当前位置:文档之家› 导轨的设计与选择

导轨的设计与选择

导轨的设计与选择
导轨的设计与选择

一、导轨的设计与选择。

1、对导轨的要求

1)导轨精度高

导轨精度是指机床的运动部件沿导轨移动时的直线和它与有关基面之间的相互位置的准确性。无论在空载或切削工件时导轨都应有足够的导轨精度,这是对导轨的基本要求。

2)耐磨性能好

导轨的耐磨性是指导轨在长期使用过程中保持一定导向精度的能力。因导轨在工作过程中难免磨损,所以应力求减少磨损量,并在磨损后能自动补偿或便于调整。

3)足够的刚度

导轨受力变形会影响部件之间的导向精度和相对位置,因此要求轨道应有足够的刚度。

4)低速运动平稳性

要使导轨的摩擦阻力小,运动轻便,低速运动时无爬行现象。5)结构简单、工艺性好

导轨的制造和维修要方便,在使用时便于调整和维护。

2、对导轨的技术要求

1)导轨的精度要求

滑动导轨,不管是V-平型还是平-平型,导轨面的平面度通常取0.01~0.015mm,长度方面的直线度通常取0.005~0.01mm;侧导向面的直线度取0.01~0.015mm,侧导向面之间的平行度取

0.01~0.015mm,侧导向面对导轨地面的垂直度取0.005~0.01mm。2)导轨的热处理

数控机床的开动率普遍都很高,这就要求导轨具有较高的耐磨性,以提高其精度保持性。为此,导轨大多需要淬火处理。导轨淬火的方式有中频淬火、超音频淬火、火焰淬火等,其中用的较多的是前两种方式。

二、导轨的种类和特点

导轨按运动轨迹可分为直线运动导轨和圆运动导轨;按工作性质可分为主运动导轨、进给运动导轨和调整导轨;按接触面的摩擦性质可分为滑动导轨、滚动导轨和静压导轨等三大类。

1)滑动导轨:是一种做滑动摩擦的普通导轨。滑动导轨的优点是结构简单,使用维护方便,缺点是未形成完全液体摩擦时低速易爬行,磨损大,寿命短,运动精度不稳定。滑动导轨一般用于普通机床和冶金设备上。

2)滚动导轨的特点是:摩擦阻力小,运动轻便灵活;磨损小,能长期保持精度;动、静摩擦系数差别小,低速时不易出现"爬行"现象,故运动均匀平稳。缺点是:导轨面和滚动体是点接触或线接触,抗振性差,接触应力大,故对导轨的表面硬度要求高;对导轨的形状精度和滚动体的尺寸精度要求高。因此,滚动导轨在要求微量移动和精确定位的设备上,获得日益广泛的运用。

3)静压导轨是利用液压力让导轨和滑块之间形成油膜,使滑块有0.02-0.03mm的浮起,从而大大减小了滑块和导轨之间的

摩擦系数,但其依然属于滑动导轨副。缺点是结构复杂,且需备置一套专门的供油系统。

目前数控机床采用滚动导轨的较多,所以我们主要以滚动导轨为主作介绍。

三、滚动导轨

1、结构与优点

在承导件和运动件之间放入一些滚动体(滚珠、滚柱或滚针),使相配的两个导轨面不直接接触的导轨,称为滚动导轨

1)、摩擦阻力小,运动轻便灵活

2)、磨损小,能长期保持精度;

3)、动、静摩擦系数差别小,低速时不易出现"爬行"现象。4)、驱动功率大幅度下降,只相当于普通机械的十分之一。5)、适应高速直线运动,其瞬时速度比滑动导轨提高约10倍。6)、能实现高定位精度和重复定位精度。

7)、能实现无间隙运动,提高机械系统的运动刚度。

8)、导轨副滚道截面采用合理比值的圆弧沟槽,接触应力小,承接能力及刚度比平面与钢球点接触时大大提高,滚动摩擦力比双圆弧滚道有明显降低。

9)、导轨采用表面硬化处理,使导轨具有良好的可校性;心部保持良好的机械性能。

10)、简化了机械结构的设计和制造。

滚动导轨的缺点是:

1)、导轨面和滚动体是点接触或线接触,抗振性差,接触应力大,故对导轨的表面硬度要求高;

2)、对导轨的形状精度和滚动体的尺寸精度要求高。

2、滚动直线导轨副的精度及选用

滚动直线导轨副分4个精度等级,即2级、3级、4级、5级,其中2级精度最高,依次递减。各等级检查项目及允差如表

3、滚动直线导轨副的使用

1、基础件上安装导轨副的安装平面的安装要求

2、导轨副联结基准面的结构形式

3、安装基面的台肩高度及倒角形式

4、滚动直线导轨副的安装调整

4、滚动直线导轨的选型与计算

1)、滚动直线导轨的选型

一般是依照导轨的承载量,先跟据经验确定导轨的规格,然后进行寿命计算。导轨的承载量与导轨规格一般有表中所列出的经验关系。

2)、滚动直线导轨的计算

滚动直线导轨的计算就是计算其距离额定寿命或时间额定寿命。而额定寿命主要与导轨的额定载荷C和导轨上每个滑块所承受的工作载荷F有关。额定动载荷C值可以从样本上查到。每个滑块所承受的工作载荷F则要根据导轨的安装形式和受力情况进行计算。

额定动载荷C是指导轨在一定的载荷下行走一定距离,90%的支承不发生点蚀,这个载荷称为滚动直线导轨的额定动载荷,这个行走距离称为滚动直线导轨的距离额定寿命。如果把这个行走距离换算成时间,则得到时间额定寿命。

