当前位置:文档之家› Saber应用

Saber应用

Saber应用
Saber应用

在SABER中如何,测量两点间电压波形可以利用SaberScope中的波形计算器,将两个节点的对地电压相减,就可得到两个节点之间的电压
将波形计算器Input Mode改为alg。之后先把ua加载到计算器中(选中波形以后,在计算器输入栏按中键(或者同时按左右俩键),按减号键,在将ub加载到计算器中,按等号键,即可完成ua-ub。

saber使用操作

1.翻转元件:选中该元件(可选多个),按R键,可实现90度翻转。

2.电容或电感初始电压或电流值设置:在电容或电感元件的属性里有一项ic设置,默认未设置(undef),设置其为想要的值即可。

3.Saber中,设置元件属性时,不能带任何单位符号,如电阻的―Ω‖,电压的―V‖,时间的―S‖等,否则saber会报错。

4.Saber中,仿真文件名不能和元件库中的元件同名,否则会报错。

5.Saber中,原理图名称最好不要与路径名中有重复,否则会报错。

6.原理图放大或缩小:按―page up‖或―page down‖即可

7.局部放大显示波形:直接拖动鼠标放大,或按―page up‖即可

8.恢复波形显示原始大小:按―page down‖,或在右键菜单里点―zoom →to fit‖即可

9.按鼠标中键可拖动整个原理图包括波形显示图。

10。波形高级分析:

①.双击波形图标,进入cosmosScooe 窗口界面,

②.点击tools → measurement tool 显示measurement 窗口,

③.点击measurement 窗口的measurement 后面的按钮,默认为At X 按钮,

④.共有general 、time domain 、levels 、statistics 、RF 共5个可设置项,分别说明如下:

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

A.general(综合)设置,共有14 个参数:

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

At X :显示X轴Y轴参数

At Y :只显示X轴参数

Delta X :测量X轴任意两点间的时间,单位:S

Delta Y :测量Y轴任意两点间的电压,单位:V(电压有方向)

Length :测量Y轴任意两点间的电压,单位:V(电压无方向,取绝对值)

Slope :测量斜坡???

Local max/min :局部最大、最小测量

Crossing :交叉

Horizontal level :水平测量线

Vertical level :垂直测量线

Vertical cursor :垂直测量指针

Point marker :波形任意单个点数据测量

Point to point :波形任意两点间综合测量

Vertical marker :垂直测量线

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

B.time domain(时频)设置,共有14 个参数:

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

falltime :测量脉冲下降时间

risetime :测量脉冲上升时间

slew rate :脉冲从0上升到最大值所需的时间

period :测量脉冲周期

frequency :测量脉冲频率

fulse width :测量脉冲频率

delay :测量脉冲延迟时间

overshoot :测量脉冲正峰值

undershoot :测量脉冲负峰值

settle time :测量脉冲稳定时间

eye diagram :

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

C.levels 设置,共 11 个测量参数

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

maximum :波形最大值

minimum :波形最小值

x at maximum :最大值出现时间

x at minimum :最小值出现时间

peak to peak :脉冲峰–峰值

topline :脉冲群顶线

base line :脉冲群基线

amplitude :脉冲振幅(0 ~ 正最大值)

arerage :脉冲直流平均值(包括脉冲负值)

RMS :脉冲直流均方根值(正平均值)

AC coupled RMS :脉冲交流有效值

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

D.statistics(统计)设置,共13 个测量参数

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***

maximum :波形最大值

minimum :波形最小值

rangl :脉冲峰–峰值

mean :脉冲直流平均值(包括脉冲负值)

median :中线值

standard deviation :标准背离

mean +3 std_dev :

mean -3 std_dev :

histogram :直方图

将pspice模型转成saber模型2009-03-23 10:45 saber提供的nspito工具(在tools>MA)可以将pspice

以pspice为例,文件后缀lib

选spicetype ——pspice

enter input file————选要转化的文件

enter catos file————不填

input filetype——————library

pinnameoption——勾上

点apply,转化成功

打开我的文档里面可以看到已经转化的sin文件

saber中层次化hierachical design设计2009-03-23 10:45当设计的saber仿真电路图比较大的时候可以采用层次化设计,将电路封装起来用一个symbol代替。

将要封装的电路上的输入和输出引脚与层次化设计的引脚相连接即可——引脚可以用part gallery里面搜一下hierarchical就可以看到几种引脚的类型。

连接完成后点右键creat——hierachical symbol,生成symbol,然后可以用画图工具修改symbol,保存。

使用的时候右键——get part——by symbol name,找到保存文件的文件夹,即可调出要用的symbol。

很多用过Saber的网友都会有这种感觉,就是Saber是一个非常吃硬盘空间的仿真工具。在仿真开关电源此类的非线性系统时,其仿真结果往往会占用大量的硬盘空间。今天就来和大家讨论一下如何为Saber的时域分析(TR)减负的问题。在Saber的Time-Domain Transient Analysis(即TR分析)对话框中,在Input/Output 栏,有三种参数可以控制TR分析结果大小。它们分别是:

