当前位置:文档之家› 利用相关生存数据的信息提高Cox模型参数估计效率_英文_

利用相关生存数据的信息提高Cox模型参数估计效率_英文_

利用相关生存数据的信息提高Cox模型参数估计效率_英文_
利用相关生存数据的信息提高Cox模型参数估计效率_英文_

等效电路模型参数在线辨识

第四章 等效电路模型参数在线辨识 通过第三章函数拟合的方法可以确定钒电池等效电路模型中的参数,但是在实际运行过程中模型参数随着工作环境温度、充放电循环次数、SOC 等因素发生变化,根据离线试验数据计算得到的参数值估算电池SOC 可能会造成较大的估计误差。因此,在实际运行时,应对钒电池等效电路模型参数进行在线辨识,做出实时修正,提高基于模型估算SOC 的精度。 4.1 基于遗忘因子的最小二乘算法 参数辨识是根据被测系统的输入输出来,通过一定的算法,获得让模型输出值尽量接近系统实际输出值的模型参数估计值。根据能否实时辨识系统的模型参数,可以将常用的参数辨识方法分为离线和在线两类,离线辨识只能在数据采集完成后进行,不能对系统模型实时地在线调整参数,对于具有非线性特性的电池系统往往不能得到满意的辨识结果;在线辨识方法一般能够根据实时采集到的数据对系统模型进行辨识,在线调整系统模型参数。常用的辨识方法有最小二乘法、极大似然估计法和Kalman 滤波法等。因最小二乘法原理简明、收敛较快、容易理解和掌握、方便编程实现等特点,在进行电池模型参数辨识时采用了效果较好的含遗忘因子的递推最小二乘法。 4.1.1 批处理最小二乘法简介 假设被辨识的系统模型: 12121212()()()1n n n n b z b z b z y z G z u z a z a z a z ------+++==++++L L (4-1) 其相应的差分方程为: 1 1 ()()()n n i i i i y k a y k i b u k i ===--+-∑∑(4-2) 若考虑被辨识系统或观测信息中含有噪声,则被辨识模型式(4-2)可改写为: 1 1 ()()()()n n i i i i z k a y k i b u k i v k ===--+-+∑∑(4-3) 式中, ()z k 为系统输出量的第k 次观测值;()y k 为系统输出量的第k 次真值,()y k i -为系统输出量的第k i -次真值;()u k 为系统的第k 个输入值,()u k i -为 系统的第k i -个输入值;()v k 为均值为0的随机噪声。

生存分析的概念

一、生存分析的概念: 将事件的结果和出现此结果所经历的时间结合起来分析的统计分析方法。 研究生存现象和响应时间数据及其统计规律的一门学科。 对一个或多个非负随机变量(生存时间)进行统计分析研究。 对生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度的统计分析方法。 在综合考虑相关因素(内因和外因)的基础上,对涉及生物学、医学(临床、流行病)、工程(可靠性)、保险精算学、公共卫生学、社会学和人口学(老龄问题、犯罪、婚姻)、经济学(市场学)等领域中,与事件(死亡,疾病发生、发展和缓解,失效,状态持续)发生的时间(也叫寿命、存活时间或失效时间,统称生存时间)有关的问题提供相关的统计规律的分析与推断方法的学科。 二、“生存时间”(Survival Time)的概念 生存时间也叫寿命、存活时间、失效时间等等。 医学:疾病发生时间、治疗后疾病复发时间 可靠性工程系:元件或系统失效时间 犯罪学:重罪犯人的假释时间 社会学:首次婚姻持续时间 人口学:母乳喂养新生儿断奶时间 经济学:经济危机爆发时间、发行债券的违约时间 保险精算学:保险人的索赔时间、保险公司某一索赔中所付保费 汽车工业:汽车车轮转数 市场学中:报纸和杂志的篇幅和订阅费 三、生存分析的应用领域:社会学,保险学,医学,生物学,人口学,医学,经济学,可靠性工程学等 六、生存分析研究的目的 1、描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函数曲线。统计方法包括Kaplan-Meier(K-M)法、寿命表法。 2、比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的生存率,以了解哪种治疗

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survival time) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。 3、删失(Sensoring) 指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。 4、生存函数(Survival distribution function) 又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。 二、生存分析的方法

1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。 2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。 下面用一个例子来说明SPSS中Cox回归模型的操作方法。 例题 要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:

浅析电力系统模型参数辨识

浅析电力系统模型参数辨识 (贵哥提供) 一、现状分析 随着我国电力事业的迅猛发展, 超高压输电线路和大容量机组的相继投入, 对电力系统稳定计算、以及其安全性、经济性和电能质量提出了更高的要求。现代控制理论、计算机技术、现代应用数学等新理论、新方法在电力系统的应用,正在促使电力工业这一传统产业迅速走向高科技化。 我国大区域电网的互联使网络结构更复杂,对电力系统安全稳定分析提出了更高的要求,在线、实时、精确的辨识电力系统模型参数变得更加紧迫。由于电力系统模型的基础性、重要性,国外早在上世纪三十年代就开始了这方面的分析研究,[1,2]国内外的电力工作者在模型参数辨识方面做了大量的研究工作。[3]随后IEEE相继公布了有关四大参数的数学模型。1990年全国电网会议上的调查确定了模型参数的地位,促进了模型参数辨识的进一步发展,并提出了研究发电机、励磁、调速系统、负荷等元件的动态特性和理论模型,以及元件在极端运行环境下的动态特性和参数辨识的要求。但传统的测量手段,限制了在线实时辨识方法的实现。 同步相量测量技术的出现和WAMS系统的研究与应用,使实现在线实时的电力系统模型参数辨识成为可能。同步相量是以标准时间信号GPS作为同步的基准,通过对采样数据计算而得的相量。相量测量装置是进行同步相量测量和输出以及动态记录的装置。PMU的核心特征包括基于标准时钟信号的同步相量测量、失去标准时钟信号的授时能力、PMU与主站之间能够实时通信并遵循有关通信协议。 自1988年Virginia Tech研制出首个PMU装置以来,[4]PMU技术取得了长足发展,并在国内外得到了广泛应用。截至2006年底,在我国范围内,已有300多台P MU装置投入运行,并且可预计,在不久的将来PMU装置会遍布电力系统的各个主要电厂和变电站。这为基于PMU的各种应用提供了良好的条件。 二、系统辨识的概念 系统模型是实际系统本质的简化描述。[5]模型可分为物理模型和数学模型两大类。物理模型是根据相似原理构成的一种物理模拟,通过模型试验来研究系统的

模型计算步骤

计算步骤步骤目标 建模或计算条件控制条件及处理1.符合原结构传力模式2.符合原结构边界条件3.符合采用程序的假定条件1.振型组合数→有效质量参与系数>0.9吗?→否,则增加2.最大地震力作用方向角→θ0-θm >150?→是,输入θ0=θm ,附加方向角θ0=03.结构自振周期,输入值与计算值相差>10%?→是,按计算值改输入值4.查看三维振型图,确定裙房参与计算范围→修正计算简图5.短肢剪力墙承担的抗倾覆力矩<40%?→是,改为一般剪力墙结构;短肢剪力墙承担的抗倾 覆力矩>50%?→是,规范不许,修改设计 6.框剪结构框架承担的抗倾覆力矩>50%?→是,框架抗震等级按框架结构确定;若为多层结构,可定义为框架结构,抗震墙可作为次要抗侧力构件,其抗震等级可降低一级。 1.周期比控制:T 扭/T 1≤0.9(0.85)?→否,修改结构布置,强化外围削弱中间 2.层位移比控制:最大/平均≤1.2?→否,按双向地震重算 3.侧向刚度比控制:要求见规范;不满足时程序自动定义为薄弱层 4.层受剪承载力控制:Q i /Q i+1<[0.65(0.75)]?→否,修改结构布置;0.65(0.75)≤Q i /Q i+1<0.8?→否,强制指定为薄弱层(注:括号中数据为B级高层),(《高规》4.4.3条) 5.整体稳定控制:刚重比≥[10(框架),1.4(其它)] 6.最小地震剪力控制:剪重比≥0.2αmax?→否,增加振型数或增大地震剪力系数 7.层位移角控制:弹性Δu ei /h i ≤[1/550(框架),1/800(框剪),1/1000(其它)];弹塑性Δ u pi /h i ≤[1/50(框架),1/100(框剪),1/120(其它)]1.构件构造最小断面控制和截面抗剪承载力验算 2.构件斜截面承载力验算(剪压比控制) 3.构件正截面承载力验算 4.构件最大配筋率控制 5.纯弯和偏心构件受压区高度限制 6.竖向构件轴压比控制 7.剪力墙的局部稳定控制 8.梁柱节点核心区抗剪承载力验算 1.钢筋最大最小直径限制 2.钢筋最大最小间距要求 3.最小配筋配箍要求 4.重要部位的加强和明显不合理部分局部调整2.计算一(一次或多次)整体参数 的正确确 定 1.地震方向角θ0=0;2.单向地震+平扭耦联;3.不考虑偶然偏心;4.不强制全楼刚性楼板;5.按总刚分析;6.短肢墙多时定义为短肢剪力墙结构;1.按计算一、二确定的模型和参数;2.取消全楼强制刚性板;3.按总刚分析;4.对特殊构件人工指定。构件优化设计(构件超筋超限控制)4.计算三(一次或多次)5.绘制施工图结构构造抗震构造措施几何及荷 载模型 1.建模整体建模判定整体结构的合理性(平面和竖向规则性控制) 1.地震方向角θ0=0,θ m ; 2.单(双)向地震+平扭耦 联; 3.(不)考虑偶然偏心; 4.强制全楼刚性楼板; 5.按侧刚分析; 6.按计算一的结果确定结 构类型和抗震等级3.计算二(一次或多次)