5、滚动直线导轨的标记

导轨设计简介

导轨设计 1.1导轨的功用、分类和基本要求 1.1.1导轨的功用和分类 导轨的功用是支承并引导运动部件,使之沿着一定的轨迹准确运动。在导轨副中,运动的一方叫做动导轨,固定不动的叫做支承导轨。动导轨相对于支承导轨的运动,通常是直线运动或回转运动。 导轨可按下列性质进行分类: (1)运动性质 1)主运动导轨动导轨作主运动,与支承导轨间相对运动的速度较高。 2)进给运动导轨动导轨作进给运动,与支承导轨间的相对运动速度较低。机床中大多数导轨属于进给运动导轨。 3)移置导轨这种导轨只用于调整部件之间的相对位置,在加工时没有相对运动。 (2)摩擦性质 1)滑动导轨两导轨面间的摩擦性质是滑动摩擦,按其摩擦状态又可分为: 液体静压导轨两导轨面间具有一层静压油膜,相当于静压滑动轴承,摩擦性质属于纯液体摩擦,主运动和进给运动导轨都能应用,但用于进给运动导轨较多。 液体动压导轨当导轨面间的相对滑动速度达到一定值后,液体动压效应使导轨油囊处出现压力油楔,把两导轨面分开,从而形成液

体摩擦,相当于动压滑动轴承,这种导轨只能用于高速场合,故仅用作主运动导轨。 混合摩擦导轨在导轨面间虽有一定的动压效应或静压效应,但由于速度还不够高,油楔所形成的压力油还不足以隔开导轨面,导轨面仍处于直接接触状态,大多数导轨属于这一类。 边界摩擦导轨在滑动速度很低时,导轨面间不足以产生动压效应。 2)滚动导轨在两导轨副接触面间装有球、滚子和滚针等滚动元件,具有滚动摩擦性能,广泛地应用于进给运动和旋转运动的导轨。 (3)受力情况 1)开式导轨若导轨所承受的颠覆力矩不大,在部件自重和外载作用下,导轨面a和b在导轨全长上可以始终贴合的称为开式导轨,如图4. la所示。 2)闭式导轨部件上所受的颠覆力矩M较大时,就必须增加压板以形成辅助导轨面e,才能使主导轨面c和d都良好地接触,称为闭式导轨,如图4.1b所示。 1.1.2导轨的基本要求 1.较高的导向精度 导向精度是指动导轨运动轨迹的准确性。它是保证导轨工作质量的前提,继而也保证了运动部件的运动准确性。 导轨在空载运动和切削条件下运动时,都应具有足够的导向精度。影响导向精度的主要因素是导轨的结构型式、导轨的几何精度和接触

导轨的结构设计演示教学

导轨的结构设计

直线导轨的结构设计(含转动导轨) 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的正确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的条件下,应使导轨结构简单,便于加工、丈量、装配和调整,降低本钱。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面外形,以保证导向精度。 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 5.选择公道的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和丈量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10) 三角形导轨:该导轨磨损后能自动补偿,故导向精度高。它的截面角度由载荷大小及导向要求而定,一般为90°。为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角

浅谈民用飞机短舱进气道结构设计

浅谈民用飞机短舱进气道结构设计 摘要:本文主要介绍安装先进涡轮风扇发动机的民用飞机进气道结构设计,包括进气道消声结构的设计。 关键词:进气道结构设计消声设计 0.概述 高涵道比、高效率的先进的动力装置是民用大型客机的心脏。作为动力装置重要组成部分的短舱进气道,对于整个动力装置的性能起着重要的作用。 1.进气道设计要求 进气道的内部通道设计必须保证在发动机各种工作状态下能供给发动机所需要的空气流量,并为发动机风扇进气面提供均匀流场和高总压恢复系数。进气道结构设计中,应运用声学处理技术,以最大程度减小发动机外传噪声,使飞机符合FAR-36部适航标准的要求。短舱进气道应当与风扇叶片一样具有抵抗飞行中鸟撞的能力。进气道必须采取防冰措施,在各种气候条件下,发动机及其进气系统上,都不产生不利于发动机运行或会引起推力严重下降的冰积聚。 2.进气道结构设计 进气道主要由唇口蒙皮、前隔板、后隔板、内壁板、外壁板和连接法兰组成。 进气道唇口蒙皮通常采用铝合金材料,表面阳极化处理,外表面打磨光滑,能够承受雨砂的侵蚀和冰雹的冲击,并且是防鸟撞的第一道防线。进气道唇口蒙皮通过角材与进气道后隔板与外壁板相连接,角材之间通过接头连接。进气道前隔板组件由腹板、径向肋、加强件、开口和管路支架组成。腹板由钛合金退火材料成形,以承受防冰管路的高温,由左右两块拼接而成。腹板上通常布置有径向肋,主要对结构起到加强作用。进气道前隔板组件通过角材与唇口蒙皮、内壁板和外壁板相连接。进气道前隔板组件主要承受的载荷为鸟撞冲击载荷,是防鸟撞设计的主要结构件。 进气道后隔板组件由腹板、径向肋、开口组成。腹板通常采用钛合金退火材料成形,由左右两块拼接或者整体成型,主要吸收FBO工况时风扇打出能量。腹板通常有径向肋,材料为钛合金,主要对结构起到加强作用。进气道后隔板组件在外侧通过角材与外壁板相连接,并且通过角材提供风扇罩罩体搭接区域;后隔板组件在内侧通过角材与内壁板相连接。进气道后隔板组件是防鸟撞结构设计的最后一道防线,要保证鸟的撞击不会穿透后隔板打到风扇舱段,后隔板的变形不能引起燃油管路以及其它系统的损坏以危及到飞行的安全。同时,尽管FADEC 位于风扇舱段区而不在进气道内,但是不能允许鸟撞击后隔板变形而接触到FADEC。因此后隔板需要布置一定数量的钛合金材料径向加强肋。后隔板通常也是风扇舱段火区的前向边,因此后隔板需要采用钛合金退火材料且必须布置防

