当前位置:文档之家› 高中物理竞赛辅导习题力学部分

高中物理竞赛辅导习题力学部分

高中物理竞赛辅导习题力学部分
高中物理竞赛辅导习题力学部分

力、物体的平衡

补充:杠杆平衡(即力矩平衡),对任意转动点都平衡。

一、力学中常见的三种力

1.重力、重心

①重心的定义:

++++=g m g m gx m gx m x 212211,当坐标原点移到重心上,则两边的重力矩平衡。 ②重心与质心不一定重合。如很长的、竖直放置的杆,重心和质心不重合。

如将质量均匀的细杆AC (AB =BC =1m )的BC 部分对折,求重心。

以重心为转轴,两边的重力力矩平衡(不是重力相等):

(0.5-x )2G =(x +0.25)2

G ,得x =0.125m (离B 点). 或以A 点为转轴:0.5?2G +(1+0.5)2

G =Gx ', 得x '=0.875m ,离B 点x =1-x '=0.125m.

2.巴普斯定理:

①质量分布均匀的平面薄板:垂直平面运动扫过的体积等于面积乘平面薄板重心通过的路程。 如质量分布均匀的半圆盘的质心离圆心的距离为x , 绕直径旋转一周,2321234R x R πππ?=,得π

34R x = ②质量分布均匀的、在同一平面内的曲线:垂直曲线所在平面运动扫过的面积等于曲线长度乘曲线的重心通过路程。

如质量分布均匀的半圆形金属丝的质心离圆心的距离为x ,

绕直径旋转一周,R x R πππ?=242,得π

R x 2= 1. (1)半径R =30cm 的均匀圆板上挖出一个半径r =15cm 的内

切圆板,如图a 所示,求剩下部分的重心。

(2)如图b 所示是一个均匀三角形割去一个小三角形

AB 'C ',而B 'C '//BC ,且?AB 'C '的面积为原三角形面积的4

1,已知BC 边中线长度为L ,求剩下部分BCC 'B '的重心。

[答案:(1) 离圆心的距离6R ;(2)离底边中点的距离9

2L ] 解(1)分割法:在留下部分的右边对称处再挖去同样的一个圆,则它关于圆心对称,它的重心在圆心上,要求的重心就是这两块板的合重心,设板的面密度为η,重心离圆心的距离为x .

有力矩平衡: ),2()2(])2(2[222x R R x R R -=-ηπηπ得6

R x ==5cm. 填补法:在没挖去的圆上填上一块受”重力”方向向上的圆,相当于挖去部分的重力被抵消,其重

心与挖去后的重心相同,同理可得6

R x =. 能量守恒法:原圆板的重力势能等于留下部分的重力势能和挖去部分的重力势能之和,可得

6

R x =. (2) ?AB 'C '的面积为原三角形面积的1/4,质量为原三角形质量的4

1,中线长度应为原三角形中线长度的2

1。 设原三角形BC 边的中线长为L 。原重心离BC 边的距离为3

L ,且在中线上。

类似于(1)的解法,可得重心离底边中点的距离9

2L x =

,且在原三角形的中线上。 思考:三根均匀杆AB 、BC 、CA 组成三角形,其重心在哪?(内心,要用解析几何)

2. 完全相同的4块砖,每块砖的长都为0.3m ,叠放在水平桌面上,如图所示。求它的最大跨度(即桌边

P 点离最上面一块砖右边的Q 点的水平距离)。(答案:0.3125m )

解:165)4131211(2=++= L L m m=0.3125m

3.一薄壁圆柱形烧杯,半径为R ,质量为m ,重心位于中心线上,离杯底的高度为H ,今将水慢慢注入烧杯中,问烧杯连同杯中的水共同重心最低时水面离杯底的距离是多少?(设水的密度为ρ)(答案:

ρ

πρπ2222R mH R m m h ++-=) 解:开始注水时共同重心在水面之上,这时如果加水,就等于在共同重心下方加质量,所以重心将会随着水的注入而逐渐下降.

当重心下降到水面时,重心最低,因为此时如果再加水,就是在共同重心上方加质量,重心就会升高. 重心最低时水面离杯底的距离为h 应满足:ρπR 2hg

2h +mgH =(πR 2h ρ+m )hg , 解得:ρ

πρπ2222R mH

R m m h ++-=.

2.弹力、弹簧的弹力(F =kx ,或F =-kx )

(1)两弹簧串联总伸长x ,F =?

由x 1+x 2=x ,k 1x 1=k 2x 2,得2112k k x k x +=,所以kx k k x k k x k F =+===212122. (2)并联时F =(k 1+k 2)x .

(3)把劲度系数为k 的弹簧均分为10段,每段劲度系数k '=?(10k )

3. 一个重为G 的小环,套在竖直放置的半径为R 的光滑大圆上。一个劲度系数

为k ,自然长度为L (L <2R )的轻质弹簧,其上端固定在大圆环最高点,下端

与小环相接,不考虑一切摩擦,小环静止时弹簧与竖直方向的夹角为: . (答案:G

kR kL 22cos 1--) 提示:力的平行四边形为等腰三角形.

3.摩擦力

(1)摩擦力的方向:

①静摩擦力的方向:跟运动状态与外力有关。

②滑动摩擦力的方向:跟相对运动方向相反。

4. 如图所示,在倾角θ=300的粗糙斜面上放一物体,物体的重力为G ,现用

与斜面底边平行的水平作用力F (F =G /2)推物体,物体恰好在斜面上作

匀速直线运动,则物体与斜面的动摩擦因数为 . (答案:

3

6) 5. 如图所示,一个质量m =20kg 的钢件,架在两根完全相同的、平行

的直圆柱上。钢件的重心与两柱等距。两柱的轴线在同一水平面

内。圆柱的半径r =0.025m ,钢件与圆柱间的动摩擦因数μ=0.20。

两圆柱各绕自己的轴线作转向相反的转动,角速度ω=40rad/s ,若

沿平行于柱轴的方向施力推着钢件作速度为v =0.050m/s 的匀速运动,求推力的大小。设钢件左右受光滑导槽限制(图中未画出),不发生横向运动。(答案:2.0N )

解:因滑动摩擦力的方向与相对滑动方向相反。

所以推力大小F =2f cos α=μmg cos α=2)

/(1v r mg ωμ+=2.0N 。 (2)摩擦角:f 和N 的合力叫全反力,全反力的方向跟弹力的方向的最大夹角(f 达到最大)叫摩擦角,摩

擦角?=tan -1f /N =tan -1μ。摩擦角与摩擦力无关,对一定的接触面,?是一定的。

6. 水平地面上有一质量为m 的物体,受斜向上的拉力F 作用而匀速移动,物体与地面间的动摩擦因数为μ,

则为使拉力F 最小,F 与水平地面间的夹角多大?F 的最小值为多少?

(答案:tan -1μ;

21μ

μ+mg ) 解:先把f 和N 合成一个力T ,因f 和N 成正比,所以当

F 发生变化时T 的大小也要发生变化,但方向不变,且β=tan -1N f =tan -1μ. 这样,就把四个力平衡问题变成了三

个力平衡问题,如左图所示.根据平行四边形定则,当F 和T 垂直时F 最小,如右图所示.得F 与水平地面

间的夹角α=β=tan -1μ, sin α=21μ

μ+,F 的最小值F min =mg sin α=21μμ+mg . 另解:设F 与水平面成α角时F 最小,

有F cos α-μ(mg -F sin α)=0,得α

μαμsin cos +=mg F , 令μ=cot ?,,代入上式得)sin(sin α??μ+=mg F =21μ

μ+mg 。 7. 将质量为M 的小车沿倾角为α,动摩擦因数为μ的斜面匀速拉上,求拉力的方向与斜面夹角θ为多大时,

拉力最小?最小的拉力为多大?

(答案:tan -1μ;21cos sin μ

αμα++=Mg Mg ) 解:小车受四个力作用处于平衡,先把摩擦力f 和

支持力N 合成一个力R ,因f 和N 成正比,所以R 和N 的

夹角β=tan -1μ,这样问题就转化成小车在三个力作

用的平衡问题.小车受到的重力Mg 的大小和方向都保持不变,当拉力F 和R 垂直时,F 最小,θ=β=tan -1μ,

最小值为:F

min =Mg sin(α+β)=Mg sin(α+tan -1μ)21cos sin μ

αμα++=Mg Mg .

二、物体的平衡

1.三力平衡特点

(1)任意两个的合力与第三个力是一对平衡力

(2)三力汇交原理:互不平行的三个力处于平衡,这三个力的作用线必交于一点。

①确定墙壁或天花板对杆的弹力方向?

②若墙壁与杆间动摩擦因数为μ,物体只能挂在什么范围?

8. 如图所示,质量为M 的杆AB 静止在光滑的半球形容器中,设杆与水平方向的夹角为α.则容器面对杆A

点的作用力F 为多大?

