当前位置:文档之家› 传热学

传热学

传热学
传热学

第三章

思考题

1. 试说明集总参数法的物理概念及数学处理的特点

答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。

2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数

hA cv c ρτ=,形状

上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。 3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题 答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。如薄板两侧均匀加热或冷却、 炉墙或冷库的保温层导热等情况可以按无限大平板处理。

4. 什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有些什么特点?

答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x )和边界条件(Bi 数)

的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。

5. 有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算所得的结果是错误的.理由是: 这个图表明,物体中各点的过余温度的比值与几何位置及Bi 有关,而与时间无关.但

当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。你是否

同意这种看法,说明你的理由。

答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。这与物体中各点温度趋近流体温度的事实并不矛盾。

6. 试说明Bi 数的物理意义。o Bi →及∞→Bi 各代表什么样的换热条件?有人认为, ∞→Bi 代表了绝热工况,你是否赞同这一观点,为什么?

答;Bi 数是物体内外热阻之比的相对值。o Bi →时说明传热热阻主要在边界,内部温度趋于均匀,可以用集总参数法进行分析求解;∞→Bi 时,说明传热热阻主要在内部,可以近似认为壁温就是流体温度。认为o Bi →代表绝热工况是不正确的,该工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。

7. 什么是分非稳态导热问题的乘积解法,他的使用条件是什么?

答;对于二维或三维非稳态导热问题的解等于对应几个一维问题解的乘积,其解的形式

是无量纲过余温度,这就是非稳态导热问题的乘积解法,其使用条件是恒温介质,第三类边

界条件或边界温度为定值、初始温度为常数的情况。

8.什么是”半无限大”的物体?半无限大物体的非稳态导热存在正规阶段吗?

答:所谓“半大限大”物体是指平面一侧空间无限延伸的物体:因为物体向纵深无限延

伸,初脸温度的影响永远不会消除,所以半死限大物体的非稳念导热不存在正规状况阶段。

9.冬天,72℃的铁与600℃的木材摸上去的感觉一样吗,为什么?

10.本章的讨论都是对物性为常数的情形作出的,对物性温度函数的情形,你认为怎样获得其

非稳态导热的温度场?

答:从分析解形式可见,物体的无量纲过余温度是傅立叶数(2/l )的负指数函数,

即表示在相同尺寸及换热条件下,导温系数越大的物体到达指定温度所需的时间越短、这正

说明导温系数所代表的物理含义。

3-2 设一根长为l 的棒有均匀初温度t 0,此后使其两端在恒定的t 1(x =0)及t 2>t 1>t 0。

棒的四周保持绝热。试画出棒中温度分布随时间变法的示意曲线及最终的温度分布曲线。

解:由于棒的四周保持绝热,因而此棒中的温度分布相当于厚为l 的无限大平板中的分布,

随时间而变化的情形定性的示于图中.

3-3 假设把汽轮机的汽缸壁及其外的绝热层近似地看成是两块整密接触的无限大平板(绝

热层厚度大于汽缸壁)。试定性地画出汽缸机从冷态启动(即整个汽轮机均与环境处于热平

衡)后,缸壁及绝热层中的温度分布随时间的变化。

解:

3-4 在一内部流动的对流换热试验中(见附图),用电阻加热器产生热量加热量管道内的流体,电加热功率为常数,管道可以当作平壁对待。试画出在非稳态加热过程中系统中的温度分布随时间的变化(包括电阻加热器,管壁及被加热的管内流体)。画出典型的四个时刻;初始状态(未开始加热时),稳定状态及两个中间状态。

解:如图所示:

3-5 现代微波炉加热物体的原理是利用高频电磁波使物体中的分子极化从而产生振荡,其结果相当于物体中产生了一个接近于均匀分布的内热源,而一般的烘箱则是从物体的表面上进行接近恒热流的加热。设把一块牛肉当作厚为2 的无限大平板,试定性地画出采用微波炉及烘箱对牛肉加热(从室温到最低温度为850C)过程中牛肉的温度分布曲线(加热开始前,加热过程中某一时刻及加热终了三个时刻)。

解:假设:辐射加热时表面热源均匀;散热略而不计.

3-9 一热电偶的A cv /ρ之值为2.094

)/(2K m KJ ?,初始温度为200C ,后将其置于3200C 的气流中。试计算在气流与热电偶之间的表面传热系数为58

)/(2k m W ?的两种情况下,热电偶的时间常数并画出两种情况下热电偶读数的过余温度随时间变化的曲线。

解:由hA cv

c ρτ=

)/(582K m W h ?=时,s c 036.0=τ 当

)/(1162K m W h ?=时,s c 018.0=τ 第六章

复习题

1、什么叫做两个现象相似,它们有什么共性?

答:指那些用相同形式并具有相同内容的微分方程式所描述的现象,如果在相应的时

刻与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。

凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应

相等。

(1) 初始条件。指非稳态问题中初始时刻的物理量分布。

(2) 边界条件。所研究系统边界上的温度(或热六密度)、速度分布等条件。

(3) 几何条件。换热表面的几何形状、位置、以及表面的粗糙度等。

(4) 物理条件。物体的种类与物性。

2.试举出工程技术中应用相似原理的两个例子.

3.当一个由若干个物理量所组成的试验数据转换成数目较少的无量纲以后,这个试验

数据的性质起了什么变化?

4.外掠单管与管内流动这两个流动现象在本质上有什么不同?

5、对于外接管束的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一

定值后才与排数无关,试分析原因。

答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10

排管子以上的管子才能消失。

6、试简述充分发展的管内流动与换热这一概念的含义。

答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线

位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。

7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流

动和内部流动有什么异同?

答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边

界层相互干扰时,称为有限空间自然对流。

这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引

起的流动,一个是由流体的温度不同而引起的流动。

8.简述射流冲击传热时被冲击表面上局部表面传热系数的分布规律.

9.简述数数,数,

Gr Nu Pr 的物理意义.Bi Nu 数与数有什么区别? 10.对于新遇到的一种对流传热现象,在从参考资料中寻找换热的特征数方程时要注意

什么?

第五章

复习题

1、试用简明的语言说明热边界层的概念。

答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此

薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为

温度边界层或热边界层。

2、与完全的能量方程相比,边界层能量方程最重要的特点是什么? 答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A

,因此仅

适用于边界层内,不适用整个流体。

3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别? 答:0=???-

=y y t t h λ(5—4) )()(f w t t h h t -=??-λ (2—11)

式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,

此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出

一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把

牛顿冷却公式应用到整个表面而得出。

4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流

体的流动起什么作用?

答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,

流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小

5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法

求得其精确解,那么建立对流换热问题的数字描述有什么意义?

答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件

包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述

目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,

能量和质量守恒关系,避免在研究遗漏某种物理因素。

基本概念与定性分析

5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度

的如下变化关系式: x x Re 1~δ

解:对于流体外标平板的流动,其动量方程为:

221xy u v dx d y u v x

y u ?+-=??+??ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ

则有

22

11111111δρδδv +?-=?+? 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级,

为使等式是数量级为1,则v 必须是2

δ量级。 x δ 从量级看为1δ

1~11~111~1Re 1

2δδδ?=∞v x u x

量级

两量的数量级相同,所以x δ与x Re 1成比例

5-2、对于油、空气及液态金属,分别有1>>r P ,1?r P ,1<

板的层流流动,画出三种流体边界层中速度分布和温度分布的大致图象(要能显示出x

δδ与的相对大小)。

解:如下图:

5-3、已知:如图,流体在两平行平板间作层流充分发展对流换热。

求:画出下列三种情形下充分发展区域截面上的流体温度分布曲线:(1)21w w q q =;

(2)212w w q q =;(3)01=w q 。

解:如下图形:

5-4、已知:某一电子器件的外壳可以简化成如图所示形状。c h t >t 。

求:定性地画出空腔截面上空气流动的图像。

解:

5-5、已知:输送大电流的导线称为母线,一种母线的截面形状如图所示,内管为导体,

其中通以大电流,外管起保护导体的作用。设母线水平走向,内外管间充满空气。

求:分析内管中所产生的热量是怎样散失到周围环境的。并定性地画出截面上空气流动

的图像。

解:散热方式:(1)环形空间中的空气自然对流

(2)内环与外环表面间的辐射换热。

5-6、已知:如图,高速飞行部件中广泛采用的钝体是一个轴对称的物体。

求:画出钝体表面上沿x 方向的局部表面传热系数的大致图像,并分析滞止点s 附近边

界层流动的状态。(层流或湍流)。

解:在外掠钝体的对流换热中,滞止点处的换热强度是很高的。该处的流动几乎总处层

流状态,对流换热的强烈程度随离开滞止点距离的增加而下降。

5-7.温度为80℃的平板置于来流温度为20℃的气流中.假设平板表面中某点在垂直于

壁面方向的温度梯度为40mm ℃,试确定该处的热流密度.

