当前位置:文档之家› 刀具磨损的研究现状及发展 论文 曹庆

刀具磨损的研究现状及发展 论文 曹庆

刀具磨损的研究现状及发展   论文  曹庆
刀具磨损的研究现状及发展   论文  曹庆

刀具磨损的研究现状及发展

关键词:磨损分析解决磨损

绪论:

刀具是机械加工中最重要的部分,所有的机械零件的加工都要用到刀具,比如车刀、镗刀、钻头、绞刀、

拉刀、齿轮刀具等等。它们的精度至决定着工件的尺寸精度,在实际使用过程中,刀具不可避免的会发生磨损,了解磨损的发生和解决方法及延长刀具的使用寿命,在生产中有着十分重要的意义。

一、刀具磨损情况

磨损的分类

刀具磨损分为正常磨损和非正常磨损。

1.正常磨损:

是指刀具在设计合理、使用合理、制造与刃磨符合标准的情况下,在切削过程中逐步产生的磨损。

1.1.磨粒磨损:切削过程中,切屑底层、工件表面会有一些硬度极高的微小硬质点,会在刀具表面上刻出沟痕,这些硬质点对刀具的作用相当砂轮中的磨粒作用。硬质点有碳化物、氮化物、氧化物和金属化合物。磨粒磨损是刀具磨损的主要原因。

1.2粘接磨损:刀具与工件在高温条件下容易产生粘接,当接触面发生相对滑动时,在粘接处就会发生剪切破坏,带走刀具材料而想成磨损。粘接程度与压力、温度、材料有密切的联系。低中速加工时,粘接磨损是硬质合金刀具磨损的主要原因。

1.3相变磨损:当刀具上最高温度超过刀具材料的相变温度时,刀具表面金相组织发生变化,如马氏体组织转变为奥氏体,使硬度下降,磨损加剧。工具钢刀具在高温时易产生相变磨损。它们的相变温度为:合金工具钢为300℃~350℃,高速钢为550℃~600℃。相变磨损严重时会造成刀面的塌陷和切削刃卷曲。

1.4扩散磨损:刀具与切屑、工件接触处由于高温作用,双方化学元素在固态下互相扩散,使刀具材料的成分、结构改变造成的磨损。切削温度越高扩散越快;刀具工件材料亲合力越大,扩散越快;高速切削时扩散磨损是刀具磨损的主要原因。

1.5:氧化磨损:当切削温度达700℃~800℃时,空气中的氧便与硬质合金中的Co及WC、TiC 等发生氧化作用,产生较软的氧化物(如Co3O4、CoO、TiO2等),被切屑或工件擦掉而形

成磨损。

温度对磨损的影响

1-粘结磨损2-磨粒磨损3-扩散磨损4-相变磨损5-氧化磨损

刀具非正常磨损原因

2.非正常磨损

主要是由于机械冲击力或热效应作用造成的。

2.1:积屑瘤脱落时引起大面积剥落;

2.2:刀具材料硬度低、韧性差;

2.3:刀具几何参数和切削用量选择不合理导致切削力过大、切削温度过高;

2.4:在焊接或刃磨时因骤冷骤热而产生内应力或裂纹;

2.5:操作、保管不当等。

非正常磨损使刀具寿命大大降低,甚至报废。因此,应及时找出原因,并采取措施加以解决

二、加工刀具的材料

制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性(切削加工、锻造和热处理等),并不易变形。

通常当材料硬度高时,耐磨性也高;抗弯强度高时,冲击韧性也高。但材料硬度越高,其抗弯强度和冲击韧性就越低。高速钢因具有很高的抗弯强度和冲击韧性,以及良好的可加工性,现代仍是应用最广的刀具材料,其次是硬质合金。

聚晶立方氮化硼适用于切削高硬度淬硬钢和硬铸铁等;聚晶金刚石适用于切削不含铁的金属,及合金、塑料和玻璃钢等;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具。

硬质合金可转位刀片现在都已用化学气相沉积涂覆碳化钛、氮化钛、氧化铝硬层或复合硬层。正在发展的物理气相沉积法不仅可用于硬质合金刀具,也可用于高速钢刀具,如钻头、滚刀、丝锥和铣刀等。硬质涂层作为阻碍化学扩散和热传导的障壁,使刀具在切削时的磨损速度减慢,涂层刀片的寿命与不涂层的相比大约提高1~3倍以上。

由于在高温、高压、高速下,和在腐蚀性流体介质中工作的零件,其应用的难加工材料越来越多,切削加工的自动化水平和对加工精度的要求越来越高。为了适应这种情况,刀具的发展方向将是发展和应用新的刀具材料;进一步发展刀具的气相沉积涂层技术,在高韧性高强度的基体上沉积更高硬度的涂层,更好地解决刀具材料硬度与强度间的矛盾;进一步发展可转位刀具的结构;提高刀具的制造精度,减小产品质量的差别,并使刀具的使用实现最佳化。

刀具材料大致分如下几类:高速钢、硬质合金、金属陶瓷、陶瓷、聚晶立方氮化硼以及聚晶金刚石。

三、如何改善刀具的抗磨损情况

1.刀具磨损过程

初期磨损阶段(I段)与刀具刃磨质量有关

正常磨损阶段(Ⅱ段)VB与切削时间近似正比斜率表示磨损强度。

急剧磨损阶段(Ⅲ段)切削力、温度急升,刀具磨损加剧,之前换刀。

刀具磨损过程曲线

2.影响刀具寿命的因素

2.1工件材料

工件材料的强度、硬度越高,产生的切削温度越高,故刀具寿命越低。此外,工件材料的伸长率越大或热导率越小,切削温度越高,刀具寿命越低。

2.2刀具材料

刀具材料的高温硬度越高,耐磨性越好,刀具寿命也越高。但在有冲击切削、重型切削和难加工材料切削时,影响刀具寿命的主要因素是冲击韧度和抗弯强度。韧性越好,抗弯强度越高,刀具寿命越高,越不易产生破损。

2.3刀具的几何角度

2.3.1:前角γo增大,切削温度降低,刀具寿命增高;但前角γo太大,切削刃强度低、散热差,且易于破损,刀具寿命T反而下降了。

2.3.2主偏角κr减小,刀具强度增加,散热条件得到改善,故刀具寿命T可增高。

适当减小负偏角和增大刀尖圆弧半径rε都能提高刀具强度,改善散热条件,使刀具寿命T增高。

2、改善刀具耐磨性性能的具体措施

2.1改善刀具基体

通过在1—5nm范围内改变碳化钨的颗粒,可以改变硬质合金刀具的基本性能。基体材料的颗粒对切削性能和刀具寿命起到重要作用。颗粒越小,道具的耐磨性能越好。反之,颗粒越大,刀具的强韧性越好。