(答案:αtan Mg F =)

解:F 的作用线通过圆心B 点对杆的作用力N 与相垂直

角度关系如图所示 根据正弦定理α

αsin )90sin(0F Mg

=-得αtan Mg F =

2.力矩和力矩平衡:M =FL

(1)力矩的平衡条件:对任意点

∑=0M ∑=0M 也常用来受力分析,如三个完全相同的小球叠放在水平地面上处于静止状态,则下面的球受到几个力作用?

对球心,根据力矩平衡可知,下面的球受到二个大小相等的摩擦力,共五个力作用

这是确定圆柱体受摩擦力的常用方法。

又如板与墙之间夹一球,两边的摩擦力大小相等,若μ相同,对球心有∑

=0M 得板对球的弹力大,可判断沿墙滑动,沿板滚动。

9. 如图所示,质量为M 的立方块和质量为m 的圆柱体置于倾角为α的

固定斜面上,立方体和圆柱体与斜面间的动摩擦因数都为μ,立

方体与圆柱体之间摩擦不计。求当平行于斜面的作用力F 多大时,

立方体和圆柱体沿斜面向上匀速运动。

[答案:F =(Mg +mg )sin α+μmg cos α]

解:对圆柱体,以圆心为转轴,根据力矩平衡可知,圆柱体与斜面间的摩擦力为零(这是确定摩擦力的常用方法)。

所以F =(Mg +mg )sin α+μmg cos α.

注意:若M 和m 间有摩擦,则球受两个大小相等的摩擦力,先要分析哪一接触面先达到最大,即先滑动。

10. 将重为30N 的均匀球放在斜面上,球用绳子拉住,如图所示.绳AC

与水平面平行,C 点为球的最高点斜面倾角为370.求:

(1)绳子的张力.

(2)斜面对球的摩擦力和弹力.

[答案:(1)10N ;(2)10N ,30N]

解:(1)取球与斜面的接触点为转轴:0)37cos (37sin 20=+-R R T mgR ,得T =10N;

(2)取球心为转轴得,f =T =10N;

取C 点为转轴:037sin )37cos (00=-+NR R R f ,得N =30N.

11. 一根质量均匀的米尺AB 用细绳悬挂,现用重为米尺重量的5/3倍的砝

码挂在尺上某点,这时两端细绳成如图所示,米尺呈水平状态,则此

砝码距A 点的距离应为多少? (答案:0.1m )

解:米尺长用L 表示,重用G 表示,设砝码距A 点的距离为x ,

对悬挂点,有力矩平衡:,354141G x L G L ???? ??-=?解得x=0.1m.

12. 两根细线悬挂在同一点,另一端分别系有带电小球A 、B ,静止时如图所

示,已知绳长OB =2OA ,两球的质量关系是M A =2M B ,α=450,求θ.

(答案:450)

(对整体,根据对O 点的力矩平衡,θ=α=450)

水平路面上有一根弯成直角的铁条ABC ,AB 段和BC 段的长度相等,质量分别是

M 1和M 2,通过系在角顶B 的绳子用平行于路面的力匀速地拉铁条,如图所示,求

绳子必须与AB 成多大的角. (答案:2

11tan M M --=πθ) (根据摩擦力矩对B 点的力矩为零,得211

tan M M --=πθ (2)二力杆:两端受力的杆,力的作用线一定沿杆(根据力矩平衡)。

13. 如图所示,每侧梯长为L 的折梯置于铅垂平面内,已知A 、B 两处与

地面间的动摩擦因数分别为μA =0.2,μB =0.6,C 点用光滑的铰链连

接,不计梯重,求人最多能爬多高。(答案:0.45L )

解:若B 端开始滑动,AC 为二力杆,地面对A 端的作用力方向

与竖直方向夹角为30?,

而A 点对应的摩擦角αA =tan -1μA =tan -10.2<30?。AC 杆不能衡。

若A 端开始滑动,AB 为二力杆,地面对B 端的作用力方向与竖直方向夹角为30?,而B 点对应的摩擦角αB =tan -1μB =tan -10.6>30?。AB 杆能衡。

所以人必须从A 点沿梯上爬,此时B 端受到地面的作用力沿着BC 方向。

对整体,根据三力共点,人的重力作用线必通过F A 和F B 的交点。

设人的水平距离为s ,有几何关系(两边高相等):s cot αA =(L -s )cot30?,

得s =0.26L ,最大高度H =3s =0.45L 。

14. 如图所示,一根细长棒上端A 处用铰链与天花板相连,下端用铰链与另一

细棒相连,两棒的长度相等,两棒限以图示的竖直平面内运动,且不计

铰链处的摩擦,当在C 端加一个适当的外力(在纸面内)可使两棒平衡在

图示的位置处,即两棒间的夹角为90?,且C 端正好在A 端的正下方。

(1)不管两棒的质量如何,此外力只可能在哪个方向的范围内?说明道

理(不要求推算)。

(2)如果AB 棒的质量为m 1,BC 棒的质量为m 2,求此外力的大小和方向。

[答案:(1)F 的方向与AC 夹角范围18?.24'-45?间;(2)21222181024

1m m m m g F ++=] 解(1)设F 的方向与AC 夹角为θ,如果当m 1质量很小时,AB 对BC 的作用力沿AB 方向,则F 的方向必交于AB 的中点,θ=45?-tan -121=18?.24';

如果当m 2质量很小时,则F 的方向沿BC 方向,θ=45?。

所以F 方向的范围是θ=18?.24'-45?间。

(2)以A 为转轴,对两棒有:θsin 245sin 2

)(021L F L g m m ?=?+----① 以B 为转轴,对BC 有:)45sin(45sin 2

002θ-?=?L F L g m ----② sin(45?-θ)=sin45?cos θ-cso45?sin θ----③

有①②③式得F 的大小:21222181024

1m m m m g F ++=; F 的方向与竖直线的夹角θ=12211

3tan m m m m ++-. 可见,m 1=0时,θ==-3

1tan 118?.24';m 2=0时,θ==-1tan 145?. 3.物体的平衡条件:F =0;M =0

15. 质量为m 的均匀柔软绳,悬挂于同一高度的两固定点A 、B 之间,已知绳的悬挂点处的切线与水平面夹角

为α,求绳的悬挂点处及绳的最低点处的张力. (答案:2

cot ,sin 2ααmg mg ) 16. 如图所示,质量为m 的物体放在斜面上,它跟斜面之间的动摩擦因数

为μ.则当斜面倾角α大于 时,无论水平推力F 多大,物体

不可能沿斜面向上运动(答案:cot -1μ)

无论水平推力F 多大,物体不可能沿斜面向上运动,这种情况称

为自锁。

如放在水平地面上的物体,跟水平面之间的动摩擦因数为μ.推力F 与水平面之间的夹角为α,则当α大于时,无论水平推力F 多大,物体不可能运动。

有F cos α=(mg +F sin α)μ,得α

μαμsin cos -=mg F ,推不动:cos α-μsin α=0,cot α=μ. 或F cos α(增加的动力)≤F sin αμ(增加的阻力),得cot α≤μ.

17. 有一轻质木板AB 长为L ,A 端用铰链固定在竖直墙壁上,另一端用水

平轻绳BC 拉住.板上依次放着1、2、3三上圆柱体,半径均为r ,重均

为G .木板与墙的夹角为θ(如图所示).一切摩擦均不计,求BC 绳的

张力. [答案:)cos sin 21cos 11(3θ

θθ++-=

L Gr T ] 解:此题的解法很多,同学们可体会到取不同的研究对象,问题的难易程度不同.

解法1:对圆柱体一个一个分析,分别计算出圆柱体的弹力,再对木板分析,有力矩平衡求出BC 绳的张力.比较麻烦.

解法2:把三个球作为整体,可求出板对三个球的弹力,再对板有力矩平衡求出BC 绳的张力.但弹力的力臂比较难求.

解法3:先对三个球分析,受墙壁的弹力N 1=3G cot θ.

再把三个圆柱体和木板合为一整体,此整体受到墙壁的弹力N 1,BC 绳的拉力T ,重力3G ,A 点的作用力N (N 对A 点的力矩为零).

对A 点,有力矩平衡)sin 2(31θr r G AD N TAC ++= 式中θθcos ,2

tan /L AC r AD == 有上述四式可行)cos sin 21cos 11(3θ

θθ++-=L Gr T .

