当前位置:文档之家› 材料工程基础教学大纲

材料工程基础教学大纲

材料工程基础教学大纲
材料工程基础教学大纲

《材料工程基础》课程教学大纲

制定依据:本大纲根据2014版本科人才培养方案制定

课程编号:I0220024

学时数:64

学分数:4

适用专业:无机非金属材料工程

先修课程:大学物理、高等数学、工程力学

考核方式:考试

一、课程的性质和任务

材料工程基础课程是无机非金属材料工程专业的一门重要的学科基础课。围绕材料生产过程主要涉及到的工程理论,本课程主要介绍与之相关的基本理论和基础研究方法。通过本课程的学习,要使学生获得工程流体力学、传热与传质基础等方面的基本概念、基本理论和基本运算技能;掌握材料生产过程中相关的工程理论基本知识,具备一定的工程研究能力。

在传授知识的同时,要通过各个教学环节逐步培养学生具有思维能力、自学能力、独立分析问题和解决问题的能力,还要特别注意培养学生工程研究能力和综合运用所学知识去分析和解决问题的能力。

本门课程要求学生重点掌握如下知识:

1.正确理解下列基本概念和它们之间的内在联系:

粘滞性,静压强,连续性方程的物理意义,能量方程的物理意义,流动的状态,流动阻力,传导传热,对流传热,辐射传热,导温系数,热阻,角系数,热流量,质量传递,量纲,相似准数,过剩空气系数,燃烧值,湿空气的各状态参数。

2.正确理解下列基本定理和公式并能正确运用:

质量守恒定理,能量守恒定律,牛顿冷却定律,辐射换热的基本定理,相似三定理,量纲和谐原理。

3.牢固掌握下列公式:

牛顿粘性定律,流体静力学基本方程,连续性方程,Bernoulli方程,傅立叶(Fourier)定律,牛顿冷却定律,物体间的辐射传热,燃料组成的换算,空气量的计算,烟气量计算。

4.熟练运用下列法则和方法:

湿空气状态变化过程的特点、干燥过程的描述,量纲分析法、方程分析法,物料平衡法则,热量平衡法则。

5.会运用流体流动的基本规律、热量传递基本规律和工程研究基本方法解一些简单的工程问题。

二、教学内容与要求

理论教学(学时:64)

流体力学基础(8学时)

(一)教学内容

1.1 流体力学概述

1.1.1 流体的概念

1.1.2 流体力学的研究内容

1.1.3 流体力学研究的意义

1.1.4 流体力学的研究方法

1.1.5 单位与量纲

1.2 流体的性质

1.2.1 流体的基本物理性质

1.2.2 流体的连续性——连续介质模型

1.2.3 流体的可压缩性与热膨胀性

1.2.4 流体的传递性质

1.2.5 流体的状态参数与状态方程

1.2.6 作用在流体上的力

1.3 流体运动的微分方程

1.3.1 质量守恒定律——连续性方程

1.3.2 动量定理——运动方程(纳维一斯托克斯方程) 1.3.3 能量守恒定律——能量方程

1.3.4 定解条件

1.3.5 相似理论和量纲分析

1.3.6 三种传递过程的类比分析

1.4 流体静力学

1.4.1 重力场中静止流体中的压强分布

1.4.2 非惯性系中均质流体的相对平衡

1.5 理想流体流动

1.5.1 欧拉方程

1.5.2 流体的旋度

1.5.3 流函数

1.5.4 不可压缩理想流体圆柱绕流

1.6 不可压缩粘性流体的流动

1.6.1 层流与湍流

1.6.2 边界层理论简介

1.6.3 不可压缩粘性流体的层流运动

1.6.4 湍流运动的雷诺方程组

1.6.5 混合长理论

1.6.6 光滑管中的湍流流动

1.6.7 粗糙管中的湍流流动

1.7 流体流动的伯努利方程式

1.7.1 流体沿流线流动的伯努利方程式

1.7.2 流体沿管道流动的伯努利方程式

1.7.3 流体流动的阻力

1.7.4 伯努利方程式的应用

1.8 气体动力学基础

1.8.1 可压缩气流的一些基本概念

1.8.2 理想气体一元恒定流动的基本方程

1.8.3 气体在管道中的运动

1.9 离心式风机

1.9.1 离心式风机的基本结构和工作原理

1.9.2 离心式风机的性能参数与性能曲线

1.9.3 离心式风机性能参数的换算

1.9.4 离心式风机的工作点及流量调节

1.9.5 离心式风机的并联和串联操作

1.9.6 离心式风机的选择

(二)教学要求

(1)了解流体的基本物理属性和流体的输送设备。

(2)掌握流体静力学、流体动力学、流体流动及流动阻力的基本概念、特性和工程应用。

两相运动现象(4学时)

(一)教学内容

2.1 绪论

2.2 两相与多相流的专用术语和基本特性参数

2.3 粒子一流体的相互作用

2.3.1 单粒子在流体中的受力分析

2.3.2 单粒子的运动方程

2.3.3 粒子云与流体的相互作用

2.4 连续相方程

2.4.1 流场的统计平均方法

2.4.2 边界粒子的影响

2.4.3 准一维两相流的守恒方程

2.5 流体一固体两相流的数值模拟

2.5.1 不可压缩流体流动过程数值求解的困难及解决的办法

2.5.2 原始变量法求解管道内准一维流动问题举例

2.5.3 湍流流动数值模拟的主要方法

2.5.4 数值模拟的基本程序

(二)教学要求

(1)了解两相与多相流的专用术语和基本特性参数。

(2)了解粒子-流体的相互作用、连续相方程、流体-固体两相流的数值模拟。传热学基础(12学时)

(一)教学内容

3.1 概述

3.1.1 传热及其应用

3.1.2 热量传递的基本方式与热流速率方程

3.1.3 传热热阻

3.2 传导传热

3.2.1 导热的基本概念

3.2.2 导热微分方程与定解条件

3.2.3 稳定态导热的分析与计算

3.2.4 非稳定态导热

3.3 对流换热

3.3.1 对流换热概述

3.3.2 对流换热过程的数学描述

3.3.3 强制流动时的对流换热

3.3.4 自然对流时的对流换热

3.3.5 流体有相变时的对流换热

3.4 辐射换热

3.4.1 热辐射的基本概念

3.4.2 黑体辐射定律

3.4.3 实际物体和灰体的辐射

3.4.4 角系数

3.4.5 两个灰体之间的辐射换热

3.4.6 多个灰体表面组成封闭系统时的辐射传热

3.4.7 辐射换热的强化与削弱

3.4.8 气体辐射

3.5 传热过程与换热器

3.5.1 传热过程与复合传热

3.5.2 换热器

(二)教学要求

(1)了解传导传热、对流传热、辐射传热、综合传热等基本概念。

(2)掌握温度梯度、热流量的概念,平壁导热、园筒壁导热的计算,影响对流换热的主要因素及对流换热过程的描述,发射率、角系数的概念,物体之间的辐射传热,强化和削弱传热过程的方法。

质量传递基础(16学时)

(一)教学内容

4.1 传质基本概念

4.1.1 浓度

4.1.2 分数表示法

4.1.3 速度

4.2 分子扩散传质

4.2.1 斐克(Fick)定律

4.2.2 分子扩散系数

4.2.3 流体中的分子扩散

4.2.4 固体中的分子扩散

4.2.5 非稳态扩散

4.3 对流传质

4.3.1 浓度边界层与对流传质系数

4.3.2 对流传质准数方程

4.4 传质与化学反应

4.4.1 非均匀化学反应与扩散传质

4.4.2 均匀化学反应与扩散传质

4.4.3 球形颗粒的缩核反应与传质

(二)教学要求

(1)了解传质基本概念、分子扩散传质、传质与化学反应。

(2)掌握对流传质中的浓度边界层与对流传质系数、对流传质准数方程。

物料干燥(12学时)