将硬质合金材料的钴含量提高6%—12%,可以获得更好的韧性。

2.2对基体材料进行涂层处理

伊斯卡公司用于加工的刀片基体材料有较好的抗塑性变形能力,从而能减小硬脆的刀片涂层产生微裂纹的可能。

2.2.1氮化钛涂层:可以提高道具的硬度和氧化温度

2.2.2氮化钛涂层:可以提高涂层的硬度和表面光洁度。

2.2.3氮铝钛涂层:可以提高高温切削加工的刀具寿命

2.2.4氮化鉻涂层:有较好的抗粘接性能,是对抗机械瘤的首选方案。

2.2.5金刚石涂层:可以显著提高加工非金属材料道具的切削性能,非常适合加工石墨、金属基复合材料和其他高磨蚀材料。

总结:延长刀具的使用寿命能降低企业的生产成本,降低磨损,使用合理的刀具加工,才能发挥刀具最大的价值,为企业创造最大的价值!

参考文献:

[1]袁晓东.机电设备安装于维护.北京理工大学出版社,2012

[2]曹秋霞.机械制造工艺装备.河南机电高等专科学校。

[3]陈冠国.机械设备维护. 机械工业出版社

[4]朱正心.机械制造技术. 机械工业出版社

[5]孟兴发.机械制造工程概论.航空工业出版社

[6]洪清池.机械设备维修技术:河南大学出版社.

[7]杨祖晓.机械维护修理与安装.冶金工业出版社.2004

[8]刘成颖.精密加工技术实用手册.机械工业出版社,2001

河南机电高等专科学校机电设备安装与维护

刀具磨损的研究现状及发展

系部:机械工程系

专业:机械制造与自动化

班级:机制101班

学生姓名:

学号:

2012年10月8日

刀具材料论文

金属切削刀具的发展历史与现状 前言 刀具是机械制造中用于切削加工的工具,又称切削工具。广义的切削工具既包括刀具,还包括磨具。刀具技术的进步,体现在刀具材料、刀具结构、刀具几何形状和刀具系统四个方面,刀具材料新产品更是琳琅满目。当代正在应用的刀具材料有高速钢、硬质合金、陶瓷、立方氮化硼和金刚石。其中,高速钢和硬质合金是用得最多的两种刀具材料,分别约占刀具总量的30%~40%和50%~60%。本文将介绍刀具的发展历程,发展现状,并对未来刀具的发展法相作出分析。 刀具的发展历史 刀具的发展在人类进步的历史上占有重要的地位。 中国早在公元前28~前20世纪,就已出现黄铜锥和紫铜的锥、钻、刀等铜质刀具。战国后期(公元前三世纪),由于掌握了渗碳技术,制成了铜质刀具。当时的钻头和锯,与现代的扁钻和锯已有些相似之处。 然而,刀具的快速发展是在18世纪后期,伴随蒸汽机等机器的发展而来的。1783年,法国的勒内首先制出铣刀。1792年,英国的莫兹利制出丝锥和板牙。有关麻花钻的发明最早的文献记载是在1822年,但直到1864年才作为商品生产。那时的刀具是用整体高碳工具钢制造的,许用的切削速度约为5米/分。1868年,英国的穆舍特制成含钨的合金工具钢。1898年,美国的泰勒和.怀特发明高速钢。1923年,德国的施勒特尔发明硬质合金。 在采用合金工具钢时,刀具的切削速度提高到约8米/分,采用高速钢时,又提高两倍以上,到采用硬质合金时,又比用高速钢提高两倍以上,切削加工出的工件表面质量和尺寸精度也大大提高。 由于高速钢和硬质合金的价格比较昂贵,刀具出现焊接和机械夹固式结构。1949~1950年间,美国开始在车刀上采用可转位刀片,不久即应用在铣刀和其他刀具上。1938年,德国德古萨公司取得关于陶瓷刀具的专利。1972年,美国通用电气公司生产了聚晶人造金刚石和聚晶立方氮化硼刀片。这些非金属刀具材料可使刀具以更高的速度切削。1969年,瑞典山特维克钢厂取得用化学气相沉积法,生产碳化钛涂层硬质合金刀片的专利。1972年,美国的邦沙和拉古兰发展了物理气相沉积法,在硬质合金或高速钢刀具表面涂覆碳化钛或氮化钛硬质层。表面涂层方法把基体材料的高强度和韧性,与表层的高硬度和耐磨性结合起来,从而使这种复合材料具有更好的切削性能。 刀具的发展现状 任何一个强大的国家都必须具有包括金属切削加工在内的强大制造业基础。在整个21世纪中,金属切削加工仍是机械制造业的主导方法,切削加工(包含磨

刀具磨损与切削用量关联度试验研究 (1)

刀具磨损与切削用量关联度试验研究-机械制造论文 刀具磨损与切削用量关联度试验研究 潘建新1,潘祎2 (1.湖南科技职业学院实习实训指导中心,湖南长沙,410004) (2.徐州医学院医学影像学院,江苏徐州,221004) 摘要:文章通过对POLMAX材质试件在不同切削条件下的加工试验,重点分析了涂层刀具的磨损形式,总结出了切削用量影响刀具磨损的规律。研究结果表明:YG类涂层硬质合金刀具加工淬硬POLMAX不锈钢时,低速阶段主要表现为粘结磨损,高速阶段主要表现为氧化磨损与扩散磨损;切削用量中切削速度对刀具磨损影响最大,当切削速度较低时(小于50m/min)刀具磨损量几乎保持在同样的水平,而当切削速度达到120m/min以上时,刀具磨损量急剧上升。 关键词:刀具磨损;切削用量;关联度 中图分类号: TG506.1 1 前言 随着人们对塑料产品外观质量要求的不断提高,高光洁度模具材料应用越来越普遍。POLMAX是瑞典ASSAB的光学级(表明粗糙度值在0.3-0.7μm之间)镜面塑胶模具钢,具有优良的抛光性、耐腐蚀性、耐磨性和可加工性,广泛应用于对产品表面质量有严格要求的光学、医疗和CD/DVD等领域,是制造高光洁度模具的必备材料。然而,对该材料切削工艺知识的缺乏,又往往造成切削效率降低、刀具寿命缩短、加工质量变差等问题,特别是刀具磨损问题,成为影响POLMAX切削效率的主要原因之一。本文通过对POLMAX材质试件在不同