边界层概念及分析

5-8、已知:介质为25℃的空气、水及14号润滑油,外掠平板边界层的流动由层流转

变为湍流的灵界雷诺数5105Re ?=c ,s m u /1=∞。

求:以上三种介质达到c Re 时所需的平板长度。

解:(1)25℃的空气 v =15.53610-?s m /2 v x u x ∞=Re =5

61051053.151?=??-x x=7.765m

(2)25℃的水 s m v /109055.026-?= x=0.45275m

(3)14号润滑油 s m v /107.31326-?= x=156.85m

5-9、已知:20℃的水以2m/s 的流速平行地流过一块平板,边界层内的流速为三次多项

式分布。

求:计算离开平板前缘10cm 及20cm 处的流动边界层厚度及两截面上边界层内流体的

质量流量(以垂直于流动方向的单位宽度计)。

解:20℃的水 s m v /10006.126-?= s m u /2=

(1)x=10cm=0.1m

61000.101.02Re -∞??==v x u x =19880.72 小于过渡雷诺

数x Re . 按(5—22)

m u vx 36100406.121.010006.164.464.4--∞?=??==δ

设3)(2123δδy y u u y

?-?=∞

y y y y d y y u d u u u ud u u ud m ])(2123[30000δδρρρρδδδ

δ?-?====????∞∞∞∞

=

]843[)](8143[0342δδρδδρδ-=-?∞∞u y y u =998.2?2δ85?=1.298 2/m kg (2)x=20cm=0.2m 610006.102

.02Re -??=x =39761.43 (为尽流)

3

61047.1202.010006.164.464.4--∞?=??==u vx δ m

834.18522.9980=??==?δρδ

y x d u m 2/m kg 5-10、已知:如图,两无限大平板之间的流体,由于上板运动而引起的层流粘性流动称

为库埃流。不计流体中由于粘性而引起的机械能向热能的转换。

求:流体的速度与温度分布。

解:(1)动量方程式简化为 022=+-dy u d dx dp μ,y=0, u=0, y=H, ()σ=y u ,σ为上板速度。平行平板间的流动0=dx dp 。积分两次并代入边界条件得

()σ??? ??=H y y u 。 (2)不计及由于粘性而引起机械能向热能的转换,能量方程为:

t k y t x t u c 2?=???? ????+??νρρ,对于所研究的情形,0=ν,0=??x t ,因而得022=dy t d ,

y=0,1w t t =,y=H,2w t t =,由此得()121w w w t t H y t t -??? ??+=。

5-11、已知:如图,外掠平板的边界层的动量方程式为:22y u y u v x

u u ??=??+??ν。 求:沿y 方向作积分(从y=0到δ≥y )导出边界层的动量积分方程。

解:任一截面做y=0到∞→y 的积分

dy y u v dy y u v dy x u u ???∞

∞∞??=??+??02200

根据边界层概念y>∞≈u u ,δ 故在该处0.0,022≈??≈??≈??y u y u x u 则有dy y u v dy y u v dy x u u ???∞??=??+??02200δδ…………………(1) 其中dy y u u u v dy y u v ????-=??∞δδδ00

由连续行方程可得

dy x u v dy y u dy y v ?????-=??-=??δδδδ000; 所以dy x u u dy x u u dy y

u v ?????+??-=??∞δδδ000…………………..(2) 又因为00

22=????? ????-=??y y u v dy y u v δ

………………………………….(3) (1)(2)代入(3)()????∞-=??+??-??δδδδ0000dy u u u dx d dy x u u dy x u dy x u u 故边界层的动量积分方程为()00=∞????? ????=-y y u v dy u u u dx d δ

5-12、已知:Pa 510013.1?、100℃的空气以v=100m/s 的速度流过一块平板,平板温

度为30℃。

求:离开平板前缘3cm 及6cm 处边界层上的法向速度、流动边界层及热边界层厚度、局

部切应力和局部表面传热系数、平均阻力系数和平均表面传热系数。

解:定性温度65230100=+=m t ℃

()K m W ?=/0293.0λ,695.0Pr =,s m /105.1926-?=ν,3/045,1m kg =ρ。

(1)cm x 3=处,

5610538.1105.1910003.0Re ?=??==∞νx u x ()s

m v /2218.010538.187.0100215=??=δ 动量边界层厚度()mm 355.010538.103.064.4215=???=-δ

mm t 398.0355.0695.0Pr 3131=?==--δδ ()252

261.810538.1100045.1323.0Re 323.0s m kg u x w ?=???==

∞ρτ ()

K m W x h x x ?=????==2531216.112695.010538.103.00293.0332.0Pr Re 332.0λ

第七章

思考题

1.什么叫膜状凝结,什么叫珠状凝结?膜状凝结时热量传递过程的主要阻力在什么地方?

答:凝结液体在壁面上铺展成膜的凝结叫膜状凝结,膜状凝结的主要热阻在液膜层,凝结液

体在壁面上形成液珠的凝结叫珠状凝结。

2.在努塞尔关于膜状凝结理论分析的8条假定中,最主要的简化假定是哪两条?

答:第3条,忽略液膜惯性力,使动量方程得以简化;第5条,膜内温度是线性的,即

膜内只有导热而无对流,简化了能量方程。

3.有人说,在其他条件相同的情况下.水平管外的凝结换热一定比竖直管强烈,这一说法

一定成立?

答;这一说法不一定成立,要看管的长径比。

4.为什么水平管外凝结换热只介绍层流的准则式?常压下的水蒸气在10=-=?w s t t t ℃

的水平管外凝结,如果要使液膜中出现湍流,试近似地估计一下水平管的直径要多大?

答:因为换热管径通常较小,水平管外凝结换热一般在层流范围。

对于水平横圆管:()

r t t dh R w s e ηπ-=4 ()41

32729.0???? ??-=w s t t d gr h ηλρ 临界雷诺数 ()

()1600

161.9Re 4

34541324343=-=r g t t d w s c ηλρ 由100=s t ℃,查表:kg kJ r /2257

= 由95=p t ℃,查表:3/85.961m kg =ρ ()K m W ?=/6815

.0λ

()s m kg ??=-/107.2986η ()()m

g t t r d w s 07.23.976313235=-=λρη

即水平管管径达到2.07m 时,流动状态才过渡到湍流。 5.试说明大容器沸腾的t q ?~曲线中各部分的换热机理。

6.对于热流密度可控及壁面温度可控的两种换热情形,分别说明控制热流密度小于临界热

流密度及温差小于临界温差的意义,并针对上述两种情形分别举出一个工程应用实例。

答:对于热流密度可控的设备,如电加热器,控制热流密度小于临界热流密度,是为了防止

设备被烧毁,对于壁温可控的设备,如冷凝蒸发器,控制温差小于临界温差,是为了防止设

备换热量下降。

7.试对比水平管外膜状凝结及水平管外膜态沸腾换热过程的异同。

答:稳定膜态沸腾与膜状凝结在物理上同属相变换热,前者热量必须穿过热阻较大的汽

膜,后者热量必须穿过热阻较大的液膜,前者热量由里向外,后者热量由外向里。

8.从换热表面的结构而言,强化凝结换热的基本思想是什么?强化沸腾换热的基本思想是

什么?