1. Signal List

2. Waveforms at pins

3. Data file

下面我们简单分析一下这几个参数的意义以及如何设置才能减少仿真数据。

1. Signal List---用来确定仿真结果仿真中带有哪些节点信号。其默认值是All Toplevel Singals,意思是在仿真结果文件中包含所有的顶层信号。其提供的第二项选择是All Signals,意思是在仿真结果中包含所有的信号(包括所有的底层信号)。在仿真过程中,我们往往不需要观测所有的节点信号变量,而只需要对部分信号进行分析,此时如果选择前面两个选项就会在仿真结果文件中附加很多我们不需要的信号,从而增大了仿真结果文件所占用的空间。因此,我们就可以利用Signal List 提供的Browse Design 选项,手动的选择自己需要观测的信号,这样就能大大的节省仿真结果文件所占的空间。

2. Waveforms at Pins---用来确定仿真结果中节点信号变量的性质。Saber软件中用跨接变量(Across Variable)和贯通变量(Through Variable)来表示不同性质的节点信号。对于电系统而言,Across Variable 指节点电压,而Through Variable 指节点电流。当然,对于其他系统来说,这两个变量又有着不同的含义,比如对于机械系统,Across Variable 指位移或者角度,而Through Variable 指力。具体定义可参考saber的帮助文档。这个设置默认的选项是Across Variables Only,意思是在仿真结果文件中只包含Across Variable,另外两个选项是Through Variables Only和Across and Through Variables。如果选择cross and Through Variables就会在仿真结果文件中包含两种变量,此时将增大仿真结果文件所占用空间,因此在不需要同时观测两种性质信号时,可根据需要选择一种,这样就能节省仿真结果文件所占的空间。

3. Data File ---这项设置对于节省仿真结果文件所占空间非常有用,它用来确定仿真过程中数据文件的名称。这里需要进行一点解释,Saber软件在TR分析的时候,除了根据Signal List 以及Waveforms at Pins 设置产生相应的波形文件以外,还会将整个仿真过程中所有的仿真数据保存在一种数据文件中,这种数据文件的名称是由Data File 设置来确定的。这些数据文件通常用于以TR分析为基础的后续分析,比如Stress,Sensitivity等等,另外,Saber中还有一个功能叫做Extract,它可以从数据文件中抽取你需要观测的信号并生成波形文件,便于对一些在Signal List 中没有指定的信号进行观察。由于数据文件包含了所有的仿真数据,所有它需要占用非常大的硬盘空间,因此,当你确定不需要在TR分析之后做任何后续分析,也不需要在抽取任何信号的时候,就可以通过设置Data File,告诉仿真器不生成数据文件,从而大大节省了硬盘空间。具体方法是:将Data File 栏设置为下划线" _ " 就可以了。(注意设置的时候双引号要去掉)

Saber 仿真实例

Saber 仿真 开关电源中变压器的Saber仿真辅助设计 (2) 一、Saber在变压器辅助设计中的优势 (2) 二、Saber 中的变压器 (3) 三、Saber中的磁性材料 (7) 四、辅助设计的一般方法和步骤 (9) 1、开环联合仿真 (9) 2、变压器仿真 (10) 3、再度联合仿真 (11) 五、设计举例一:反激变压器 (12) 五、设计举例一:反激变压器(续) (15) 五、设计举例一:反激变压器(续二) (19) Saber仿真实例共享 (25) 6KW移相全桥准谐振软开关电焊电源 (27) 问答 (27)

开关电源中变压器的Saber仿真辅助设计 经常在论坛上看到变压器设计求助,包括:计算公式,优化方法,变压器损耗,变压器饱和,多大的变压器合适啊? 其实,只要我们学会了用Saber这个软件,上述问题多半能够获得相当满意的解决。 一、Saber在变压器辅助设计中的优势 1、由于Saber相当适合仿真电源,因此对电源中的变压器营造的工作环境相当真实,变压器不是孤立地被防真,而是与整个电源主电路的联合运行防真。主要功率级指标是相当接近真实的,细节也可以被充分体现。

2、Saber的磁性材料是建立在物理模型基础之上的,能够比较真实的反映材料在复杂电气环境中的表现,从而可以使我们得到诸如气隙的精确开度、抗饱和安全余量、磁损这样一些用平常手段很难获得的宝贵设计参数。 3、作为一种高性能通用仿真软件,Saber并不只是针对个别电路才奏效,实际上,电力电子领域所有电路拓扑中的变压器、电感元件,我们都可以把他们置于真实电路的仿真环境中来求解。从而放弃大部分繁杂的计算工作量,极大地加快设计进程,并获得比手工计算更加合理的设计参数。 saber自带的磁性器件建模功能很强大的,可以随意调整磁化曲线。但一般来说,用mast模型库里自带的模型就足够了。 二、Saber 中的变压器 我们用得上的 Saber 中的变压器是这些:(实际上是我只会用这些