切削条件下的加工试验,重点分析了涂层刀具的磨损形式,总结出了切削用量影响刀具磨损的规律,研究结论对生产实际有一定的指导作用。 2 刀具磨损形式及过程 刀具磨损形式一般为前刀面月牙洼磨损、后刀面均匀磨损以及副后刀面由摩擦引起的沟槽磨损[1]。随着切削时间的增加,切削温度升高,刀具材料和工件材料还会发生粘结,两者产生相对运动粘结点产生剪切破坏,将刀具材料粘结颗粒带走造成刀具的粘结磨损。无论何种磨损形式,刀具的磨损过程和一般机械零件的磨损规律相同,如图1所示,分为三个阶段:初期磨损阶段(AB段)、正常磨损阶段(BC段)和急剧磨损阶段(CD段)[2]。 3 切削用量对刀具磨损的影响试验 3.1 试验方案 本试验主要研究切削速度对刀具磨损的影响规律,试验用刀具采用涂层刀片,油雾冷却方式,切削速度的水平设定为:35、50、80、120、160m/min。测量内容主要是观察刀具磨损形貌并测量后刀面磨损量。后刀面磨损量的测量方案是:试件加工一定长度后观察刀片磨损情况,当后刀面为均匀磨损时,取磨钝标准为平均磨损量达到0.3mm;当后刀面为剧烈磨损时,取磨钝标准为最大磨

数控机床的现状与发展趋势综述

数控机床的现状与发展 趋势综述

数控机床的现状与发展趋势 摘要:从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控技术的应用,关键在于开发具有高速度、高精度、高稳定性的高新技术设备,在现有加工设备中,只有数控机床才有可能担当其重任。然而,要实现真正意义上的高速切削加工,数控机床还需向高速、高精度、柔性化、控制系统开放性、控制系统支撑软件和工厂生产数据管理方向迈进,才能适应现代制造业飞速发展的要求。 关键:高速化 / 高精度化 / 复合化 / 智能化 / 开放化 / 网络化 / 多轴化 / 绿色化 进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。 一、数控机床的发展趋势 机械加工装备对促进制造技术发展的紧密关系和以数字化为特征数控机床是柔性化制造系统和敏捷化制造系统的基础装备。其总的发展趋势是:高精化、高速化、高效化、柔性化、智能化和集成化,并注重工艺实用性和经济性。 (一)高速化 随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。 (1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达 200000r/min;

全球智能制造装备行业发展现状及前景分析

全球智能制造装备行业发展现状及前景分析 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、RFID、工业以太网)、工业软件(ERP/MES/DCS 等)、3D打印以及将上述环节有机结合的自动化系统集成及生产线集成等。全球范围来看,除了美国、德国和日本走在全球智能制造前茅,其余国家也在积极布局智能制造发展。(一)全球智能制造行业发展现状及前景分析 1、全球智能制造行业发展概况 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、RFID、工业以太网)、工业软件(ERP/MES/DCS等)、3D 打印以及将上述环节有机结合的自动化系统集成及生产线集成等。全球范围来看,除了美国、德国和日本走在全球智能制造,其余国家也在积极布局智能制造发展。 2、全球智能制造行业规模分析 智能制造装备是智能制造的主要体现载体智能制造装备涉及的工业机器人、3D打印设备、数控机床、智能控制系统、传感器等主要行业,产业规模实现快速增长。根据工信部的统计,2010年以来我国制造业产值规模占全球的比重在19%-21%之间。2016年,我国智能制造行业产值规模达12233亿元。据此测算,2016年,全球智能制造产值规模在8687亿美元左右。 1、全球工业机器人市场现状及前景分析 (1)全球工业机器人行业发展概况 工业机器人是智能制造业最具代表性的装备。日本、美国、德国和韩国是工业机器人强国。日本号称“机器人王国”,在工业机器人的生产、出口和使用方面都居世界榜首;日本工业机器人的装备量约占世界工业机器人装备量的60%。 (2)全球工业机器人市场规模分析 据国际机器人协会统计,1998年以来全球新装工业机器人年均增速达9%。金融危机影响后,全球机器人行业市场规模不断扩大,2015年全球工业机器人销量超过25.4万台。

刀具材料论文

现代工程材料成形与机械设计制造基础——《关于新型刀具材料论文》 目录 摘要: (1) 关键词: (2) 简析刀具材料和性能 (2) 一、刀具材料应具备的性能 (3) 二、现代新型刀具材料 (4) (一)高速钢 (4) (二)硬质合金 (5) (三)涂层刀具 (7) (四)陶瓷 (9) (五)超硬刀具材料 (9) 展望强度最高的物质——石墨烯,氮化碳(β—C3N4) (11) 摘要: 随着工件材料的力学性能不断提高,产品的品种和批量逐渐增多,加工精度的要求日益提高,工件的结构和形状不断复杂化和多样化,各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。以下让我来论述了刀具和刀具材料回顾早期机械制造中的刀具材料,重点阐述现代产品加工中所用新型刀

具材料(高速钢、硬质合金、陶瓷、超硬材料)的性能及其应用范围。对二十一世纪新型刀具材料发展的动向作出预测和展望。 关键词:刀具材料;新型;常用刀具;展望。 刀具材料的发展在人类的生活、生产和战争中有着很大的重要性。在古代,“刀”和“火”是两项最伟大的发明,它们的发明和应用是人类登上历史舞台的重要标志。刀具材料的进步曾推动着人类社会文化和物质文明的发展。例如,在人类历史中曾有过旧石器时代、新石器时代、青铜器时代和铁器时代等。 材料、结构和几何形状是决定刀具切削性能的三要素。其中,刀具材料的性能起着关键作用。20世纪是刀具材料大发展的历史时期。各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。 简析刀具材料和性能 刀具材料应具备的性能 刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工成本、加工质量、以及刀具耐用度影响很大。使用碳工具钢作为刀具材料时,切削速度只有10m/min左右;20世纪初出现了高速钢刀具材

数控机床的发展趋势及国内发展现状.doc

数控机床的发展趋势及国内发展现状 1.引言 从20世纪中叶数控技术出现以来,数控机床给机械制造业带来了革命性的变化。数控加工具有如下特点:加工柔性好,加工精度高,生产率高,减轻操作者劳动强度、改善劳动条件,有利于生产管理的现代化以及经济效益的提高。数控机床是一种高度机电一体化的产品,适用于加工多品种小批量零件、结构较复杂、精度要求较高的零件、需要频繁改型的零件、价格昂贵不允许报废的关键零件、要求精密复制的零件、需要缩短生产周期的急需零件以及要求100%检验的零件。数控机床的特点及其应用范围使其成为国民经济和国防建设发展的重要装备。 进入21世纪,我国经济与国际全面接轨,进入了一个蓬勃发展的新时期。机床制造业既面临着机械制造业需求水平提升而引发的制造装备发展的良机,也遭遇到加入世界贸易组织后激烈的国际市场竞争的压力,加速推进数控机床的发展是解决机床制造业持续发展的一个关键。随着制造业对数控机床的大量需求以及计算机技术和现代设计技术的飞速进步,数控机床的应用范围还在不断扩大,并且不断发展以更适应生产加工的需要。本文简要分析了数控机床高速化、高精度化、复合化、智能化、开放化、网络化、多轴化、绿色化等发展趋势,并提出了我国数控机床发展中存在的一些问题。 2.数控机床的发展趋势 2.1 高速化