答:从换热表面的结构而言,强化凝结换热的基本思想是尽量减薄粘滞在换热表面上液膜的

厚度,强化沸腾换热的基本思想是尽量增加换热表面的汽化核心数。

9.在你学习过的对流换热中.表面传热系数计算式中显含换热温差的有哪几种换热方式?

其他换热方式中不显含温差是否意味着与温差没有任何关系?

答:表面传热系数计算式中显含换热温差的有凝结换热和沸腾换热。不显含温差并不意味着

与温差无关,温差的影响隐含在公式适用范围和物件计算中。

10.在图7-14所示的沸腾曲线中,为什么稳定膜态沸腾部分的曲线会随△t 的增加而迅速

上升?

答:因为随着壁面过热度的增加,辐射换热的作用越加明显。

习题

基本概念与分析

7-1、 试将努塞尔于蒸气在竖壁上作层流膜状凝结的理论解式(6—3)表示成特征数间的函数形式,引入伽里略数23νgl Gu =

及雅各布数()w s p t t c r Ja -=。 解:

413

2)(725.0????????-=w s l ll t t d gr h ηλρλ,[]4

14123..725.0.)(.725.0r a a p w s p u P J G c t t c r v gl N =????????-=λη。

7-2、 对于压力为0.1013MPa 的水蒸气,试估算在10=-=?s w t t t ℃的情况下雅各布数之

值,并说明此特征数的意义以及可能要用到这一特征数的那些热传递现象。 解:)(w s p a t t c r J -=,r=

Kg J 3101.2257?,

)(4220℃Kg J c p =, 5.53104220101.22573= ??=a J ,

)(w s p a t t c r J -=代表了 汽化潜热与液瞙显热降之比;进一步一般化可写为t c r J p a ?=,代表了相变潜热与相应的显热之比,在相变换热(凝结、沸腾、熔化、凝固等都可以用得上)。

7-3、 40=s t ℃的水蒸气及40=s t ℃的R134a 蒸气.在等温竖壁上膜状凝结,试计算离

开x =0处为0.1m 、0.5m 处液膜厚度。设5=-=?s w t t t ℃。 解:

4

124???????=r g tx u x l l l ρλδ)(,近视地用t s 计算物性,则: 对水:635.0=l λ,6103.653-?=l u ,2.992=l ρ,kg J r 3102407?=;

对R134a :0750.0=l λ,66106.49122.114610286.4--?=??=l u ,2.1146

=l ρ,kg J r 31023.163?=; 对水:

4124???????=r g tx u x l l

l ρλδ)(=41413261024072.9928.95635.0103.6534x ?????????????- =41441411610375.1)10573.3(x x --?=?,

X=0.1、

mm 10728.7m 10728.7562.0101.357(x)254---?=?=??=δ. X=0.5、mm 10.1561=m 841.010375.15.0101.357(x)44414---???=??=δ

对R134a :4124???????=r g tx u x l l l ρλδ)(=

41413261023.1632.11468.950750.0106.49124x ?????????????- =41441411610433.2)10506.3(x x --?=?,

X=0.1、mm 10368.1m 10368.11

.010433.2(x)14414---?=?=??=δ; X=0.5、mm 10046.2m 841.010 433.25.010433.2(x)144

14---?=??=??=δ。 7-4、当把一杯水倒在一块赤热的铁板上时.板面立即会产生许多跳动着的小水滴,而且可

以维持相当一段时间而不被汽化掉。试从传热学的观点来解释这一现象[常称为莱登佛罗斯

特(Leidenfrost)现象],并从沸腾换热曲线上找出开始形成这一状态的点。

解:此时在炽热的表面上形成了稳定的膜态沸腾,小

水滴在气膜上蒸发,被上升的蒸汽带动,形成跳动,

在沸腾曲线上相应于q min (见图6-11)的点即为开始形

成现象的点。第九章

思考题

1、试述角系数的定义。“角系数是一个纯几何因子”的结论是在什么前提下得出的?

答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。“角系数是一

个纯几何因子” 的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提

下得出的。

2、角系数有哪些特性?这些特性的物理背景是什么?

答:角系数有相对性、完整性和可加性。相对性是在两物体处于热平衡时,净辐射换热量

为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。任一表面所发生的

辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总

能量等于落到表面2上各部份的辐射能之和。

3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型?

答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个

方向投入到该表面上的辐射能。

4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性?

答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。

5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用?

答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。

6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。

答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。

7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的?

答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。

8、什么是遮热板?试根据自己的切身经历举出几个应用遮热板的例子。

答:所谓遮热板是指插人两个辐射表面之间以削弱换热的薄板。如屋顶隔热板、遮阳伞都是我们生活中应用遮热板的例子。

9、试述气体辐射的基本特点。

10、什么是气体辐射的平均射线程长?离开了气体所处的几何空间而谈论气体的发射率与吸热比有没有实际意义?

11、按式(9-29)当s很大时气体的

()s,

λ

α趋近于1.能否认为此时的气体层具有黑体的性质?

12、9.5.1节中关于控制表面热阻的讨论是对图9-37所示的同心圆柱面系统进行的,其结论对于像图9-15a所示的两表面封闭系统是否也成立?

13、图9-39所示的电子器件机箱冷却系统中,印制板上大功率元件布置在机箱出口处,试分析其原因。

第十章

思考题

1、所谓双侧强化管是指管内侧与管外侧均为强化换热表面得管子。设一双侧强化管用内径

为d i、外径为d0的光管加工而成,试给出其总传热系数的表达式,并说明管内、外表面传热系数的计算面积。

01

10

00011011110

00010111112)/l n (1112)/l n (1βπβπηβληβηβππληβπo d d d h d d d d h k d h d d d h t 算面积为管外表面传热系数得计

算面积为管内表面传热系数得计传热系数:

得以管内表面为基准得=答:由传热量公式:

++=++?Θ 2、 在圆管外敷设保温层与在圆管外侧设置肋片从热阻分析的角度有什么异同?在什么情

况下加保温层反而会强化其传热而肋片反而会削弱其传热?

答:在圆管外敷设保温层和设置肋片都使表面换热热阻降低而导热热阻增加,而一

般情况下保温使导热热阻增加较多,使换热热阻降低较少,使总热阻增加,起到削弱传

热的效果;设置肋片使导热热阻增加较少,而换热热阻降低较多,使总热阻下降,起到

强化传热的作用。但当外径小于临界直径时,增加保温层厚度反而会强化传热。理论上

只有当肋化系数与肋面总效率的乘积小于1时,肋化才会削弱传热。

3、 重新讨论传热壁面为平壁时第二题中提出的问题。

答:传热壁面为平壁时,保温总是起削弱传热的作用,加肋是否起强化传热的作用

还是取决于肋化系数与肋面总效率的乘积是否人于1。

4、推导顺流或逆流换热器的对数平均温差计算式时做了一些什么假设,这些假设在推

导的哪些环节中加以应用?讨论对大多数间壁式换热器这些假设的适用情形。

5、对于22112211221m1q c q c q c q c q c c q m m m m m =<≥及、

三种情形,画出顺流与逆流时冷、热流体温度沿流动方向的变化曲线,注意曲线的凹向与c q m 相对大小的关系。

6、进行传热器设计时所以据的基本方程是哪些?有人认为传热单元数法不需要用到传

热方程式,你同意吗?

答:换热器设计所依据的基本方程有:

m m m t KA t t c q t t c q ?="-'="-'=)()(22221111φ 传热单元法将传热方程隐含在传热单元和效能之中。

7、在传热单元数法中有否用到推导对数平均温差时所做的基本假设,试以顺流换热器

效能的计算式推导过程为例予以说明。

答:传热单元数法中也用到了推导平均温差时的基本假设,说明略o

8、什么叫换热器的设计计算,什么叫校核计算?

答:已知流体及换热参数,设计一个新的换热器的过程叫做设计计算,对已有的换

热器,根据流体参数计算其换热量和流体出口参数的过程叫做校核计算。

9、在进行换热器的校核计算时,无论采用平均温差法还是采用传热单元数法都需要假

设一种介质的出口温度,为什么此时使用传热单元数法较为方便?