(一)教学内容

5.1 概述

5.1.1 固体物料的去湿方法

5.1.2 物料的干燥方法

5.2 干燥静力学

5.2.1 湿空气的性质

5.2.2 湿空气状态的变化过程

5.2.3 水分在气一固两相间的平衡

5.3 干燥速率和干燥过程

5.3.1 恒定干燥条件下的干燥速率

5.3.2 影响干燥速率的因素

5.3.3 间歇干燥过程的干燥时间计算

5.3.4 连续干燥过程

5.4 干燥技术

5.4.1 对流干燥

5.4.2 传导干燥

5.4.3 辐射干燥

5.4.4 场干燥技术

(二)教学要求

(1)了解固体物料的去湿方法、物料的干燥方法、湿空气状态的变化过程、水分在气-固两相间的平衡。

(2)掌握对流干燥、传导干燥、辐射干燥、场干燥技术。

(3)理解恒定干燥条件下的干燥速率、影响干燥速率的因素、间歇干燥过程的干燥时间计算、连续干燥过程。

燃料及其燃烧(12学时)

(一)教学内容

6 燃料及其燃烧

6.1 燃料的种类及其组成

6.1.1 燃料的种类

6.1.2 固体燃料和燃料油的组成

6.1.3 气体燃料

6.2 燃料的性质

6.2.1 燃料的发热量

6.2.2 煤的特性

6.2.3 燃料油特性

6.2.4 气体燃料特性

6.3 燃烧计算

6.3.1 燃料燃烧所需空气量的计算

6.3.2 烟气量及烟气组成计算

6.3.3 生产中烟气量、空气量及过剩空气系数的计算

6.3.4 燃烧温度计算

6.3.5 影响理论燃烧温度的各因素

6.4 燃料的燃烧理论及过程

6.4.1 燃烧理论

6.4.2 不同燃料的燃烧过程

6.5 洁净燃烧技术

6.5.1 燃烧污染与防治

6.5.2 材料生产中的燃烧新技术

(二)教学要求

(1)了解不同种类燃料的性质及其组成、洁净燃烧技术。

(2)理解燃烧理论及工程,掌握燃烧计算:包括燃料燃烧所需空气量的计算、烟气量及烟气组成计算、生产中烟气量、空气量及过剩空气系数的计算、燃烧温度计算及影响理论燃烧温度的各因素。

三、考核要求

材料工程基础课程的考核以平时考核和期末考试相结合,平时考核包括出勤、作业和课堂表现等确定学生平时成绩,平时考试成绩占30%,卷面成绩占70%。

四、参考教材及其它参考资料

1、参考教材:

《材料工程基础》,徐德龙,谢峻林主编,武汉理工大学出版社,2008年第1版

2、其它参考资料:

[1]《硅酸盐工业热工基础》,孙晋涛主编,武汉理工大学出版社,2006年第1版

[2]《工程流体力学》,莫乃榕主编,华中科技大学出版社,2011年第2版

[3]《工程材料》,朱张校主编,清华大学出版社,2011年第5版

[4]《材料工程基础》,谢希文,过梅丽主编,北京航空航天大学出版社,2011年第1版

执笔人:侯伟

教研室主任签字:

院长(部主任)签字:

2014年07月01日

工程材料知识点总结

第一章 1.三种典型晶胞结构: 体心立方: Mo 、Cr 、W 、V 和 α-Fe 面心立方: Al 、Cu 、Ni 、Pb 和 β-Fe 密排六方: Zn 、Mg 、Be 体心立方 面心立方 密排六方 实际原子数 2 4 6 原子半径 a r 4 3= a r 4 2= a r 21= 配位数 8 12 12 致密数 68% 74% 74% 2.晶向、晶面与各向异性 晶向:通过原子中心的直线为原子列,它所代表的方向称为晶向,用晶向指数表示。 晶面:通过晶格中原子中心的平面称为晶面,用晶面指数表示。 (晶向指数、晶面指数的确定见书P7。) 各向异性:晶体在不同方向上性能不相同的现象称为各向异性。 3.金属的晶体缺陷:点缺陷、线缺陷、面缺陷 4.晶体缺陷与强化:室温下金属的强度随晶体缺陷的增多而迅速下降,当缺陷增多到一定数量后,金属强度又随晶体缺陷的增加而增大。因此,可以通过减少或者增加晶体缺陷这两个方面来提高金属强度。 5..过冷:实际结晶温度Tn 低于理论结晶温度To 的现象称为过冷。 过冷度 n T T T -=?0 过冷度与冷却速度有关,冷却速度越大,过冷度也越大。 6.结晶过程:金属结晶就是晶核不断形成和不断长大的过程。 7.滑移变形:单晶体金属在拉伸塑性变形时,晶体内部沿着原子排列最密的晶面和晶向发生了相对滑移,滑移面两侧晶体结构没有改变,晶格位向也基本一致,因此称为滑移变形。 晶体的滑移系越多,金属的塑性变形能力就越大。 8.加工硬化:随塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度显著提高,塑性和韧性显著降低,这称为加工硬化。 9.再结晶:金属从一种固体晶态过渡到另一种固体晶态的过程称为再结晶。 作用:消除加工硬化,把金属的力学和物化性能基本恢复到变形前的水平。 10.合金:两种或两种以上金属元素或金属与非金属元素组成的具有金属特性的物质。 11.相:合金中具有相同化学成分、相同晶体结构并有界面与其他部分隔开的均匀组成部分称为“相”。 分类:固溶体和金属间化合物 第二章 1.铁碳合金相图(20分) P22

机械工程材料期末考试

机械工程材料期末考试 一.填空题(共30分,每空1分) 1.液态金属结晶的基本过程是形核与晶核长大。 2.铁素体(F)是碳溶于α-Fe 所形成的间隙固溶体,其晶格类型是:体心立方。 3. 检测淬火钢件的硬度一般用洛氏(HRC)硬度;而检测退火和正火钢件的硬度常用布氏(HRB)硬度。4.GCr15钢是滚动轴承钢,其Cr的质量分数是1.5% 。5.16Mn钢是合金结构钢,其碳的质量分数是0.16% 。6.QT600-03中的“03”的含义是:最低伸长率为3% 。7. 钢与铸铁含碳量的分界点是:2.11% 。 8.贝氏体的显微组织形态主要有B上和B下两种,其中B下的综合性能好。9.钢的淬火加热温度越高,淬火后马氏体中含碳量越高,马氏体晶粒越粗大,残余奥氏体的量越越多。 10.钢加热时A的形成是由A晶核的形成、A晶核向F和Fe3C 两侧长大、残余Fe3C的溶解、A的均匀化等四个基本过程所组成的。11.一般表面淬火应选中碳成分钢,调质件应选用中碳成分钢。13.碳钢常用的淬火介质是水,而合金钢是油。 14.T10钢(Ac1≈727℃,Accm≈800℃)退火试样经700 ℃、780 ℃、860 ℃加热保温,并在水中冷却得到的组织分别是:P+Fe3C ,Fe3C+M+Ar ,M+Ar 。 15.渗碳钢在渗碳后缓慢冷却,由表面向心部的组织分布依次为:P+Fe3CⅡ (网状),P ,P+F 。得分 二.判断题(共10分,每小题1分)(正确√ 错误×,答案填入表格)1.在其他条件相同时,砂型铸造比金属型铸造的铸件晶粒更细。× 2.固溶强化是指因形成固溶体而引起的合金强度、硬度升高的现象。√ 3.珠光体、索氏体、屈氏体都是铁素体和渗碳体组成的机械混合物。√ 4.碳的质量分数对碳钢力学性能的影响