随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。 (1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min; (2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min且可获得复杂型面的精确加工; (3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度; (4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0. 5s。德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。 2.2 高精度化 数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。 (1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使C NC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法; (2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;

全球智能制造发展现状

全球智能制造发展现状 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、、工业以太网)、工业软件 (ERP/MES/DCS等)、3D打印以及将上述环节有机结合的自动化系统集成及生产线集成等。 全球范围来看,除了美国、德国和日本走在全球智能制造前端,其余国家也在积极布局智能制造发展。例如,欧盟将发展先进制造业作为重要的战略,在2010年制定了第七框架计划(FP7)的制造云项目,并在2014年实施欧盟“2020地平线”计划,将智能型先进制造系统作为创新研发的优先项目。加拿大制定的1994-年发展战略计划,将具体研究项目选择为智能计算机、人机界面、机械传感器、机器人控制、新装置、动态环境下系统集成。 根据工信部的统计,2010年以来我国制造业产值规模占全球的比重在 19%-21%之间。2016年,我国智能制造行业产值规模达12233亿元。据此测算,2016年,全球智能制造产值规模在8687亿美元左右。2017年,全球智能制造持续高速增长的态势,预计2017年全年产值规模将达到1万亿美元左右。 ◆全球工业机器人行业发展现状 工业机器人是智能制造业最具代表性的装备。根据IFR(国际机器人联合会)发布的最新报告,2016年全球工业机器人销量继续保持高速增长。2016年全球工业机器人销量约29.0万台,同比增长14%。其中,中国工业机器人销量9万台,同比增长31%。IFR预测,未来十年,全球工业机器人销量年平均增长率将保持在12%左右。预计2017全年,全球工业机器人销量在33万台左右。 全球智能制造发展发展前景及趋势 2017年,具有连接和感知能力的机器人继续引领智能制造发展,随着AI 技术的进步,工业机器人也变得更加智能,并能够感知,学习和自己做决策。前瞻产业研究院结合当前全球智能制造的发展现状和发展趋势,保守估计未来几年全球智能制造行业将保持15%左右的年均复合增速,预计到2023年全球智能制造的产值将达到23108亿美元左右。 (三)面对智能制造发展的迫切需求及市场空间,国内各领域企业纷纷进军系统解决方案领域 国内智能制造改造需求迫切,系统解决方案市场需求广阔。一是随着国内劳动力人口逐渐减少以及劳动力成本的逐渐上升,企业迫切需要实施机器换人战略,就工业机器人来看,2014年国内工业机器人销售同比增长了56%。二是互联网时代,用户需求日趋多样化、定制化,企业订单呈现出小型化、碎片化的发展趋势,

刀具论文

剃齿刀修形新方法 许成强 0801011431 摘要: 剃齿是齿轮齿形精加工的高效传统工艺, 分析剃齿的原理及剃齿过程存在的问题, 提出一种用齿轮式金刚石修磨轮修形剃齿刀的新方法, 并说明制作金刚石修磨轮的方法,通过试验证明可行。 关键词: 剃齿; 修形; 齿轮式金刚石修磨轮 1 剃齿的基本原理 剃齿是利用一对交错斜轴齿轮啮合时齿面产生相对滑移原理, 使用剃齿刀从被加工齿轮的齿面上剃去一层很薄金属的精加工方法。剃齿时, 应先将被加工齿轮装 在心轴上, 再连心轴一起安装到机床工作台的两顶尖间, 使其可自由转动, 齿侧面作相对滑移。因剃齿刀的齿侧面上有许多小槽, 槽与齿面的交棱就是切削刃, 所以齿轮的齿侧面沿其滑移时就被切去极细的切屑。剃齿的加工范围较广, 可加工内、外啮合的直齿圆柱齿轮和斜齿圆柱齿轮、多联齿轮等; 且剃齿的生产率很高。由于剃齿能修正齿圈径向跳动误差、齿 距误差、齿形误差和齿向误差等, 故经过剃齿齿轮的工作平稳性精度和接触精度会较大提高, 同时可获得较精细表面。 2 剃齿刀的修磨新方法 被剃齿轮的精度和廓形在很大程度上取决于剃齿刀的精度和廓形, 而剃齿刀的精度和刀齿廓形又是通过剃齿刀的修磨获得的, 因此, 剃齿刀的修磨及剃齿刀磨床的性能对于保证 剃齿质量十分重要。剃齿工艺的主要问题是剃齿中凹现象 , 即剃出的齿轮在中部节圆附近出现不同程度的切入量( 约为0. 01~ 0. 03mm )。目前生产中解决的方法多采用靠模板法, 即用大平面磨齿机上利用靠模板将剃齿刀齿形修磨成中凹状, 再用磨好的剃齿刀加工出中凸齿形的工件。此方法费时费力, 须用专

门的磨齿机和技术工人, 剃齿刀修磨1次需6~ 8h。在大型齿轮加工企业中, 已开始使用数控剃齿机, 但进口价格极为昂贵, 仅限于少数进口国外相应机床的大型企业。 为较好地解决剃齿中凹现象, 笔者提出一种剃齿刀修磨新方法在机修磨法。修形原理: 用一个与所剃齿轮几何参数完全一致, 制造精度较高的齿轮式金刚石修整轮装在剃齿机上, 取代工序加工中的工件齿轮与剃齿刀啮合。在剃削运动中, 由于修磨轮的齿面硬度大于剃齿刀的齿面硬度, 根据反切原理, 对剃齿刀进行修形, 而本应使被剃齿轮产生的中凹、挖根、削顶效应, 反映到剃齿刀齿形上, 使剃齿刀的相应部位被修形, 不再是标准的渐开线齿形。用这种修磨成的剃齿刀再加工齿轮, 因工艺系统基本没有变化, 工件齿轮齿形的误差就可得到相应补偿, 在很大程度上消除前述的各种加工缺陷, 提高剃削精度。此种修形方法还有以下特点: ①新工艺修形过程简单, 不需将剃齿刀取下单独修形, 修形时间短, 操作容易, 修形成本也不高。②当基体轮的精度较高时, 经过精心研究制造工艺, 金刚石修磨轮镀后齿形精度经修形可达5 级( GB10095- 88) 以上, 镀层经使用未发现不牢固缺陷, 1个修磨轮可磨刀数百次, 镀层用尽后, 还可以重新镀覆金刚石。③新工艺由于在剃齿机上直接修形, 剃齿工艺系统中的一些随机误差都可得到及时补偿和调整。 济南第一机床厂、济宁机床厂、济宁齿轮厂、鲁南机床厂等多家企业的试验证明, 此方法完全满足剃齿刀的修形要求。 3 金刚石修磨轮的制作方法 剃齿刀修磨新方法在机修磨法的实现关键技术是金刚石修磨轮的制作, 齿轮式金刚石修整滚轮是指在齿轮形钢不用机械式行程开关或机械式的微动开关。而应采用接近开关或感应开关, 因为后者的寿命远远高于前者, 这样可靠性才有保证。制基体齿面上镀覆一层金刚石颗粒而形成一种高精度修形工具, 这种修磨轮具有与被加工工件相同的几何参数, 可用来对砂轮、珩磨轮、剃齿刀等齿轮加工工具进行修形。为保证被加工齿轮的加工精度, 齿轮形金刚石修磨轮应达到以下要求: ①尺寸精度和形位精度高; ②磨粒分布均匀且等高性好; ③镀层与基体、镀层与磨粒结合牢。 目前, 其制作方法主要为电镀,根据工艺, 又可分为内镀法和外镀法。外镀