18. 一架均匀梯子,一端放置在水平地面上,另一端靠在竖直的墙上,梯子与地面及梯子与墙间的静摩

擦因数分别为μ1、μ2。求梯子能平衡时与地面所成的最小夹角。 (答案:

1

21121tan μμμα-=-) 解法1:设梯子能平衡时与地面所成的最小夹角为α,

则有f 1=μ1N 1, f 2=μ2N 2(同时达到最大,与上题有区别)

水平方向:μ1N 1=N 2,竖直方向:μ2N 2+N 1=G ,

得:G =μ2N 2+N 2/μ1------①

取A 点为转轴:0cos sin cos 2

222=--αμααN L LN G L -----② 解得12121tan μμμα-=,即1

21121tan μμμα-=-。 解法2:地对梯和墙对梯的二个全反力与重力必交于一点(如图的D 点)

则有:tan ?1=μ1,tan ?2=μ2, 有几何关系:21tan 2

1cot 21222tan ??α-=-=-==EB DE AH DH AH DE DH AC BC , 可解得:1

21121tan μμμα-=-。

三、平衡的种类

1.平衡的种类:稳定平衡;随遇平衡;不稳定平衡。

2.判断平衡种类的方法:力矩比较;支持面判断;重心升降。

19. 粗细均匀、长为L 、密度为ρ的木杆,下端用细线系在容器底下,然后在容器中逐渐加水(水的密度为

ρ',ρ'>ρ),则木杆浸没水中的长度至少为多少时,木杆才能竖直. (答案:L ρρ'

) 力矩比较:竖直的条件是恢复力矩L 'S ρ'g 2

L '?sin α=LS ρg 2L ?sin α, 木杆浸没水中的长度至少为得L L ρρ'

=' 20. 边长为a 的均匀立方体,平衡地放在一个半径为r 的圆柱面顶部,如

图所示,假定静摩擦力很大,足以阻止立方体下滑,试证明物体的

稳定平衡的条件为r >a /2.

解法1,支持面判断:a 作微小转动时,均匀立方体与圆柱面接

触点移动的距离等于弧长=r α,此时重力垂线与均匀立方体底交点移动的距离=2

a tan α。注意:作微小转动α→0,ααα==sin tan ,且弧长等于弦长。

稳定平衡的条件为r α>2a tan α,得r >2

a 。 解法2,重心升降法(最常见的解法):设均匀立方体的重心为O ',原来与球面的接触点为A ,转过一个微小角度α后的接触点为B 。

注意:圆心角、弦切角和切线间的夹角关系。

O 'A 的高度为:2

cos αa ; AB 的高度为:r αsin α; OB 的高度为:r cos α. 稳定平衡的条件:2cos αa + r αsin α+ r cos α-2

a -r >0, 当α很小时:sin α=α,cos α=2

12sin 2122αα-=-。代入上式得:r >2a 。 21. 如图所示,一个左右完全对称的熟鸡蛋的圆、尖两端的曲率半径分别

为a 、b ,且长轴的长度为c ,蛋圆的一端刚好可以在水平面上处于稳

定平衡,若要使蛋的尖端在一半球形的碗内处于稳定平衡,半球形碗的半径应满足什么条件?(答案:b b

a c a c R ---<) 重心升降:因蛋圆的一端刚好可以在水平面上处于稳定平衡,说

明重心在O 1处,重心离蛋的尖端的距离为c -a 。

把半球形碗的球心记为O ,使蛋转过一个微小的角度θ,蛋与碗的接触点为A ,有数学知识易知,O 、O 2、A 三点共线,设OA 与竖直线的夹角为?,则有:R ?=b θ-----①

设蛋的尖端为B ,最低点为C ,半球形的碗的最低点为D ,半径为R ,A 点比B 点低,比C 点高。

则O 1B 的高度为:(c -a )cos(θ-?)

BC 的高度为:b (θ-?)sin 2

?θ-(弦切角等于圆心角的一半) CA 的高度为:b ?sin 2?, AD 的高度为:R ? sin 2

? 稳定条件:(c -a )cos(θ-?)+b (θ-?)sin 2?θ--b ?sin 2?+R ?sin 2

?-(c -a )>0--② 当α很小时:cos α=1-22

α、sin α=α。有①②式,得:(R -b )[(c -a -b )R -b (c -a )]2

2?<0 因R >b ,所以(c -a -b )R

a c a c R ---<. 四、流体静力学:

1、流体对接触面的压力与接触面垂直。

2、浮力的大小等于上下压力差。

如:大气压强为P 气体对半球面的压力F =πPR 2(不是2πPR 2)。

22. 如图所示,有一质量为m 、半径为r 的半球放在盛有密度为ρ的液体的

容器底部,它与容器底部紧密接触(即半球表面与容器底面间无液

体),液体的深度为H .求半球对容器底部的压力.

[答案:F =ρg π(Hr 2-323r )+mg +P 0πr 2,P 0为大气压强] 解:液体对半球的压力可等效于:若液体对半球底有向上的压力,则向上的压力与向下的压力差等于浮力,

则F 向下=F 向上-F 浮=ρgH πr 2-ρg ?323r π=ρg π(Hr 2-3

23r ), 所以半球对容器底的压力F =F 向下+mg =ρg π(Hr 2-323

r )+mg .

[若要考虑大气压强,则F =ρg π(Hr 2-323r )+mg +P 0πr 2]. 23. 如图所示,质量为m 的碗反扣在装满水的较大密闭容器底部.碗

外形是半径为R 、高也为R 的圆柱,碗内是一个半径同样是R 的半

球空穴而成碗.在碗内装满水银.现将水从容器底部的出口慢慢

抽出.求:(1)水面的高度H 等于多少时,碗内水银开始从碗口

下边流出.

(2)容器内的水全部抽出时,碗内的水银高度h 为多少。

(已知:水银的密度为ρ1,水的密度为ρ2,高为H 、半径为R 的的球缺体积为)3

(2H R H V -

=π,不计水蒸汽压力)

[答案:(1)2221)31(R m R H πρρρ-+=;(2)313πρm h =] 解(1)碗受四个力作用:水银对碗的托力F 1、水对碗底的压力F 2、容器对碗的支持力N 、碗的重力mg (因碗封口,外部的水压不能传给碗内的水银),

当N =0时,水银开始流出,有F 2+mg =F 1.

水银对碗的托力F 1的求法可等效于:把碗放在高为R 、宽也为R 的水银中的浮力,

所以F 1=ρ1g (πR 3-3

23R π)=g V 1ρ碗. 有ρ2g (H-R )πR 2+mg =ρ1g πR 3

-ρ1g ?323R π,得:2221)31(R m R H πρρρ-+=. 解(2)容器内的水全部抽出时,F 1=ρ1gV =mg . 体积32323

1)]3()(32[h h R R h R R h R V ππππ=-----=。 解得碗内的水银高度313πρm h =。

24. 在圆椎形筒内盛有两种密度分别为ρ1和ρ2的液体,(ρ1<ρ2),如图所示.当这两种液体均匀混合后,

液体对筒底的压强怎样变化?(与原来比较) (答案:压强减小)

解: 原来液体对筒底的压强P 2=ρ1h 1g +ρ2h 2g .

设ρ为平均密度,则液体对筒底的压强P 2=ρhg =ρ(h 1+h 2)g ;

S 1和S 2为上下两种液体的平均截面;S 为液体混合后的平均截面(不能取2

小大S S S +=)。 则混合后液体的体积不变:hS =h 1S 1+h 2S 2---(1)

混后液体的质量不变:ρhS =ρ1h 1S 1+ρ2h 2S 2---(2)

有(1)和(2)得(ρ2-ρ)h 2S 2=(ρ-ρ1)h 1S 1,因S 1>S 2,所以(ρ2-ρ)h 2>(ρ-ρ1)h 1,

于是得到ρ(h 1+h 2)<ρ1h 1+ρ2h 2,即液体对筒底的压强减小.

用定性分析:上下混合后与筒底对应的圆柱部分的液体的密度减小,因混合后液体的体积和质量都不变,即总深度不变,所以压强液体对筒底的压强减小.

五、综合题例

25. 一支蜡烛浮在水面上,且始终保持竖直,露在水面上部分的长度为h .已知水的密度为ρ,蜡烛的密度为

ρ'(且ρ'<ρ),点燃蜡烛,蜡烛的长度每秒缩短a ,从开始点燃蜡烛到火焰熄灭的时间是 . (答案:a

h )(ρρρ'-) 26. 一条轻绳跨过同一高度的两轻滑轮,两端分别拴上质量为4Kg

和2Kg 的物体,两滑轮间的一段绳子上挂第三个物体,如图所示.

试问:

(1)这个物体的质量小于何值时,三个物体平衡将破坏?

(2)这个物体的质量大于何值时,三个物体平衡将破坏?不考虑滑轮的质量和摩擦. (答案:(1)326Kg )

解(1)因所挂的质量m 越小,所以O 点靠近A 点,OB 趋向水平,OA 与水平面有夹角。

对O 点受力平衡:32,)4()2()(222==+m g g mg 得kg 。 即当32

(2)m 越大,OB 和OA 都趋向于竖直,所以当m >6Kg 时三个物体平衡将破坏.