Saber仿真软件介绍

Saber 软件简介 Saber软件主要用于外围电路的仿真模拟,包括SaberSketch和SaberDesigner两部分。SaberSketch用于绘制电路图,而SaberDesigner 用于对电路仿真模拟,模拟结果可在SaberScope和DesignProbe中查看。Saber的特点归纳有以下几条: 1.集成度高:从调用画图程序到仿真模拟,可以在一个环境中完成,不用四处切换工作环境。 2.完整的图形查看功能:Saber提供了SaberScope和DesignProbe 来查看仿真结果,而SaberScope功能更加强大。 3.各种完整的高级仿真:可进行偏置点分析、DC分析、AC分析、瞬态分析、温度分析、参数分析、傅立叶分析、蒙特卡诺分析、噪声分析、应力分析、失真分析等。 4.模块化和层次化:可将一部分电路块创建成一个符号表示,用于层次设计,并可对子电路和整体电路仿真模拟。 5.模拟行为模型:对电路在实际应用中的可能遇到的情况,如温度变化及各部件参数漂移等,进行仿真模拟。

第一章用SaberSketch画电路图在SaberSketch的画图工具中包括了模拟电路、数字电路、机械等模拟技术库,也可以大致分成原有库和自定义库。要调用库,在Parts Gallery中,通过对库的描述、符号名称、MAST模板名称等,进行搜索。 画完电路图后,在SaberSketch界面可以直接调用SaberGuide对电路进行模拟,SaberGuide的所有功能在SaberSketch中都可以直接调用。 启动SaberSketch SaberSketch包含电路图和符号编辑器,在电路图编辑器中,可以创建电路图。 如果要把电路图作为一个更大系统的一部分,可以用SaberSketch将该电路图用一个符号表示,作为一个块电路使用。启动SaberSketch: ▲UNIX:在UNIX窗口中键入Sketch ▲Windows NT:在SaberDesigner程序组中双击SaberSketch图标 下面是SaberSketch的用户界面及主要部分名称,见图1-1: 退出SaberSketch用File>Exit。 打开电路图编辑窗口 在启动SaberSketch后,要打开电路图编辑窗口,操作如下:▲要创建一个新的设计,选择File>New>Design,或者点击快捷图标,会打开一个空白窗口。 ▲要打开一个已有的设计,选择File>Open>Design,或者点击快捷图标,在Open Design 对话框中选择要打开的设计。

SaberScope的使用

Scope的使用(一) 2006-10-06 09:59 分类:Saber基础使用教程 在SaberGuide中完成仿真之后,通常情况下要查看仿真的结果(否则,仿真也就没有意义了).在Saber软件中,仿真结果通常有以下四种方式查看. a. 通过Results>Back Annotation... 菜单命令将仿真结果反标回原理图(只有DC 分析的结果能够进行反标); b. 通过Report Tool 以文字方式显示(注意:仅有部分分析可以通过报告方式查看结果,如DC); c. 通过 Probe 工具,在原理图上直接显示分析结果; d. 在Scope环境中观察分析结果; 几种方式中,以最后一种方法最为全面,在Scope中,不仅可以查看分析结果,更可以利用波形计算器(Waveform Calculator)和测量工具(Measurement Tool)对分析结果数据进行各种后处理,更加直观的将分析结果数据与设计指标联系在一起. 在Scope的全名叫做CosmosScope,它是一个功能非常强大的仿真结果数据后处理工具,它不仅可以观察Saber仿真器的仿真结果,还可以观察其他仿真器如HSPICE等工具的分析结果.Scope中用信号管理器(Signal Manager)来管理和显示各种分析结果文件的信号,其界面如下图所示:

在Scope中查看分析结果波形过程如下: a. 利用File>Open>PlotFiles… 命令将分析结果文件添加到信号管理器的列表中,也可在SaberGuide中进行仿真分析时,将分析设置对话框中的Plot After Analysis处指定为Yes-Open Only、Yes-Append Plots或Yes-Replace Plots 中的任意一个,则SaberGuide

saber仿真软件tdsa模块使用说明

tdsa tdsa (MX-Scan) Associated Symbols:tdsa License Requirements:MODEL_SYNTHESIS Part Category:Analog Model Synthesis Templates Related Topics:Analog Model Synthesis Overview Functional Description The tdsa template uses sine wave stimulus techniques to obtain phase and gain information for a large-signal circuit. You connect the output as a source for the design under test, and the input to the output of the design. When you run a transient analysis, tdsa simulates the design, measures its output, and calculates phase and gain information, which it stores in a plot file. It also offers an optional bandpass input filter, and includes a source for a standard AC analysis. Template Description Sections Connection Points Symbol Properties Post-Processing Information Model Description Usage Notes Example

Saber仿真软件入门教程解析

SABER讲义 第一章使用Saber Designer创建设计 本教材的第一部分介绍怎样用Saber Design创建一个包含负载电阻和电容的单级晶体管放大器。有以下任务: *怎样使用Part Gallery来查找和放置符号 *怎样使用Property Editor来修改属性值 *怎样为设计连线 *怎样查找一些常用模板 在运行此教材前,要确认已正确装载Saber Designer并且准备好在你的系统上运行(找系统管理员)。 注: 对于NT鼠标用户:两键鼠标上的左、右键应分别对应于本教材所述的左、右键鼠标功能。如果教材定义了中键鼠标功能,还介绍了完成该任务的替代方法。 一、创建教材目录 你需要创建两个目录来为你所建立的单级放大器电路编组数据。 1. 创建(如有必要的话)一个名为analogy_tutorial的目录,以创建教材实 例。 2. 进入analogy_tutorial目录。 3. 创建一个名为amp的目录。 4. 进入amp目录。 二、使用Saber Sketch创建设计 在这一部分中,你将使用Saber Sketch设计一个单级晶体管放大器。 1. 调用Saber Sketch(Sketch),将出现一个空白的原理图窗口。 2. 按以下方法为设计提供名称