直线导轨的结构设计

直线导轨的结构设计(含滚动导轨) newmaker 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导 件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的准确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的前提下,应使导轨结构简单,便于加工、测量、装配和调整,降低成本。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 导轨设计的主要内容 设计导轨应包括下列几方面内容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面形状,以保证导向精度? 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 5.选择合理的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和测量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10)

滑动导轨的结构设计

内蒙古民族大学机械工程学院机械制造装备设计作业 姓名: 班级:13机械设计制造及其自动化 学号:0 941

滑动导轨的结构设计 1 滑动导轨的作用和设计要求 滑动导轨的最大作用就是耐磨性好,工艺性好,成本低。当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1)一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的正确性。 2)运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。3)良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。4)足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5)温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。6)结构工艺性好。在保证导轨其它要求的条件下,应使导轨结构简单,便于加工、丈量、装配和调整,降低本钱。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要求是相互影响的。 2 滑动导轨设计的主要内容 (1) 根据工作条件,选择合适的导轨类型。 (2) 选择导轨的截面外形,以保证导向精度。 (3) 选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度范围内,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。 (4) 选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 (5) 选择公道的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 (6) 制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和丈量方法等。 3 滑动导轨的结构设计 (1) 基本形式(见图1-1)

浅析进气道隐身技术

浅析进气道隐身技术 俄罗斯五代原型机T50的首飞唤起了公众对于其航空工业实力的强烈关注,对T50设计思想分析和性能推测就没有停止过。起初,由于只有T50首飞时的小段视频作为分析资料,对于T50的分析大多局限于整体而没有细节。近日在网络上流传的T50进气道正面清晰照片为偶们分析T50提供了很好的素材,也成就了现在异常流行的“毛五悲剧”。网友们对T50采用弯度很小的S形进气道恶评如潮,纷纷大呼“T50隐身性能悲剧了”,以至于上军网不顺便踩一脚俄罗斯五代机都不好意思出来见人。其主要理由就是现代隐身飞机为了遮挡发动机风扇叶片都采用了S形隐身进气道设计,而T50的发动机叶片竟然非常不和谐地裸露在众人的视野中。其实,进气道乃至飞机隐身技术是隐身与各方面性能指标权衡的艺术,进气道隐身并没有固定模式可以遵循。是否采用S形进气道对发动机叶片进行遮挡,也不是判断一型飞机隐身性能优劣的标准。路人皆知的芙蓉姐姐总喜欢把自己的肉体扭曲成怪异的S形,难道性能尖端的五代作战飞机非要把自己的进气道也弄成神似芙蓉姐姐腰肢的模样就叫隐身了么? T50照片,图中能清晰的看到发动机叶片 雷达隐身原理 雷达隐身就是控制和降低军用目标的雷达特征,迫使敌方电子探测系统和武器平台降低其战斗效力,从而提高军用目标的突防能力和生存能力。狭义地说,雷达隐身就是反雷达的隐身技术。一般说来,雷达隐身代表了各种相互矛盾的要求之间的一个折衷,其利和弊两方面最后应得以平衡。例如,当修改目标外形设计以获得雷达隐身时,雷达截面在一个观察角范围内的减少通常伴随着在另一些观察角上的增加,并且外形的修改又往往会带来飞行器的气动特性方面的问题。我们己经知道,如果使用雷达吸波材料,则可通过在材料内能量的耗散来实现雷达隐身,而在其他方向上的RCS电平可保持相对不变,但此时也是以增加重量、体积和表面维护问题为代价的,使目标的有效载荷和作用距离受到影响。因此,每一种雷达隐身的方法都包含了它自己的折衷选择方式,而它们又决定于特定目

导轨的设计与选择

一、导轨的设计与选择。 1、对导轨的要求 1)导轨精度高 导轨精度是指机床的运动部件沿导轨移动时的直线和它与有关基面之间的相互位置的准确性。无论在空载或切削工件时导轨都应有足够的导轨精度,这是对导轨的基本要求。 2)耐磨性能好 导轨的耐磨性是指导轨在长期使用过程中保持一定导向精度的能力。因导轨在工作过程中难免磨损,所以应力求减少磨损量,并在磨损后能自动补偿或便于调整。 3)足够的刚度 导轨受力变形会影响部件之间的导向精度和相对位置,因此要求轨道应有足够的刚度。 4)低速运动平稳性 要使导轨的摩擦阻力小,运动轻便,低速运动时无爬行现象。5)结构简单、工艺性好 导轨的制造和维修要方便,在使用时便于调整和维护。 2、对导轨的技术要求 1)导轨的精度要求 滑动导轨,不管是V-平型还是平-平型,导轨面的平面度通常取0.01~0.015mm,长度方面的直线度通常取0.005~0.01mm;侧导向面的直线度取0.01~0.015mm,侧导向面之间的平行度取

0.01~0.015mm,侧导向面对导轨地面的垂直度取0.005~0.01mm。2)导轨的热处理 数控机床的开动率普遍都很高,这就要求导轨具有较高的耐磨性,以提高其精度保持性。为此,导轨大多需要淬火处理。导轨淬火的方式有中频淬火、超音频淬火、火焰淬火等,其中用的较多的是前两种方式。 二、导轨的种类和特点 导轨按运动轨迹可分为直线运动导轨和圆运动导轨;按工作性质可分为主运动导轨、进给运动导轨和调整导轨;按接触面的摩擦性质可分为滑动导轨、滚动导轨和静压导轨等三大类。 1)滑动导轨:是一种做滑动摩擦的普通导轨。滑动导轨的优点是结构简单,使用维护方便,缺点是未形成完全液体摩擦时低速易爬行,磨损大,寿命短,运动精度不稳定。滑动导轨一般用于普通机床和冶金设备上。 2)滚动导轨的特点是:摩擦阻力小,运动轻便灵活;磨损小,能长期保持精度;动、静摩擦系数差别小,低速时不易出现"爬行"现象,故运动均匀平稳。缺点是:导轨面和滚动体是点接触或线接触,抗振性差,接触应力大,故对导轨的表面硬度要求高;对导轨的形状精度和滚动体的尺寸精度要求高。因此,滚动导轨在要求微量移动和精确定位的设备上,获得日益广泛的运用。 3)静压导轨是利用液压力让导轨和滑块之间形成油膜,使