智能机械的现状,不足与发展

智 能 机 械 及 微 机 械 的 发 展 状 况 学院:机械与动力工程 班级:机制11-02 姓名:龙飞企 学号:311104001014

智能机械及微机械的发展状况 智能机械是机械发展的前沿领域,它的出现是机械发展历史的一座里程碑。智能机械与传统机械的区别非常显著,有许多传统机械不具有的特性。机械结构的振动、噪声、疲劳、损伤、断裂、破坏以及环境的自适应性,都影响机械及运载器的安全、可靠、舒适、节能及省料,这是机械设计的主要问题。自有机械以来,机械都是按照力学原理设计的,没有生命、没有智能,因此环境变化与人为因素会使机械的运行难以预测,可能导致机械损坏,使人民生命财产受到严重威胁。为了尽可能保证机械的运行安全,设计者往往采用保守设计,比如增大尺寸与重量,从而增加了能耗,减小了机械的有效载荷因此,为了减少上述不利影响,即减小尺寸与重量来降低能耗,增加机械的有效载荷,必须对机械的构造做出重大改进,或者是附加一些设备(可以不是机械或机构)。由此智能机械应运而生。 智能机械是相对于传统机械定义的,目前还没有智能机械的严格统一的定义,但各类说法大体相同。下面列出三种对智能机械所具有的基本结构的解读: 1)智能结构,就是在基体中嵌人或粘贴传感器和致动器,并具有对致动器有控制作用的控制装置,从而能感知外界环境的变化及自身的实际状态,并能通过自身的感知,做出判断,发出指令,执行和完成动作,实现动态或在线状态下的自检测、自诊断、自监控、自修复及自适应等多种功能。 2)智能机械和结构主要由驱动元件、传感元件、信息处理方法和控

制系统等组成,系统等组成,目前的应用主要是在智能控制、智能诊断和智能修复等方面,尤其是在减振降噪,智能机械结构,智能表层结构特性控制,智能自适应机械等方面的研究很活跃。 3)传感器、致动器和控制器是智能机械结构重要的三个组成部分。传感器要求具有高度感受结构力学状态的能力,能够将应变或位移直接转换成电信号输出,它担负着感知外界环境变化,收集外界信息的任务。用作传感器有光纤传感器、电阻应变片传感器、压电材料传感器等。致动器的功能是执行信息处理单元发出的控制指令,并按照规定的方式对外界或内部状态与特性变化做出合理的反应,能直接将控制器输出的电信号转变为结构的应变或位移,具有改变智能结构形状、刚度、位置、固有频率、阻尼及其它机械特性的能力。致动器有压电材料致动器、电致伸缩材料致动器、磁致伸缩材料致动器、形状记忆合金致动器、电流变体致动器等。控制器是智能结构的神经中枢,智能结构的控制器集成于结构之中,其控制对象是结构本身。控制器应具有很强的鲁棒性、实时性和在线性。 可以看出,智能机械与传统机械的区别非常显著,有许多传统机械不具有的某些特性。而恰恰是这些特性使智能机械在高科技领域中占有一席之地,成为众人瞩目的焦点。智能机械是机械发展的前沿领域,可以说它的出现使机械发展的历史跨越了一座里程碑。 目前智能机械的例子有智能机械脚;农业机械智能化;计算智能,它包括人工神经网络、模糊系统、进化计算和专家系统等;用于深潜救生艇水下对接的智能机械手等。但是它的发展也面临着瓶颈首先,

2016年中国智能制造行业发展现状及特点

2016年中国智能制造行业发展现状及特点 一、智能制造行业发展阶段 中国智能制造处于初级发展阶段,同样也是大部分处于研发阶段,仅16%的企业进入智能制造应用阶段;从智能制造的经济效益来看,52%的企业其智能制造收入贡献率低于10%,60%的企业其智能制造利润贡献低于10%。而90%的中小企业智能制造实现程度较低的原因在于,智能化升级成本抑制了企业需求,其中缺乏融资渠道影响最大。年收入小于5亿元人民币的企业中,50%的企业在智能化升级过程中采用自有资金,25%为政府补贴,银行贷款和资本市场融资各占11%。而企业收入规模大于50亿元人民币的企业,其智能化升级资金来源中自有资金占67%,银行贷款占比25%。整体而言,中小微型企业的银行贷款比例低于大中型企业,占企业数量绝大多数的中小企业只能依靠自有资金进行智能化改造。 不过,智能制造水平较低,意味着夯实发展基础的必要性,同样也意味着后续发展潜力的巨大。近年来,全国多个地方都在谋划智能制造发展,包括上海、浙江、江苏、天津、安徽、重庆、河南、辽宁、四川、青岛、北京、广东、黑龙江等省市都在摩拳擦掌,或成立机器人、工业4.0或工业互联网等与智能制造相关的联盟,或出台具体产业规划。 二、智能制造行业运行特征 (一)制造强国战略出台并实施,各级地方政府积极推进地区规划政策落实 我国制造业步入新常态下的攻坚阶段,制造强国战略开始推进实施。经过多年迅猛发展,我国已稳居世界制造业第一大国,对全球制造业的影响力不断提升。但随着全球经济结构深度调整,我国制造业面临“前后夹击”的双重挑战。从国内来看,经济发展正处于增速换档和结构调整阵痛的关键节点,制造业潜在增长率趋于下降。总体来看,我国经济发展已进入以中高速、优结构、多挑战、新动力为特征的新常态阶段。2015年5月8日,国务院出台制造强国中长期发展战略规划《中国制造2025》,全面部署推进制造强国战略实施,坚持创新驱动、智能转型、强化基础、绿色发展,加快从制造大国转向制造强国。 以《中国制造2025》为总纲,各地方陆续出台智能制造领域的扶持政策。在《中国制造2025》这一国家战略的指导下,各级地方政府因地制宜,陆续出台相关行动计划,全面对接《中国制造2025》。江苏、广东、福建、四川、安徽等省份借助《中国制造2025》战略支点,分别出台了《江苏行动纲要》、《广东省智能制造发展规划(2015-2025)》、《福建省实施行动计划》、《四川行动计划》、《中国制造2025安徽篇》等政策,以抢占未来产业竞争制高点,加快制造强省的建设步伐。佛山、南京等在国家制造强国战略以及省级行动计划的指导下,进一步分析产业特色,陆续制定与《中国制造2025》相衔接的制造业发展计划,找准转型升级基础,引领制造业向中高端迈进。 (二)随着互联网技术及理念加快渗透,制造企业着手推动商业模式、组织方式等多方

