当前位置:文档之家› 2017年北京市各区初三期末二次函数压轴题

2017年北京市各区初三期末二次函数压轴题

2017年北京市各区初三期末二次函数压轴题
2017年北京市各区初三期末二次函数压轴题

四、压轴题

昌平28.在平面直角坐标系xOy 中,抛物线2

2y x bx c =-++经过点

A (0,2),

B (3,4-).

(1)求抛物线的表达式及对称轴;

(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点, 记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点).若直 线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的 取值范围.

朝阳27.在平面直角坐标系xOy 中,直线y =1

4

-

x +n 经过点A (-4, 2),分别与x ,y 轴交于点B ,C ,抛物线y = x 2

-2mx +m 2

-n 的顶点为D . (1) 求点B ,C 的坐标;

(2) ①直接写出抛物线顶点D 的坐标(用含m 的式子表示)②若抛物线y = x 2-2mx +m 2

-n 与线段BC 有公共点,求m 的取值范围.

1

2345

–1–25

4

3

2

1

y x

O -1-2

-3

-3-5

-4y –1–2–3–41234

–1

–2

1

23O

大兴28.已知:抛物线y = ax 2 + 4ax + 4a (a > 0)

(1)求抛物线的顶点坐标;

(2)若抛物线经过点A(m,y1),B(n,y2),其中– 4 ”填空);

(3)如图,矩形CDEF的顶点分别为C(1,2),D(1,4),E(– 3,4),F(– 3,2),若该抛物线与矩形的边有且只有两个公共点(包括矩形的顶点),求a的取值范围.

东城27.在平面直角坐标系xO y中,抛物线(0

m≠)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(0,-3).

(1)求抛物线的解析式;

(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

(3)将抛物线在B,C之间的部分记为图象G(包含B,C两点),若直线y=5x+b与图象G有公共点,请直接写出b的取值范围.

224

y mx mx m

=-+-

房山28. 在平面直角坐标系中,已知抛物线2

21y x x n =-+-与y 轴交于点A ,其对称轴与x 轴交于点B .

(1)当△OAB 是等腰直角三角形时,求n 的值;

(2)点C 的坐标为(3,0),若该抛物线与线段OC

公共点,结合函数的图象求n 的取值范围.

房山29. 若抛物线L :()02≠++=abc c b a c bx ax y 是常数,且,,与直线l 都经过y 轴上的同一点,且抛物线L 的顶点在直线l 上,则称此抛物线L 与直线l 具有“一带一路”关系,并且将直线l 叫做抛物线L 的“路线”,抛物线L 叫做直线l 的“带线”.

(1) 若“路线”l 的表达式为42-=x y ,它的“带线”L 的顶点在反比例函数x y 6=

(x <

0)的图象上,求“带线”L 的表达式;

(2)如果抛物线122-+-=m mx mx y 与直线1+=nx y 具有“一带一路”关系,求m,n 的值; (3)设(2) 中的“带线”L 与它的“路线”l 在 y 轴上的交点为A . 已知点P 为“带线”L 上的点,当以点P 为圆心的圆与“路线”l 相切于点A 时,求出点P 的坐标.

备用图

丰台28. 已知抛物线G 1:()22+-=h x a y 的对称轴为x = -1,且经过原点.

(1)求抛物线G 1的表达式; (2)将抛物线G 1先沿x 轴翻折,再向左平移1个单位后,与x 轴分别交于A ,B 两点(点

A 在点

B 的左侧),与y 轴交于

C 点,求A 点的坐标;

(3)记抛物线在点A ,C 之间的部分为图象G 2(包含A ,C 两点),如果直线

m :2-=kx y 与图象G 2

的对称轴交点的纵坐标t 的值或范围.

海淀27.在平面直角坐标系中,抛物线2443y mx mx m =-++的顶点为A . (1)求点A 的坐标;

(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''.