材料工程基础---教学大纲

材料工程基础》课程教学大纲 课程代码:050231021 课程英文名称:Fundamentals of Materials Engineering 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:金属材料工程专业大纲编写(修订)时间:2017.7 一、大纲使用说明 (一)课程的地位及教学目标材料工程基础是金属材料工程专业学生必修的专业基础课,是学位课,是从事材料科学与工程专业技术领域人员必备的课程。 本课程主要讲授液态金属成形工艺、金属塑性成形工艺、金属连接成形工艺、粉末冶金成形、非金属材料成形工艺及各种材料成形工艺方法的选择原则。通过学习,使学生初步具备为不同零件的生产选择合理的制造方法的能力,为其他相关课程如工程材料学、热处理原理与工艺学以及从事新材料成形研究奠定必要的基础,同时使学生具有对典型的金属材料零件分析讨论使用不同的成形方法制造的能力。 通过本课程的学习,学生将达到以下要求: 1.掌握液态金属成形的工艺设计、浇注系统、冒口、冷铁等的设计基本原则;掌握顺序凝固的应用,同时凝固的应用;掌握砂型铸造、金属型铸造、压力铸造、离心铸造、熔模铸造、低压铸造等特种铸造方法的原理、特点和应用;了解3D 打印等先进成形技术; 2.掌握自由锻件图设计和模锻工艺;掌握板料冲压、挤压、拉拔、轧制等工艺特点和应用;了解超塑性成形、液态模锻等先进塑性成形工艺。 3.掌握金属连接成形原理和方法;掌握电弧焊、气焊、埋弧自动焊、气体保护电阻焊、等离子弧焊与切割、压力焊、钎焊等焊接工艺原理、特点及应用;了解焊接缺陷的检验方法;了解电子束焊接等现代焊接方法。 4.掌握粉末冶金成形工艺的方法、特点和应用。 5.掌握塑料、橡胶、陶瓷成形方法的特点和应用。 6.掌握各种材料成形工艺选用原则和方法。对具体典型的金属材料零件如暖气片、机床床身、大口径地下输水管、黄铜水龙头、发动机缸体、汽车铝轮毂、大型发电子转子、大批量齿轮毛坯、柴油机曲轴、连杆、半轴、硬币、汽车面板、火车钢轨、铜线、钢瓶、船体、硬质合金刀具、显示器壳体等分析讨论使用不同的成形方法制造的合理性。 7.了解国家相关政策,了解“一带一路”政策给材料成形带来的挑战以及机遇。 8.了解各种成形方法的设备。 9.了解各种新的材料成形方法。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握材料成形方法的一般知识,主要掌握金属材料成形的常用方法及特点。 2.基本理论及方法:掌握液态金属各种成形方法及工艺设计,浇注系统、冒口、冷铁的设计基本原则,掌握铸造缺陷及检验方法,掌握特种铸造方法的原理;掌握塑性成形方法的原理及工艺设计,锻件图设计,板料冲压、挤压、拉拔、轧制等工艺,掌握模型锻造的零件结构特点;掌握金属连接成形的方法及工艺设计,电弧焊、气焊、埋弧自动焊、气体保护电阻焊、等离子弧焊与切割、压力焊、钎焊等工艺,掌握焊接接头的组织和性能,掌握焊接缺陷及检验方法;掌握粉末冶金成形工艺的方法、特点和应用;掌握塑料、橡胶、陶瓷成形方法的特点和应用;

材料工程基础重点简答题

《材料工程基础》复习思考题 第一章绪论 1、材料科学与材料工程研究的对象有何异同? 10、如何区分传统材料与先进材料? 18、什么是复合材料?如何设计和制备复合材料? 21、纳米材料与纳米技术的异同?它们对科技发展的作用?23、什么是生态环境材料?如何对其生命周期进行评价? 第二章材料的液态成形技术 3、影响液态金属充型能力的因素有哪些?如何提高充型能力? 4、铸件的凝固方式有哪些?其主要的影响因素? 6、什么是缩松和缩孔?其形成的基本条件和原因是什么? 9、试述铸件产生变形和开裂的原因及其防止措施。 13、常见的特种铸造方法有哪些?各有何特点? 第三章材料的塑性成形技术 1、金属为什么容易塑性变形?生产塑性变形的本质? 2、金属常见的塑性成形方法有哪些? 4、什么是金属的可煅性?其影响因素有哪些? 第四章材料的粉末工艺

1、粉末冶金工艺有何特点?其主要的工艺过程包括? 7、雾化制粉的方法有哪些?如何提高雾化制粉的效率? 13、粉体为什么能烧结?烧结的推动力是什么? 第五章材料的连接工艺 1、简述金属的可焊性及其影响因素。 2、简述焊接接头的组织结构。 5、简述钎焊的工艺特点及常用的钎焊材料。 第六章材料的表面处理 2、简述电镀和化学镀的异同(工艺及适应材料)。 6、三束表面改性技术的定义、特点和局限性。 第七章金属材料 1、金属材料的主要强化方式有哪些? 3、什么是钢的淬硬性和淬透性?其主要影响因素? 4、合金产生时效强化的条件是什么?如何进行时效强化? 第八章单晶与半导体工艺 1、简述芯片的主要制备工艺步骤。

第九章纤维的制备 1、为什么纤维通常具有高强度、高模量且韧性好的特点? 2、简述熔融纺丝和溶液纺丝的异同。 第十章复合材料制备工艺 3、什么是玻璃钢?它的制备工艺和主要应用? 4、简述复合材料的强韧化机理。 第十一章陶瓷材料 2、先进陶瓷是如何分类的? 4、简述陶瓷的主要成形方法。 8、为什么金属通常具有良好的塑性,而陶瓷却是脆性的? 10、简述陶瓷与玻璃在结构和性能上的差异。 11、什么是钢化玻璃?对玻璃进行钢化的主要方法有哪些? 第十二章高分子材料 1 何谓高分子化合物?它与一般有机化合物有什么不同? 2 聚合物的分子形状及其特点是什么? 3 合成高分子的化学反应有哪些?