刀具论文报告

机床工具结构及其夹紧特性的研究 今天下午,我们听取了有关刀柄夹具的报告。了解高速机床工具系统结构及其夹紧特性的研究。我对这一部分的内容较为感兴趣。查阅了相关的文献,并且做出以下整理。 1.高速机床工具系统概述 机床工具系统的基本功能主要是:能够实时保证机床中的刀具进行准确定位,并能够完成工作所需动力以及运动位移的任务。从工具系统的基本功能分析,工具系统应该能够具备以下的基本功能:首先,刀具系统要能够具备足够的运动传输能力,在进行加工的时候,刀具的最终受力都集中在刀具系统中,因此,要能够保证刀具系统具备足够的夹紧力;其次,工具系统应该具备高速的运动能力,因为器件不平衡在高速运动时候产生的巨大离心力会影响系统的定位准确度;最后,良好的刚度、阻尼特性以及介质传递能力对于系统的正常工作也具有重要的意义,因为在高速运转中,工具系统发生变形必然导致刀具的位置发生相对移动,从而导致了加工精度的下降,良好的阻尼特性对于工具系统的动刚性具有重要的影响,传递系统要能准确及时传输在加工过程中机械、电气等控制信号。此外,系统的环境适应性以及可维护性等也是工具系统重要的性能要求。 2.机床高速工具系统的结构选择及优化 高速工具系统的优越性能是以其先进的结构作为实现的基础的,优化合理的结构是保证高速工具系统稳定工作的重要前提。在工具系统连接中,要求刀柄能在主轴中进行准确的定位。因为定位的基本方案主要依赖于工具的轴向截面,而工具轴向截面形状的确定应该综合考虑轴向定位的精确度、磨损补偿能力、制造的可行性等多个相关要素。高速机床的工具系统主要包含纵截面以及横截面的形状这两个基本组成要素。 3.工具系统横截面形状的选择 工具系统的扭转传递能力主要依赖于刀柄横截面的形状,同时对于具有端面的工具系统其能力与端面的实际结构也具有一定的关系。由以上的分析以及实际工程实践总结,目前可以采用的刀柄横截面的形状主要有以下几种,如图1 所示。图1 中的第一种为方形截面的刀柄,其突出优点是不需要进行键槽的设置就可以完成扭矩的直接传递,具有较好的刚度且不易发生变形。但是方形的截面具有对主轴孔以及刀柄的精度要求过高,工艺性较差的问题,同时在扭矩传递的过程中,不同接触面所收到的应用大小不均匀,在实际生产过程中会造成局部设备的损坏;第二种为圆形截面的刀柄具,其具有工艺性能优越,并且具备较高的抗纽刚度的优点;第三中为棱形截面的刀柄,三棱形的截面与方形截面一样,具有无需设置扭矩传递键槽的优点,在传递过程 中所收到的应力也较为均衡, 但是同时存在刀具与主轴配合 精度要求过高、公益性较差以 及刚度不高的缺点;第四种为 多齿花键截面的刀柄,多齿花 键与三棱形相比较,刚度以及抗扭性能都有较大的提升,但是同样存在着工艺性方面的问题。以上分析的四种横向截面的刀柄,在实际应用中一般采用空心结构,具有质量较轻,自动补偿能力较强,便于安装以及工艺性能较好的优点,从扭矩的传递和工艺性以及平衡性等多个方面进行综合考虑,圆形的刀柄截面是较为理想的截面。 4.工具系统纵截面形状的选择

在切削过程中建模与仿真刀具的磨损

在切割过程中建模与仿真刀具的磨损 摘要 对于研究了不同刀具的磨损类型实验和分析方法仍然是主要方式。 数值方法和模拟的快速进步,联系到越来越强大的计算机的存在可能会使用有限元法研究刀具磨损。 这项工作的主要目的是提出一种新的方法来预测在切割过程中刀具磨损的操作。 特别是,能源的消耗,连接刀具磨损量与摩擦消耗所使用的能量。另外, 在诱导切削残余应力和由于磨损的机理使工具几何形状变化之间的相互作用做调查。 为了进行这项研究中,它被提交到刀具磨损的测量实验中,特别是在失量切割中。正交切削操作使用商用有限元软件ABAQUS/ Explicit的数值模拟。 ?2013的作者。由Elsevier B.V. 发布。 根据第14届CIRP大会上的国际科学委员会负责选择和同行审查在会议的人的 加工操作。 关键词:刀具磨损;数值模拟;切割;切屑形成; 1.介绍、 刀具磨损在加工操作中对经济有很大的影响同时也影响表面加工完整性。事实上,刀具磨损影响刀具寿命和最终产物中的残余应力的质量。对于这些raisons对刀具的磨损很多调查都能在文献[1-2-3]中找到。刀具在正交切削下的磨损模拟的开发要么是验证磨损的机理。要么是在这些模拟中,研究人员往往会更好地理解刀具磨损的残余应力对最终产物的影响[4]。在一些研究[5-6]的在一个子程序实现刀具磨损模型,是相对的像磨损和扩散特定的磨损机理磨损。因此,在本次调查中,具体机制被认为在很大程度上影响了磨损现象。事实上,刀具的磨损受几个不同类材料的附着力、侵蚀、腐蚀、磨料和断裂。在切割过程中,刀具几何形状的改变受刀具磨损的影响。此更新的刀具几何形状主要是参照,在数值仿真,通过该工具面节点的运动[7]。这个方法是使用一个特定的子程序的评估切削变量,如温度,正常压力,并且在正交切削模拟中每个节点工具滑动的距离。在这之后,其他子程序启动征收节点的运动。 现有磨损模型可分为两个类型:第一种是切削参数、刀具寿命型,这样的泰勒公式,第二个是切割过程中的变量通常是基于一个或若干磨损机制[8]。这个模型无力的,因为,一方面,磨损现象被建模为不连续的现象的时间而不是真实的情况。在另一方面,它是在实施的的限制磨损机理,即磨损问题降低到1或2的磨损机制。 磨损接触的现象说明了通过形成之间的关系微动系统碎片和摩擦中消耗的能量。这个耗能是更加可控制在接触区中使用量方面[9]。这种方法是实验性的,一个摩擦磨损试验机,用于量化接触力的值,然后将能量耗散因摩擦以及与它链接遗失的能量耗散在这个区域 [10]。 由于这些原因,本文提出了一种新的的方法,它提供了不仅是一个全球性的建模磨损现象,而且还是两个组合方面,正交的切割的配置中工具的磨损和在最终产物中的残余应力的影响。 为了带领这项研究中,提出的方法有三个不同的部分。在第一部分中,一个工磨损由测量呈现。此后,能量办法提出修改后用于在应用程序中正交切削。一种数值模拟正交切割操作正在开发,使用了商用的有限元软件ABAQUS/ Explicit。最后一部分,包括刀具磨损演变的数值结果在仿真和结论。 2.实验测试 在实验测试中,进行验证有限元模型,并测量渐进刀具磨损,包括转制成42CD4与操作