3) 通过选择File>Save As …菜单项,存储目前空白的设计。此时将出 现一个Save Schematic As对话框,如图1所示。 图 1 2) 在File Name字段输入名称Single_amp。 3) 单击OK。 3. 检查Saber Sketch工作面 1)将光标置于某一图符上并保持在那里。会显示一个文字窗口来识别该 图符。在工作面底部的Help字段也可查看有关图符的信息 2)注意有一个名为Single_amp的Schematic窗口出现在工作面上。 三、放置部件 在教材的这一部分你将按图2所示在原理框图上放置符号。图中增加了如r1、r2等部件标号以便参照。

Saber电源仿真--基础篇[

Saber电源仿真——基础篇 电路仿真作为电路计算的必要补充和论证手段,在工程应用中起着越来越重要的作用。熟练地使用仿真工具,在设计的起始阶段就能够发现方案设计和参数计算的重大错误,在产品开发过程中,辅之以精确的建模和仿真,可以替代大量的实际调试工作,节约可观的人力和物力投入,极大的提高开发效率。 Saber仿真软件是一个功能非常强大的电路仿真软件,尤其适合应用在开关电源领域的时域和频域仿真。但由于国内的学术机构和公司不太重视仿真应用,所以相关的研究较少,没有形成系统化的文档体系,这给想学习仿真软件应用的工程师造成了许多的困扰,始终在门外徘徊而不得入。 本人从事4年多的开关电源研发工作,对仿真软件从一开始的茫然无知,到一个人的苦苦探索,几年下来也不过是了解皮毛而已,深感个人力量的渺小,希望以这篇文章为引子,能够激发大家的兴趣,积聚众人的智慧,使得我们能够对saber仿真软件有全新的认识和理解,能够在开发工作中更加熟练的使用它,提高我们的开发效率。 下面仅以简单的实例,介绍一下saber的基本应用,供初学者参考。 在saber安装完成之后,点击进入saber sketch,然后选择file—> new—>schematic,进入原理图绘制画面,如下图所示: 在进入原理图绘制界面之后,可以按照我们自己的需要来绘制电路原理图。首先,我们来绘制一个简单的三极管共发射极电路。

第一步,添加元器件,在空白处点击鼠标右键菜单get part—>part gallery 有两个选择器件的方法,上面的左图是search画面,可以在搜索框中键入关键字来检索,右图是borwse画面,可以在相关的文件目录下查找自己需要的器件。 通常情况下,选择search方式更为快捷,根据关键字可以快速定位到自己想要的器件。 如下图所示,输入双极型晶体管的缩写bjt,回车确定,列表中显示所有含有关键字bjt的器件,我们选择第三个选择项,这是一个理想的NPN型三极管,双击之后,在原理图中就添加了该器件。 依照此方法,我们先后输入voltage source查找电压源,并选择voltage source general purpose 添加到原理图。输入resistor,选择resistor[I]添加到原理图(添加2个)。输入GND,选择ground(saber node 0)添加到原理图,ground(saber node 0)是必须的,否则saber仿真将因为没有参考地而无法进行。 添加完器件之后,用鼠标左键拖动每个器件,合理布置位置,鼠标左键双击该器件,即可修改必要的参数,在本示例中,仅需要修改电压源的电压,电阻的阻值,其他的都不需修改。然后按下键盘的W键,光标变成了一个十字星,即表示可绘制wire(连线),将所有的器件连接起来。如下图所示:

Simtrix.simplis仿真_中文教程

Simetrix/Simplis仿真基础 近4年开发电源的过程,在使用仿真软件的过程中,对仿真渐渐有了个了解,仿真不能代替实验。仿真软件显示电路不能工作,而实际确能工作,仿真不收敛,而实际电路永远不会不收敛。但是仿真软件可以测试未知电路,可以验证自己的想法,甚至大大缩短开发过程,在你仿真的过程中,也可以更深入的理解开关电源的拓扑结构,控制模式等,假如你要实验一个电路,发现库里没有现成的IC,在自己搭建IC之后,你对整个IC具体是如何运作的必定了解的非常清楚。 如果你的模型足够精确,你可以得到和实验室非常接近的结果。如果你的电路是错误的,你也不用担心“炸机”的危险。 Simetrix/Simplis是我个人比较喜欢用的一款仿真软件,相对与功能强大的SABER, Simetrix/Simplis具有操作简单,容易上手,速度快等特点,用来实验开关电源的各个功能电路非常不错,精通之后,也能进行更复杂的仿真实验,比如开关电源的损耗分析,环路分析,大信号分析,IC设计等。 “只要你能想到的,你就可以用电路实现!” 虽然这几年一直在接触这款软件,但离“精通”还相差很远,但我想利用它简单易学的特点,让更多的人了解使用它,对实际开发有所帮助。并希望引出玉来,使大家共同提高。 我打算先说一下软件操作过程,再举几个简单的实例,供大家参考。由于水平有些,只能说这些基础的东西。 先说一下目录 1.基础操作:放置元件 2.导入PSPICE模型 3.瞬态分析,DC分析,AC分析,参数扫描 4.自建子电路,元件库 5.用SIMETRIX仿真开环BUCK。 6.用SIMPLIS 仿真BUCK电路:POP分析,AC分析。 7.两个简单的实例:桥式整流带恒功率负载—表达式的应用 填谷PFC PF值计算-波形的分析和处理 更深入一点的实例如 电流模式反激电路。 准谐振反激电路。 单极反激PFC电路。 LLC电路等。 做好后会和大家分享。