答:用传热单元数法计算过程中,出口温度对传热系数的影响是通过定性温度来体

现的,远没有对平均温差的影响大,所以该法用于校核计算时容易得到收敛的计算结果。

10、试用简明语言说明强化单相强制对流换热、核态沸腾及膜状凝结的基本思想。

答:无相变强制对流换热的强化思路是努力减薄边界层.强化流体的扰动与混合;

核态沸腾换热的强化关键在于增加汽化核心数;膜状凝结换热强化措施是使液膜减薄和

顺利排出凝结液。

11、在推导换热器效能的计算公式时在哪些环节引入了推导对数平均温差时提出的四个

假设?

注意事项:

(1)对于圆筒壁导热和长直的圆管换热问题,往往要计算单位管长的换热量;

(2)集总参数法求解任意形状物体(如热电偶)的瞬态冷却或加热问题。

(3)对流换热问题中,当流体为气流时,有时需要同时考虑对流和辐射换热;

(4)对于管内强迫对流换热问题,应注意层流和紊流时的实验关联式的选取;流体定性温度在不同边界条件下(如常壁温和常热流边界条件)的确定方法有两种:算数平均法和对数平均法。

(5)注意两个平行平板之间的辐射换热问题的计算;对多个非凹面组成的封闭腔体,各个表面之间的辐射换热问题的计算中的某个表面的净辐射热量与任意两个表面之间的辐射换热量的区别与联系;

(6)角系数的计算。

传热学基本概念知识点

传热学基本概念知识点 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 5效能:表示换热器的实际换热效果与最大可能的换热效果之比 6对流换热是怎样的过程,热量如何传递的?对流:指流体各部分之间发生相对位移,冷热流体相互掺混所引起的热量传递方式。对流仅能发生在流体中,而且必然伴随有导热现象。对流两大类:自然对流与强制对流。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速 7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的? 蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内

部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关? 灰体的主要特征是光谱吸收比与波长无关。灰体的吸收率恒等于同温度下的发射率,影响因素有:物体种类、表面温度和表面状况。 10气体与一般固体比较其辐射特性有什么主要差别? 气体辐射的主要特点是:(1)气体辐射对波长有选择性(2)气体辐射和吸收是在整个容积中进行的 11说明平均传热温压得意义,在纯逆流或顺流时计算方法上有什么差别? 平均传热温压就是在利用传热传热方程式来计算整个传热面上的热流量时,需要用到的整个传热面积上的平均温差。 纯顺流和纯逆流时都可按对数平均温差计算式计算,只是取值有所不同。 12边界层,边界层理论 边界层理论:(1)流场可划分为主流区和边界层区。只有在边界层区考虑粘性对流动的影响,在主流区可视作理想流体流动。(2)边界层厚度远小于壁面尺寸(3)边界层内流动状态分为层流与湍流,湍流边界层内紧靠壁面处仍有层流底层。

传热学考研知识点总结 (1)

传热学考研知识点总结 对流换热是怎样的过程,热量如何传递的?如下是小编整理的传 热学考研知识点总结,希望对你有所帮助。 传热学考研知识点总结§1-1 “三个W” §1-2 热量传递的三种基本方式§1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。本 章重点: 1.传热学研究的基本问题物体内部温度分布的计算方法热量 的传递速率增强或削弱热传递速率的方法 2.热量传递的三种基本方 式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。黑体热辐射公式:实际物体热辐射:

传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。最简单的传热过程由三个环节串联组成。 传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式 + 质量动量守恒定律四次方定律本章难点 1.对三种传热形式关系的理解各种方式热量传递的机理不同,但却可以同时存在于一个传热现象中。 2.热阻概念的理解严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么? 2.试分析室内暖气片的散热过程。 3.冬天住在新建的居民楼比住旧楼房感觉更冷。试用传热学观点解释原因。 4.从教材表1-1给出的几种h数值,你可以得到什么结论? 5.夏天,有两个完全相同的液氮贮存容器放在一起,一个表面已结霜,另一个则没有。请问哪个容器的隔热性能更好,为什么? §2-1 导热的基本概念和定律§2-2 导热微分方程§2-3 一维稳态导热 §2-4伸展体的一维稳态导热

传热学重点汇总

1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 7何谓膜状凝结过程,不凝结气体是如何影响凝结换热过程的? 蒸汽与低于饱和温度的壁面接触时,如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 16试说明管槽内强制对流换热的入口效应。流体在管内流动过程中,随着流体在管内流动局部表面传热系数如何变化的?外掠单管的流动与管内的流动有什么不同 管槽内强制对流换热的入口效应:入口段由于热边界层较薄而具有比较充分的发展段高的表面传热系数。 入口段的热边界层较薄,局部表面传热系数较高,且沿着主流方向逐渐降低。充分发展段的局部表面传热系数较低。 外掠单管流动的特点:边界层分离、发生绕流脱体而产生

回流、漩涡和涡束。 19为什么二氧化碳被称作“温室效应”气体? 气体的辐射与吸收对波长具有选择性,二氧化碳等气体聚集在地球的外侧就好像给地球罩上了一层玻璃窗:以可见光为主的太阳能可以达到地球的表面,而地球上一般温度下的物体所辐射的红外范围内的热辐射则大量被这些气体吸收,无法散发到宇宙空间,使得地球表面的温度逐渐升高20试分析大空间饱和沸腾和凝结两种情况下,如果存在少量不凝性气体会对传热效果分别产生什么影响?原因? 对于凝结,蒸气中的不可凝结气体会降低表面传热系数,因为在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大。蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层。因此,不凝结气体层的存在增加了传递过程的阻力。 大空间饱和沸腾过程中,溶解于液体中的不凝结气体会使沸腾传热得到某种强化,这是因为,随着工作液体温度的升高,不凝结气体会从液体中逸出,使壁面附近的微小凹坑得以活化,成为汽泡的胚芽,从而使q~Δt沸腾曲线向着Δt 减小的方向移动,即在相同的Δt下产生更高的热流密度,强化了传热。 21太阳能集热器的吸收板表面有时覆以一层选择性涂层,使表面吸收阳光的能力比本身辐射能力高出很多倍。请问这

传热学基础知识

传热学基础知识 本文由淹死的鱼张冰贡献 ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 传热学基本知识 摘要:本节主要介绍导热,对流换热,辐射换热及稳定传热的基本概念,基本计算方法等内容。 2.1稳定传热的基本概念 2.1.1温度场 温度场:是某一时刻空间中各点温度分布的总称。一般来说,温度场是空间坐标和时间的函数,即 t = f (x, y, z,η ) 式 t ?温;中度 x, y, z ?空坐;间标 η?时。间上式表示物体内部在x,y,z三个方向和在时间上均发生变化的三维非稳态温度场。如果温度场不随时间变化,则上式变为:t = f (x, y, z) 该式所表达的内容是温度场内各点的温度不随时间变化,这样的温度场就是稳态温度场,它只是空间坐标函数。 此外,如果温度场内温度的变化仅与两个或一个坐标有关,则称为二维或一维稳态温度场。随时间变化为非稳态温度场,不随时间变化为稳态温度场。 2.1.2等温面于等温线 等温面:同一时刻在温度场中所有温度相同的点连接构成的面。等温

线:不同的等温面与同一平面相交所得到一簇曲线。同一时刻两个不同等温线不会彼此相交。在任意时刻,标绘出物体中所有等温面(线),即描绘了物体内部温度场。 2.1.3温度梯度 事实证明两个等温线之间的变化以垂直于法线方向上温度的变化率最大,这一温度最大变化率称为温度梯度。用grad t来表示。即: ?t ?t =n ?n→0 ?n ?x 式 n ?法方上单向;中线向的位量?t 示发方温的向数?表沿现向度方倒。?n gradt = n lim gradt = i ?t ?t ?t + j +k ?x ?y ?z 温度梯度在直角坐标系中可表示为: 式 i, j和分是 , y和轴向单向。中 k 别 x z 方的位量温度梯度的负值,称为温度降度。 2.1.4导热定律 单位时间内通过单位给定界面的导热量,称为热流量,记作q,单位W/m2. 傅立叶定律(导热基本定律): q = ?λgradt 上式表明,热流量是一个向量(热流向量),它与温度梯度位于等温面同一法线上,但是指向温度降低的方向,上式中的负号就表示热流量和温度梯度的方向相反,永远顺着温度降低的方向。适用于连续均匀和各向同性材料的稳态和非稳态导热过程。 2.1.5导热系数 导热系数的定义式:导热系数在数值上等于温度降低 1 / m 时单位时间每单位导热面积的导热量。℃ 2 单位是。导热系数是材料固有的