生命周期模型及选择指南

生命周期模型及选择指南 Version 1.1 文档名称:ZD-MMI-Guidelines-生命周期及模型选择指南-V1.1

修订历史记录

目录 1 目的和范围 (1) 2 生命周期可选模型简介 (1) 2.1 瀑布模型 (1) 2.1.1 标准瀑布模型 (1) 2.1.2 V模型 (3) 2.1.3 中等简化V字模型(V4模型) (5) 2.1.4 最简化V字模型(V3模型) (6) 2.2 原型模型 (8) 2.2.1 原型模型的形式 (8) 2.2.2 特点 (8) 2.2.3 缺点 (9) 2.2.4 适用项目 (9) 2.2.5 阶段划分 (9) 2.3 螺旋模型 (10) 2.3.1 特点 (10) 2.3.2 适用项目 (11) 2.3.3 阶段划分 (11) 2.4 增量模型 (11) 2.4.1 特点 (12) 2.4.2 适用项目 (12) 2.4.3 阶段划分 (12) 2.5 迭代模型 (13) 2.5.1 特点 (14) 2.5.2 适用情况 (15) 2.5.3 迭代分类 (15)

3 生命周期模型选择指南 (16) 3.1 生命周期模型选择特性指标 (16) 3.1.1 需求清晰性、完整性、稳定性 (16) 3.1.2 项目规模 (16) 3.1.3 项目类型 (17) 3.1.4 技术复杂度 (17) 3.1.5 可重用性 (18) 3.1.6 重用已有产品 (18) 3.2 生命周期模型选择决策参考 (18) 3.3 生命周期模型与特性指标对应关系 (19) 3.4 生命周期选择 (20) 附录:标准项目生命周期图 (21)

基于最小二乘模型的Bayes参数辨识方法

基于最小二乘模型的Bayes 参数辨识方法 王晓侃1,冯冬青2 1 郑州大学电气工程学院,郑州(450001) 2 郑州大学信息控制研究所,郑州(450001) E-mail :wxkbbg@https://www.doczj.com/doc/6f8159912.html, 摘 要:从辨识定义出发,首先介绍了Bayes 基本原理及其两种常用的方法,接着重点介绍了基于最小二乘模型的Bayes 参数辨识,最后以实例用MATLAB 进行仿真,得出理想的辨识结果。 关键词:辨识定义;Bayes 基本原理;Bayes 参数辨识 中国图书分类号:TP273+.1 文献标识码:A 0 概述 系统辨识是建模的一种方法。不同的学科领域,对应着不同的数学模型,从某种意义上讲,不同学科的发展过程就是建立它的数学模型的过程。建立数学模型有两种方法:即解析法和系统辨识。L. A. Zadehll 于1962年曾对”辨识”给出定义[1]:系统辨识是在对输入和输出观测的基础上,在指定的一类系统中,确定一个与被识别的系统等价的系统。一般系统输出y(n)通常用系统过去输出y(n-m)和现在输入u(n)及过去输入u(n-m)的函数描述 y(n)=f(y(n-1),y(n-2),...,y(n-m y ), u(n),u(n-1),... ,u(n-m u ))=f(x(n),n) x(n)=[y(n-1),y(n-2),...y(n-m y ), u(n),u(n-1),...,u(n-m u )]’ 这里f(,)为未知函数关系,一般情况为泛函数,可以是线性函数或非线性函数,分别对应于线性或非线性系统,通常这个函数未知,但是局部输入输出数据可以测出,系统辨识的任务就是根据这部分信息寻找确定函数或确定系统来逼近这个未知函数。但实际上我们不可能找到一个与实际系统完全等价的模型。从实用的角度来看,系统辨识就是从一组模型中选择一个模型,按照某种准则,使之能最好地拟合由系统的输入输出观测数据体现出的实际系统的动态或静态特性。接下来本文就以最小二乘法为基础的Bayes 辨识方法为例进行分析介绍并加以仿真[4]。 1 Bayes 基本原理 Bayes 辨识方法的基本思想是把所要估计的参数看做随机变量,然后设法通过观测与该参数有关联的其他变量,以此来推断这个参数。 设μ是描述某一动态系统的模型,θ是模型μ的参数,它会反映在该动态系统的输入输出观测值中。如果系统的输出变量z(k)在参数θ及其历史纪录(1) k D ?条件下的概率密度函 数是已知的,记作p(z(k)|θ,(1) k D ?),其中(1) k D ?表示(k-1)时刻以前的输入输出数据集 合,那么根据Bayes 的观点参数θ的估计问题可以看成是把参数θ当作具有某种先验概率密 度p (θ,(1) k D ?)的随机变量,如果输入u(k)是确定的变量,则利用Bayes 公式,把参数θ 的后验概率密度函数表示成[2] p (θ,k D )= p (θ|z (k ),u(k ), (1) k D ?)=p (θ|z (k ),(1) k D ?) = (k-1) (k-1) p(z(k)/,D )p(/D ) (k-1)(k-1)p(z(k)/,D )p(/D )d θθθθθ∞∫?∞ (1) 在式(1)中,参数θ的先验概率密度函数p(θ|(1) k D ?)及数据的条件概率密度函数p(z(k)|θ,