Saber官方安装教程

Saber? Installation Guide Version E-2010.09, September 2010 Saber is a registered trademark of Sabremark Limited partnership and is used under license.

ii Saber? Installation Guide E-2010.09 Copyright Notice and Proprietary Information Copyright ? 2010 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement. Right to Copy Documentation The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only. Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must assign sequential numbers to all copies. These copies shall contain the following legend on the cover page: “This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of __________________________________________ and its employees. This is copy number __________.” Destination Control Statement All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and to comply with them. Disclaimer SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MA TERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A P ARTICULAR PURPOSE. Registered Trademarks (?) Synopsys, AMPS, Astro, Behavior Extracting Synthesis T echnology, Cadabra, CA TS, Certify, CHIPit, CoMET , Design Compiler, DesignWare, Formality, Galaxy Custom Designer, HAPS, HapsT rak, HDL Analyst, HSIM, HSPICE, Identify, Leda, MAST, METeor, ModelT ools, NanoSim, OpenVera, PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG, SolvNet, Syndicated, Synplicity, the Synplicity logo, Synplify, Synplify Pro, Synthesis Constraints Optimization Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are registered trademarks of Synopsys, Inc. Trademarks (?) AFGen, Apollo, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Confirma, Cosmos, CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore, EPIC, Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance ASIC Prototyping System, HSIM plus , i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Jupiter, Jupiter-DP , JupiterXT, JupiterXT -ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Milkyway, ModelSource, Module Compiler, MultiPoint, Physical Analyst, Planet, Planet-PL, Polaris, Power Compiler, Raphael, Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT , StarRC, System Compiler, System Designer, T aurus, TotalRecall, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc. Service Marks (sm ) MAP-in, SVP Café, and T AP-in are service marks of Synopsys, Inc. SystemC is a trademark of the Open SystemC Initiative and is used under license.ARM and AMBA are registered trademarks of ARM Limited. Saber is a registered trademark of SabreMark Limited Partnership and is used under license.All other product or company names may be trademarks of their respective owners.

巧妙设置解决Saber仿真过程中的卡顿

巧妙设置解决Saber仿真过程中的卡顿 Saber 功能强大,但很多朋友在使用过程中都会遇到卡顿的现象。卡顿现 象的产生有可能是优于电脑配置较低造成的,但在大多数情况下的卡顿是由于 硬盘空间在短时间被仿真数据大量占用造成的。在对非线性系统进行仿真时仿 真数据会占用大量的硬盘空间,本文就将通过控制仿真数据大小的方式来帮助 大家解决卡顿的问题。 在Saber 的Time-Domain Transient Analysis(即TR 分析)对话框中,Input/Output 栏有三种参数可以控制TR 分析结果大小。 它们分别是:Signal List、Waveformsatpins、Datafile,如图1 所示。 下面简单分析一下这几个参数的意义以及如何设置才能减少仿真数据。SignalList:用来确定仿真结果仿真中带有哪些节点信号。其默认值是All Toplevel Singals,意思是在仿真结果文件中包含所有的顶层信号。其提供的第二项选择是AllSignals,意思是在仿真结果中包含所有的信号(包括所有的底 层信号)。 但是在仿真过程中,往往不需要观测所有的节点信号变量,而只需要对部分 信号进行分析,此时如果选择前面两个选项就会在仿真结果文件中附加很多不 需要的信号,从而增大了仿真结果文件所占用的空间。可以利用Signal List 提供的Browse Design 选项,手动的选择自己需要观测的信号,这样就能大大的节省仿真结果文件所占的空间。 Waveformsat Pins:用来确定仿真结果中节点信号变量的性质。 Saber 软件中用跨接变量(Across Variable)和贯通变量(Through Variable)来表示不同性质的节点信号。 对于电系统而言,AcrossVariable 指节点电压,而Through Variable 指节点