27. 如图所示,均匀杆的A 端用铰链与墙连接,杆可绕A 点自由转动,杆的另一

端放在长方形木块上,不计木块与地之间的摩擦力,木块不受其它力作用

时,木块对AB 杆的弹力为10N,将木块向左拉出时,木块对杆的弹力为9N,

那么将木块向右拉出时,木块对杆的弹力是多少? (答案:11.25N )

解:木块静止时弹力为10N ,可得杆重G =20N

向左拉时:N 1L cos α+μN 1L sin α=G 2L cos α,或N 1μsin α=2

1G cos α-N 1cos α 向右拉时:N 2L cos α=μN 2L sin α+G 2L cos α,或N 2μsin α=N 2cos α-2

1G cos α 两式相比得10

910922--=N N ,得N 2=11.25N 28. 半径为R 质量为M

1的均匀圆球与一质量为M 2的重物分别用细绳AD 和AC E

悬挂于同一点A ,并处于平衡,如图所示.已知悬点A 到球心的距为L ,不

考虑绳的质量和绳与球间的摩擦,求悬挂圆球的绳AD 与竖直方向AB 的

夹角θ.

[答案:θ=arcsin )

(212M M L R M +] 解:球受重力M 1g ,AD 绳受拉力为T ,ACE 压力为N ,

因重力M 1g 通过圆心,N 也通过圆心(但不是不平方向),

所以T 也通过圆(三力共点),OA =L .

取整体为研究对象对A 点的力矩平衡,M 1gOB =M 2gBC ,

或M 1gL sin θ=M 2g (R -L sin θ),得θ=arcsin )

(212M M L R M +. 29. 有一水果店,所用的秤是吊盘式杆秤,量程为10Kg.现有一较大的西瓜,超过此秤的量程.店员A 找到另

一秤砣,与此秤的秤砣完全相同,把它与原秤砣结在一起进行称量,平衡时双砣位于6.5Kg 刻度处.他将此读数乘以2得13Kg,作为此西瓜的质量,卖给顾客.店员B 对这种称量结果表示怀疑,为了检验,他取另一西瓜,用单秤砣正常称量得8Kg,用店员A 的双秤砣法称量,得读数为3Kg,乘以2后得6Kg.这证明了店员A 的办法是不可靠的.试问,店员A 卖给顾客的那个西瓜的实际质量是多少? (答案:15Kg ) 解:设秤砣的质量为m 0,C 点为秤纽与秤杆连接点,秤盘到秤纽的距离为d ,零刻度O 点到C 点的距离为L 0(在秤纽里,左边L 0为负值),

则秤盘和秤杆重力对C 点的力矩大小为m 0L 0.

秤物体时,有力矩平衡:mgd +m 0gL 0=m 0g (L 0+x ),

x =dm /m 0∝m ,刻度均匀(不一定从C 点开始)。为方便,设每千

克间距为λ ,

当秤质量为m 的物体时读数为m 1:mgd +m 0gL 0=m 0g (L 0+λm 1),得

λ

λ00001L g m gL m mgd m -+= 。 当双秤砣秤质量为m 时读数为m 2,mgd +m 0gL 0=2m 0g (L 0+λm 2),得λλ000022L g m gL m mgd m -+=

。 实际质量与双称砣称得质量2倍的差为?m =m 1-2m 2=L 0/λ=常量,

对同一秤与质量无关,与O 位置有关。有B 店员得?m =2Kg,实际质量为m =2m 2+?m =15Kg.

30. 半径为R 的钢性光滑球固定在桌面上,有一个质量为m 的均匀弹性绳圈,自然长度为2πa (a =

2

R ).现将

绳圈从球面的正上方轻放到球面上,并使它保持水平,静止套在球面上,这时绳圈的半径增为b (b =2a ),求绳圈的倔强系数. [答案:.2)12(2R

mg x T K π?+==] 解:F 为水平方向(如图A ),对一小段绳研究:

,tan ,45,2/220mg mg F R a b ??αα===∴==则

竖直投影(如图B ),F =2T sin

2θ?, 因?θ→0,所以mg T F ?θ?=?

=22,θ??mg T =, 又因为πθ??2m m =,所以π

2mg T =, 弹簧伸长,2

2222R R x ππ

?-= 所以绳圈的倔强系数:.2)12(2R

mg x T K π?+== 31. 半径为r ,质量为m 的三个刚性球放在光滑的水平面上,两两接触.用一个圆柱形刚性圆筒(上、下均无

盖)将此三球套在筒内.圆筒的半径取适当值,使得各球间以及球与筒壁之间保持接触,但互相无作用力.现取一个质量亦为m 、半径为R 的第四个球,放在三个球的上方正中.四个球和圆筒之间的静摩擦系数均为μ=15/3(约等于0.775).问R 取何值时,用手轻轻竖直向上提起圆筒即能将四个球一起提起来? [答案:.)133

332()1332(r R r -≤<-] 解:当上面一个小球放上去后,下面三个小球有向外挤的趋势,

互相之间既无弹力也无摩擦力.因此可以通过下面某一个球的球心

和上面球的球心的竖直面来进行受力分析,受力图如图所示.

对上面小球,根据竖直方向受力平衡有3N 2sin θ-3f 2soc θ=mg ----①

(或下面的小球,对球与筒接触点为转轴,

力矩平衡N 2r sin θ+mgr =f 2r (1+cos θ))

再对四个小球为整体,在竖直方向3f 1=4mg -----------②

下面的小球,对球心为为转轴,有力矩平衡条件f 1r =f 2r ,得f 1=f 2----③

对下面的小球,取f 1和f 2作用线的交点为转轴,有力矩平衡得N 1>N 2,故大球与小球接触处先滑动(这是确定何处先滑动的常用方法)而大球沿筒滚动,

当R 最大时:f 2=μN 2--------------④

有上述四式得:128soc 2θ+24cos θ-77=0,解得:cos θ=16

11, 因16

11)/(332cos =+=R r r θ,所以r R )133332(-=。 但上面的小球不能太小,否则上球要从下面三个小球之间掉下去,必须使r R )13

32(

->. 故得.)133332()1332(r R r -≤<-

大学力学题课后习题答案

专业 班级 …………装…………订…………线………… …线…… 答案 一、判断对错(每题1分) 1(×) 2(×) 3(√) 4(×) 5(×) 6(×) 7(√) 8(√) 9(×) 10(√) 11(×) 12(×) 13(×) 14(√) 15(√) 16(×) 17(×) 18(×) 19(×) 20(×) 21(×) 22(×) 23(×) 24(×) 25(×) 26(×) 27 (×) 28(×) 29(×) 30(√) 31(×) 32(×) 33(√) 34(×)35(√) 36(√) 37(√) 38(√) 39(√) 40(√)41(×) 42 (√) 43(×) 44 (√)45(×) 46(×) 47 (×) 48(√) 49(√) 50(×)51(×)52(√)53(×)54(×)55(√) 56(×) 57(×) 58(×) 59(×) 60(√) 61(√) 62(×) 63(√) 64(×) 65(×) 66 (√) 67 (√) 二、选择题、(每题2分) 1(C )2(C )3(C )4( A )5(A )6( C )7( C )8( B )9( B )10(B )11(C )12(C ) 13(C )14 ( B ) 15( C )16( A )17(C )18( D )19(C )20 (C )21、( D )22、(A A A )23、( B )24、(D )25、( A )26、( B ) 27、( D )28 ( A )29 ( C )30 ( B ) 31( A )32 ( C )33(A )34( B )35(C )36( D )37(A )38(B ) 39(C )40(C )41( B )42( B )43(C )44( D )45( C )46( B )47( D )48( C )49( B ) 50( C ) 三、填空题 (每题4分) 1( ωma 29) (2 23 8ωma )2(力偶 )3(动点)(定系)4(其连线上)(速度投影定理)5(F 3)(Fa 5)6(F 33)(F 23 ) 7(合力的大小及方向)(的选择无关)8(角速度)( 其到转轴的距离)9(平动)(转动)10(mv )( v )11(垂直且相交) 12(内)(外)13(ωr )14(2 /s bm )15( 点c )16(m 10牛顿)17(约束的类型)( 内力)18( 否 )19(约束)(相反)(主动力) 20(ωR )21( ω?? ? ??+2221e r g p ).22(无穷远处)23(mR )24(s N ?100000)(水平向右)25(mvR 27)26(2232ωml ) 27(力偶矩大小相等、转向相同)28( 临界状态)(静摩擦系数)29(与点的轨迹相切)(转轴 )30(转角)31(不能)(不能) 32( 力多边形自行封闭)33( ωr )(2 ωr )34(e r a a a a +=)35( ωa 2)36( mv -)(mv -)37(几何形状)( 重量) 38(轴上)(在该轴上的投影)39( 1 )(17)40( 正 )( 负 )41( )(F M dt d J Z Z =ω )42,( A y x M F F ,,)43(投影) (矩) 44(绝对速度)(矢量和)45(相等)(不相等)46( ωL )(ωL 2)(ωL 5) 47(相等)(不等) 48(大小相等)( 方向相反)(作用线平行)49(最大静摩擦力)(f arctan )50(主动力)(摩擦自锁)。