国电集团招聘考试2-8-热能工程与动力类专业知识点--传热学知识点讲义整理解剖

传热学知识点 1.传热学:研究热量传递规律的科学。 2.热量传递的基本方式:热传导、热对流、热辐射。 3.热传导(导热):物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。(纯粹的导热只能发生在不透明的固体之中。) 4.热流密度:通过单位面积的热流量(W /m 2)。 5.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。热对流只发生在流体之中,并伴随有导热现象。 6.自然对流:由于流体密度差引起的相对运功c 7.强制对流:出于机械作用或其他压差作用引起的相对运动。 8.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。 9.辐射:物体通过电磁波传播能量的方式。 10.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。 11.辐射换热:不直接接触的物体之间,出于各自辐射与吸收的综合结果所产生的热量传递现象。 12.传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。 13.传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1时所产生的热流密度)/(2k m W ?。 14.单位面积上的传热热阻:k R k 1= 单位面积上的导热热阻:λ δλ=R 。 单位面积上的对流换热热阻:h R 1= λ 对比串联热阻大小就可以找到强化传热的主要环节。 15.导热系数λ 是表征材料导热性能优劣的系数,是一种物性参数,不同材料的导热系数的数值不同,即使是同一种材料,其值还与温度等参数有关。对于各向异性的材料,还与方向有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。 16.表面换热系数h

传热学知识点资料讲解

常用的相似准则数:①努谢尔特:Nu=aL/λ分子是实际壁面处的温度变化率,分母是原为l的流体层导热机理引起的温度变化率反应实际传热量与导热分子扩散热量传递的比较。Nu大小表明对流换热强度。②雷诺准则Re=WL/V Re大小反映了流体惯性力和粘性力相对大小。Re是判断流态的。③格拉小夫准则Gr=gβ△tL3/V2 Gr的大小表明浮升力和粘性力的的相对大小,Gr表明自然流动状态兑换热的影响。 ④普朗特准则: Pr=V/a Pr表明动量扩散率与热量扩散率的相对大小。 辐射换热时的角系数:①相对性②完整性③可加性 热交换器通常分为三类:间壁式、混合式和回热式,按传热表面的结构形式分为管式和板式间壁式热交换器按两种流体相互间的流动方向热交换器分为分为顺流,逆流,交叉流。 导温系数α也称为热扩散系数或热扩散率,它象征着物体在被加热或冷却是其内部各点温度趋于均匀一致的能力。Α大的物体被加热时,各处温度能较快的趋于一致。传热学考研总结 1傅里叶定律:单位时间内通过单位截面积所传递的热量,正比例于当地垂直于截面方向上的温度变化率 2集总参数法:忽略物体内部导热热阻的简化分析方法 3临界热通量:又称为临界热流密度,是大容器饱和沸腾中的热流密度的峰值 4效能:表示换热器的实际换热效果与最大可能的换热效果之比 5对流换热是怎样的过程,热量如何传递的? 对流换热:指流体各部分之间发生宏观运动产生的热量传递与流体内部分子导热引起的热量传递联合作用的结果。对流仅能发生在流体中,而且必然伴随有导热现象。 对流两大类:自然对流(不依靠泵或风机等外力作用,由于流体内部密度差引起的流动)与强制对流(依靠泵或风机等外力作用引起的流体宏观流动)。 影响换热系数因素:流体的物性,换热表面的形状与布置,流速,流动起因(自然、强制),流动状态(层流、湍流),有无相变。 6何谓凝结换热和沸腾换热,影响凝结换热和沸腾换热的因素? 蒸汽与低于饱和温度的壁面接触时,将汽化潜热传递给壁面的过程称为凝结过程。 如果凝结液体能很好的润湿壁面,它就在壁面上铺展成膜,这种凝结形式称为膜状凝结。 如果凝结液体不能很好地润湿壁面,在壁面上形成一个个小液珠,这种凝结方式称为珠状凝结。 液体在固液界面上形成气泡引起热量由固体传递给液体的过程称为沸腾换热。 按沸腾液体是否做整体流动可分为大容器沸腾(池沸腾)和管内沸腾;按液体主体温度是否达到饱和温度可分为饱和沸腾和过冷沸腾。 不凝结气体对凝结换热过程的影响:在靠近液膜表面的蒸气侧,随着蒸气的凝结,蒸气分压力减小而不凝结气体的分压力增大;蒸气在抵达液膜表面进行凝结前,必须以扩散方式穿过聚集在界面附近的不凝结气体层,因此,不凝结气体层的存在增加了传递过程的阻力。 影响凝结换热的因素:不凝结气体、蒸汽流速、管内冷凝、蒸汽过热度、液膜过冷度及温度分布非线性。 影响沸腾换热的因素:不凝结气体(使沸腾换热强化)、过冷度、重力加速度、液位高度、管内沸腾。 7强化凝结换热和沸腾换热的原则? 强化凝结换热的原则:减薄或消除液膜,及时排除冷凝液体。 强化沸腾换热的原则:增加汽化核心,提高壁面过热度。 8试以导热系数为定值,原来处于室温的无限大平壁因其一表面温度突然升高为某一定值而发生非稳态导热过程为例,说明过程中平壁内部温度变化的情况,着重指出几个典型阶段。 首先是平壁中紧挨高温表面部分的温度很快上升,而其余部分则仍保持原来的温度,随着时间的推移,温度上升所波及的范围不断扩大,经历了一段时间后,平壁的其他部分的温度也缓慢上升。 主要分为两个阶段:非正规状况阶段和正规状况阶段 9灰体有什么主要特征?灰体的吸收率与哪些因素有关?

传热学(3)

传热学(三) 一、单项选择题(本大题 10 小题,每小题 2 分,共 20 分) 在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确项前 的字母填在题后的括号内。 1. 在锅炉的炉墙中:烟气内壁外壁大气的热过和序为 : 【 A】 A. 辐射换热 , 导热 , 复合换热 B. 导热,对流换热,辐射换热 C. 对流换热泪盈眶,复合换热,导热 D. 复合换热,对流换热,导热 2. 由表面 1 和表面 2 组成的封闭系统中: X 1,2 _C____ X 2,1 。 A. 等于 B. 小于 C. 可能大于,等于,小于 D. 大于 3. 流体流过短管内进行对流换热时其入口效应修正系数【B 】 A.=1 B. >1 C. <1 D. =0 4. 在其他条件相同的情况下 , 下列哪种物质的导热能力最差 ? 【 A】 A. 空气 B. 水 C. 氢气 D. 油 5. 下列哪种物质中不可能产生热对流 ? d A. 空气 B. 水 C. 油 D. 钢板 6.Gr 准则反映了 ____浮力与粘性力__ 的对比关系。 A. 重力和惯性力 B. 惯性力和粘性力 C. 重力和粘性力 D. 角系数 7. 表面辐射热阻与 ____D____ 无关。 A. 表面粗糙度 B. 表面温度 C. 表面积 D. 角系数 8. 气体的导热系数随温度的升高而【增大】 A. 减小 B. 不变 C. 增大 D. 无法确定 9. 下列哪种设备不属于间壁式换热器 ? 【D 】 A.1-2 型管壳式换热器 ? B. 2-4 型管壳式换热器 C. 套管式换热器 D. 回转式空气预热器