saber中文使用教程sabersimulink协同仿真

saber中文使用教程sabersimulink协同仿真Saber中文使用教程之软件仿真流程 今天来简单谈谈 Saber 软件的仿真流程问题。利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。前一种方法的基本过程如下: a. 在 SaberSketch 中完成原理图录入工作; b. 然后使用 netlist 命令为原理图产生相应的网表; c. 在使用 simulate 命令将原理图所对应的网表文件加载到仿真器中,同时在 Sketch 中启动 SaberGuide 界面; d. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; e. 仿真 CosmosScope 工具对仿真结果进行分析处理。结束以后利用 在这种方法中,需要使用 SaberSketch 和 CosmosScope 两个工具,但从原理图开始,比较直观。所以,多数 Saber 的使用者都采用这种方法进行仿真分析。但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。而另一种方法则正好能弥补它的不足。基于网表的分析基本过程如下: a. 启动 SaberGuide 环境,即平时大家所看到的 Saber Simulator 图标,并利用 load design 命令加载需要仿真的网表文件 ; b. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; c. 仿真结束以后直接在 SaberGuide 环境下观察和分析仿真结果。 这种方法要比前一种少很多步骤,并可以在单一环境下实现对目标系统的仿真分析,使用效率很高。但它由于使用网表为基础,很不直观,因此多用于电路系统结构已经稳定,只需要反复调试各种参数的情况;同时还需要使用者对 Saber 软

Saber常见电路仿真实例介绍

Saber常见电路仿真实例 一稳压管电路仿真 (2) 二带输出钳位功能的运算放大器 (3) 三5V/2A的线性稳压源仿真 (4) 四方波发生器的仿真 (7) 五整流电路的仿真 (10) 六数字脉冲发生器电路的仿真 (11) 七分频移相电路的仿真 (16) 八梯形波发生器电路的仿真 (17) 九三角波发生器电路的仿真 (18) 十正弦波发生器电路的仿真 (20) 十一锁相环电路的仿真 (21)

一稳压管电路仿真 稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。下面就介绍一个简单例子,仿真电路如下图所示: 在分析稳压管电路时,可以用TR分析,也可以用DT分析。从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示: 从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输

出足以超出稳压管工作范围的电流。 二带输出钳位功能的运算放大器 运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路,其放大倍数是5,稳压二极管1N5233用于钳位输出电压. 对该电路执行的DT分析,扫描输入电压从-2V->2V,步长为0.1V,仿真结果如下图所示:

saber2011安装教程(纯文字版)

教程Saber2011安装教程.txt 我的文件saberr_B_2008_09_SP1_license 放在E:\saberr_B_2008_09_SP1_license 目录 1. 在 windows 界面下,双击 E:\saberr_B_2008_09_SP1_license\Keygen 中的 KeyGen.exe 生成 HOSTID 号码,注意保存好这一个号码。 2. 使用 E:\saberr_B_2008_09_SP1_license 目录下的 Synopsys.src 替换 E:\saberr_B_2008_09_SP1_license\EFA LicGen 0.4b\packs 目录下的Synopsys.src 3. 利用E:\saberr_B_2008_09_SP1_license\EFA LicGen 0.4b 目录下的LicGen.exe 生成 synopsys.dat :1 点击 Open 打开 E:\saberr_B_2008_09_SP1_license\EFA LicGen 0.4b\packs \Synopsys.lpd 2在Select Host ID 中选择 Ethemet 选项,会自动 出现计算机的host ID 号码.之后点击Generate 生成有一个文件,按Save 保存为synopsys.dat 。 需将刚才产生的 synopsys.dat 拷贝至Keygen 软件所在目录下 E:\saberr_B_2008_09_SP1_license\Keygen 4. 在虚拟dos 环境下(在windows 界面下,使用cmd 进入), 开始\运行 键入 cmd 进入DOS 环境 而 我 的 sssverify.exe 和 synopsys.dat都位于 E:\saberr_B_2008_09_SP1_license\Keygen 目录下,因此必须用CD..命令返回上级直到进入该目录(如图所示)或者直接 键入C :回车进入E 盘符 然后仍然使用CD..进入 E:\saberr_B_2008_09_SP1_license\Keygen 目录(如图所 示) 继续键入 E:\saberr_B_2008_09_SP1_license>cd Keygen 这样就到了sssverify.exe 和synopsys.dat 所在的目录 再键入E:\saberr_B_2008_09_SP1_license\ Keygen>sssverify synopsys.dat 运行后在DOS 屏幕最后得到相应SECRET DATA 信息。 5 再次运行KeyGen.exe 填入上面的SECRET DATA 信息 Generate 之后在本目录下会产生一个license.dat 文件。 6. 用记事本分别打开将license.dat 和synopsys.dat 。 1 license.dat 中的SSS Feature (如图所示内容) 拷贝到第3 步获得的synopsys.dat 中(如图所示) 保存! 7. 将synopsys.dat 复制到c:\\Synopsys 目录下(默认,或者你的安装目录下). 8 设置环境变量具体操作步骤:1.右键点击“我的电脑”,选“属性”---〉“高级”---〉 “ 环境变量” 修改(或新建)变量名变量名= LM_LICENSE_FILE 变量值= c:\Synopsys\synopsys.dat 该变量必须是全局变量 9. 启动saber,若系统装了防火墙,会提示Aim.exe 或aimsh.exe 访问网络,要 允许否则,启动不了。 第 1 页