高中物理力学综合试题及答案

物理竞赛辅导测试卷(力学综合1) 一、(10分)如图所时,A 、B 两小球用轻杆连接,A 球只能沿竖直固定杆运动,开始时,A 、B 均静止,B 球在水平面上靠着固定杆,由于微小扰动,B 开始沿水平面向右运动,不计一切摩擦,设A 在下滑过程中机械能最小时的加速度为a ,则a= 。 二、(10分) 如图所示,杆OA 长为R ,可绕过O 点的水平轴在竖直平面内转动,其端点A 系着一跨过定滑轮B 、C 的不可 伸长的轻绳,绳的另一端系一物块M ,滑轮的半径可忽略,B 在 O 的正上方,OB 之间的距离为H ,某一时刻,当绳的BA 段与 OB 之间的夹角为α时,杆的角速度为ω,求此时物块M 的速度v M 三、(10分)在密度为ρ0的无限大的液体中,有两个半径为 R 、密度为ρ的球,相距为d ,且ρ>ρ0,求两球受到的万有引力。 四、(15分)长度为l 的不可伸长的轻线两端各系一个小物体,它们沿光滑水平面运动。在某一时刻质量为m 1的物体停下来,而质量为m 2的物体具有垂直连线方向的速度v ,求此时线的张力。 五、(15分)二波源B 、C 具有相同的振动方向和振幅, 振幅为0.01m ,初位相相差π,相向发出两线性简谐波,二波频率均为100Hz ,波速为430m/s ,已知B 为坐标原点,C 点坐标为x C =30m ,求:①二波源的振动表达式;②二波的 表达式;③在B 、C 直线上,因二波叠加而静止的各点位置。 六、(15分) 图是放置在水平面上的两根完全相同的轻 质弹簧和质量为m 的物体组成的振子,没跟弹簧的劲度系数均为k ,弹簧的一端固定在墙上,另一端与物体相连,物体与水平面间的静摩擦因数和动摩擦因数均为μ。当弹簧恰为原长时,物体位于O 点,现将物体向右拉离O 点至x 0处(不超过弹性限度),然后将物体由静止释放,设弹簧被压缩及拉长时其整体不弯曲,一直保持在一条直线上,现规定物体从最右端运动至最左端(或从最左端运动至最右端)为一个振动过程。求: (1)从释放到物体停止运动,物体共进行了多少个振动过程;(2)从释放到物体停止运动,物体共用了多少时间?(3)物体最后停在什么位置?(4)整个过程中物体克服摩擦力做了多少功? 七、(15分)一只狼沿半径为R 圆形到边缘按逆时针方向匀速 跑动,如图所示,当狼经过A 点时,一只猎犬以相同的速度从圆心 出发追击狼,设追击过程中,狼、犬和O 点在任一时刻均在同一直线上,问猎犬沿什么轨迹运动?在何处追击上? M O C y x v v B 0 v 0

大学物理力学题库及答案(考试常考)

一、选择题:(每题3分) 1、某质点作直线运动的运动学方程为x =3t -5t 3 + 6 (SI),则该质点作 (A) 匀加速直线运动,加速度沿x 轴正方向. (B) 匀加速直线运动,加速度沿x 轴负方向. (C) 变加速直线运动,加速度沿x 轴正方向. (D) 变加速直线运动,加速度沿x 轴负方向. [ ] 2、一质点沿x 轴作直线运动,其v -t 曲 线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 (A) 5m . (B) 2m . (C) 0. (D) -2 m . (E) -5 m. [ b ] 3、图中p 是一圆的竖直直径pc 的上端点,一质点从p 开始分 别沿不同的弦无摩擦下滑时,到达各弦的下端所用的时间相比 较是 (A) 到a 用的时间最短. (B) 到b 用的时间最短. (C) 到c 用的时间最短. (D) 所用时间都一样. [ d ] 4、 一质点作直线运动,某时刻的瞬时速度=v 2 m/s ,瞬时加速度2/2s m a -=, 则一秒钟后质点的速度 (A) 等于零. (B) 等于-2 m/s . (C) 等于2 m/s . (D) 不能确定. [ d ] 5、 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中 a 、 b 为常量), 则该质点作 (A) 匀速直线运动. (B) 变速直线运动. (C) 抛物线运动. (D)一般曲线运动. [ ] 6、一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ?? ? ??+??? ??t y t x [ ] 7、 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中, 其平均速度大小与平均速率大小分别为 (A) 2πR /T , 2πR/T . (B) 0 , 2πR /T (C) 0 , 0. (D) 2πR /T , 0. [ ] -12 O a p

(完整版)大学土力学试题及答案

第1章 土的物理性质与工程分类 一.填空题 1. 颗粒级配曲线越平缓,不均匀系数越大,颗粒级配越好。为获得较大密实度,应选择级配良好的土料作为填方或砂垫层的土料。 2. 粘粒含量越多,颗粒粒径越小,比表面积越大,亲水性越强,可吸附弱结合水的含量越多,粘土的塑性指标越大 3. 塑性指标p L p w w I -=,它表明粘性土处于可塑状态时含水量的变化范围,它综合反映了粘性、可塑性等因素。因此《规范》规定:1710≤

p I 为粘土。 4. 对无粘性土,工程性质影响最大的是土的密实度,工程上用指标e 、r D 来衡量。 5. 在粘性土的物理指标中,对粘性土的性质影响较大的指标是塑性指数p I 。 6. 决定无粘性土工程性质的好坏是无粘性土的相对密度,它是用指标r D 来衡量。 7. 粘性土的液性指标p L p L w w w w I --= ,它的正负、大小表征了粘性土的软硬状态,《规范》 按L I 将粘性土的状态划分为坚硬、硬塑、可塑、软塑、流塑。 8. 岩石按风化程度划分为微风化、中等风化、强风化。 9. 岩石按坚固程度划分为硬质岩石,包括花岗岩、石灰岩等;软质岩石,包括页岩、泥岩等。 10.某砂层天然饱和重度20=sat γkN/m 3,土粒比重68.2=s G ,并测得该砂土的最大干重度1.17max =d γkN/m 3,最小干重度4.15min =d γkN/m 3,则天然孔隙比e 为0.68,最大孔隙比=max e 0.74,最小孔隙比=min e 0.57。 11.砂粒粒径范围是0.075~2mm ,砂土是指大于2mm 粒径累计含量不超过全重50%,而大于0.075mm 粒径累计含量超过全重50%。 12.亲水性最强的粘土矿物是蒙脱石,这是因为它的晶体单元由两个硅片中间夹一个铝片组成,晶胞间露出的是多余的负电荷,因而晶胞单元间联接很弱,水分子容易进入晶胞之间,而发生膨胀。 二 问答题 1. 概述土的三相比例指标与土的工程性质的关系? 答:三相组成的性质,特别是固体颗粒的性质,直接影响土的工程特性。但是,同样一种土,密实时强度高,松散时强度低。对于细粒土,水含量少则硬,水含量多时则软。这说明土的性质不仅决定于三相组成的性质,而且三相之间量的比例关系也是一个很重要的影响因素。

工程力学材料力学部分习题答案

工程力学材料力学部分习题答案

b2.9 题图2.9所示中段开槽的杆件,两端受轴向载荷P 的作用,试计算截面1-1和2-2上的应力。已知:P = 140kN ,b = 200mm ,b 0 = 100mm ,t = 4mm 。 题图2.9 解:(1) 计算杆的轴力 kN 14021===P N N (2) 计算横截面的面积 21m m 8004200=?=?=t b A 202mm 4004)100200()(=?-=?-=t b b A (3) 计算正应力 MPa 1758001000140111=?== A N σ MPa 350400 1000 140222=?== A N σ (注:本题的目的是说明在一段轴力相同的杆件内,横截面面积小的截面为该段 的危险截面) 2.10 横截面面积A=2cm 2的杆受轴向拉伸,力P=10kN ,求其法线与轴向成30°的及45°斜截面上的应力ασ及ατ,并问m ax τ发生在哪一个截面? 解:(1) 计算杆的轴力 kN 10==P N (2) 计算横截面上的正应力 MPa 50100 2100010=??==A N σ (3) 计算斜截面上的应力 MPa 5.37235030cos 2 230 =??? ? ???==ο ο σσ

MPa 6.212 3250)302 sin(2 30=?= ?= οο σ τ MPa 25225045cos 2 245 =??? ? ???==οο σσ MPa 2512 50 )452 sin(2 45=?= ?= οο σ τ (4) m ax τ发生的截面 ∵ 0)2cos(==ασα τα d d 取得极值 ∴ 0)2cos(=α 因此:2 2π α= , ο454 == π α 故:m ax τ发生在其法线与轴向成45°的截面上。 (注:本题的结果告诉我们,如果拉压杆处横截面的正应力,就可以计算该处任意方向截面的正应力和剪应力。对于拉压杆而言,最大剪应力发生在其法线与轴向成45°的截面上,最大正应力发生在横截面上,横截面上剪应力为零) 2.17 题图2.17所示阶梯直杆AC ,P =10kN ,l 1=l 2=400mm ,A 1=2A 2=100mm 2,E =200GPa 。试计算杆AC 的轴向变形Δl 。 题图2.17 解:(1) 计算直杆各段的轴力及画轴力图 kN 101==P N (拉) kN 102-=-=P N (压)