10. 热传递的三种基本方式为【 C】 A. 导热、热对流和传热过热 B. 导热、热对流和辐射换热 C. 导热、热对流和热辐射 D. 导热、辐射换热和对流换热 第二部分非选择题 二、填空题(本大题共 10 小题,每小题 2 分,共 20 分) 11. 在一台顺流式的换热器中,已知热流体的进出口温度分别为 180 和 100 ,冷流体的进出口温度分别为 40 和 80 ,则对数平均温差为 _____61.67______ 。 12. 已知一灰体表面的温度为 127 ,黑度为 0.5 ,则其车辆射力为 ___725.76_________ 。 13. 为了达到降低壁温的目的,肋片应装在__冷流体______ 一侧。 14. 灰体就是吸收率与 ___波长_____ 无关的物体。 15. 冬季室内暖气壁面与附近空气之间的换热属于 _____复合___ 换热。 16. 传热系数的物理意义是指 _______冷热流体__ 间温度差为1时的传热热流密度。 17. 黑度是表明物体 _____辐射___ 能力强弱的一个物理量。 18. 肋壁总效率为 ___肋壁_实际传热量___ 与肋壁侧温度均为肋基温度时的理想散热量之比。 19. 在一个传热过程中,当壁面两侧换热热阻相差较多时,增大换热热阻 __大_____ 一侧的换热系数对于提高传热系数最有效。 20. 1-2型管壳式换热器型号中的“2”表示 _管程数________ 。 三、名词解释(本大题5小题,每小题4分,共20分) 21. 换热器的效能(有效度)换热器的实际传热量与最大可能传热量之比 22. 大容器沸腾

最新传热学知识点

传热学主要知识点 1. 热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。 2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。 3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 h 是对流换热系数单位 w/(m 2 k) q ''是热流密度(导热速率),单位(W/m 2) φ是导热量W 6. 热辐射的特点。 a 任何物体,只要温度高于0 K ,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。 7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h 因素:流速、流体物性、壁面形状大小等传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 (w) )(∞-=''t t h q w 2 /) (m w t t Ah A q w ∞-=''=φ

(整理)传热学知识点.

传热学主要知识点 1.热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。

2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。

3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 [] W )(∞-=t t hA Φw [] 2m W )( f w t t h A Φq -==

6. 热辐射的特点。 a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。

7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h因素:流速、流体物性、壁面形状大小等。传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

传热学知识点总结

Φ-=B A c t t R 1211k R h h δλ=++传热学与工程热力学的关系: a 工程热力学研究平衡态下热能的性质、热能与机械能及其他形式能量之间相互转换的规律, 传热学研究过程和非平衡态热量传递规律。 b 热力不考虑热量传递过程的时间,而传热学时间是重要参数。 c 传热学以热力学第一定律和第二定律为基础。 传热学研究内容 传热学是研究温差引起的热量传递规律的学科,研究热量传递的机理、规律、计算和测试方法。 热传导 a 必须有温差 b 直接接触 c 依靠分子、原子及自由电子等微观粒子热运动而传递热量,不发生宏观的相对位移 d 没有能量形式的转化 热对流 a 必须有流体的宏观运动,必须有温差; b 对流换热既有对流,也有导热; c 流体与壁面必须直接接触; d 没有热量形式之间的转化。 热辐射: a 不需要物体直接接触,且在真空中辐射能的传递最有效。 b 在辐射换热过程中,不仅有能量的转换,而且伴随有能量形式的转化。 c .只要温度大于零就有.........能量..辐射。... d .物体的...辐射能力与其温度性质..........有关。... 传热热阻与欧姆定律 在一个串联的热量传递的过程中,如果通过各个环节的热流量相同,则各串联环节的的总热阻等于各串联环节热阻之和(I 总=I1+I2,则R 总=R1+R2) 第二章 温度场:描述了各个时刻....物体内所有各点....的温度分布。 稳态温度场::稳态工作条件下的温度场,此时物体中个点的温度不随时间而变 非稳态温度场:工作条件变动的温度场,温度分布随时间而变。 等温面:温度场中同一瞬间相同各点连成的面 等温线:在任何一个二维的截面上等温面表现为 肋效率:肋片的实际散热量ф与假设整个肋表面...处于肋基温度....时的理想散热量ф0 之比 接触热阻 Rc :壁与壁之间真正完全接触,增加了附加的传递阻力 三类边界条件 第一类:规定了边界上的温度值 第二类:规定了边界上的热流密度值 第三类:规定了边界上物体与周围流体间的表面..传热系数....h 及周围..流体的温度..... 。 导热微分方程所依据的基本定理 傅里叶定律和能量守恒定律 傅里叶定律及导热微分方程的适用范围 适用于:热流密度不是很高,过程作用时间足够长,过程发生的空间尺度范围足够大 不适用的:a 当导热物体温度接近0k 时b 当过程作用时间极短时c 当过成发生的空间尺度极小,与微观粒子的平均自由程相接近时

传热学基础知识

传热学基础知识 余热发电专业理论知识培训教材 传热学基础知识介绍 由于温度的不同而引起的两物体间或一个物体各部分 之间热量传递的过程,称为热交换。热量传递的基本方式由 三种:导热、对流、热辐射。 一、导热 导热是指直接接触的物体各部分之间的热交换过程。影响导热的因素: 1) 接触壁面面积; 2) 热流密度:单位时间内通过单位面积的热量。 热流密度与导热系数、壁厚、壁间温差有关。其中 导热系数起决定性作用,它是由材料的种类和工作 温度决定的。 一般金属的导热系数随温度的升高而降低。而耐火 材料和保温材料的导热系数则随温度的升高而升 高。 当锅炉的受热面上敷上一层灰或内壁附上一层水 垢后,它的导热系数会马上下降。因为积灰和水垢 的导热系数分别为钢的1/400和1/80。这一方面降 低了热流密度,另一方面也可能造成局部过热,缩 短管子寿命,引起管子破裂。 二、对流换热 流体流过壁面同壁面间产生的热量交换称为对流换

热。 影响对流换热的因素有: 1) 换热面面积; 2) 对流换热系数; 3) 壁面温度与流体温度之差。 其中,流速对对流换热系数影响最大,流速越高,对 流换热系数越大。但流速也不能过高,因为流体阻力 与流速的平方成正比。 三、热辐射 以电磁波的方式进行的物体之间的热交换称为辐射换 热。 影响辐射换热的因素有: 1) 辐射温度; 2) 辐射常数; 3) 辐射表面积。 以上分别讨论了导热、对流、热辐射三种基本的换热方式。在实际过程中,这些换热方式往往不是单独出现的。比如,省煤器和凝汽器的换热过程如下: 对流、辐射导热对流省煤器:废气——?管外壁——?管内壁——?水; 对流导热对流凝器器:乏汽——?管外壁——?管内壁——?水。 上述传热过程都是在理想状态下进行的,在锅炉的实际运行中,由于受热面外壁会出现积灰,内壁会出现结垢,氧化,这些都影响了换热效果。所以,日常运行中,一定要进行水的软化处理来防止上述情况的发生,从而保证锅炉安全、经济的运行。

传热学知识点总结

第一章 §1-1 “三个W” §1-2 热量传递的三种基本方式 §1-3 传热过程和传热系数 要求:通过本章的学习,读者应对热量传递的三种基本方式、传热过程及热阻的概念有所了解,并能进行简单的计算,能对工程实际中简单的传热问题进行分析(有哪些热量传递方式和环节)。作为绪论,本章对全书的主要内容作了初步概括但没有深化,具体更深入的讨论在随后的章节中体现。 本章重点: 1.传热学研究的基本问题 物体内部温度分布的计算方法 热量的传递速率 增强或削弱热传递速率的方法 2.热量传递的三种基本方式 (1).导热:依靠微观粒子的热运动而产生的热量传递。传热学重点研究的是在宏观温差作用下所发生的热量传递。 傅立叶导热公式: (2).对流换热:当流体流过物体表面时所发生的热量传递过程。 牛顿冷却公式: (3).辐射换热:任何一个处于绝对零度以上的物体都具有发射热辐射和吸收热辐射的能力,辐射换热就是这两个过程共同作用的结果。由于电磁波只能直线传播,所以只有两个物体相互看得见的部分才能发生辐射换热。 黑体热辐射公式: 实际物体热辐射: 3.传热过程及传热系数:热量从固壁一侧的流体通过固壁传向另一侧流体的过程。 最简单的传热过程由三个环节串联组成。 4.传热学研究的基础 傅立叶定律 能量守恒定律+ 牛顿冷却公式+ 质量动量守恒定律 四次方定律 本章难点 1.对三种传热形式关系的理解 各种方式热量传递的机理不同,但却可以(串联或并联)同时存在于一个传热现象中。2.热阻概念的理解 严格讲热阻只适用于一维热量传递过程,且在传递过程中热量不能有任何形式的损耗。 思考题: 1.冬天经太阳晒过的棉被盖起来很暖和,经过拍打以后,效果更加明显。为什么?