①直接写出点O '和A

'的坐标;

②若抛物线2443y mx mx m =-++与四边形AOO A ''有且只有两个公共点,结合函数的图象,求m 的取值范围.

xOy

怀柔27.已知:关于x 的方程x 2

-(m+2)x+m+1=0. (1)求证:该方程总有实数根;

(2)若二次函数y= x 2

-(m+2)x+m+1(m>0)与x 轴交点为A ,B (点A 在点B 的左边),且

两交点间的距离是2,求二次函数的表达式;

(3)横、纵坐标都是整数的点叫做整点.在(2)的条件下,垂直于y 轴的直线y=n 与抛物线交于点E ,F.若抛物线在点E ,F 之间的部分与线段EF 所围成的区域内(包括边界)恰有7个整点,结合函数的图象,直接写出n 的取值范围.

门头沟27.在平面直角坐标系xOy 中,二次函数图像所在的位置如图所示: (1)请根据图像信息求该二次函数的表达式;

(2)将该图像(x >0)的部分,沿y 轴翻折得到新的图像,请直接写出翻折后的二次函

数表达式;

(3)在(2)的条件下与原有二次函数图像构成了新的图像,记为图象G ,现有一次函

数 2

3

y x b =

+的图像与图像G 有4个交点, 请画出图像G

的示意图并求出b

备用图1 备用图2

平谷27.已知,抛物线C 1:()2

4410y mx mx m m =-+-≠ 经过点(1,0).

(1)直接写出抛物线与x 轴的另一个交点坐标;

(2)①求m 的值;

②将抛物线C 1的表达式化成2

()y x h k =-+的形式,并写出顶点A

的坐标;

(3)研究抛物线C 2:()2

430y kx kx k =-+≠,顶点为点B .

①写出抛物线C 1,C 2共有的一条性质;

②若点A ,B 之间的距离不超过2,求k 的取值范围.

石景山27.在平面直角坐标系xOy 中,抛物线C :2

(3)y x m x =+-经过点(1,0)A -. (1)求抛物线C 的表达式;

(2)将抛物线C 沿直线1=y 翻折,得到的新抛物线记为1C ,求抛物线1C 的顶点

坐标;

(3)将抛物线C 沿直线y n =翻折,得到的图象记为2C ,设C 与2C 围成的封闭图

形为M ,在图形M 上内接一个面积..为4的正方形(四个顶点均在M 上),且这个正方形的边分别与坐标轴平行.求n 的值.

通州27.已知:过点A (3,0)直线l 1:y x b =+与直线l 2:x y 2-=交于点B .抛物线c bx ax y ++=2

的顶点为B .

(1)求点B 的坐标;

(2)如果抛物线c bx ax y ++=2

经过点A ,求抛物线的表达式; (3)直线1-=x 分别与直线l 1, l 2交于C ,D 两点,当抛物线

c bx ax y ++=2与线段CD 有交点时,求a 的取值范围.

西城7.在平面直角坐标系xOy 中,抛物线y = - x 2

+ mx +n 与x 轴交于点A ,B (A 在B 的左侧).

(1)抛物线的对称轴为直线x = -3, AB = 4.求抛物线的表达式;

(2)平移(1)中的抛物线,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平

移后的抛物线顶点为P ,若△OCP 是等腰直角三角形,求点P 的坐标;

(3)当m =4时,抛物线上有两点M (x 1,,y 1)和N (x 2,,y 2),若x 1< 2,x 2>2,x 1+ x 2 > 4,

试判断y 1与y 2的大小,并说明理由.

延庆27.在平面直角坐标系xOy中,直线y= -x+2与y轴交于点A,点A关于x轴的对称点为B,过点B作y轴的垂线l,直线l与直线y= -x+2交于点C;抛物线y=nx2-2nx+n+2 (其中n<0)的顶点坐标为D.