高考物理力学知识点之热力学定律综合练习(7)

高考物理力学知识点之热力学定律综合练习(7) 一、选择题 1.一定质量的理想气体,由初始状态A开始,状态变化按图中的箭头所示方向进行,最后又回到初始状态A,对于这个循环过程,以下说法正确的是() A.由A→B,气体的分子平均动能增大,放出热量 B.由B→C,气体的分子数密度增大,内能减小,吸收热量 C.由C→A,气体的内能减小,放出热量,外界对气体做功 D.经过一个循环过程后,气体内能可能减少,也可能增加 2.图为某种椅子与其升降部分的结构示意图,M、N两筒间密闭了一定质量的气体,M可沿N的内壁上下滑动,设筒内气体不与外界发生热交换,当人从椅子上离开,M向上滑动的过程中() A.外界对气体做功,气体内能增大 B.外界对气体做功,气体内能减小 C.气体对外界做功,气体内能增大 D.气体对外界做功,气体内能减小 3.根据学过的热学中的有关知识,判断下列说法中正确的是() A.机械能可以全部转化为内能,内能也可以全部用来做功转化成机械能 B.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体 C.尽管科技不断进步,热机的效率仍不能达到100%,制冷机却可以使温度降到-293 ℃D.第一类永动机违背能量守恒定律,第二类永动机不违背能量守恒定律,随着科技的进步和发展,第二类永动机可以制造出来 4.关于永动机和热力学定律的讨论,下列叙述正确的是() A.第二类永动机违背能量守恒定律 B.如果物体从外界吸收了热量,则物体的内能一定增加 C.保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D.做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式没有区别 5.某同学将一气球打好气后,不小心碰到一个尖利物体而迅速破裂,则在气球破裂过程中( )

土力学期末试题及答案

土力学期末试题及答案. 一、单项选择题 1.用粒径级配曲线法表示土样的颗粒组成 情况时,若曲线越陡,则表示土的 ( )

A.颗粒级配越好 B.颗粒级配越差C.颗粒大小越不均匀 D.不均匀系数越大 2.判别粘性土软硬状态的指标是 ( ) A.塑性指数 B.液性指数 C.压缩系数 D.压缩指数 3.产生流砂的充分而必要的条件是动水力( )

A.方向向下 B.等于或大于土的有效重度 C.方向向上 D.方向向上且等于或大于土的有效重度 4.在均质土层中,土的竖向自重应力沿深度的分布规律是 ( ) A.均匀的 B.曲线的 C.折线的 D.直线的 5.在荷载作用下,土体抗剪强度变化的原因是 ( ) A.附加应力的变化 B.总应力的变化C.有效应力的变化 D.自重应力的变化6.采用条形荷载导出的地基界限荷载P用于矩1/4. 形底面基础设计时,其结果 ( ) A.偏于安全 B.偏于危险 C.安全度不变 D.安全与否无法确定

7.无粘性土坡在稳定状态下(不含临界稳定)坡角β与土的内摩擦角φ之间的关系是( ) A.β<φ B.β=φ C.β>φ D.β≤φ 8.下列不属于工程地质勘察报告常用图表的是 ( ) A.钻孔柱状图 B.工程地质剖面图

C.地下水等水位线图 D.土工试验成果总表 9.对于轴心受压或荷载偏心距e较小的基础,可以根据土的抗剪强度指标标准值φk、Ck按公式确定地基承载力的特征值。偏心 为偏心方向的基础边长)Z(注:距的大小规定为( ) A.e≤ι/30 B.e≤ι/10 .e≤b/2 DC.e≤b/4 对于含水量较高的粘性土,堆载预压法处理10. ( ) 地基的主要作用之一 是.减小液化的可能性A B.减小冻胀.消除湿陷性 D .提高地基承载力C. 第二部分非选择题 11.建筑物在地面以下并将上部荷载传递至地基的结构称为____。

2004年至2013年天津高考物理试题分类——力学综合计算题 (1)

2004年至2013年天津高考物理试题分类——力学综合计算 (2004年)24.(18分)质量kg m 5.1=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行s t 0.2=停在B 点,已知A 、B 两点间的距离m s 0.5=,物块与水平面间的动摩擦因数20.0=μ,求恒力F 多大。(2 /10s m g =) 解:设撤去力F 前物块的位移为1s ,撤去力F 时物块速度为v ,物块受到的滑动摩擦力 mg F μ=1 对撤去力F 后物块滑动过程应用动量定理得mv t F -=-01 由运动学公式得t v s s 2 1= - 对物块运动的全过程应用动能定理011=-s F Fs 由以上各式得2 22gt s mgs F μμ-= 代入数据解得F=15N (2005年)24.(18分)如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为 0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。木板突然受到水平向右的12N ·s 的瞬时冲量I 作用开始运动,当小物块滑离木板时,木板的动能E M 为8.0J ,小物块的动能E kB 为0.50J ,重力加速度取10m/s 2 ,求: (1)瞬时冲量作用结束时木板的速度v 0; (2)木板的长度L 。 解:(1)设水平向右为正方向0v m I A = ① 代入数据解得s m v /0.30= ② (2)设A 对B 、B 对A 、C 对A 的滑动摩擦力的大小分别为F AB 、F BA 和F CA ,B 在A 上滑行的时间为t ,B 离开A 时A 和B 的初速分别为v A 和v B ,有 0)(v m v m t F F A A A CA BA -=+- ③ B B AB v m t F = ④ 其中F AB =F EA g m m F B A CA )(+=μ ⑤ 设A 、B 相对于C 的位移大小分别为s A 和s B ,有 2022 121)(v m v m s F F A A A A CA BA -= +- ⑥ AB B AB E s F = ⑦ 动量与动能之间的关系为 kA A A A E m v m 2= ⑧

大学物理学第二章课后答案

习题2 选择题 (1) 一质点作匀速率圆周运动时, (A)它的动量不变,对圆心的角动量也不变。 (B)它的动量不变,对圆心的角动量不断改变。 (C)它的动量不断改变,对圆心的角动量不变。 (D)它的动量不断改变,对圆心的角动量也不断改变。 [答案:C] (2) 质点系的内力可以改变 (A)系统的总质量。 (B)系统的总动量。 (C)系统的总动能。 (D)系统的总角动量。 [答案:C] (3) 对功的概念有以下几种说法: ①保守力作正功时,系统内相应的势能增加。 ②质点运动经一闭合路径,保守力对质点作的功为零。 ③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。 在上述说法中: (A)①、②是正确的。 (B)②、③是正确的。 (C)只有②是正确的。 (D)只有③是正确的。 [答案:C] 填空题 (1) 某质点在力i x F )54( (SI )的作用下沿x 轴作直线运动。在从x=0移动到x=10m 的过程中,力F 所做功为 。 [答案:290J ] (2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。则物体加速度的大小为 ,物体与水平面间的摩擦系数为 。 [答案:2 2 ;22v v s gs ] (3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为 ;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为 。

[答案:2; 3 k k E E ] 在下列情况下,说明质点所受合力的特点: (1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。 解:(1)所受合力为零; (2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反; (3)所受合力为大小保持不变、方向不断改变总是指向圆心的力; (4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。 举例说明以下两种说法是不正确的: (1)物体受到的摩擦力的方向总是与物体的运动方向相反; (2)摩擦力总是阻碍物体运动的。 解:(1)人走路时,所受地面的摩擦力与人的运动方向相同; (2)车作加速运动时,放在车上的物体受到车子对它的摩擦力,该摩擦力是引起物体相对地面运动的原因。 质点系动量守恒的条件是什么?在什么情况下,即使外力不为零,也可用动量守恒定律近似求解? 解:质点系动量守恒的条件是质点系所受合外力为零。当系统只受有限大小的外力作用,且作用时间很短时,有限大小外力的冲量可忽略,故也可用动量守恒定律近似求解。 在经典力学中,下列哪些物理量与参考系的选取有关:质量、动量、冲量、动能、势能、功? 解:在经典力学中,动量、动能、势能、功与参考系的选取有关。 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a 下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计). 解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ,故2m 对地加速度, 题图 由图(b)可知,为 a a a 12 ① 又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,