传热学知识整理1

绪 论 一、概念 1.传热学:研究热量传递规律的科学。 2.热量传递的基本方式:热传导、热对流、热辐射。 3.热传导(导热):物体的各部分之间不发生相对位移、依靠微观粒子的热运动产生的热量传递现象。(纯粹的导热只能发生在不透明的固体之中。) 4.热流密度:通过单位面积的热流量(W /m 2)。 5.热对流:由于流体各部分之间发生相对位移而产生的热量传递现象。热对流只发生在流体之中,并伴随有导热现象。 6.自然对流:由于流体密度差引起的相对运功c 7.强制对流:出于机械作用或其他压差作用引起的相对运动。 8.对流换热:流体流过固体壁面时,由于对流和导热的联合作用,使流体与固体壁面间产生热量传递的过程。 9.辐射:物体通过电磁波传播能量的方式。 10.热辐射:由于热的原因,物体的内能转变成电磁波的能量而进行的辐射过程。 11.辐射换热:不直接接触的物体之间,出于各自辐射与吸收的综合结果所产生的热量传递现象。 12.传热过程;热流体通过固体壁而将热量传给另一侧冷流体的过程。 13.传热系数:表征传热过程强烈程度的标尺,数值上等于冷热流体温差1时所产生的热流密度)/(2k m W ?。 14.单位面积上的传热热阻:k R k 1= 单位面积上的导热热阻:λ δλ=R 。 单位面积上的对流换热热阻:h R 1= λ 对比串联热阻大小就可以找到强化传热的主要环节。 15.导热系数λ 是表征材料导热性能优劣的系数,是一种物性参数,不同材料的导热系数的数值不同,即使是同一种材料,其值还与温度等参数有关。对于各向异性的材料,还与方向有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。

传热学三级项目

传热学三级项目

目录 一、摘要 (1) 二、前言 (1) 三、黑度的测定及分析 (1) 3.1 固体表面黑度测定的基本原理 (1) 3.2 黑度测定的设备 (2) 3.3 实验设备图片及试件图纸 (3) 3.4实验步骤介绍 (4) 3.5 实验数据及黑度值记录表 (5) 3.6 黑度与温度之间的曲线图 (5) 3.7 结论 (6) 3.8 误差分析 (6) 四、感想 (6) 五、主要参考文献 (7) 附录:自评分表 (7)

一、摘要 在传热学中,黑度的研究必不可少。本文以测量物体表面的黑度为中心,进一步研究物体的黑度与温度之间的关系。同样,这个过程也会有对黑度测定设备的介绍及对黑度测定结果的分析,最终以数据图表的形式定量给出物体黑度与温度之间的关系。 二、前言 物体可按其辐射特性分为黑体、灰体和选择性辐射体(非灰体)三大类。其中黑体是能发射全波段的热辐射,在相同的温度条件下,辐射能力最大。黑体的辐射能力为斯蒂芬-玻尔兹曼定律。 在一定温度下,将灰体的辐射能力与同温度下黑体的辐射能力之比定义为物体的黑度,或物体的发射率,用ε表示。物体表面的黑度与物体的性质、表面状况和温度等因素有关,是物体本身的固有特性,与外界环境情况无关。凡是将辐射热全部反射的物体称为绝对白体,能全部吸收的称为绝对黑体,能全部透过的则称为绝对透明体或热透体。在应用科学中,常把吸收系数接近于1的物体近似的当作黑体。本项目就是基于这些基本概念来分析固体表面黑度随温度的变化。 三、黑度的测定及分析 3.1 固体表面黑度测定的基本原理 当一物体放在另一物体的空腔内,且空腔内不存在吸收辐射

传热学知识点解析

传热学主要知识点 1. 热量传递的三种基本方式。 热量传递的三种基本方式:导热(热传导)、对流(热对流)和热辐射。 2.导热的特点。 a 必须有温差; b 物体直接接触; c 依靠分子、原子及自由电子等微观粒子热运动而传递热量; d 在引力场下单纯的导热一般只发生在密实的固体中。 3.对流(热对流)(Convection)的概念。 流体中(气体或液体)温度不同的各部分之间,由于发生相对的宏观运动而把热量由一处传递到另一处的现象。 4对流换热的特点。 当流体流过一个物体表面时的热量传递过程,它与单纯的对流不同,具有如下特点: a 导热与热对流同时存在的复杂热传递过程 b 必须有直接接触(流体与壁面)和宏观运动;也必须有温差 c 壁面处会形成速度梯度很大的边界层 5.牛顿冷却公式的基本表达式及其中各物理量的定义。 6. 热辐射的特点。 [] W )(∞-=t t hA Φw [] 2m W )( f w t t h A Φq -==

a 任何物体,只要温度高于0 K,就会不停地向周围空间发出热辐射; b 可以在真空中传播; c 伴随能量形式的转变; d 具有强烈的方向性; e 辐射能与温度和波长均有关; f 发射辐射取决于温度的4次方。7.导热系数, 表面传热系数和传热系数之间的区别。导热系数:表征材料导热能力的大小,是一种物性参数,与材料种类和温度关。 表面传热系数:当流体与壁面温度相差1度时、每单位壁面面积上、单位时间内所传递的热量。影响h因素:流速、流体物性、壁面形状大小等。传热系数:是表征传热过程强烈程度的标尺,不是物性参数,与过程有关。 常温下部分物质导热系数:银:427;纯铜:398;纯铝:236;普通钢:30-50;水:0.599;空气:0.0259;保温材料:<0.14;水垢:1-3;烟垢:0.1-0.3。 8.实际热量传递过程:常常表现为三种基本方式的相互串联/并联作用。

传热学第三章答案

第三章 思考题 1. 试说明集中参数法的物理概念及数学处理的特点 答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。 2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数hA cv c ρτ= ,形状 上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。 3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题 答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。如薄板两侧均匀加热或冷却、 炉墙或冷库的保温层导热等情况可以按无限大平板处理。 4. 什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有 些什么特点? 答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x )和边界条件(Bi 数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。 5. 有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算所得的结果是错误的.理由 是: 这个图表明,物体中各点的过余温度的比值与几何位置及Bi 有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。你是否同意这种看法,说明你的理由。 答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。这与物体中各点温度趋近流体温度的事实并不矛盾。 6. 试说明Bi 数的物理意义。o Bi →及∞→Bi 各代表什么样的换热条件?有人认为, ∞→Bi 代表了绝热工况,你是否赞同这一观点,为什么? 答;Bi 数是物体内外热阻之比的相对值。o Bi →时说明传热热阻主要在边界,内部温度趋于均匀,可以用集总参数法进行分析求解;∞→Bi 时,说明传热热阻主要在内部,可以近似认为壁温就是流体温度。认为o Bi →代表绝热工况是不正确的,该工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。 7. 什么是分非稳态导热问题的乘积解法,他的使用条件是什么?