Saber中文使用教程之软件仿真流程

Saber中文使用教程之软件仿真流程(1) 今天来简单谈谈 Saber 软件的仿真流程问题。利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。前一种方法的基本过程如下: a. 在 SaberSketch 中完成原理图录入工作; b. 然后使用 netlist 命令为原理图产生相应的网表; c. 在使用 simulate 命令将原理图所对应的网表文件加载到仿真器中,同时在Sketch 中启动 SaberGuide 界面; d. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; e. 仿真结束以后利用 CosmosScope 工具对仿真结果进行分析处理。 在这种方法中,需要使用 SaberSketch 和 CosmosScope 两个工具,但从原理图开始,比较直观。所以,多数 Saber 的使用者都采用这种方法进行仿真分析。但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。而另一种方法则正好能弥补它的不足。基于网表的分析基本过程如下: a. 启动 SaberGuide 环境,即平时大家所看到的 Saber Simulator 图标,并利用 load design 命令加载需要仿真的网表文件 ; b. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; c. 仿真结束以后直接在 SaberGuide 环境下观察和分析仿真结果。 这种方法要比前一种少很多步骤,并可以在单一环境下实现对目标系统的仿真分析,使用效率很高。但它由于使用网表为基础,很不直观,因此多用于电路系统结构已经稳定,只需要反复调试各种参数的情况;同时还需要使用者对 Saber 软件网表语法结构非常了解,以便在需要修改电路参数和结构的情况下,能够直接对网表文件进行编辑

saber中文使用教程SaberSimulink协同仿真

Saber中文使用教程之软件仿真流程 今天来简单谈谈 Saber 软件的仿真流程问题。利用 Saber 软件进行仿真分析主要有两种途径,一种是基于原理图进行仿真分析,另一种是基于网表进行仿真分析。前一种方法的基本过程如下: a. 在 SaberSketch 中完成原理图录入工作; b. 然后使用 netlist 命令为原理图产生相应的网表; c. 在使用 simulate 命令将原理图所对应的网表文件加载到仿真器中,同时在Sketch 中启动 SaberGuide 界面; d. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; e. 仿真结束以后利用 CosmosScope 工具对仿真结果进行分析处理。 在这种方法中,需要使用 SaberSketch 和 CosmosScope 两个工具,但从原理图开始,比较直观。所以,多数 Saber 的使用者都采用这种方法进行仿真分析。但它有一个不好的地方就是仿真分析设置和结果观察在两个工具中进行,在需要反复修改测试的情况下,需要在两个窗口间来回切换,比较麻烦。而另一种方法则正好能弥补它的不足。基于网表的分析基本过程如下: a. 启动 SaberGuide 环境,即平时大家所看到的 Saber Simulator 图标,并利用 load design 命令加载需要仿真的网表文件 ; b. 在 SaberGuide 界面下设置所需要的仿真分析环境,并启动仿真; c. 仿真结束以后直接在 SaberGuide 环境下观察和分析仿真结果。 这种方法要比前一种少很多步骤,并可以在单一环境下实现对目标系统的仿真分析,使用效率很高。但它由于使用网表为基础,很不直观,因此多用于电路系统结构已经稳定,只需要反复调试各种参数的情况;同时还需要使用者对 Saber 软件网表语法结构非常了解,以便在需要修改电路参数和结构的情况下,能够直接对网表文件进行编辑 saber中文使用教程Saber/Simulink协同仿真 接下来需要在Saber中定义输入输出接口以便进行协同仿真,具体过程如下

saber教程1

稳压管电路仿真 今天是俺在网博电源网上开始写Blog的第一天,一直没想好写点什么,正好论坛上有网友问我在Saber环境中如何仿真稳压管电路,就以稳压管电路仿真做为俺在网博上的第一篇Blog吧。稳压管在电路设计当中经常会用到,通常在需要控制电路的最大输入、输出或者在需要提供精度不高的电压参考的时候都会使用。下面就介绍一个简单例子,仿真电路如下图所示: 在分析稳压管电路时,可以用TR分析,也可以用DT分析。从分析稳压电路特性的角度看,DT分析更为直观,它可以直接得到稳压电路输出与输入之间的关系。因此对上面的电路执行DT分析,扫描输入电压从9V到15V,步长为0.1V,分析结果如下图所示: 从图中可以看到,输入电压在9~15V变化,输出基本稳定在6V。需要注意的是,由于Saber仿真软件中的电源都是理想电源,其输出阻抗为零,因此不能直接将电源和稳压管相连接,如果直接连接,稳压管将无法发挥作用,因为理想电源能够输

出足以超出稳压管工作范围的电流。 带输出钳位功能的运算放大器 运算放大器在电路设计中很常用,在Saber软件中提供了8个运放模板和大量的运放器件模型,因此利用Saber软件可以很方便的完成各种运方电路的仿真验证工作.如下图所示的由lm258构成的反向放大器电路, 其放大倍数是5,稳压二极管1N5233用于钳位输出电压. 对该电路执行的DT分析,扫描输入电压从-2V-> 2V , 步长为0.1V, 仿真结果如下图所示: 从仿真结果可以看出,当输入电压超出一定范围时, 输出电压被钳位. 输出上限时6.5V, 下限是-6.5V. 电路的放大倍数A=-5.