工程材料期末试题及解答

第一章 一、填空题 1.工程材料按成分特点可分为金属材料、非金属材料、复合材料;金属材料又可分为有色金属和黑色金属两类;非金属材料主要有无机非金属、有机非金属;复合材料是指。 2.金属材料的力学性能主要包括强度、硬度、塑性、韧性等;强度的主要判据有屈服点和抗拉强度,强度和塑性可以用拉伸试验来测定;洛氏硬度测量方法简便、不破坏试样,并且能综合反映其它性能,在生产中最常用。 3.理解静拉伸试验过程和应力-应变曲线图。 二、判断题材料所受的应力小于屈服点σs时,是不可能发生断裂的。(×) 第二章 1 名词解释 晶体:指其原子(原子团或离子)按一定的几何形状作有规律的重复排列的物体 过冷度:实际结晶温度与理论结晶温度之差称为过冷度 变质处理:有意地向液态金属中加入某些变质剂以细化晶粒和改善组织达到提高材料性能的目的。 各向异性:在晶体中,由于各晶面和各晶向上的原子排列密度不同,因而导致在同一晶体的不同晶面和晶向上的各种性能的不同形核率:在单位时间内,单位体积中所产生的晶核 2 填空 三种常见的金属晶格体心立方,面心立方,密排六方。 晶体缺陷的形式包括点缺陷,线缺陷,面缺陷。 3 问答 1 简述形过冷度和难熔杂质对晶体的影响。 答:过冷度影响:金属结晶石,形核率和长大速度决定于过冷度。在一般的液态金属的过冷范围内,过冷度愈大,形核率愈高,则长大速度相对较小,金属凝固后得到的晶粒就愈细;当缓慢冷却时,过冷度小,晶粒就粗大。 难熔杂质的影响:金属结晶过程中非自发形核的作用王伟是主要的。所以某些高熔点的杂质,特别是当杂质的晶体结构与经书的晶体结构有某些相似时将强烈的促使非自发形核,大大提高形核率。 2 简述铸锭的组织结构特点。 答:铸锭是由柱状晶粒和等轴晶粒组成的,组织部均匀,不同形状的晶粒对性能由不同的影响。 3.凝固过程中晶粒度大小的控制。 答:主要有两种方法:1增大过冷度,2变质处理 第三章 1.金属塑性变形是在什么应力作用下产生的?金属的塑性变形有哪几种基本方式?它们之间有何区别 金属的塑性形变是在切应力的作用下产生的。金属的塑性形变有滑移和孪生两种形式。它们之间的区别是:1滑移是金属键一个个断裂,而孪生是孪生面上的键同时发生断裂;2孪生之后,虽然晶体结构为改变,但孪生的晶体的晶格位向已经发生改变。 2.塑性变形对金属的组织、结构和性能有哪些影响? 组织结构影响:当工件的外形被拉长或者压扁时其内部的晶粒的形状也被拉长或压扁。 性能影响:强硬度提高,塑韧性降低,电阻增加,耐腐蚀性降低 3.什么叫再结晶?再结晶前、后组织和性能有何变化? 当变形金属加热至较高温度,原子具有较大扩散能力时,会在变形最激烈的区域自发的形成新的细小等轴晶粒称为再结晶。再结晶前后组织上的变化是,在形变激烈能量高的地方形核。性能上的变

工程材料教学大纲教学基本目标课程涉及知识技能

《工程材料》教学大纲 一、教学基本目标 《工程材料》课程是高等院校机械类专业的一门必修的技术基础课,是机械设备设计合理选择材料和使用材料的基础。通过教学使学生: 1.了解工程材料的发展,了解非金属材料的分类及其应用,了解新材料、新工艺; 2.掌握机械工程材料的基本理论及基本知识,熟悉金属材料的分类及其应用;(毕业要求1-3) 3.熟悉铁碳相图、钢的热处理工艺、合金化等基本知识,掌握材料的成分、组织、性能之间的关系,具有分析机械工程材料性能的能力;(毕业要求1-3)4.能够根据机械零件使用条件和性能要求,对结构零件进行合理选材的能力;(毕业要求1-3) 5.能够根据机械零件使用条件和性能要求,制定结构零件热处理工艺的能力。(毕业要求1-3) 二、课程涉及知识技能 本课程通过课堂教学、实验、综合作业等综合教学环节,训练以下知识技能(毕业要求1-3): 1.掌握工程材料基本理论及基本知识,具备根据工业需求选择材料及制定热处理工艺的初步能力; 2.掌握铁碳相图和钢的合金化原理相关知识,具备分析材料、成份和组织和性能关系的能力; 3.掌握钢的热处理工艺、目的及其应用,具备根据材料的性能需求选择热

处理工艺的能力; 4.培养学生自主学习的能力和材料性能分析的工程意识; 5.通过材料金相试样制备及金相组织观察实验,具备分析材料成份、组织和性能关系的能力; 6.设计典型机械零件材料热处理工艺实验,具备分析不同热处理工艺对材料组织和性能影响能力。 三、相关能力培养 1.具有根据工业需求选择材料及制定热处理工艺的初步能力;(毕业要求1-3) 2.具有设计实验方案、进行实验、分析和解释数据的能力; 3.通过分组实验研究与讨论,培养学生具有团队意识和人际交流能力; 4.通过工程材料的选择与应用,培养学生工程设计的安全意识和社会责任感;(毕业要求1-3) 5.具有自主学习的能力。 四、教学基本内容 绪论 1. 了解材料的发展简史及工程材料研究的对象 2. 熟悉工程材料的分类 第 1 章材料的结构与性能 1. 掌握常见的纯金属晶体结构和合金的晶体结构 2. 掌握实际金属中的晶体缺陷 3. 熟悉金属材料的力学性能,了解金属材料的工艺性能和理化性能 4. 了解金属晶体中的晶面和晶向 5. 了解组织和性能的关系 第2章金属材料组织和性能的控制 1. 掌握纯金属的结晶过程 2. 掌握细晶强化的措施 3. 掌握匀晶相图、共晶相图、包晶相图和共析相图的分析 4. 掌握铁碳合金中的相和组织的概念,掌握相图中重要的点和线的含义,

第一学期《工程材料》期末试卷A卷及答案

系别:__________ 班次:____________ 姓名:___________ 学号:____________ 。。。。。。。。。。。。。。。。。。。。。。。。。。。。装。。。。。。。。。。。。。。。。。。。。。。。。。。。订。。。。。。。。。。。。。 。。。。。。。。。。。。。线。。。。。。。。。。。。。。。。。。。。。。。 2008—2009学年第一学期 《工程材料》期末考试试卷(A) 注意:本试卷共四大题,总分100分,考试时间120分钟。本试卷适用于07模具班,共需印制61份。 1. 碳素工具钢的含碳量一般是在以下哪个范围之内( ) A. 0.3% - 0.5% B. 0.5% - 0.7% C. 0.7% - 1.3% D. 1.3% - 1.6% 2. 以下那种元素是9Mn2V 里不含的 ( ) A. C 元素 B. Ni 元素 C. Si 元素 D. Mn 元素 3. Cr12是以下哪种冷作模具钢的典型钢种 ( ) A. 高碳高铬冷作模具钢 B. 空淬冷作模具钢 C. 油淬冷作模具钢 D. 基体钢 4. 以下哪种模具钢的抗压强度、耐磨性及承载能力居冷作模具钢之首 ( ) A. 碳素工具钢 B. 火焰淬火冷作模具钢 C. 高速钢 D. DT 合金 5. 以下哪种钢号不属于热作模具钢的类型 ( ) A. 5CrNiMo B. 3Cr2W8V C. 4Cr5MoSiV D. 9SiCr 6. 高韧性热作模具钢的含碳量在以下哪个范围之内 ( ) A. 0.3% - 0.5% B. 0.5% - 0.7% C. 0.7% - 1.3% D. 1.3% - 1.6% 7. 以下哪个钢种属于冷热兼用的模具钢 ( ) A. GR 钢 C.HD 钢 C. 012Al D.PH 钢 8. 以下哪个选项的塑料模具钢已列入了国家标准 ( ) A. 3Cr2Mo 和CrWMn B. CrWMn 和Cr12MoV C. 3Cr2Mo 和3Cr2MnNiMo D. 3Cr2MnNiMo 和Cr12MoV 9. SM50属于以下哪种塑料模具钢 ( ) A. 预硬型塑料模具钢 B. 碳素塑料模具钢 C. 渗碳型塑料模具钢 D. 时效硬化型塑料模具钢 10. 以下哪种表面工程技术改变了技术表面的化学成分 ( ) A. 表面改性 B. 表面处理 C. 表面涂覆 D. 电镀技术 1.按照工作条件可将模具分为 、 、 。 2.塑料模具按其成型固化可分为 、 。 3.模具的失效形式主要有 、 、 、 、 。 4.塑料模具用钢系列有七大类,分别是 、 、 、 、 、 、 。 5.表面工程技术有三类,分别是 、 、 。 6.热作模具钢的主要失效形式是 、 。 7.铁碳合金相图中三种基本相是 、 、 。 1.硬度 2.模具失效 3. 延伸率 4. 二次硬化 5. 时效 一、选择题:请将唯一正确答案的编号填入答卷中,本题共10小题,每题2分,共20分。 三、名词解释:本题共5小题,每空3分,共15分。 二、填空题:本题每空1分,共25分。