涂层刀具的应用现状及发展趋势

涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层可以提高切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高金属切削效率。本期话题, 主要讨论刀具涂层技术的最新进展情况和发展前景。 涂层刀具的应用现状及发展趋势 涂层技术是提升刀具性能的主要手段之一。通过涂层提高了切削刀具抗各种磨损的能力,延长了刀具的寿命,提高了被加工零件的表面精度,也提高了切削速度和进给速度,从而提高了金属切削效率。今天,在切削刀具主流材料的硬质合金中,涂层硬质合金刀具占了80%,而其中CVD(化学涂层)又占了60%~ 65%,其余为PVD(物理涂层)。 在CVD涂层方面,包括TiCN、TiC、TiN、ZrCN和Al2O3等各种化合物的多层复合涂层对改善涂层的综合性能,如结合强度、韧性、耐磨性和抗磨性及耐腐蚀性具有良好的效果。现在典型的VCDTiN(外层)+ Al2O3(中层)+TiCN(内层)多层式结构正在从涂层工艺上和涂膜的厚度上得到进一步改善。MTCVD (中温化学涂层)因有较低的工艺温度和较快的沉积速率使得涂层与基体分界面上的脆性η相最小化,同时减少了在高温CVD涂层中常见的由高温导致的拉伸裂纹,因此,MTCVD TiCN涂层已成为CVD多层涂层中的一个主要构成,这种MTVCD已用于α- Al2O3涂层,如ISCAR的α-IC9150、α-IC9250、α-IC9350和α-IC4100等,提升了涂层与基体的结合强度和抗后面磨损、前面磨损和抗粘附的能力。 在PVD涂层方面,也从单一的TiN或TiCN或TiAlN涂层发展到现在的复合涂层即硬涂层+软涂层。为适应更高切削速度和干式切削的要求,涂层刀具的红硬性成为近几年PVD技术的开发热点。TiAlN的改进涂层AlTiN提高了薄膜中Al的含量(Al含量大于50%),提升了涂层的红硬性、化学稳定性和抗氧化的性能,如ISCAR的Al-IC910(加工铸铁和钢)、Al-IC900、Al-IC930(加工钢、不锈钢、硬钢、铸铁、 高温合金等)。 现代刀具涂层发展的一个重要特征就是复合化,为了提高其综合性能,涂层材料复合、涂层层复合以及CVD 与PVD复合,如ISCAR的DT7150(K05-K25)通过MTCVD Al2O3和PVD TiAlN复合涂层,提高了材质的综合性能,用于高速加工灰铸铁和球墨铸铁。而多样化是刀具涂层发展的另一个趋势,有各种氮化物、氧化物涂层材料,还有TiB、SN涂层、金刚石涂层、立方氮化硼涂层等等。多样化的深层次原因是专业化,即针对不同的需求采用不同的涂层,并能对涂层的组分、百分比、结构及厚度在更大范围内加以控制和改变,以适应不同的被加工材料和不同的切削条件,从而显著地提高刀具的切削性能。如CrAlN涂层,以Cr 元素替代Ti元素,具有3200HV硬度和1100℃的氧化温度,与TiAlN相比韧性更好,更适合断续切削和难加工材料的加工;以Si元素代替Al元素的涂层可获得用于硬切削的TiSiN,也可获得有润滑性的CrSiN,更适合用于铝、不锈钢等粘附性强的材料加工。此外,涂层材料的细微化是现代刀具涂层发展的另一个令人关注的趋势,纳米复合涂层正在越来越多的地方得到应用。在未来,刀具涂层将是一个系统的概念,即刀具涂层必须根据不断变化的现代切削应用条件来进行系统的组合,这是一种与传统观念中的“在刀具上涂覆一层薄膜”截然不同且复杂得多的系统工程方法,这需要我们进行系统思考。 刀具涂层进展概况 现代切削面临着不断发展的高速、高效、高精加工要求和愈来愈多的高强度、高韧性、难切削等高能级材

智能制造装备行业发展现状及前景预测

智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、RFID、工业以太网)、工业软件(ERP/MES/DCS等)、3D打印以及将上述环节有机结合的自动化系统集成及生产线集成等。全球范围来看,除了美国、德国和日本走在全球智能制造,其余国家也在积极布局智能制造发展。 (一)全球智能制造行业发展现状及前景分析 1、全球智能制造行业发展概况 智能制造产业链涵盖智能装备(机器人、数控机床、服务机器人、其他自动化装备),工业互联网(机器视觉、传感器、RFID、工业以太网)、工业软件(ERP/MES/DCS等)、3D打印以及将上述环节有机结合的自动化系统集成及生产线集成等。 全球范围来看,除了美国、德国和日本走在全球智能制造,其余国家也在积极布局智能制造发展。 2、全球智能制造行业规模分析 智能制造装备是智能制造的主要体现载体智能制造装备涉及的工业机器人、3D打印设备、数控机床、智能控制系统、传感器等主要行