导轨的选型及计算

导轨的选型及计算 按结构特点和摩擦特性划分的导轨类型见表6-1[5],各类导轨的主要特点及应用列于表中。 表6-1 导轨类型特点及应用 6.1 初选导轨型号及估算导轨长度 X 方向初选导轨型号为494012GGB 20B AL2P -? [6]具体数据见《机械设计手册》9-149 Y 方向初选导轨型号为4109022G G B20AAL 1-?P 导轨的运动条件为常温,平稳,无冲击和震动 为何选用滚动直线导轨副: 1)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利

于提高数控系统的响应速度和灵敏度。驱动功率小,只相当普通机械的十分之一。 2)承载能力大,刚度高。 3)能实现高速直线运动,起瞬时速度比滑动导轨提高10倍。 4)采用滚动直线导轨副可简化设计,制造和装配工作,保证质量,缩短时间,降低成本。 导轨的长度: 由于导轨长度影响工作台的工作精度和高度,一般可根据滑块导向部分的长度来确定导轨长度。 其公式为: L=H+S+△l-S1-S2 由此公式估算出Lx=940mm,Ly=1090mm 其中L—导轨长度 H—滑块的导向面长度 S—滑块行程 △l—封闭高度调节量 S1—滑块到上死点时,滑块露出导轨部分的长度 S2—滑块到下死点时,滑块露出导轨部分的长度 6.2 计算滚动导轨副的距离额定寿命 X方向的导轨计算 X方向初选导轨型号为4 940 12 GGB20B AL2P- ?,查表9.3-73[1]得,这种导轨的额定动,静载荷分别为Ca=13.6kN,Coa=20.3kN。 4个滑块的载荷按表9.3-48序号1的载荷计算式计算。 其中工作台的最大重量为: G=100×9.8=980N F1=F2=F3=F4=1/4(G1+F)=250N 1)滚动导轨的额定寿命计算公式[6]为: L=(f h f t fc fa Ca/ fwPc) ε ?K=27166km 式中 L——额定寿命(km); Ca——额定动载荷(KN); P——当量动载荷(KN); Fmax——受力最大滑块所受的载荷(KN); Z——导轨上的滑块数;

直线导轨的基本构造

直线导轨直线导轨的基本构造 基本构造是由1. 直线导轨、2. 直线运动滑导块、3. 滚动轴承用滚珠构成。对于这种构造可根据使用规格选择各种产品(参考【图1】)。例如采用密封板类零件构造可实现其防尘性和无尘室使用要求,采用滚珠保持器构造可提高其滑动性能等等。此外,对于直线滑动条件和负载、为了实现更高的导向精度,根据实际情况可采用2支导轨或和多个滑块的构造。 直线导轨(循环滚珠型)的优点: 1.高刚性 2.长寿命、高精度 3.无噪音、运行平稳 4.优异的振动特性 直线导轨的性能基本上是由滚动轴承单元的构造决定的。导轨上滚珠用导向槽的个数称为「列数」,在滚道内滚珠的接触点数作为「点接触数」、用来表现滚珠轴承单元的构造。这种多列滚珠轴承的构造,即使在急速加减速时承受力矩载荷或长时间在严苛条件下连续运行等情况下,也可保持其精度。【图2】为滚珠轴承单元构造事例。

此外,也有在预压状态不同的情况下、轴承单元的接触状态会发生变化,用以维持高刚性?高精度的产品构造(【图3 】)。 直线导轨采用循环滚珠型(【图4】)构造,摩擦力小、可实现平稳运行。另外还有内置滚珠保持器,循环滚珠相互接触、无摩擦音,可实现长久无噪音和平稳运行的的直线导轨滑块构造。 滑动导轨安装面的设计 滑动导轨的直线滑动精度,也基本等同于导轨导向直线运动导块(滑块)的精度。但是导轨的精度直接受固定安装面形状的影响。因此为了确保导轨精度,就必须充分保证安装面的直线度? 平行度等精度要求。在此对滑动导轨2个安装面(导轨安装面、滑块安装面)的设计要点进行说明。 要将导轨和滑块精确对齐固定到各自安装面,安装面的角部必须设定避让槽或加工为比导轨和滑块各自的C 倒角尺寸更小的圆角。(参考【表1】)。 【表1】安装面凸台部高度和避让部半径 (mm )

导轨的选型和计算

导轨得选型及计算 按结构特点与摩擦特性划分得导轨类型见表6-1 [5\各类导轨得主要特点及应用列于表中。 导轨类型特点及应用 表 X方向初选导轨型号为⑹具体数据见《机械设计手册》9-149 Y方向初选导轨型号为 导轨得运动条件为常温,平稳,无冲击与震动 为何选用滚动直线导轨副:

1)滚动直线导轨副动静摩擦力之差很小,摩擦阻力小,随动性极好。有利于提高数控系统得响应速度与灵敏度。驱动功率小,只相当普通机械得十分之一。 2)承载能力大,刚度高。 3)能实现高速直线运动,起瞬时速度比滑动导轨提高1 0倍。 4)采用滚动直线导轨副可简化设计,制造与装配工作,保证质量,缩短时间,降低成本。 导轨得长度: 由于导轨长度影响工作台得工作精度与高度,一般可根据滑块导向部分得长度来确定导轨长度。 其公式为: L=H+S+A I -S1-S2 由此公式估算出L x = 940mm, L y = 1090mm 其中L—导轨长度 H—滑块得导向面长度 S—滑块行程 △ I—封闭高度调节量 S1 —滑块到上死点时,滑块露出导轨部分得长度 S 2—滑块到下死点时,滑块露出导轨部分得长度 6、2计算滚动导轨副得距离额定寿命 X方向得导轨计算 X方向初选导轨型号为,查表9、3-73[,]得,这种导轨得额定动,静载荷分别为Ca 二13、6kN, Coa二20、3k No 4个滑块得载荷按表9、3-48序号1得载荷计算式计算。 其中工作台得最大重量为: G二100X9、8=980N F 1 =F2=F3=F4=1/4 ( G1+F) =250N 1)滚动导轨得额定寿命计算公式⑹为: L=(仇f t fc f a Ca/ fwP c ) K =27166km 式中L ----- 额定寿命(km); Ca——额定动载荷(KN); P——当量动载荷(KN); Fmax——受力最大滑块所受得载荷(KN); Z——导轨上得滑块数;

导轨设计的基本要求

导轨设计的基本要求 1.导向精度 导向精度是指运动构件沿导轨导面运动时其运动轨迹的准确程度。影响导向精度的主要因素有导轨承导面的几何精度、导轨的结构类型、导轨副的接触精度、表面粗糙度、导轨和支承件的刚度、导轨副的油膜厚度及油膜刚度,以及导轨和支承件的热变形等。 直线运动导轨的几何精度一般包括:垂直平面和水平平面内的直线度;两条导轨面间的平行度。导轨几何精度可以用导轨全长上的误差或单位长度上的误差表示。 2.精度保持性 精度保持性是指导轨工作过程中保持原有几何精度的能力。导轨的精度保持性主要取决于导轨的耐磨性极其尺寸稳定性。耐磨性与导轨副的材料匹配、受力、加工精度、润滑方式和防护装置的性能的因素有关,另外,导轨及其支承件内的残余应力也会影响导轨的精度保持性。 3.运动灵敏度和定位精度 运动灵敏度是指运动构件能实现的最小行程;定位精度是指运动构件能按要求停止在指定位置的能力。运动灵敏度和定位精度与导轨类型、摩擦特性、运动速度、传动刚度、运动构件质量等因素有关。 4.运动平稳性 导轨运动平稳性是指导轨在低速运动或微量移动时不出现爬行现象的性能。平稳性与导轨的结构、导轨副材料的匹配、润滑状况、润滑剂性质及导轨运动之传动系统的刚度等因素有关。 5.抗振性与稳定性 抗振性是指导轨副承受受迫振动和冲击的能力,而稳定性是指在给定的运转条件下不出现自激振动的性能。 6.刚度 导轨抵抗受力变形的能力。变形将影响构件之间的相对位置和导向精度,这对于精密机械与仪器尤为重要。导轨变形包括导轨本体变形导轨副接触变形,两者均应考虑。 7.结构工艺性 结构工艺性是指导轨副(包括导轨副所在构件)加工的难易程度。在满足设计要求的前提下,应尽量做到制造和维修方便,成本低廉。

进气道设计.doc

喷气式飞机进气道是一个系统的总称,它包括进气口、辅助进气口、放气口和进气通道,因此它是保证喷气发动机正常工作的重要部件之一,它直接影响到飞机发动机的工作效率,它对发动机是否正常工作,推力大小等有着到关重要的作用,因此它对飞机性能尤其是战斗机有很大的影响。其作用是:第一,供给发动机一定流量的空气。螺旋桨飞机靠螺旋桨工作拉动空气向后运动带动飞机做相对运动前飞,螺旋桨发动机燃烧也需要空气,但它的用量无法与喷气发动机相比,而且在高空空气稀薄,含氧量代,发动机效率会急剧下降,喷气发动机所需的空气量惊人,动辄每秒以上百千克计,如“海鹞”的发动机空气流量为196千克/秒,中国飞豹的则是2×92千克/秒,美国F-15的是2×121千克/秒;第二、保证进气流场能满足压气机和燃烧室正常工作的要求,喷气发动机压气机进口流速约为当地音速的0.3- 0.6M,而且对流场的不均匀性有严格限制。在飞行中,进气道要实现对高速气流的减速增压,将气流的动能转化为压力能。随着飞行速度的增加,进气道的增压作用越来越大,在超音速飞行时的增压作用可大大超过压气机。 进气道分为不可调进气道和可调进气道。不可调进气道,也就是进气道形状参数不可调节,只能在某种设计状态下才可高效工作的进气道,它只在设计状态下能与发动机协调工作,这时进气道处于最佳临界状态。在非设计状态下,譬如改变飞行速度,进气道与发动机的工作可能不协调。当发动机需要空气量超裹进气道通过能力时,进气道处于低效率的超临界状态。当发动机需要空气量低于进气道通过能力时,进气道将处于亚临界溢流状态。严格上讲,超音速进气道和亚音速进气道都会使阻力增加,不排除某些亚音速进气道或许出现前缘吸力大于阻力的情况,但过分的亚临界状态使阻力增加,并引起进气道喘振。为了使进气道在非设计状态下也能与发动机协调工作,提高效能,广泛应用可调进气道,常用的方法是调节喉部面积和斜板角度(最好专门对这些术语进行解释、配图。),使在任何状态下进气道的通过能力与发动机的要求一致。另外,在亚音速扩散通道处设有放气门,将多余的空气放掉,防止进气道处于亚临界状态,同时,在起飞时,发动机全加力工作,气流量需求很大;而且因为速度低,要保持同样气流量的需求,需要的捕获面积增大。因此为了解决起飞状态进气口面积过小的问题,还设置有在低速能被吸开的辅助进气口。 飞机进气道设计中几个重要的设计指标是总压恢复、流场畸变水平和阻力大小。在进气道设计中,必须参照这几个重要的技术指标,它也是反映飞机整体性能的关键参数。 总压是气流静压和动压之和,表征了气流的机械能,总压恢复是指发动机进口处的气流总压与进气道远前方来流的总压之比,是进气道设计中一个非常重要的参数,表示气流机械能的损失,对于超音速进气道,总压恢复主要与斜板级数和角度所决定的激波的级数和波后流动参数有关。 流场畸变水平表征了进气道提供给发动机的气流的均匀程度,一般用进气道流场中的最高总压与最低总压值之间的差值表示,它影响着发动机的喘振裕度,间接关系着飞机的安全。进气道设计时一般考虑的阻力是外罩阻力和附加阻力,其中附加阻力又叫溢流阻力,是指在进入进气道的气流量大于发动机所需流量时,由于部分气流从进气道口溢出而导致的阻力。进气道的形状选择和位置的布置应该满足发动机有较高工作效率的要求,或应保证飞行器具有最佳性能要求或应保证飞行器能达到最佳飞行性能的要求。进气道的设计在科技的带动下有了很大的发展,使得喷气战斗机的飞行速度越来越快,性能越来越高,可以说它的重要性越来越明显,并且已成为飞机机体设计中成为一个独立的组成部分,进气道设计成为飞机性能提高的重要因素之一。 飞机进气道发展到现在主要分为亚音速进气道和超音速进气道。