Bouc-Wen 滞回模型的参数辨识

上海交通大学 硕士学位论文 Bouc-Wen滞回模型的参数辨识及其在电梯振动建模中的应用 姓名:周传勇 申请学位级别:硕士 专业:机械设计及理论 指导教师:李鸿光 20080201

Bouc-Wen滞回模型的参数辨识 及其在电梯振动建模中的应用 摘 要 电梯导靴是连接轿箱系统与导轨的装置,它能起到导向和隔振减振的作用。同时,在电梯的运行过程中它又将导轨由于制造或安装所造成的表面不平顺度传递给轿箱系统,从而引起轿箱系统的水平振动。国内外学者在电梯水平振动的建模和分析中,往往把导靴视为线性弹簧-阻尼元件来建模而忽略了非线性因素。事实上导靴与导轨之间存在非线性的迟滞摩擦力,本文通过实验的方法,采用Bouc-Wen 滞回模型来建立导靴-导轨非线性摩擦力模型。 Bouc-Wen滞回模型因其微分形式的非线性表达式而使得其参数辨识存在较大的困难,本文利用模型中部分参数的不敏感性,通过数学变换将非线性参数辨识问题转化为线性参数辨识问题,从而使得问题大大简化,参数辨识的效果也能满足要求。 基于以上导靴-导轨间摩擦力模型,本文进而建立了轿箱-导轨耦合水平振动动力学模型,该模型将轿箱系统等效为2自由度的平面运动刚体,将导靴等效为质量-弹簧-阻尼单元,同时考虑了导靴-导轨间的非线性摩擦力,以及导靴靴衬与导轨间接触的不连续性等。 在建立了轿箱-导轨耦合水平振动动力学模型后,利用Matlab/Simulink,建立了相应的仿真模型,开展了几种典型导轨不

平顺度激励(弯曲、失调和台阶)下的仿真分析。研究结果表明,这些分析对于电梯结构优化设计和动力学建模与分析有理论指导意义。 关键词:迟滞,参数辨识,非线性,动力学建模,系统仿真

生存分析的cox回归模型案例——spss

生存分析的cox回归模型案例——spss

————————————————————————————————作者: ————————————————————————————————日期: ?

一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survivaltime) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。 3、删失(Sensoring) 指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。 4、生存函数(Survival distributionfunction) 又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。? 二、生存分析的方法 1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。 2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。 下面用一个例子来说明SPSS中Cox回归模型的操作方法。 例题 要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:

生存分析的co回归模型案例spss完整版

生存分析的c o回归模 型案例s p s s HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survival time) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。 3、删失(Sensoring) 指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。 4、生存函数(Survival distribution function) 又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。 二、生存分析的方法 1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。 2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。 下面用一个例子来说明SPSS中Cox回归模型的操作方法。 例题 要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据: 操作步骤: SPSS变量视图 菜单选择: 点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor变量选入“状态”框,其余分析变量选入“协变量”框。其余默认就行。 点击“状态”框下方的“定义事件”,将事件发生的标志设为值0,即0代表事件发生。 在主对话框中点击“分类”按钮,进入如下的对话框,将所有分类变量选入右边框中。 在主对话框中点击“绘图”按钮,进入如下的对话框,选择绘图的类型,这里只选择“生存函数”。由于我们关心的主要变量是trt(是否放疗),所以将trt选入“单线”框中,绘制生存曲线。 在主对话框中点击“选项”按钮,进入如下的对话框,设置如下,输出RR的95%置信区间。回到主界面,点击“确定”输出结果。 结果输出

cox回归模型

王江源 SPSS学习笔记之——生存分析的Cox回归模型 (比例风险模型) 王江源 https://www.doczj.com/doc/6f8159912.html,/u/1153366774 2012-09-22 19:05:29 一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survival time) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。 3、删失(Sensoring) 指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。 4、生存函数(Survival distribution function) 又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。 二、生存分析的方法 1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。 2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。 下面用一个例子来说明SPSS中Cox回归模型的操作方法。 例题 要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:

参数辨识示例 报告

参数辨识 参数辨识的步骤 飞行器气动参数辨识是一个系统工程,包括四部分:①试验设计,使试验能为辨识提供含有足够信息量且信息分布均匀的试验数据;②气动模型结果确定,即从候选模型集中,根据一定的准则和经验,选出最优的气动模型构式;③气动参数辨识,根据辨识准则和数据求取模型中待定参数,这是气动辨识定量研究的核心阶段;④模型检验,确认所得气动模型是否确实反映了飞行器动力学系统中气动力的本质属性。这四个部分环环相扣,缺一不可,要反复进行,直到对所得气动模型满意为止。 参数辨识的方法 参数辨识方法主要有最小二乘算法、极大似然法、集员辨识法、贝叶斯法、岭估计法、超椭球法和鲁棒辨识法等多种辨识方法。虽然目前参数辨识的领域己经发展了多种算法,但是用于气动参数估计的算法主要有:极大似然法(ML),广义Kalman滤波(EKF)法,模型估计法(EBM )、分割及多分割算法(PIA及MPIA)、最小二乘法,微分动态规划法等。 因为最小二乘法和极大似然法是两种经典的算法,目前己经发展得相当成熟。最小二乘法适于线性模型的参数辨识,可以用于飞行器系统辨识中很多的线性模型,如惯性仪表误差系数的辨识,线性时变离散系统初始状态的辨识及多项式曲线拟合等。目前最小二乘法已经广泛应用于工程实际中。而极大似然算法因其具有渐进一致性、估计的无偏性、良好的收敛特性等特点而被广泛应用于飞行器参数辨识领域。 最小二乘法大约是1975年高斯在其著名的星体运动轨道预报研究工作中提出来的。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法原理简单,编程容易,所以它颇受人们重视,应用相当广泛。 极大似然估计算法在实践中不断地被加以改进,这种改进主要表现在三个方

遗传算法工具箱识别(GA)Bouc-Wen模型参数辨识_识别

Bouc-Wen模型因数字处理方便简单而得到较为广泛的应用,力可以表示为: 利用遗传算法工具箱(GA)对Bouc-Wen模型进行参数识别。 实验数据来源于对磁流变阻尼器(MR damper)进行性能测试,试验获得的数据包括力F,位移x,采用频率已知,速度和加速度可以由位移求导得出。 参数识别出现程序如下:(文件名:Copy_0_of_BoucWen) function j=myfung(x) y0=[0]; yy=y0; tspan=[]'; s=[]'; v=[]'; Ft=[]'; rr=max(size(s));%计算数据个数 i=1; while (i1e5))%%判断是否出现奇异点,具体忘了。。 [t y]=ode45(@uubird,[tspan(i),tspan(i+1)],y0,[],v(i),x);%参考论坛的 y0=y(end,:); yy=[yy;y0]; i=i+1; kk=max(size(y)); if kk>150 %微分方程计算,停止是有条件的(具体没去研究),这边设置150次,不管有没有收敛,都停止,不然整个程序运行的实际太久,你也可以改成其他的,慢慢研究 break; end end if (i==rr)&(~isnan(yy(1,1)))==1%判断是否出现奇异点(就是NAN),如果没有出现,就是正常的 F=x(:,4)*yy(:,1)+x(:,5)*(s-ones(size(s)) *x(:,6))+x(:,7)*v;%x(:,4)代表alpha 5代表k0,6代表s0 7代表c0 位移s就是公式中的x j=sum((F-Ft).*(F-Ft)); i=i+1; else i<(rr-1)%出现奇异点(NAN)

生存分析的cox回归模型案例spss

生存分析的c o x回归模 型案例s p s s Document number:PBGCG-0857-BTDO-0089-PTT1998

一、生存分析基本概念 1、事件(Event) 指研究中规定的生存研究的终点,在研究开始之前就已经制定好。根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。 2、生存时间(Survival time) 指从某一起点到事件发生所经过的时间。生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。 3、删失(Sensoring) 指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。 4、生存函数(Survival distribution function) 又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。 二、生存分析的方法 1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。 2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。下面用一个例子来说明SPSS中Cox回归模型的操作方法。 例题 要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据: 操作步骤: SPSS变量视图 菜单选择: 点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor 变量选入“状态”框,其余分析变量选入“协变量”框。其余默认就行。 点击“状态”框下方的“定义事件”,将事件发生的标志设为值0,即0代表事件发生。 在主对话框中点击“分类”按钮,进入如下的对话框,将所有分类变量选入右边框中。 在主对话框中点击“绘图”按钮,进入如下的对话框,选择绘图的类型,这里只选择“生存函数”。由于我们关心的主要变量是trt(是否放疗),所以将trt选入“单线”框中,绘制生存曲线。