土力学复习题及答案

土力学复习题及参考答案 一、选择题 1. 根据地质作用的能量来源的不同,可分为(AB )。 A. 内动力地质作用C. 风化作用 B. 外动力地质作用D. 沉积作用 2. 在工程上,岩石是按什么进行分类( D )。 A. 成因和风化程度C. 成因 B. 坚固性和成因D. 坚固性和风化程度 3.土体具有压缩性的主要原因是( B )。 A.主要是由土颗粒的压缩引起的; B.主要是由孔隙的减少引起的; C.主要是因为水被压缩引起的; D.土体本身压缩模量较小引起的 4. 土的结构性强弱可用( B )反映。 A. 饱和度 B. 灵敏度 C. 粘聚力 D. 相对密实度 5. 渗流的渗透力也称动水力,其数值( A ) A. 与水头梯度成正比 B. 与横截面积成正比 C. 与流速成反比 D. 与渗透系数成正 6. 用“环刀法”测定( A )。 A. 土的天然密度 B. 土的浮密度 C. 土的饱和密度 D. 土的干密度 7. 风化作用包含着外力对原岩发生的哪两种作用( C ) A.机械破碎和风化作用; B.沉积作用和化学变化; C.机械破碎和化学变化; D.搬运作用和化学变化 8. 设砂土地基中某点的大主应力σ1=400kPa,小主应力σ3=200kPa,砂土的粘聚力c=0,试判断该点破坏时砂土的内摩擦角φ=( D )。 A. 22°28′ B. 21°28′ C. 20°28′ D. 19°28′ 9. 计算竖向固结时间因数,双面排水情况,H取压缩土层厚度( B ) A 3倍; B 0.5倍; C 1倍; D 2倍 10. 土力学是研究土与结构物相互作用等规律的一门力学分支,主要研究土的(ABCD) A.应力;B.变形;C.强度;D.稳定 11. 在长为10cm,面积8cm2的圆筒内装满砂土。经测定,粉砂的比重为2.65, e=0.900,筒下端与管相连,管内水位高出筒5cm(固定不变),水流自下而上通过试样后可溢流出去。试求,1.动水压力的大小,判断是否会产生流砂现象;2.临界水头梯度值。( B )。 A. 9.6kN/m3,会,0.80 C. 14.7kN/m3,不会,0.87 B. 4.9kN/m3,不会,0.87 D. 9.8kN/m3,会, 0.80 12. 若建筑物施工速度较快,而地基土的透水性和排水条件不良时,可采用( A )或( B )的结果。 A 三轴仪不固结不排水试验 B 直剪仪快剪试验 C 三轴仪固结排水试验 D直剪仪慢剪试验 13. 工程上控制填土的施工质量和评价土的密实程度常用的指标是( D ) A. 有效重度 B. 土粒相对密度 C. 饱和重度 D. 干重度 14. 朗肯理论使用条件(. ABC )。

物理力学部分习题及参考答案解析

电学部分习题(82) 选择题: 1. 在半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为: [ B ] 2. 如图所示,边长为 0.3 m 的正 三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶 点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强 度的大小E 和电势U 为: (041επ=9×10-9 N m /C 2) (A) E =0,U =0. (B) E =1000 V/m ,U =0. (C) E =1000 V/m ,U =600 V . (D) E =2000 V/m ,U =600 V . [ B ] 3. 在一个带有负电荷的均匀带电球外,放置一电偶极子,其电矩p 的方向如图所示.当电偶极子被 释放后,该电偶极子将 (A)沿逆时针方向旋转直到电矩p 沿径向指向球面而停止. (B)沿逆时针方向旋转至p 沿径向指向球面,同时沿电场线方向向着球面移 动. (C) 沿逆时针方向旋转至p 沿径向指向球面,同时逆电场线方向远离球面移动. (D) 沿顺时针方向旋转至p 沿径向朝外,同时沿电场线方向向着球面移动. [ B ] 4. 有两个大小不相同的金属球,大球直径是小球的两倍,大球带电,小球不带电, 两者相距很远.今用细长导线将两者相连,在忽略导线的影响下,大球与小球的 带电之比为: (A) 2. (B) 1. (C) 1/2. (D) 0. [ A ] 5. 一个带正电荷的质点,在电场力作用下从A 点出发经C 点运动到B 点,其运动轨迹如图所示.已知质点运动的速率是递减的,下面关于C 点场强方向的四个图示中正确的是: [ D ] 6. 同心薄金属球壳,半径分别为R 1和R 2 (R 2 > R 1 ),若分别带上电荷q 1和q 2,则两者的电势分别为U 1和U 2 (选无穷远处为电势零点).现用导线将两球壳相连接,则它们的电势为 (A) U 1. (B) U 2. (C) U 1 + U 2. (D) )(2121U U +. [ B ] 7. 如果某带电体其电荷分布的体密度ρ 增大为原来的2倍,则其电场的能量变为原来 E O r (D) E ∝1/r 2 E

大学物理力学答案3概要

第三章基本知识小结 ⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。 矢量式:22dt r d m dt v d m a m F === 分量式: (弧坐标) (直角坐标) ρ τττ2 ,,,v m m a F dt dv m m a F m a F m a F m a F n n z z y y x x ======= ⒉动量定理适用于惯性系、质点、质点系。 导数形式:dt p d F = 微分形式:p d dt F = 积分形式:p dt F I ?==?)( (注意分量式的运用) ⒊动量守恒定律适用于惯性系、质点、质点系。 若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。即 ∑==恒矢量。 则,若外p F 0 (注意分量式的运用) ⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。 在直线加速参考系中:0*a m f -= 在转动参考系中: ωω ?=='2, *2* mv f r m f k c ⒌质心和质心运动定理 ⑴∑∑∑===i i c i i c i i c a m a m v m v m r m r m ⑵∑=c a m F (注意分量式的运用) 3.5.1 质量为2kg 的质点的运动学方程为 j t t i t r ?)133(?)16(22+++-= (单位:米,秒) , 求证质点受恒力而运动,并求力的方向大小。 解:∵j i dt r d a ?6?12/22+== , j i a m F ?12?24+== 为一与时间无关的恒矢量,∴质点受恒 力而运动。 F=(242+122)1/2=12 5N ,力与x 轴之间夹角为: '34265.0/?===arctg F arctgF x y α 3.5.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ?sin ?cos ωω+= , a,b,ω为正常数,证明作用于质点的合力总指向原点。 证明:∵r j t b i t a dt r d a 2222)?sin ?cos (/ωωωω-=+-== r m a m F 2ω-==, ∴作用于质点的合力总指向原点。

(完整word版)土力学题库及答案

习题 第一章 土的物理性质及工程分类 选择题 1.土颗粒的大小及其级配,通常是用颗粒级配曲线来表示的。级配曲线越平缓表示: A .土颗粒大小较均匀,级配良好 B.土颗粒大小不均匀,级配不良 C. 土颗粒大小不均匀,级配良好 2.作为填土工程的土料,压实效果与不均匀系数u C 的关系: A . u C 大比 u C 小好 B. u C 小比 u C 大好 C. u C 与压实效果无关 3.有三个同一种类土样,它们的含水率w 都相同,但是饱和度r S 不同,饱和度r S 越大的土,其压缩性 有何变化? A.压缩性越大 B. 压缩性越小 C. 压缩性不变 4.有一非饱和土样,在荷载作用下,饱和度由80%增加至95%。试问土样的重度γ和含水率w 怎样改变? A .γ增加,w 减小 B. γ不变,w 不变 C. γ增加,w 增加 5.土的液限是指土进入流动状态时的含水率,下述说法哪种是对的? A .天然土的含水率最大不超过液限 B. 液限一定是天然土的饱和含水率 C. 天然土的含水率可以超过液限,所以液限不一定是天然土的饱和含水率 判断题 6.甲土的饱和度大与乙土的饱和度,则甲土的含水率一定高于乙土的含水率 7.粘性土的物理状态是用含水率表示的,现有甲、乙两种土,测得它们的含水率乙甲w w ,则可以断定甲土比乙土软 8.土的液性指数L I 会出现L I >0或L I <0的情况 9.土的相对密实度r D 会出现r D >1或r D <1的情况 10.土的天然重度越大,则土的密实性越好 计算题 11.击实试验,击实筒体积1000cm 2 ,测得湿土的质量为1.95kg ,取一质量为17.48kg 的湿土,烘干后质量为15.03kg ,计算含水率w 和干重度 d r 。 12.已知某地基土试样有关数据如下:①天然重度r =18.4 kN/m 3 ,干密度 d r =13.2 kN/m 3 ;②液限试验, 取湿土14.5kg ,烘干后质量为10.3kg ;③搓条试验,取湿土条5.2kg ,烘干后质量为4.1kg ,求(1)土的天然含水率,塑性指数和液性指数;(2)土的名称和状态。 13.从A ,B 两地土层中个取粘性土进行试验,恰好其液塑限相同,液限 l w =45%,塑限 p w =30%,但A 地 的天然含水率为45%,而B 地的天然含水率为25%。试求A ,B 两地的地基土的液性指数,并通过判断土的状态,确定哪个地基土比较好。 14.已知土的试验指标为r =17 kN/m 3 , s G =2.72,和w =10%,求 е和r S 。