基于CFD的发动机进气道优化设计

?设计?计算? 基于CF D 的发动机进气道优化设计 彭北京 邓定红 胡军峰 胡景彦 (浙江钱江摩托股份有限公司 浙江温岭 317500) 摘 要:发动机进排气系统的气体流动特性复杂,影响发动机的充气效率和换气损失,对发动机的动力性和经济性有重要的影响。在某水冷125mL 发动机研制过程中,样机性能测试表明,发动机整体性能偏离设计目标要求,发动机的进气道的设计存在缺陷。本文利用AVL -F I ER 软件建立了原型发动机进气道CF D 模型,进行三维稳态CF D 分析和优化。首先利用实验结果验证了原始气道计算模型,并进行优化分析。计算结果表明,优化后的进气道比原始进气道流量系数最大值增大了近21%。按优化后的方案对原始气道实物进行改进,样机对比测试结果表明,按优化后的方案改进的气道实测流量系数比原始气道增大了19%。 关键词:发动机 进气道 CF D AVL -F I ER 中图分类号:412.44 文献标识码:A 文章编号:1671-0630(2009)03-0040-04 O pti m u m D esi gn of I n let A i r Core of Eng i n e by CF D Technology Peng Be iji n g,D eng D i n ghong,Hu Junfeng,Hu J i n gyan Zhejiang Q ianjiang Mot orcycle Co .,L td .(W enling,Zhejiang,317500,China ). Abstract:The gas fl owing characteristic of intake and exhaust syste m in engine is very comp lex .It could not only affect the volumetric efficiency and the gas exchange l oss,but als o has i m portant influence on the dyna m 2ic p r operty and econom ical efficiency .During the devel opment of a ne w type 125cc water 2cooling engine,the sa mp le engine perf or mance test indicates that the integrity perf or mance has a gap comparing t o the original de 2sign require ments and the original design of intake passage has s ome defects .I n this passage,a CF D model of the p r ot oty pe engine’s intake gas passage was built using AVL -F I ER and a 3D steady CF D analysis and op ti 2m izati on were carried out .A t first,the original gas passage model was validated by the test result,then op ti 2mu m analysis basic on the model was p r ocessed .The calculati on results show that the flux coefficient of the op ti m ized real passage is 21%larger than that of the original one;the original real passage was i m p r oved ac 2cording t o the op ti m ized s oluti on,and the contrasting test result shows that the flux coefficient is larger than the original one by 19%. Keywords:Engine,I nlet air core,CF D ,AVL -F I ER 引言 在发动机开发设计阶段,性能参数是非常重要的 考查指标,其中有很多参数都要进行优化,比如进气道、凸轮型线、压缩比、进气管内径、化油器进气孔大小 作者简介:彭北京(1976-),男,大本,高级工程师,研究方向为发动机开发及分析。 第38卷 第3期2009年6月小型内燃机与摩托车 S MALL I N TERNAL COMBUSTI O N ENGI N E AND MOT ORCYCLE Vol .38No .3 Jun .2009

导轨的结构设计

直线导轨的结构设计(含转动导轨) 1 导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的正确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的条件下,应使导轨结构简单,便于加工、丈量、装配和调整,降低本钱。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要相互影响的。 2 导轨设计的主要容 设计导轨应包括下列几方面容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面外形,以保证导向精度。 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度围,有足够的刚度,良好的耐磨性,以及运动轻便和平稳。

4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 5.选择公道的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和丈量方法等。 3 导轨的结构设计 1. 滑动导轨 (1) 基本形式(见图21-10) 三角形导轨:该导轨磨损后能自动补偿,故导向精度高。它的截面角度由载荷大小及导向要求而定,一般为90°。为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角(110°~120°);为进步导向性,采用较小的顶角(60°)。假如导轨上所受的力,在两个方向上的分力相差很大,应采用不对称三角形,以使力的作用方向尽可能垂直于导轨面。 矩形导轨:优点是结构简单,制造、检验和修理方便;导轨面较宽,承载力较大,刚度高,故应用广泛。但它的导向精度没有三角形导轨高;导轨间隙需用压板或镶条调整,且磨损后需重新调整。 燕尾形导轨:燕尾形导轨的调整及夹紧较简便,用一根镶条可调节各面的间隙,且高度小,结构紧凑;但制造检验不方便,摩擦力较大,刚度较差。用于运动速度不高,受力不大,高度尺寸受限制的场合。 圆形导轨:制造方便,外圆采用磨削,孔珩磨可达精密的配合,但磨损后不能调整间隙。为防止转动,可在圆柱表面开键槽或加工出平面,但不能承受大的扭矩。宜用于承受轴向载荷的场合。 (2)常用导轨组合形式 三角形和矩形组合:这种组合形式以三角导轨为导向面,导向精度较高,而平导轨的工艺性好,因此应用最广。这种组合有V-平组合、棱-平组合两种形式。V-平组合导轨易储存润滑油,低、高速都能采用;棱-平组合导轨不能储存润滑油,只用于低速移动。见图21-11。 图21-11