业,产业规模实现快速增长。根据工信部的统计,2010年以来我国制造业产值规模占全球的比重在19%-21%之间。2016年,我国智能制造行业产值规模达12233亿元。据此测算,2016年,全球智能制造产值规模在8687亿美元左右。 1、全球工业机器人市场现状及前景分析 (1)全球工业机器人行业发展概况 工业机器人是智能制造业最具代表性的装备。日本、美国、德国和韩国是工业机器人强国。日本号称“机器人王国”,在工业机器人的生产、出口和使用方面都居世界榜首;日本工业机器人的装备量约占世界工业机器人装备量的60%。 (2)全球工业机器人市场规模分析 据国际机器人协会统计,1998年以来全球新装工业机器人年均增速达9%。金融危机影响后,全球机器人行业市场规模不断扩大,2015年全球工业机器人销量超过25.4万台。 (3)全球工业机器人市场竞争分析

刀具材料论文

刀具材料论文

现代工程材料成形与机械设计制造基础——《关于新型刀具材料论文》 目录 摘要: 0 关键词: (1) 简析刀具材料和性能 (1) 一、刀具材料应具备的性能 (2) 二、现代新型刀具材料 (3) (一)高速钢 (3) (二)硬质合金 (4) (三)涂层刀具 (6) (四)陶瓷 (8) (五)超硬刀具材料 (8) 展望强度最高的物质——石墨烯,氮化碳(β—C3N4) (10) 摘要: 随着工件材料的力学性能不断提高,产品的品种和批量逐渐增多,加工精度的要求日益提高,工件的结构和形状不断复杂化和多样化,各种难加工材料的出现和应用,先进制造系统、高速切削、超精

密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。以下让我来论述了刀具和刀具材料回顾早期机械制造中的刀具材料,重点阐述现代产品加工中所用新型刀具材料(高速钢、硬质合金、陶瓷、超硬材料)的性能及其应用范围。对二十一世纪新型刀具材料发展的动向作出预测和展望。 关键词:刀具材料;新型;常用刀具;展望。 刀具材料的发展在人类的生活、生产和战争中有着很大的重要性。在古代,“刀”和“火”是两项最伟大的发明,它们的发明和应用是人类登上历史舞台的重要标志。刀具材料的进步曾推动着人类社会文化和物质文明的发展。例如,在人类历史中曾有过旧石器时代、新石器时代、青铜器时代和铁器时代等。 材料、结构和几何形状是决定刀具切削性能的三要素。其中,刀具材料的性能起着关键作用。20世纪是刀具材料大发展的历史时期。各种难加工材料的出现和应用,先进制造系统、高速切削、超精密加工、绿色制造的发展和付诸实用,都对刀具提出了更高、更新的要求,预计,在今后很长时期内,切削加工工艺不会衰退,刀具和刀具材料将有更新的发展。 简析刀具材料和性能

刀具磨损的几种原因

刀具磨损的几种原因 2009-09-10 11:37 刀具坚硬,可随着使用时间推迟,刀具也会有一定磨损,影响刀具磨损几种原因有哪些呢?通过汇总得出了几种原因。 1、刀具材料 刀具材料决定刀具切削性能根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。刀具材料越硬,其耐磨性越好,硬度越高,冲击韧性越低,材料越脆。硬度韧性一对矛盾,也刀具材料所应克服一个关键。对于石墨刀具,普通TiAlN涂层可选材上适当选择韧性相对较好一点,也就钴含量稍高一点;对于金刚石涂层石墨刀具,可选材上适当选择硬度相对较好一点,也就钴含量稍低一点; 2、刀具几何角度 石墨刀具选择合适几何角度,有助于减小刀具振动,反过来,石墨工件也不容易崩缺; (1)前角,采用负前角加工石墨时,刀具刃口强度较好,耐冲击摩擦性能好,随着负前角绝对值减小,后刀面磨损面积变化不大,但总体呈减小趋势,采用正前角加工时,随着前角增大,刀具刃口强度被削弱,反而导致后刀面磨损加剧。负前角加工时,切削阻力大,增大了切削振动,采用大正前角加工时,刀具磨损严重,切削振动也较大。 (2)后角,如果后角增大,则刀具刃口强度降低,后刀面磨损面积逐渐增大。刀具后角过大后,切削振动加强。 (3)螺旋角,螺旋角较小时,同一切削刃上同时切入石墨工件刃长最长,切削阻力最大,刀具承受切削冲击力最大,因而刀具磨损、铣削力切削振动都最大。当螺旋角去较大时,铣削合力方向偏离工件表面程度大,石墨材料因崩碎而造成切削冲击加剧,因而刀具磨损、铣削力切削振动也都有所增大。因此,刀具角度变化对刀具磨损、铣削力切削振动影响前角、后角及螺旋角综合产生,所以选择方面一定要多加注意。 通过对石墨材料加工特性做了大量科学测试,PARA刀具优化了相关刀具几何角度,从而使得刀具整体切削性能大大提高。 3、刀具涂层 金刚石涂层刀具硬度高、耐磨性好、摩擦系数低等优点,现阶段金刚石涂层石墨加工刀具最佳选择,也最能体现石墨刀具优越使用性能;金刚石涂层硬质合金刀具优点综合了天然金刚石硬度硬质合金强度及断裂韧性;但国内金刚石涂层技术还处于起步阶段,还有成本投入都很大,所以金刚石涂层近期不会有太大发展,不过我们可以普通刀具基础上,优化刀具角度,选材等方面改善普通涂层结

数控机床的现状和发展趋势

我国数控机床的现状和发展 数控机床是数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。数控机床具有广泛的适应性,加工对象改变时只需要改变输入的程序指令;加工性能比一般自动机床高,可以精确加工复杂型面,因而适合于加工中小批量、改型频繁、精度要求高、形状又较复杂的工件,并能获得良好的经济效果。 因而了解和提升数控机床对我国的制造业的发展至关重要。 一.国内外数控机床的发展 (1)我国数控机床的发展 我国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。建国初期在1958—1979年间为第一阶段,第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,主要存在的问题是盲目性大,缺乏实事求是的科学精神。改革开放,从1979年至今为第二阶段。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国家(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、多轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。 (2)国外数控技术的发展 数控机床的起源 1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。1949年,该公司在美国麻省理工学院(MIT)伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。标志着制造领域中数控加工时代的开始。 数控机床的兴起 1952年美国麻省理工学院和吉丁斯·路易斯公司首先联合研制出世界上第 一台数控升降台铣床,随后德国、日本、苏联等国于1956年分别研制出本国的第一台数控机床。60年代初,美国、日本、德国、英国相继进入商品化试生产,由于当时数控系统处于电子管、晶体管、和集成电路初期,设备体积大、线路复杂、价格昂贵、可靠性差,数控机床大多是控制简单的数控钻床,数控技术没有普及推广,数控机床技术发展整体进展缓慢。 70年代,出现了大规模集成电路和小型计算机,特别是微处理器的研制成功,实现了数控系统体积小、运算速度快、可靠性提高、价格下降,使数控系统

相关主题
文本预览
相关文档 最新文档