生存分析结课论文

《生存分析结课论文》 ——关于乳腺癌术后生存情况与患者年龄的研究 班级: 姓名: 学号: 2016年5月7日

目录

摘要 本文讨论45岁以上乳腺癌患者的术后生存状况。对44名45岁以上的乳腺癌患者的资料进行回顾性分析,按年龄分为两组,其中A组(<50岁,25例),B组(≥50岁,19例),探讨乳腺癌患者术后生存情况与患者年龄间的关系。结果有统计学意义(P<0.01)。年龄是乳腺癌的一个独立预后变量,但乳腺癌的其他影响患者生存状况因素如:临床分期、淋巴结转移、病理类型、手术方式对乳腺癌患者的影响也是不容忽视的。 关键词生存分析乳腺癌年龄Kaplan-Meier估计 Nelson-Aalen估计 Cox模型

1.问题的提出 乳腺癌是女性最常见的恶性肿瘤之一。且发病率呈逐年上升的趋势,在欧美国家,乳腺癌占女性恶性肿瘤的25%-30%.乳腺癌常发病于停经妇女,我国则常见于绝经前妇女,45—50岁发病率较高。中老年妇女是乳腺癌发病的主要对象。发病年龄较欧美国家年轻10岁左右。由文献报道年龄是一个对复发率有影响的独立因素,年龄在45-50岁的患者复发率增加,为比较不同年龄乳腺癌术后生存状况的差别。本文从生存状况变化的角度做生存性分析,探讨乳腺癌术后生存情况与患者间年龄关系。 2.数据的来源 选取患乳腺癌的44名妇女,初治均为手术治疗,分为两组。A 组为年龄在45岁到50岁的患者,B组为年龄在 50岁以上的患者。5年后得到下列复发时间。时间(月) 数据来源于《生存数据分析的统计方法》 A组 4 5 9 16 12 13 10 23 28 29 31 32 47 41 41 57 62 74 100 139 20+ 258+ 269+ B组 8 10 10 12 14 20 48 70 75 99 105 162 169 195 220 161+ 199+ 217+ 245+

生存期模型

“软件项目关理在线学习网站”生存期模型案例分析 本项目采用增量式生存期模型,整个项目可分为4个增量,本项目的生存期定义图如下所示: 户需求用 项目生存期示意图 生存期中的各阶段定义如下

1、需求分析阶段 阶段目标」确定费求的功能和服务。 进入条件: 用户提出初始需求。 输入; 演示系统。 输出: 关键特性表(Key Feature Lis,KFL)、s 务过程定义Cbasiness 国求定义文档。 完成标志: 输出通过用户确认。 2 系统设计阶段 阶段目标: 根据已有的系统结构确定应用運辑结构、数据库结构和页面进入条件: 提交费求分析初步結果。 输入: 关键特性表、商务过程定义文档、需求定义文档。 输出: 系统设计报告、DataMede和数据库、页面流(pageflow) 完成标志: 设计通过专家的对等评审。 3.项目规划阶段 阶段目标: 根据需求分析和系统设计结果确定本阶段的时间计划,资源进入条件: 提交響求分析初步结果。 输入: 需求定义文档、系统设计文档。 输出: 项目计划。 完成标志: 项目计划经合同管理者审批。 4.增量1设计 阶段目标: 进行界面设计。 进入条件: 设计通过专家的对等评审,

输入: 系统设计文件、数据库结构定义。 输出: 源代码,可运行版本-1 完成标志:增量1集成与网站系统集成调试完毕。5增量2设计 阶段目标: 进行学生登录等功能的添加 进入条件:实现增量1, 输入: 系统设计文件、数据库结构定义。 输出: 源代码,可运行版本-2 完成标志: 增量2集成与网站系统集成调试完毕。6增量3设计 阶段目标: 注册等算法的实现。 进入条件:实现增量2 输入: 系统设计文件、数据库结构定义。 输出: 源代码,可运行版本-3 完成标志: 增量3集成与网站系统集成调试完毕。7增量4设计 阶段目标:查询成绩,网上测试,联系我们等操作。进入条件:实现增量3 输入: 系统设计文件、数据库结构定义。 输出: 源代码,可运行版本-4 完成标志: 增量4集成与网站系统集成调试完毕。8集成测试