进气道的分类

超音速进气道的分类与应用 【摘要】超音速飞机要想实现超音速飞行不仅需要强劲的发动机,还需要复杂的超声速进气道设计,随着人们对飞机性能要求的不断苛刻,超声速进气道的复杂程度也越来越高,本文将就不同的分类方法来对其进行分类,并就它的优缺点以及应用做一定的总结。 【关键词】飞机;超声速;进气道;分类;激波 现代的飞机尤其是战斗机大都具有非常高的速度,而且飞行高度也很高,高空的空气稀薄、氧气含量低而且在飞机高速运行时飞机的空气用量大,这就需要进气道来将空气“兜住”,另外,现代高性能发动机的压气机和燃烧室对工作条件的要求相当苛刻,这就需要进气道来实现高速空气的减速增压,将空气压力降至压气机的工作压力,在一定程度上,进气道起到了压气机的一部分作用,还有就是可以将附面层流排出发动机,增加发动机的稳定性。因此,现代超声速飞机的都有着复杂的进气道设计(导弹也不例外)。本文将就超声速进气道的分类、优缺点以及应用做一一概括。 超音速进气道在结构上比较复杂,它是通过一道正激波加多道较弱的斜激波来实现超音速气流的减速。超音速进气道分为外压式、内压式和混合式三种。外压式进气道:在进口前装有中心锥或斜板,以形成斜激波减速,降低进口正激波的强度,从而提高进气减速的效率。外压式进气道的超音速减速全部在进气口外完成,进气口内通道基本上是亚音速扩散段。内压式进气道:为收缩扩散形管道,相当于倒置的拉法尔喷管,超音速气流的减速增压全在进口以内实现。设计状态下,气流在收缩段内不断减速到喉部恰为音速,在扩散段内继续减到低亚音速。内压式进气道效率高、阻力小,但非设计状态性能不好,起动困难,在飞机上未见采用。混合式进气道:是内外压式的折衷。对于超音速飞机而言,本身其飞行马赫数变化范围较宽,对于进气道就要求在较宽的范围内高效的减速增压;而且,由于超音速飞行,进口前气流不能自动地适应发动机所需而引入适当的流量,容易发生溢流。所以随着速度提高,飞机进气道也发生了很大的变化,结构上朝着更加复杂化发展,这也是性能和速度提高后确保发动机工作稳定的先决条件。飞机进气口大小是不变的,而高速和低速飞行时发动机对空气量的需求却不一样,尤其超音速飞行时,进入进气道的空气量超过了发动机的实际需求,如果不将其排除则会导致额外的阻力,所以,超音速进气道都设有旁路系统,空气超过发动机需求时,则开启旁路系统,将多余的空气排放出去。一般的超声速进气道都有中心锥或者压缩斜板以来调节进气量和调节激波的位置。 若按进气道是否可调可分为不可调进气道和可调进气道。一、不可调进气道,也就是进气道形状参数不可调节,只能在设计状态下(如一定的飞行速度等)才可与发动机协调工作,反之则可能出现工作不协调的情况。当发动机需要空气量超过进气道通过能力时,进气道处于超临界状态,反之,进气道将处于亚临界溢流状态。超临界状态降低发动机工作效率,过分的亚临界状态使飞行阻力增加,并引起发动机喘振,工作效能也将降低。二、可调进气道:为了解决上述问题,可调进气道通过运用安装可调压缩斜板或者中心锥的方法,控制进气道的空气通过量以满足发动机的工作要求。另外,在亚音速扩散通道处设有放气门,将多余的空气放掉,防止进气道处于亚临界状态。在起飞时,发动机全加力工作,要保持同样的气流量,发动机捕获空气的面积需要增大,通常发动机都设有低速时能被吸开的辅助进气口。 若按照波系数目多少来划分,可分为正激波式、双波系和多波系进气道。一、正激波式进气道:正激波进气道又叫做皮托式进气道,当超声速气流流过进气道时,在一定的出口反

