运用,并结合自己的研究方向对模态分析技术的运用进行总结。 关键词:模态分析;机械;结构;运用 Modal analysis technology in the field of mechanical use Abstract:This paper first system analysis of the modal analysis technology in the basic definition, the modal analysis technology, based on the theory of the massive literature and access information introduced the modal analysis technology in domestic and foreign machinery field of study of utilization, and combined with their research direction of modal analysis of the use of technology were summarized in this paper. Key words:Modal analysis;Machinery;Structure;Use 1前言 模态分析技术是现代机械产品结构设计、分析的基础,是分析结构系统动态特性强有力的工具[1]。试验模态分析方法(EMA,ExperimentalModalAnalysis)通过试验数据采集系统的输入输出信号,经过参数识别获得模态参数,验证有限元理论模态分析模型正确性,根据模态试验结果修改有限元理论模型。计算模态分析可以预测产品的动态特性,为结构优化设计提供依据。 模态分析是研究结构动力特性的一种方法,是系统辨别方法在工程振动领域中的应用[2]。振动模态是弹性结构固有的、整体的特性,如果通过模态分析方法得到结构各阶模态的 主要特性,就可能预知结构在此频段内,在外部或是内部各种振源作用下实际的振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以将这些参数用于设计过程,优化系统动态性能。模态分析过程如果是由有限元计算的方法取得的,称为是数值模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,则称为试验模态分析[3]。 实际的机械结构在振动环境中都受到动载的作用,为确保其良好的动态性能,必须对机械结构系统进行动态设计。结构动态设计要求根据结构的动载工况、对结构提出的功能要求以及设计准则,按照结构动力学的分析方法和实验方法反复进行分析和计算[4]。结构模态分析是结构动态设计的核心,其目的是利用模态变换矩阵将耦合的复杂自由度系统解耦为一系列单自由度系统振动的线性叠加,为结构系统的振动特性分析,振动故障诊断与预报以及结构动力特性的优化设计提供依据。 2模态分析技术的运用 模态分析技术源于30年代提出的将机电进行比拟的机械阻抗技术。经过几十年的发展,模态测试和分析技术已经在航空、航天、航海、汽车、土木、机械等几乎所有和结构动态分析相关的领域得到了广泛应用[5]。 2.1国外研究现状 国外的结构模态分析技术发展较早,应用到了航空、航天等诸多军工领域和汽车、电子、机械、土木等民用的各个领域,使模态分析得到了广泛的发展和充分的应用[6-8]。模态分析软件以美国的ME’scopeVEs的功能最为全面。ME,ScopeVES软件的功能包括信号处理(signalprocessing)、运行挠曲振型(operatingoerlectionshapes)、模态分析(ModalAna-ysis)、结

相关主题
文本预览
相关文档 最新文档