注意: 1. lm258n_3 是Saber中模型的名字, _3代表了该模型是基于第三级运算放大器模板建立的. 2. Saber软件中二极管器件级模型的名字头上都带字母d, 所以d1n5233a代表1n5233的模型. 5V/2A的线性稳压源仿真 下图所示的电路利用78L05+TIP33C完成了对78L05集成稳压器的扩展,实现5V/2A 的输出能力。 为了考察电路的负载能力,可以在Saber软件中使用DT分析,扫描变化负载电流,得出输出电压与输出电流的关系,也就可以得到该电路的负载调整率了。DT分析参数设置为: Independent source = i_dc.iload sweep from 0.01 to 2 by 0.1.。 分析结果如下图所示:

Astro Saber数字军刀写频简易教程

Astro Saber数字军刀写频简易教程 作者: BG2SFO 原文地址:https://www.doczj.com/doc/672089087.html,/forum/showthread.php?t=195207&page=1&pp=30 发这个帖子,其实主要是告诉各位玩以及想玩的朋友,写频远远不及想象的困难。当然了,如果想刷Flash或者给加密板写Key,那就是另外一回事了。 机器型号:H04RDF9PW7AN Mfg.(Flash) Code:100004-000000-4(功能很少的Flash版本) 需要的设备: 1、Astro Saber数字军刀一台 2、4008B RIB写频器一台(TB和隔壁都有卖) 3、Saber或Astro Saber写频线一条 4、如果只有Saber写频线,需自己焊一个转接头(6块钱成本) 5、有原生串口的电脑一台(系统可以是98、2000、XP) 6、如没有5,可以选择USB-RS232转换头,但是务必要50块钱以上的,否则兼容性没法保证。 7、高版本写频软件CPS。 我原来有写过Saber,所以除了那条数字刀的写频线,别的我都有。 后来参考了Batlabs上的针脚定义,自己花6块钱做了一个转接头。(2个25针D口五块钱,一米网线一块钱。) 其实,普通刀和数字刀的背板触点定义都是相同的,但是普通刀的BUSY连接到RIB的8针,数字刀的BUSY连接到RIB的6针,我们只需要把这个跳一下就可以了。见图。连接RIB这段用母头(孔),连接写频线的用公头(针),两端1、15针对接。RIB端6针接写频线端8针。RIB端的4和11针短接(不用写频线里的短接,可靠还省事)。

4008B原理图

saber与控制系统仿真

SABER与控制系统仿真 1.应用背景 1.1为什么要使用控制系统仿真 对于SABER强大的电路仿真功能我们已经有所了解,在模块电路中,我们的反馈控制方法通常比较简单,一般就是一些电阻和电容的组合,但是对更为复杂的控制模式,控制参数的定义难以用模拟电路组合实现,指标间的对应关系也不直观,应用控制系统仿真,便于直观理解以便优化指标,便于转化到数字实现(DSP),而且可以实现一些复杂的控制方式(例如三相系统中常用的静止和旋转的坐标变换) 1.2SABER在控制系统仿真的优势和制约 优势:SABER作为混合仿真系统,可以兼容模拟,数字,控制量的混合仿真,便于在不同层面上分析和解决问题,其他仿真软件不具备 这样的功能。 制约:不支持离散系统的频域分析,以及状态方程的分析方法。 1.3控制系统仿真应用范围 主要应用在变频器,UPS,以及未来的数字化电源系统的控制算法设计 部分。 2.基本方法 2.1控制流原则 在控制系统仿真中用到的模型有两个特点: 1、它们都是无量纲的数值,不论电流,电压,速度,角度, 在进行控制系统仿真之前都必须转化为无量纲的数字,因 为对于控制处理机构而言,它只关心分析对象的数学行 为,这是为了进行统一的分析。 2、信号流向是单相的,必须从一个模型的输出(out)口流入 到另外一个模型的输入端口,不能颠倒。而模拟电路器件 的端口是不区分类别的,信号可以从断口流出也可以流 入,只有正负号不同。为了解释这个问题,我们看一个例 子如下。

上图中左边和右边分别是一个RC并联电路在电路仿真和控制系统仿真中的描述,在控制系统中用一个积分环节表示电容,对于电路中的电容模型,我们可以以电压或者电流任何一个作为输入量求解另外一个,而在控制系统一旦确定模型方式,输入量就唯一确定,在该例子中选用积分环节,则输入只能是电流才能够描述电容行为,输入如果是电压量,则描述的就是一个电感了。这也说明控制系统的模型具有普遍的应用性。 2.2基本模型类别 首先我们以一个例子来看看控制系统中常用的有哪些模型: 这是一个双环控制的半桥PFC的控制模型仿真图,图中用虚线框住的部分为主电路等效,下面部分为控制电路等效。其中包含模型如下:2.2.1 信号源模型:如图所示 控制系统仿真中的信号源类型(例如正弦,三角) 以及赋值方法与电路仿真中一样,不同的是两点: 它只有一个输出端口,必须接到其他模型的输入 端口, 它无量纲,可以描述各种同样数学行为的物理量, 比如正弦信号可以是电压也可以是电流。

相关主题
文本预览
相关文档 最新文档