《机械工程材料》教学大纲

《机械工程材料》教学大纲 修订单位:机械工程学院材料工程系 执笔人:吕柏林 一、课程基本信息 1.课程中文名称:机械工程材料 2.课程英文名称:Mechanical Engineering Materials 3.适用专业:机械设计制造及其自动化 4.总学时:48学时 5.总学分:3学分 二、本课程在教学计划中的地位、作用和任务 机械工程材料课程是为机械类本科生开设的必修课,本课程的主要目的是使学生通过本课程的学习,掌握金属材料,非金属材料,材料热处理以及材料选用等方面的技术基础知识.本课程的任务是结合校内金工教学实习,使学生通过工程材料的基础知识,材料处理,材料选用基础的学习,获得常用机械工程材料方面的实践应用能力,也为进一步学习毛坯成型和零件加工知识以及其它有关课程及课程设计,制造工艺方面奠定必要的基础。 三、理论教学内容与教学基本要求 (一)教学基本要求: 1.熟悉工程材料的基本性能 2.掌握金属学的基础知识,包括金属的晶体结构,结晶,塑性变形与再结晶,二元合金的结构与结晶. 3.掌握运用铁碳合金相图,等温转变曲线,分析铁碳合金的组织与性能的关系. 4.熟悉各种常规热处理工艺以及材料的表面热处理技术. 5.掌握常用工程材料(包括高分子材料,陶瓷材料)的组织,性能,应用与选用原则.(二)理论教学内容 1.绪论(2学时) 课程的目的和任务 ;教学方法和教学环节 ;学习要求与方法 2.工程材料的机械性能(2学时) 强度,刚度,硬度,弹性,塑性,冲击韧性 3.金属的晶体结构和结晶(6学时) 常见的三种晶体结构 ;金属实际结构及晶体缺陷 ;金属的同素异构转变4.金属的塑性变形与再结晶(6学时)

《工程材料基础》知识点汇总

1.工程材料按属性分为:金属材料、陶瓷材料、碳材料、高分子材料、复合材料、半导体材料、生物材料。 2.零维材料:是指亚微米级和纳米级(1—100nm)的金属或陶瓷粉末材料,如原子团簇和纳米微粒材料; 一维材料:线性纤维材料,如光导纤维; 二维材料:就是二维薄膜状材料,如金刚石薄膜、高分子分离膜; 三维材料:常见材料绝大多数都是三位材料,如一般的金属材料、陶瓷材料等; 3.工程材料的使用性能就是在服役条件下表现出的性能,包括:强度、塑性、韧性、耐磨性、耐疲劳性等力学性能,耐蚀性、耐热性等化学性能,及声、光、电、磁等功能性能;工程材料按使用性能分为:结构材料和功能材料。 4.金属材料中原子之间主要是金属键,其特点是无方向性、无饱和性; 陶瓷材料中的结合键主要是离子键和共价键,大多数是离子键,离子键赋予陶瓷材料相当高的稳定性; 高分子材料的结合键是共价键、氢键和分子键,其中,组成分子的结合键是共价键和氢键,而分子间的结合键是范德瓦尔斯键。尽管范德瓦尔斯键较弱,但由于高分子材料的分子很大,所以分子间的作用力也相应较大,这使得高分子材料具有很好的力学性能; 半导体材料中主要是共价键和离子键,其中,离子键是无方向性的,而共价键则具有高度的方向性。 5.晶胞:是指从晶格中取出的具有整个晶体全部几何特征的最小几何单元;在三维空间中,用晶胞的三条棱边长a、b、c(晶格常数)和三条棱边的夹角α、β、γ这六个参数来描述晶胞的几何形状和大小。 6.晶体结构主要分为7个晶系、14种晶格; 7.晶向是指晶格中各种原子列的位向,用晶向指数来表示,形式为[uvw]; 晶面是指晶格中不同方位上的原子面,用晶面指数来表示,形式为(hkl)。 8.实际晶体的缺陷包括点缺陷、线缺陷、面缺陷、体缺陷,其中体缺陷有气孔、裂纹、杂质和其他相。 9.实际金属结晶温度Tn总要偏低理论结晶温度T0一定的温度,结晶方可进行,该温差ΔT=T0—Tn即称为过冷度;过冷度越大,形核速度越快,形成的晶粒就越细。 10.通过向液态金属中添加某些符合非自发成核条件的元素或它们的化合物作为变质剂来细化晶粒,就叫变质处理;如钢水中常添加Ti、V、Al等来细化晶粒。 11.加工硬化是指随着塑性变形增加,金属晶格的位错密度不断增加,位错间的相互作用增强,提高了金属的塑性变形抗力,使金属的强度和硬度明显提高,塑性和韧性明显降低,也即形变强化;加工硬化是一种重要的强化手段,可以提高金属的强度并使金属在冷加工中均匀变形;但金属强度的提高往往给进一步的冷加工带来困难,必须进行退火处理,增加了成本。 12.金属学以再结晶温度区分冷加工和热加工:在再结晶温度以下进行的塑性变形加工是冷加工,在再结晶温度以上进行的塑性变形加工即热加工;热加工可以使金属中的气孔、裂纹、疏松焊合,使金属更加致密,减轻偏析,改善杂质分布,明显提高金属的力学性能。 13.再结晶是指随加热温度的提高,加工硬化现象逐渐消除的阶段;再结晶的晶粒度受加热温度和变形度的影响。 14.相:是指合金中具有相同化学成分、相同晶体结构并由界面与其他部分隔开的均匀组成部分; 合金相图是用图解的方法表示合金在极其缓慢的冷却速度下,合金状态随温度和化学成分的变化关系; 固溶体:是指在固态下,合金组元相互溶解而形成的均匀固相; 金属间化合物:是指俩组元组成合金时,产生的晶格类型和特性完全不同于任一组元的新固相。 15.固溶强化:是指固溶体的晶格畸变增加了位错运动的阻力,使金属的塑性和韧性略有下降,强度和硬度随溶质原子浓度增加而略有提高的现象; 弥散强化:是指以固溶体为主的合金辅以金属间化合物弥散分布,以提高合金整体的强度、硬度和耐磨性的强化方式。 16.匀晶反应:是指两组元在液态和固态都能无限互溶,随温度的变化,形成成分均匀的液相、固相或满足杠杆定律的中间相的固溶体的反应; 共晶反应:是指由一种液态在恒温下同时结晶析出两种固相的反应; 包晶反应:是指在结晶过程先析出相进行到一定温度后,新产生的固相大多包围在已有的固相周围生成的的反应; 共析反应:一定温度下,由一定成分的固相同时结晶出一定成分的另外两种固相的反应。 17.铁素体(F):碳溶于α-Fe中形成的体心立方晶格的间隙固溶体;金相在显微镜下为多边形晶粒;铁素体强度和硬度低、塑性好,力学性能与纯铁相似,770℃以下有磁性; 奥氏体(A):碳溶于γ-Fe中形成的面心立方晶格的间隙固溶体;金相显微镜下为规则的多边形晶粒;奥氏体强度和硬度不高,塑性好,容易压力加工,没有磁性; 渗碳体(Fe3C):含碳量为6.69%的复杂铁碳间隙化合物;渗碳体硬度很高、强度极低、脆性非常大; 珠光体(P):铁素体和渗碳体的共析混合物;珠光体强度较高,韧性和塑性在渗碳体和铁素体之间; 莱氏体(Ld):奥氏体和渗碳体的共晶混合物;莱氏体中渗碳体较多,脆性大、硬度高、塑性很差。 18.包晶反应:1495℃时发生,有δ-Fe(C=0.10%)、γ-Fe(C=0.17%或0.18%,图中J点)、液相(C=0.53%或0.51%,图中B点)三相共存;δ-Fe(固体)+L(液体)=γ-Fe(固体) 共晶反应:1148℃时发生,有A(C=2.11%)、Fe3C(C=6.69%)、液相L(C=4.3%)三相共存;Ld→Ae+Fe3Cf(恒温1148℃) 共析反应:727℃时发生,有A(C=0.77%)、F(C=0.0218%)、Fe3C(C=6.69%)三相共存;As→Fp+Fe3Ck(恒温727℃)