初二物理力学部分试题及答案

初二力学试题 1.g取10牛顿/千克 2.下面表中所列的常数供答题时选用: 一、选择题 1.在南北方向的平直公路上,有a、b、c三辆汽车。a车上的人看到b车匀速向南;c 车上的人看到a车匀速向北;b车上的人看到路旁的建筑物匀速向南,这三辆车中相对于地面有可能静止的车是: (A)只有a车(B)只有b车(C)只有c车(D)a车和c车 2.以下说法错误的是: (A)冰化成水后的体积和原来的冰的体积不相同; (B)水结成冰后的质量和原来的水的质量相同; (C)1米3的冰和1米3的水体积相同,但冰的质量比水小; (D)1千克的冰和1千克的水质量相同,但水的体积比冰大。 3.水中漂浮着一个木块,木块浸入水中的体积为V,受到的浮力为F,现在将一部分盐水倒入水中,则: (A)木块浸入液体中的体积变大,浮力F不变。 (B)木块浸入液体中的体积变小,浮力F不变 (C)木块浸入液体中的体积变小,浮力F变小 (D)木块浸入液体中的体积变小,浮力F变大 4.如图。在水平地面上放一块砖A,然后在它上面再放半块砖B, 整块砖的长宽高比例为4:2:1。则B对A的压强和A对地的压强之比为:(A)2 :3 (B)1 :2 (C)3 :2 (D)2 :1. 5.关于压力和压强,下列说法正确的是: (A)压力的方向总是竖直向下的,并且和接触面是垂直的; (B)压力的数值总是等于物体重力的数值,但不是物体的重力。 (C)当受力面积一定时,压力越大,说明支撑面受到的压强越大。 (D)物体对支撑面的压力越大,压强也越大,因为压强是反映压力效果的。 6.一个物体以6米/秒的速度匀速滑上一个斜面,经10秒钟到达斜面顶;立即又以10米/秒的速度从斜面顶沿原路返回,该物体在上下斜面的全程中平均速度的大小为:

最新推荐推荐高三物理力学综合测试经典好题(含答案)教学内容

高三物理力学综合测试题 一、选择题(4×10=50) 1、如图所示,一物块受到一个水平力F 作用静止于斜面上,F 的方向与斜面平行, 如果将力F 撤消,下列对物块的描述正确的是( ) A 、木块将沿面斜面下滑 B 、木块受到的摩擦力变大 C 、木块立即获得加速度 D 、木块所受的摩擦力改变方向 2、一小球以初速度v 0竖直上抛,它能到达的最大高度为H ,问下列几种情况中,哪种情况小球不. 可能达到高度H (忽略空气阻力): ( ) A .图a ,以初速v 0沿光滑斜面向上运动 B .图b ,以初速v 0沿光滑的抛物线轨道,从最低点向上运动 C .图c (H>R>H/2),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 D .图d (R>H ),以初速v 0沿半径为R 的光滑圆轨道从最低点向上运动 3. 如图,在光滑水平面上,放着两块长度相同,质量分别为M1和M2的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块,开始时,各物均静止,今在两物体上各作用一水平恒力F1、F2,当物块和木块分离时,两木块的速度分别为v1和v2,,物体和木板间的动摩擦因数相同,下列说法 若F1=F2,M1>M2,则v1 >v2,; 若F1=F2,M1<M2,则v1 >v2,; ③若F1>F2,M1=M2,则v1 >v2,; ④若F1<F2,M1=M2,则v1 >v2,;其中正确的是( ) A .①③ B .②④ C .①② D .②③ 4.如图所示,质量为10kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5N 时,物体A 处于静止状态。若小车以1m/s2的加速度向右运动后,则(g=10m/s2)( ) A .物体A 相对小车仍然静止 B .物体A 受到的摩擦力减小 C .物体A 受到的摩擦力大小不变 D .物体A 受到的弹簧拉力增大 5.如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小 球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 3 10,则有关小球能够上 升到最大高度(距离底部)的说法中正确的是: ( ) A .一定可以表示为g v 22 B .可能为3 R C .可能为R D .可能为 3 5R 6.如图示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不 漏气。活塞下挂一砂桶,砂桶装满砂子时,活塞恰好静止。现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则 ( ) A .气体压强增大,内能不变 B .外界对气体做功,气体温度不变 C .气体体积减小,压强增大,内能减小 D .外界对气体做功,气体内能增加 7.如图所示,质量M=50kg 的空箱子,放在光滑水平面上,箱子中有一个质量m=30kg 的铁块,铁块与箱子的左端ab 壁相距s=1m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计。用水平向右的恒力F=10N 作用于箱子,2s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) θ F R F

大学物理力学一、二章作业答案

大学物理力学一、二章 作业答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章 质点运动学 一、选择题 1、一质点在xoy 平面内运动,其运动方程为2,ct b y at x +==,式中a 、b 、c 均为常数。当运动质点的运动方向与x 轴成450角时,它的速率为[ B ]。 A .a ; B .a 2; C .2c ; D .224c a +。 2、设木块沿光滑斜面从下端开始往上滑动,然后下滑,则表示木块速度与时间关系的曲线是图1-1中的[ D ]。 3、一质点的运动方程是j t R i t R r ωωsin cos +=,R 、ω为正常数。从t = ωπ/到t =ωπ/2时间内该质点的路程是[ B ]。 A .2R ; B .R π; C . 0; D .ωπR 。 4、质量为0.25kg 的质点,受i t F =(N)的力作用,t =0时该质点以v =2j m/s 的速度通过坐标原点,该质点任意时刻的位置矢量是[ B ]。 A .22 t i +2j m ; B .j t i t 23 23+m ; C .j t i t 343243+; D .条件不足,无法确定。 二、填空题 1、一质点沿x 轴运动,其运动方程为225t t x -+=(x 以米为单位,t 以秒为单位)。质点的初速度为 2m/s ,第4秒末的速度为 -6m/s ,第4秒末的加速度为 -2m/s 2 。

2、一质点以π(m/s )的匀速率作半径为5m 的圆周运动。该质点在5s 内 的平均速度的大小为 2m/s ,平均加速度的大小为 22 m /5 s π 。 3、一质点沿半径为0.1m 的圆周运动,其运动方程为22t +=θ(式中的θ以弧度计,t 以秒计),质点在第一秒末的速度为 0.2m/s ,切向加速度为 0.2m/s 2 。 4、一质点沿半径1m 的圆周运动,运动方程为θ=2+3t 3,其中θ以弧度计,t 以秒计。T =2s 时质点的切向加速度为 36m/s 2 ;当加速度的方向和半径成45 o角时角位移是 3 8 rad 。 5、飞轮半径0.4m ,从静止开始启动,角加速度β=0.2rad/s 2。t =2s 时边缘各点的速度为 0.16m/s ,加速度为 0.102m/s 2 。 6、如图1-2所示,半径为R A 和R B 的两轮和皮带连结,如果皮带不打滑,则两轮的角速度=B A ωω: R R A B : ,两轮边缘A 点和B 点的切向加速度 =B A a a ττ: 1:1 。 三、简述题 1、给出路程和位移的定义,并举例说明二者的联系和区别。 2、给出瞬时速度和平均速度的定义,并举例说明二者的联系和区别。 3、给出速度和速率的定义,并简要描述二者的联系和区别。 4、给出瞬时加速度和平均加速度的定义,并简要描述二者的联系和区别。 四、计算题 图1-2

2015高考物理一轮复习—专题系列卷:力学综合

解答题专练卷(一)力学综合 1.如图1所示,蹦床运动员正在训练大厅内训练,大厅内蹦床的床面到天花板的距离是7.6 m,在蹦床运动的训练室内的墙壁上挂着一面宽度为1.6 m的旗帜。身高1.6 m的运动员头部最高能够上升到距离天花板1 m的位置。在自由下落过程中,运动员从脚尖到头顶通过整面旗帜的时间是0.4 s,重力加速度为10 m/s2,设运动员上升和下落过程中身体都是挺直的,求: 图1 (1)运动员的竖直起跳的速度; (2)运动员下落时身体通过整幅旗帜过程中的平均速度; (3)旗帜的上边缘距离天花板的距离。 2.(2014·江西重点中学联考)如图2(a)所示,小球甲固定于足够长光滑水平面的左端,质量m=0.4 kg的小球乙可在光滑水平面上滑动,甲、乙两球之间因受到相互作用而具有一定的势能,相互作用力沿二者连线且随间距的变化而变化。现已测出势能随位置x的变化规律如图(b)所示中的实线所示。已知曲线最低点的横坐标x0=20 cm,虚线①为势能变化曲线的渐近线,虚线②为经过曲线上x=11 cm点的切线,斜率绝对值k=0.03 J/cm。 图2 试求:(1)将小球乙从x1=8 cm处由静止释放,小球乙所能达到的最大速度为多大? (2)小球乙在光滑水平面上何处由静止释放,小球乙不可能第二次经过x0=20 cm的位

置?并写出必要的推断说明。 (3)小球乙经过x=11 cm时加速度大小和方向。 3.如图3所示,物块A的质量为M,物块B、C的质量都是m,都可看作质点,且m

相关主题
文本预览
相关文档 最新文档