回归模型进行参数估计和检验

2、多元线性回归模型 1)计算相关系数 打开Eviews---file---new---workfile---work create,截图如下: 点击OK,出现workfile:untitled,截图如下: Quick---empty group,录入数据: 将ser01命名为gdp,ser02命名为m2,ser03命名为cpi,ser04命名为ltrate,ser05命名为tbrate

2)OLS估计 点击quick---generate series,编写函数,出现下面的截图: 点击OK,得到真实的rgdp,同时也会出现在列表中 再计算真实的货币供给:同样点击quick---generate series,编写函数,截图如下: 点击OK,也会得到真实的货币供给rm2,同时出现在列表中

长期利率:点击quick---estimate equation,编写函数,截图如下: 点击确定并重新命名为eq01,截图如下:

短期利率:点击quick---estimate equation ,编写函数,截图如下: 点击确定并重新命名为eq02,截图如下: 2)模型的统计检验 模型的总体显著性检验 023:0 H ββ== 123 :,0H ββ不全为 0.05(1,)(2,16) 3.63 F k n k F α--== 2 2 0.73(1) 218.25 3.63 0.27 (1) 16 () R k F R n k -= ==>--2 2 0.73(1) 218.25 3.63 0.27 (1) 16 () R k F R n k -= ==>--

5种项目生命周期模型

5种项目生命周期模型 1.项目生命周期定义 2.一个完整的项目生命周期一般分为:计划、需求分析、设计、编码、测试、发布、实施以及运行维护阶段。 参见下图标准过程: 3.软件过程模型是从项目需求定义直至经使用后废弃为止,跨越整个生存期的系统开发、运营维护所经历的全部过程、活动和任务的结构框架。 4.软件过程模型一般分为:瀑布模型、原型模型、螺旋模型、增量模型。 5. 5种项目生命周期模型 a.瀑布模型: 1) 特点 l 阶段间具有顺序性和依赖性:必须等前一阶段的工作完成之后,才能开始后一阶段的输入。对本阶段工作进行评审,若得到确认,则继续下阶段工作,否则返回前一阶段,甚至更前阶段。只有前一阶段输出正确,后一阶段才能正确。 l 推迟实现的观点:在编码之前,设置了需求分析与设计的各个阶段,分析与设计阶段的根本任务规定在这两个阶段主要考虑目标系统的逻辑模型,不涉及软件的物理实现。 l 质量保证的观点: 每个阶段都坚持两个做法: 规定文档,没有文档就没有完成该段任务。 每个阶段结束前都要对完成的文档进行评审,以便尽早发现问题,改正错误。 2) 缺点 l 依赖于早期进行的唯一的一次需求调查,不能适应需求的变化; l 由于是单一流程,开发中的经验教训不能反馈应用于本产品的过程; l 风险往往迟至后期的开发阶段才显露,因而失去及早纠正的机会。 3) 适用项目

l 需求清晰明了且时间要求宽松的软件开发项目; l 规模小,需求简单,功能单一的项目 4) 阶段划分 计划阶段 需求阶段 设计阶段 编码阶段 测试阶段 发布阶段 实施阶段 运行维护阶段 b.原型模型: 原型模型快速建立起来的可以在计算机上运行的程序,他所能完成的功能往往是最终产品能完成的功能的一个子集。一般来说,根据客户的需要在很短的时间内解决用户最迫切需要,完成一个可以演示的产品,这个产品只实现部分功能。原型最重要的是为了确定用户的真正需求。 原型模型在克服瀑布模型缺点、减少由于软件需求不明确给开发工作带来风险方面,确有显著效果。软件系统的原型常用有以下形式: 抛弃型:开发原型为了获取需求,在原型开发之后,已获取了更为清晰的需求信息,原型无需保留而废弃; 渐进型:原型作为软件最终产品的一部分,可满足用户的部分需求,进一步在此基础上开发,则可增加需求,实现后再交付使用; 1) 特点 l 用户需求不完全或不确定;