土木工程材料教学大纲

《土木工程材料》课程教学大纲 一、课程的性质和学习目的 1、本课程的性质和任务 《土木工程材料》是土木工程专业的一门重要专业技术基础课, 是直接为土木工程实际问题服务的一门重要的学科。 《土木工程材料》是研究土木工程用材料结构、性能、标准及相互关系的一门科学,并且研究如何选用和组配复合材料。通过本课程的学习,使学生掌握各种材料内部组成、结构、技术性能、技术标准及其相互关系。培养学生合理选用和组配新型复合材料的能力。 2、课程的基本要求: (1)掌握砂石材料、水泥、水泥混凝土、沥青混合料的组成结构、技术性质及其关系;掌握矿质混合料、水泥混凝土、沥青混合料配合比设计; (2)熟悉石灰、沥青及钢材的组成结构、技术性质及技术要求; (3)了解各种外加剂的性能;了解部分新建筑材料的技术性能及发展趋向; (4)了解石灰、水泥凝结硬化原理;沥青混凝土强度理论;集料的级配理论;沥青乳化机理。 (5)了解土木工程中合成高分子材料的主要制品及应用、了解建筑功能材料的主要类型及特点。 3、本课程与其他课程的关系 在学习本课程之前, 应学完《数学》、《物理》、《化学》、《材料力学》、《工程地质》等课程,以便同学在学习本课程的过程中充分运用过去学过的知识。它是后续专业课的基础。二、本课程学习和考核的内容 绪论(2学时) 教学内容:土木工程材料发展概况,土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;课程研究的对象和内容、要求和学习方法。 教学目标:了解土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;明确本课程在本专业中的地位,了解本课程研究的对象和内容、要求和学习方法。 重点:土木工程材料在土木工程建筑结构物中的作用,土木工程材料的发展概况。 难点:土木工程材料在土木工程建筑结构物中的作用 (一)土木工程材料的基本性质(2学时) 教学内容:材料学的基本理论,材料的物理性质、力学性质、材料的耐久性。 教学目标:了解材料学的基本理论,掌握材料的物理性质、力学性质,掌握材料的物理—力学性质相互间的关系及在土木工程中的应用,掌握材料耐久性的基本概念。 重点:材料的物理—力学性质相互间的关系及在土木工程中的应用。 难点:材料的物理性质。 (二)天然石料(2学时) 教学内容:岩石的组成与分类、岩石的力学性能与测试方法、常用石料品种

智慧树知到《材料工程基础》章节题答案

智慧树知到《材料工程基础》章节题答案 第1章单元测试 1、高炉炼铁时,炉渣具有重要作用。下面哪项不属于炉渣的作用? 答案:添加合金元素 2、常用的脱氧剂有锰铁、硅铁、( ) 答案:铝 3、为什么铝的电解在冰晶石的熔盐中进行? 答案:降低电解温度 4、冰铜的主要成分是( ) 答案:FeS和Cu2S 5、( )是炼钢的最主要反应 答案:脱碳 第2章单元测试 1、通过高压雾化介质,如气体或水强烈冲击液流或通过离心力使之破碎、冷却凝固来实现的粉末的方法称为( ) 答案:雾化法 2、粉末颗粒越小,流动性越好,颗粒越容易成形。 答案:错 3、国际标准筛制的单位“目数”是筛网上( )长度内的网孔数 答案:1英寸

4、粉体细化到纳米粉时会表现出一些异常的功能,主要是由于粉体的总表面积增加所导致的结果。 答案:对 5、雾化法制粉增大合金的成分偏析,枝晶间距增加。 答案:错 第3章单元测试 1、高分子材料之所以具备高强度、高弹性、高粘度、结构多样性等特点,是由( )结构所衍生出来的。 答案:长链 2、高分子聚合时,用物理或化学方法产生活性中心,并且一个个向下传递的连续反应称为( ) 答案:连锁反应 3、悬浮聚合的主要缺点是( ) 答案:产品附有少量分散剂残留物 4、聚合物聚合反应按反应机理分为加聚和缩聚反应。 答案:错 5、工业上悬浮聚合对于悬浮分散剂一般的要求是( ) 答案:聚合后都可以清洗掉 第4章单元测试 1、将液态金属或半液态金属浇入模型内,在高压和高速下充填铸型,并在高压下结晶凝固获得铸件的方法是( ) 答案:压力铸造

2、铸铁的充型能力好于铸钢。 答案:对 3、在易熔模样表面包覆若干层耐火材料,待其硬化干燥后,将模样熔去制成中空型壳,经浇注而获得铸件的一种成形工艺方法是( ) 答案:熔模铸造 4、下列不属于铸造缺陷的是( ) 答案:收缩 5、熔融合金的液态收缩和凝固收缩表现为液体体积减小,是应力形成的主要原因。 答案:错 第5章单元测试 1、冷变形过程中,材料易产生( ) 答案:加工硬化 2、轧辊的纵轴线相互平行,轧制时轧件运动方向、延伸方向与轧辊的纵轴线垂直,这种轧制方法为( ) 答案:纵轧 3、挤压变形时,( ) 答案:金属在变形区处于三向压应力状态 4、缩尾是挤压工艺容易出现的缺陷,它出现在挤压过程的哪个阶段? 答案:终了挤压