传热学3-7章问答题及答案

第三章 非稳态热传导 一、名词解释 非稳态导热:物体的温度随时间而变化的导热过程称为非稳态导热。 数Bi :Bi 数是物体内部导热热阻λδ与表面上换热热阻h 1之比的相对值,即:λδh Bi = o F 数:傅里叶准则数 2τ l a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。 二、解答题和分析题 1、数Bi 、o F 数、时间常数 c τ的公式及物理意义。 答:数Bi : λδh Bi =,表示固体内部导热热阻与界面上换热热阻之比。 2τl a Fo =,非稳态过程的无量纲时间,表征过程进行的深度。 hA cV c ρτ=, c τ数值上等于过余温度为初始过余温度的36.8%时所经历的时间。 2、0→Bi 和∞→Bi 各代表什么样的换热条件?有人认为0→Bi 代表了绝热工况,是否正确,为什么? 答:1)0→Bi 时,物体表面的换热热阻远大于物体内部导热热阻。说明换热热阻主要在边界,物 体内部导热热阻几乎可以忽略,因而任一时刻物体内部的温度分布趋于均匀,并随时间的推移整体地下降。可以用集总参数法进行分析求解。 2)∞→Bi 时,物体表面的换热热阻远小于物体内部导热热阻。在这种情况下,非稳态导热过程刚开始进行的一瞬间,物体的表面温度就等于周围介质的温度。但是,因为物体内部导热热阻较大,所以物体内部各处的温度相差较大,随着时间的推移,物体内部各点的温度逐渐下降。在这种情况下,物体的冷却或加热过程的强度只决定于物体的性质和几何尺寸。 3)认为0→Bi 代表绝热工况是不正确的,0→Bi 的工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。 3、厚度为δ2,导热系数为λ,初始温度均匀并为0t 的无限大平板,两侧突然暴露在温度为∞t ,表 面换热系数为h 的流体中。试从热阻的角度分析0→Bi 、∞→Bi 平板内部温度如何变化,并定性画出此时平板内部的温度随时间的变化示意曲线。 答:1)0→Bi 时,平板表面的换热热阻远大于其内部导热热阻。说明换热热阻主要在边界,平板

第三部分流体力学、传热学知识

第三部分 —流体力学、传热学知识 一、单项选择题 1、在水力学中,单位质量力是指(C) □A.单位面积液体受到的质量力;□B.单位体积液体受到的质量力;□C.单位质量液体受到的质量力;□D.单位重量液体受到的质量力。 2、液体中某点的绝对压强为100kN/m2,则该点的相对压强为( B ) □A.1 kN/m2 □B.2 kN/m2 □C.5 kN/m2 □D.10 kN/m2 3、有压管道的管径d与管流水力半径的比值d /R=(B) □A.8 □B.4 □C.2 □D.1 4、已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于( C ) □A.层流区□B.紊流光滑区 □C.紊流过渡粗糙区□D.紊流粗糙区 5、现有以下几种措施: ①对燃烧煤时产生的尾气进行除硫处理;②少用原煤做燃料; ③燃煤时鼓入足量空气;④开发清洁能源。 其中能减少酸雨产生的措施是(C) □A.①②③□B.②③④□C.①②④□D.①③④6、“能源分类相关图”如下图所示,下列四组能源选项中,全部符合图中阴影部分的能源是(C)

□A.煤炭、石油、潮汐能□B.水能、生物能、天然气□C.太阳能、风能、沼气□D.地热能、海洋能、核能7、热量传递的方式是什么?(D) □A.导热□B.对流□C.热辐射□D.以上三项都是8、流体运动的连续性方程是根据(C)原理导出的? □A.动量守恒□B.质量守恒□C.能量守恒□D.力的平衡9、当控制阀的开口一定,阀的进、出口压力差Δp(B) □A.增加□B.减少□C.基本不变□D.无法判断10、热流密度q与热流量的关系为(以下式子A为传热面积,λ为导热系数,h为对流传热系数)(B) □A.q=φA □B.q=φ/A □C.q=λφ□D.q=hφ 11、如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将( B ) □A.不变□B.提高□C.降低□D.随机改变 12、在传热过程中,系统传热量与下列哪一个参数成反比? ( D ) □A.传热面积□B.流体温差 □C.传热系数□D.传热热阻 13、下列哪个不是增强传热的有效措施?(D) □A.波纹管□B.逆流

传热学资料

传热学的研究方法主要有:理论分析方法;实验研究方法;比拟(类比)方法;数值计算方法 ?在具有连续温度场的物体内,过任意一点P温度变化率最大的方向位于等温线 的法线方向上。称过点P的最大温度变化率为温度梯度(temperature gradient).用grad t表示。 ?定义为:grad ?温度梯度表明了温度在空间上的最大变化率及其方向,是向量,其正向与热流 方向恰好相反。对于连续可导的温度场同样存在连续的温度梯度场。 ?傅里叶定律是在毕渥(Boit)进行大量实验后所得结果的基础上,由傅里叶 (Fourier)归纳得出的。 ?数学表达式: ?物理意义:任意时刻τ,各向同性的连续介质中任何地点的局部热流密度(local heat flux)数值上与该点的温度梯度成正比,方向相反,比例系数λ称为导热系数,它是物质的一个重要热物性参数,表征物质导热能力的大小,其单位为 W/(m·K)。 ?适用条件:各向同性介质的稳态和非稳态导热现象。 ?定义式: ?导热系数在数值上等于单位温度降度(即lK/m)下,在垂直于热流密度的单位面 积上所传导的热流量。导热系数是表征物质导热能力强弱的一个物性参数。 二、影响因素 ?包括:物质的种类及性质、温度、压力、密度以及湿度 ?各种物质的导热系数相差很大,其根本原因在于不同的物质其导热机理存在着 差异。一般而言,金属的导热系数最大,非金属和液体次之,气体的导热系数最小。导热系数越大,说明其导热性能越好。由图中可以看出,各类物质导热系数的一般大小顺序。 ?例如将一根铁棒一端置于火炉中,另一端很快会感觉烫手,这是由于铁棒的热 扩散率a较大的缘故。而在冬天将手置于温度相同的铁板或木板上时,铁板感觉更冰凉一些,则是由于铁板吸热系数较木板大的缘故

热物理过程的数值模拟-计算传热学3

四、非线笥问题迭代式解法的收敛性 每一层次上满足迭代法求解的收敛条件+相邻次间代数方程的系数变化不太大(亦即未知量的变化不太大←多数情形下非线性问题迭代式解法是可以收敛的)。 使相邻两层次间未知量变化不太大的措施: 1、欠松弛迭代 常用逐次欠弛线迭法(SLUR ):一组临时系数下逐线迭代求解+对所得的解施以欠松弛,再用欠松弛后的解去计算新的系数,常数,以进入下一层次的迭代。 实施:常把欠松弛处理纳入迭代过程,而不是在一个层次迭代完成后再行欠松弛。 )( ) ()()1(n p p n n n p n p t a b bt a t t -∑+=+ω )()1() 1()( n p p n n n p p t a b b t b a t a ω ωω -+++∑=+ ∑+=+')1('b b bt a t a n n n p p )('))(1(',n p p p p t a b b a a ωωω-+==,用交替方向线迭代法求解这一方程,就实现了SLUR 的迭代求解。为一般化起见,上式中b t n 上没有标以迭代层次的符号(J ,GS 时不相同)。 2、采用拟非稳态法 前面已指出,稳态问题的迭代解法与非稳态问题的步进法十分相似。对于非线性稳态问题,从代数方程的一组临时系数进入到另一组临时系数亦好象非稳态问题前进了一个时间层,非稳态问题的物理特性:系数热惯性越大(↑??=τρ/v c a o p ),温度变化越慢,仿此,对稳态非线性问题,可在离散方程中加入拟非稳态项,以减小未知量托两个层次间的变化,即 由 )()1()1()()(n p o p n n n p o p p n n n n p p n t a b b bt a t a V S b a b b bt a t V S b a ++∑=+?-∑?+∑=?-∑++ o p p n n p o p n n n p a V S b a t a b b bt a t +?-∑++∑= +) ()1( 一直进行到b t t n p ,收敛,虚拟时间步τ?的大小通过计算实践确定。 3、采用Jacobi 点迭代法 中止迭代的判据(该层次迭代)除前述变化率判据外,还可以规定迭代的轮数,例如规定进行4-6次ADI 线迭代就结束该层次上的计算。此时,用收敛速度低的丁迭代也就起到了欠松弛的作用。 五、迭代法的收敛速度 1、收敛速度 对给定的代数方程组(包括是临时系数的情形),采用不同的迭代方法求解时,使一定的初始误差缩小成α倍所需要的迭代轮数K 是不相的。1<α

相关主题
文本预览
相关文档 最新文档