(完整word版)生存分析知识点总结,推荐文档

生存分析知识点总结 09统计(经济分析1班)周姗琪 32009121215 一、基本概念 1、生存分析:将事件的结果和出现此结果所经历的时间结合起来分析的统计 分析方法。研究生存现象和响应时间数据及其统计规律的一门学科。对一个或多个非负随机变量(生存时间)进行统计分析研究。对生存时间进行分析和推断,研究生存时间和结局与众多影响因素间关系及其程度的统计分析方法。 2、生存时间:生存时间也叫寿命、存活时间、失效时间等等 3、研究目的: ①描述生存过程:估计不同时间的总体生存率,计算中位生存期,绘制生存函 数曲线。统计方法包括K-M法、寿命表法。 ②比较:比较不同处理组的生存率,如比较不同疗法治疗脑瘤的生存率,以了 解哪种治疗方案较优。统计方法log-rank检验等。 ③影响因素分析:研究某个或某些因素对生存率或生存时间的影响作用。如为 改善脑瘤病人的预后,应了解影响病人预后的主要因素,包括病人的年龄、性别、病程、肿瘤分期、治疗方案等。统计方法Cox比例风险回归模型等。 ④预测:建立Cox回归预测模型。 4、研究内容:描述生存过程和对生存过程影响因素分析及结局预测。 5、主要分析方法:参数法方法、非参数方法、半参数方法。 二、生存分析数据类型 1、完全数据:每个个体确切的生产时间都是知道的。这样的数据称为完全数 据。但在实际的生存分析中,数据在很多情况下是很难完全观察到的。 2、删失:在研究结束时,无法获得某些个体确切的生存时间。 ①右删失:在进行观察或调查时,一个个体的确切生存时间不知道,而只知道 其生存时间大于时间L,则称该个体的生存时间在L上是右删失的,并称L 为右删失数据。 ②左删失:研究对象在时刻Ct开始接受观察,而在此之前我们感兴趣的时间 已经发生,这就是左删失。 ③区间删失:若个体的确切生存时间不知道,只知道其生存时间在两个观察时 间L和R之间(L

COX模型操作流程与解析

Cox Regression过程 例:下表资料摘自《卫生统计学》(倪宗瓒主编)218页的表17.6 附表裸鼠绒癌疗效观察数据 编号带菌天数瘤体大小天花粉甲药乙药结局(死=1)生存天数 No X1 X2 X3 X4 X5 d day 1 19 25 0 0 0 1 8 2 17 16 0 0 0 1 9 3 19 37 0 0 0 1 8 4 16 19 0 0 0 1 8 5 14 25 1 0 0 0 18 6 13 18 1 0 0 1 17 7 16 25 1 0 0 1 14 8 9 10 1 0 0 1 15 9 9 22 0 1 0 1 15 10 10 25 0 1 0 1 11 11 14 25 0 1 0 1 13 12 12 37 0 1 0 1 12 13 17 37 0 0 1 1 9 14 14 29 0 0 1 1 12 15 13 13 0 0 1 1 12 16 17 31 0 0 1 1 10 一、界面说明 Cox回归主对话框 【Time】框、【Status】框前文已经介绍过了,这里我就不再废话唠叨的了。Block 1 of 1右边的Next钮被激活。这个按钮用于确定不同自变量进入回归方程的方法,详见Method框

的内容。用同一种方法进入回归方程的自变量在同一个Covariates框内。 【Covariates】框 选入自/协变量,即选入你认为可能对生存时间有影响的变量。 【Method】框 选择自变量进入Cox回归方程的方法,SPSS提供下面几种方法: Enter: Covariates框内的全部变量均进入回归模型。 Forward: Conditional: 基于条件参数估计的向前法。 Forward: LR: 基于偏最大似然估计的向前法。 Forward: Wald: 基于Wald统计量的向前法。 Backward: Conditional: 基于条件参数估计的后退法。 Backward: LR: 基于偏最大似然估计的后退法。 Backward: Wald: 基于Wald统计量的后退法。 【Strata】框 定义分层因素,将生存时间按分层因素分别进行Cox回归。 【Categorical】选项 用于告诉系统,Covariates框内的变量中哪些是分类变量或字符型变量。系统默认字符型变量为分类变量,数字型变量为连续型变量。 选入自变量后,categorical钮被激活。按categorical钮,进入确定分类变量的对话框。见图10。 图10 确定分类变量对话框 左边的Covariates框中列出了刚刚被选取的自变量,将分类变量选入Categorical Covariates 框中。此时Change Contrast框被激活,请你选择比较方法,即计算参数OR/βi的方法。当选入分类变量后,Change Contrast框被激活,此时可选择比较方法。SPSS提供下面几种比较方法。 Indicator:指示对比。用于指定某一分类变量的基线,即参照水平。这样计算出来的参数OR/βi 是以该变量的第一个或最后一个水平为基准水平(取决于下面的reference category中你选择的是last还是first)。在这里SPSS自动创建亚变量,对照水平在对比分类矩阵中用0行代表。Simple:差别对比。可计算该分类变量的各水平与参照水平相比的OR值。参照水平自己当然就不用跟自己相比了。对于本例来说,Simple与Indicator选项是一样的,前提是下面的Reference Category中你所选择的同是last(或first)。

相关主题
文本预览
相关文档 最新文档