机械工程材料复习重点

、解释下列名词 1淬透性:钢在淬火时获得的淬硬层深度称为钢的淬透性,其高低用规定条件下的淬硬层深度来表示 2淬硬性:指钢淬火后所能达到的最高硬度,即硬化能力 3相:金属或合金中,凡成分相同、结构相同,并与其它部分有晶只界分开的均匀组成部分称为相 4组织:显微组织实质是指在显微镜下观察到的各相晶粒的形态、数量、大小和分布的组合。 5组织应力:由于工件内外温差而引起的奥氏体( Y或A)向马氏体(M)转变时间不一致而产生的应 6热应力:力 由于工件内外温差而引起的胀缩不均匀而产生的应力 7过热:由于加热温度过高而使奥氏体晶粒长大的现象 8过烧:由于加热温度过高而使奥氏体晶粒局部熔化或氧化的现象 9回火脆性: 10回火稳定性:在某些温度范围内回火时,会岀现冲击韧性下降的现象,称为回火脆性又叫耐回火性,即淬火钢在回炎过程中抵抗硬度下降的能力。 11马氏体: 12回火马氏体:碳在a-Fe中的过饱和固溶体称为马氏体。 在回火时,从马氏体中析出的£ -碳化物以细片状分布在马氏体基础上的组织称为回火马氏体。 13本质晶粒度14实际晶粒度:15化学热处理::钢在加热时奥氏体晶粒的长大倾向称为本质晶粒度 在给定温度下奥氏体的晶粒度称为实际晶粒度,它直接影响钢的性能。 将工件置于待定介质中加热保温,使介质中活性原子渗入工件表层,从而改变工件表层化学成分与组织,进而改变其性能的热处理工艺。 16表面淬火:指在不改变钢的化学成分及心部组织的情况下,利用快速加热将表面奥氏休化后进行淬火以强化零件表面的热处理方法。 17固溶强化:固溶体溶入溶质后强度、硬度提高,塑性韧性下降现象。 18、加工硬化:金属塑性变形后,强度硬度提高的现象。 19合金强化:20热处理:在钢液中有选择地加入合金元素,提高材料强度和硬度 钢在固态下通过加热、保温、冷却改变钢的组织结构从而获得所需性能的一种工艺。 21、金属化合物;与组成元素晶体结构均不相同的固相 22、铁素体;碳在a-Fe中的固溶体 23、球化退火;将工件加热到 Ac1以上30―― 50摄氏度保温一定时间后随炉缓慢冷却至600摄氏度后出炉 空冷。 24、金属键;金属离子与自由电子之间的较强作用就叫做金属键。 25、再结晶;冷变形组织在加热时重新彻底改组的过程. 26、枝晶偏析:在一个枝晶范围内或一个晶粒范围内成分不均匀的现象。 27、正火:是将工件加热至 Ac3或Accm以上30?50°C ,保温一段时间后,从炉中取出在空气中冷却的金 属热处理工艺。 28、固溶体:合金在固态时组元间会相互溶解,形成一种在某一组元晶格中包含有其他组元的新相,这 种新相称为固溶体 29、细晶强化:晶粒尺寸通过细化处理,使得金属强度提高的方法。 二、判断题 1. ( x )合金的基本相包括固溶体、金属化合物和这两者的机械混合物。 2. ( y )实际金属是由许多位向不同的小晶粒组成的. 3. ( y )为调整硬度,便于机械加工,低碳钢,中碳钢和低碳合金钢在锻造后都应采用正火处理。 4. ( y )在钢中加入多种合金元素比加入少量单一元素效果要好些,因而合金钢将向合金元素少量多元 化方向发展。 5. ( x )不论含碳量高低,马氏体的硬度都很高,脆性都很大。 6. ( x ) 40Cr钢的淬透性与淬硬性都比 T10钢要高。 7. ( y )马氏体是碳在a -Fe中的过饱和固溶体,由奥氏体直接转变而来的,因此马氏体与转变前的 奥氏体含碳量相同。 8( x )铸铁中的可锻铸铁是可以在高温下进行锻造的。错。所有的铸铁都不可以进行锻造。 9. ( x ) 45钢淬火并回火后机械性能是随回火温度上升,塑性,韧性下降,强度,硬度上升。 10. ( x )淬硬层深度是指由工件表面到马氏体区的深度。 11. ( x )钢的回火温度应在 Ac1以上。 12. ( x )热处理可改变铸铁中的石墨形态。

材料工程基础教学大纲

材料工程基础教学大纲 课程编号: 课程名称:材料工程基础 英文名称:Fundamentals of Material Engineering 学时:32 学分:2 适用专业:材料化学 课程性质:限选 执笔人: 先修课程:无机化学、高等数学、化工原理 编写日期:2011年3月 修订日期:2012年3月

材料工程基础教学大纲 一、课程教学目标 材料工程基础课程是材料化学专业的一门学科基础课。围绕材料生产过程主要涉及到的工程理论,本课程主要介绍与之相关的基本理论和基础研究方法。通过本课程的学习,要使学生获得工程流体力学、传热与传质基础等方面的基本概念、基本理论和基本运算技能;掌握材料生产过程中相关的工程理论基本知识,具备一定的工程研究能力。 二、教学内容及基本要求 第一章流体力学基础 (1)了解流体的基本物理属性和流体的输送设备。 (2)理解流体静力学、流体动力学、流体流动及流动阻力的基本概念、特性和工程应用。 第二章两相运动现象 (1)了解两相与多相流的专用术语和基本特性参数。 (2)了解粒子-流体的相互作用、连续相方程、流体-固体两相流的数值模拟。 第三章传热学基础 (1)了解传导传热、对流传热、辐射传热、综合传热等基本概念。 (2)掌握温度梯度、热流量的概念,平壁导热、园筒壁导热的计算,影响对流换热的主要因素及对流换热过程的描述,发射率、角系数的概念,物体之间的辐射传热,强化和削弱传热过程的方法。 第四章质量传递基础 (1)了解传质基本概念、分子扩散传质、传质与化学反应。 (2)掌握对流传质中的浓度边界层与对流传质系数、对流传质准数方程。 第五章物料干燥 (1)了解固体物料的去湿方法、物料的干燥方法、湿空气状态的变化过程、水分在气-固两相间的平衡。 (2)掌握对流干燥、传导干燥、辐射干燥、场干燥技术。

材料工程基础复习资料(全)

材料工程基础复习要点 第一章粉体工程基础 粉体:粉末质粒与质粒之间的间隙所构成的集合。 *粉末:最大线尺寸介于0.1~500μm的质粒。 *粒度与粒径:表征粉体质粒空间尺度的物理量。 粉体颗粒的粒度及粒径的表征方法: 1.网目值表示——(目数越大粒径越小)直接表征,如果粉末颗粒系统的粒径相等时 可用单一粒度表示。 2.投影径——用显微镜测试,对于非球形颗粒测量其投影图的投影径。 ①法莱特(Feret)径D F:与颗粒投影相切的两条平行线之间的距离 ②马丁(Martin)径D M:在一定方向上将颗粒投影面积分为两等份的直径 ③克伦贝恩(Krumbein)径D K:在一定方向上颗粒投影的最大尺度 ④投影面积相当径D H:与颗粒投影面积相等的圆的直径 ⑤投影周长相当径D C:与颗粒投影周长相等的圆的直径 3.轴径——被测颗粒外接立方体的长L、宽B、高T。 ①二轴径长L与宽B ②三轴径长L与宽B及高T 4.球当量径——把颗粒看做相当的球,并以其直径代表颗粒的有效径的表示方法。(容 易处理) *粉体的工艺特性:流动性、填充性、压缩性和成形性。 *粉体的基本物理特性: 1.粉体的能量——具备较同质的块状固体材料高得多的能量。 分体颗粒间的作用力——高表面能,固相颗粒之间容易聚集(分子间引力、颗粒间异性静电引力、固相侨联力、附着水分的毛细管力、磁性力、颗粒表面不平滑引起的机械咬合力)。 3.粉体颗粒的团聚。 第二章粉体加工与处理 粉体制备方法: 1.机械法——捣磨法、切磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法。 ①脆性大的材料:捣磨法、涡旋磨法、球磨法、气流喷射粉碎法、高能球磨法 ②塑性较高材料:切磨法、涡旋磨法、气流喷射粉碎法 ③超细粉与纳米粉:气流喷射粉碎法、高能球磨法 2.物理化学法 ①物理法(雾化法、气化或蒸发-冷凝法):只发生物理变化,不发生化学成分的 变化,适于各类材料粉末的制备 ②物理-化学法:用于制备的金属粉末纯度高,粉末的粒度较细 ③还原法:可直接利用矿物或利用冶金生产的废料及其他廉价物料作原料,制的 粉末的成本低 ④电解法:几乎可制备所有金属粉末、合金粉末,纯度高 3.化学合成法——指由离子、原子、分子通过化学反应成核和长大、聚集来获得微细 颗粒的方法