导轨的结构设计说明

直线导轨的结构设计(含转动导轨) 1导轨的作用和设计要求 当运动件沿着承导件作直线运动时,承导件上的导轨起支承和导向的作用,即支承运动件和保证运动件 在外力(载荷及运动件本身的重量)的作用下,沿给定的方向进行直线运动。对导轨的要求如下: 1.一定的导向精度。导向精度是指运动件沿导轨移动的直线性,以及它与有关基面间的相互位置的正 确性。 2.运动轻便平稳。工作时,应轻便省力,速度均匀,低速时应无爬行现象。 3.良好的耐磨性。导轨的耐磨性是指导轨长期使用后,能保持一定的使用精度。导轨在使用过程中要 磨损,但应使磨损量小,且磨损后能自动补偿或便于调整。 4.足够的刚度。运动件所受的外力,是由导轨面承受的,故导轨应有足够的接触刚度。为此,常用加 大导轨面宽度,以降低导轨面比压;设置辅助导轨,以承受外载。 5.温度变化影响小。应保证导轨在工作温度变化的条件下,仍能正常工作。 6.结构工艺性好。在保证导轨其它要求的条件下,应使导轨结构简单,便于加工、丈量、装配和调 整,降低本钱。 不同设备的导轨,必须作具体分析,对其提出相应的设计要求。必须指出,上述六点要相互影响的。 2导轨设计的主要容 设计导轨应包括下列几方面容: 1.根据工作条件,选择合适的导轨类型。 2.选择导轨的截面外形,以保证导向精度。 3.选择适当的导轨结构及尺寸,使其在给定的载荷及工作温度围,有足够的刚度,良好的耐磨性, 以及 运动轻便和平稳。 4.选择导轨的补偿及调整装置,经长期使用后,通过调整能保持需要的导向精度。 5.选择公道的润滑方法和防护装置,使导轨有良好的工作条件,以减少摩擦和磨损。 6.制订保证导轨所必须的技术条件,如选择适当的材料,以及热处理、精加工和丈量方法等。3导轨的 结构设计 1.滑动导轨 ⑴基本形式(见图21-10) 三角形导轨:该导轨磨损后能自动补偿,故导向精度高。它的截面角度由载荷大小及导向要求而定,一般为90°为增加承载面积,减小比压,在导轨高度不变的条件下,采用较大的顶角(110。?120°;为进步导向性,采用较小的顶角(60°。假如导轨上所受的力,在两个方向上的分力相差很大,应采用不对称三角形,以使力的作用方向尽可能垂直于导轨面。 矩形导轨:优点是结构简单,制造、检验和修理方便;导轨面较宽,承载力较大,刚度高,故应用广泛。但它的导向精度没有三角形导轨高;导轨间隙需用压板或镶条调整,且磨损后需重新调整。

浅谈飞机进气道

超音速进气道在结构上更复杂,它通过多个较弱的斜激波实现超音速气流的减速。超音速进气道分为外压式、内压式和混合式三种。外压式进气道:在进口前装有中心锥或斜板,以形成斜激波减速,降低进口正激波的强度,从而提高进气减速的效率。外压式进气道的超音速减速全部在进气口外完成,进气口内通道基本上是亚音速扩散段。内压式进气道:为收缩扩散形管道,超音速气流的减速增压全在进口以内实现。设计状态下,气流在收缩段内不断减速到喉部恰为音速,在扩散段内继续减到低亚音速。内压式进气道效率高、阻力小,但非设计状态性能不好,起动困难,在飞机上未见采用。混合式进气道:是内外压式的折衷。 对于超音速飞机而言,本身其飞行马赫数变化范围较宽,对于进气道就要求在较宽的范围内高效的减速增压;而且,由于超音速飞行,进口前气流不能自动地适应发动机所需而引入适当的流量,容易发生溢流。所以随着速度提高,飞机进气道也发生了很大的变化,结构上朝着更加复杂化发展,这也是性能和速度提高后确保发动机工作稳定的先决条件。飞机进气口大小是不变的,而高速和低速飞行时发动机对空气量的需求却不一样,尤其超音速飞行时,进入进气道的空气量超过了发动机的实际需求,如果不将其排除则会导致额外的阻力,所以,超音速进气道都设有旁路系统,空气超过发动机需求时,则开启旁路系统,将多余的空气排放出去。圆形或半圆形的进气道有个中心锥,它一是用来调节进气量,还有一个重要的作用是调节激波的位置,超音速进气道与亚音速进气道在外形上的的主要区别就是是否有中心锥和压缩斜板,中心锥可以看到,而压缩板有的在进气道内部。 它主要经历了四个阶段: (一)三维轴对称进气道这种进气道通常指的是圆形、半圆形、四分之一圆形进气道,它与亚音速类似,但是它有一个中心锥面的预压缩面,中心锥的位置是可以调节的,以适应不同速度下的进气量要求,提高进气效率,使发动机始终在最佳状态下工作,满足飞机的飞行需要。由于安装了中心锥,在低速,尤其是起飞阶段进气量不足,所以采用这种进气道的飞机一般在进气口后方开有一个或多个辅助进气口,这种进气道一般用在速度2.2M以下的飞机。 F104

发动机进气系统选型设计手册

轻卡发动机进气系统的设计 一、进气系统概述 1,发动机进气系统: 1)进气系统的功用 发动机进气系统关系到发动机动力性、经济性、进气噪声、柴油机的烟度等性能。 ●为发动机提供足量的空气,以保证发动机功率的正常发挥;(进气阻力增加6Kpa,功率下降3%左右)。 ●有足够的滤清效率及过滤精度,滤除空气中的硬质灰尘颗粒,降低灰尘对发动机的磨损; ●对进气产生一定的抑制作用,降低进气噪音。 2)进气系统布置要求 空气滤清器作为发动机进气系统的一部分,在系统布置时,必须从整个进气系统考虑以下几点: 1)空气滤清器进口处的温度,不应过高,不应超出环境温度的15℃(较高要求为不超过8℃),进气温度过高会降低发动机充气系数。 2)进气口应避免吸入雨雪及发动机排出的废气。 3)进气口应避开机舱的负压区,集灰区,甩泥区。卡车空滤进口应尽量升高,放在驾驶室顶部,以降低吸入空气的含尘浓度,空气灰尘浓度与地面距离高度三次方成反比。 4)空气滤清器至发动机进气口之间的管子应减少接口数量,接口卡箍沿管壁360o密封。 5)空气滤清器装在车辆上,容易让人接近,便于保养,外壳上在醒目的位置贴上明确的保养说明。 2,空气滤清器 在发动机进气系统中,空气滤清器(以下简称空滤器)是其中最主要的部件。空滤器的作用主要是保护发动机,使它不被空气中的灰尘磨损,以提高发动机的经济性和动力性,并可延长汽车的大修里程。统计显示,机动车和工程机械发动机的早期磨损,70%与空气滤清器有关,空气滤清器的滤清效率对发动机的磨损和寿命起着决定性的作用。 1)空滤器的分类: 根据使用条件,空气滤清器主要有以下类型: (1)干式(2)湿式(3)油浴式(4)离心式(5)组合式

相关主题
文本预览
相关文档 最新文档