【成都理工】】材料工程基础-重点

炼铁:还原过程,使铁在铁的的氧化物中还原,并使还原出的铁与脉石分离。炼钢:氧化过程,以生铁为原料,通过冶炼降低生铁中的碳及其他杂质元素的含量。 炼铁原料(1)铁矿石的要求a:含铁量愈高愈好b:还原性要好c:粒度大小合适d:脉石成分SiO2,Al2O3、CaO、MgO e:杂质含量要少。(2)溶剂的作用:a降低脉石熔点b去硫(3)燃料:焦炭作用:作为发热剂提供热量;还原剂;高炉料柱的骨架。要求:含碳量要高,确保它有高的发热量和燃烧温度;有害杂事硫、磷及水分、灰分、挥发分的含量要低;在常温及高温下有足够的机械强度;气孔率要大,粒度要均匀,以保证高炉的有良好的透气性。 高炉冶炼的理化过程1燃料的燃烧2氧化铁的还原3铁的增碳4非铁元素的还原5去硫6造渣 减少生铁中硫的措施:采取优质炉料,基本措施;提高炉温和炉渣的碱度。生铁铸造生铁:含硅量高(2.75~3.25%)碳以石墨形式存在灰口生铁;炼钢生铁:含碳量高(4~4.4%)含硅量较低碳以fe3c形式存在白口生铁炼钢过程的物理化学原理:1脱碳2硅、锰的氧化3脱磷和回磷过程4脱硫5脱氧 脱磷的基本条件:低温;适量增加渣中CaO的含量;渣中必须含有足够数 1

量的FeO。 回磷现象:在炼钢过程中的某一时期,当脱磷的基本条件得不到满足时,则已氧化进入渣中的的磷会重新被还原,并返回到钢液中,称此为回磷过程。经常发生在炼钢炉内假如铁合金或出钢的过程中。防止措施:控制炼钢后期的钢液的温度;减少钢液在盛钢桶内的停留时间,向盛钢桶中炉渣加石灰提高碱度,采用碱性衬层的盛钢桶。 脱硫:[FeS]+(CaO)=(CaS)+(FeO)(吸热)必须在碱性炉内冶炼脱硫剂:石灰或石灰石生产中采取的措施:1在渣内加入碱;2增加石灰或石灰石的量;3扒掉含硫量高的初期渣,造成无硫的新渣;4加入CaP2、MnO 等能降低炉渣粘度的造渣材料,提高炉渣的流动性;5搅拌钢液,以增加钢液与炉渣的接触面积。 当钢中杂质元素被除去到规定要求后,应采取一定方法来降低钢液中的氧含量。称为脱氧,脱氧是炼钢过程的量后过程,在很大程度上影响着钢的质量。脱氧剂:硅铁、锰铁、铝 脱氧方式:扩散脱氧(硅铁和炭粉)、沉淀脱氧(锰铁、硅铁、铝),加在渣面 沉淀脱氧与扩散脱氧相结合:用锰铁进行沉淀预脱氧;用碳粉和硅铁进行扩散脱氧;用硅进行沉淀脱氧。 镇静钢:经过充分脱氧处理的钢;沸腾钢:未经完全脱氧处理的钢;半镇静 2

《工程材料》课程教学大纲

《工程材料》课程教学大纲 课程名称:工程材料课程代码:MEAU2012 英文名称:Engineering Materials 课程性质:大类基础课程(专业基础 学分/学时:2学分/36学时 必修课程) 开课学期:第4学期 适用专业:机械设计制造及其自动化、机械电子工程、工业设计等专业 先修课程:材料力学、物理化学、传热学、有机化学 后续课程:无 开课单位:机电工程学院课程负责人:陈长军 大纲执笔人:陈长军大纲审核人:倪俊芳 一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平) 课程性质:本课程是机械设计及其自动化、过程装备与控制工程、热能与动力工程、理论与应用力学专业的技术基础课程之一。使学生获得有关工程结构和机械零件常用的金属材料和非金属材料的基本理论和性能特点,并使其初步具备合理选择与使用材料、正确制定零件的冷热加工工艺路线的能力。 教学目标:工程材料为工程学基础课。作为工程技术人员,必须具有合理选择、正确使用材料的能力。因此,通过本课程的学习,使学生掌握必要的材料方面的基本理论,具有解决工程实践中关于如何选用材料、确定热处理方法、安排某零件的工艺路线等问题的能力。 本课程的具体教学目标如下: 1)掌握金属材料的成分、组织、性能之间的关系 2)了解强化材料的基本方法 3)初步掌握钢的热处理原理及基本工艺 4)熟悉钢的牌号、性能、用途,正确选用材料的基本原则

教学目标与毕业要求的对应关系: 二、课程教学内容及学时分配(含课程教学、自学、作业、讨论等内容和要求,指明重点内容和难点内容。重点内容:★;难点内容:?) 1、绪论(1学时) 目标及要求: 1)材料与社会经济发展的关系;工程材料及其分类; 2)课程目的、任务与学习方法;课程内容,了解课程的主要教学内容、学 习方法和主要参考资料。 讨论内容: 讨论材料与社会经济发展的关系 作业内容: 掌握材料的概念及其基本的分类。 2、第一章工程材料的性能(2学时) 1.1静载时材料的力学性能 1.2动载时材料的力学性能 1.3断裂韧性 目标及要求: 1)掌握材料的拉伸强度指标,硬度的表达方法; 2)了解材料的冲击韧度与疲劳强度; 3)了解材料的断裂韧性; 讨论内容:

材料科学基础第一章习题答案

材料科学基础第一章习题答案 1. (P80 3-3) Calculate the atomic radius in cm for the following: (a) BCC metal with a 0=0.3294nm and one atom per lattice point; and (b) FCC metal with a 0=4.0862? and one atom per lattice point. Solution: (a) In BCC structures, atoms touch along the body diagonal, which is 3a 0 in length. There are two atomic radii from the center atom and one atomic radius from each of the corner atoms on the body diagonal, so 340r a = 430a r ==0.14263nm=1.4263 810-?cm (b) In FCC structures, atoms touch along the face diagonal of the cube, which is

02a in length. There are four atomic radii along this length —two radii from the face-centered atom and one radius from each corner, so 240r a =, 420 a r ==1.44447 ?=1.44447810-?cm 2.(P80 3-4) determine the crystal structure for the following: (a) a metal with a0=4.9489?, r=1.75?, and one atom per lattice point; and (b) a metal with a0=0.42906nm, r=0.1858nm, and one atom per lattice point. Solution: We know the relationships between atomic radii and lattice parameters are 430 a r =

相关主题
文本预览
相关文档 最新文档