(1)求点C,D的坐标;

(2)若点E(2,-2)在抛物线y=nx2-2nx+n+2(其中n<0)上,求n的值;

(3)若抛物线y=nx2-2nx+n+2(其中n<0)

与线段BC有唯一公共点,求

中考二次函数压轴题经典题型

中考二次函数压轴题经典题型 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM 有最大面积,求矩形PNDM的面积最大值? 2、如图,二次函数的图象经过点D(0, 3 9 7 ),且顶点C的横坐标为4,该图象在x 轴上截得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由. 3.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(1 2 , 5 2 )和B(4,m),点P是线段AB 上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标.

4、如图,二次函数y=a+bx的图象经过点A(2,4)与B(6,0). (1)求a,b的值; (2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB 的面积S关于点C的横坐标x的函数表达式,并求S的最大值。 5、如图1,对称轴x=为直线的抛物线经过B(2,0)、C(0,4)两点,抛物线与轴的另一交点为A.(1)求抛物线的解析式; (2)若点P为第一象限内抛物线上一点,设四边形COBP的面积为S,求S的最大值; (3)如图2,若M是线段BC上一动点,在轴上是否存在这样有点Q,使△MQC为等腰三角形且△MQB 为直角三角形?若存在,求出Q点坐标;若不存在,请说明理由.

二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的面积来得到

中考数学二次函数压轴题(含答案)

中考数学二次函数压轴题(含答案) 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得;

故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 解答:

解:(1)将B(4,0)代入抛物线的解析式中,得: 0=16a﹣×4﹣2,即:a=; ∴抛物线的解析式为:y=x2﹣x﹣2. (2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2); ∴OA=1,OC=2,OB=4, 即:OC2=OA?OB,又:OC⊥AB, ∴△OAC∽△OCB,得:∠OCA=∠OBC; ∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°, ∴△ABC为直角三角形,AB为△ABC外接圆的直径; 所以该外接圆的圆心为AB的中点,且坐标为:(,0). (3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2; 设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0; ∴4﹣4×(﹣2﹣b)=0,即b=﹣4; ∴直线l:y=x﹣4. 所以点M即直线l和抛物线的唯一交点,有: ,解得:即M(2,﹣3). 过M点作MN⊥x轴于N, S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.

初三数学二次函数的最值问题一(线段和周长最值)

二次函数的最值问题(一) 【课题】二次函数的最值问题 _____ 分校______年级讲师:_____ 授课时间:____年____月___日 【学习目标】 1、二次函数多与线段长度最值,多边形的周长,面积最值结合综合考查 2、掌握分类讨论思想,数形结合思想在二次函数中的应用 3、学生应具备基本的计算能力,待定系数法求解析式的步骤,利用参数发表示长度或面积的表达式。 【知识回顾】 1、表示图形面积的方法:直接代公式,分割法、补全法等。 2、常用到的公式:两点坐标距离公式,中点坐标公式。 3、线段最短问题涉及到的知识点是做对称 【新知点击】 考点一最大(小)值何处取得: (1)二次函数的一般式 c bx ax y ++=2(0≠a ) 化成顶点式 a b ac a b x a y 44)2(2 2-++=, 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值). 即当0>a 时,函数有最小值,并且当 a b x 2-=,a b ac y 442-=最小值; 当0

精选中考二次函数压轴题[附答案解析]

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 21的图象经过点D ??? ? ?-29,3,与x 轴交于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值; (3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线QC 匀速运动(当点Q 与点C 重合时停止运动),设运动时间为t 秒,矩形EFFQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式. 3.(2010福建福州)如图1,在平面直角坐标系中,点B 在直线y =2x 上,过点B 作x 轴的垂线,垂足为A ,OA =5.若抛物线y =16 x 2+bx +c 过O 、A 两点. (1)求该抛物线的解析式; (2)若A 点关于直线y =2x 的对称点为C ,判断点C 是否在该抛物线上,并说明理由; (3)如图2,在(2)的条件下,⊙O 1是以BC 为直径的圆.过原点O 作⊙O 1的切线OP ,P 为切点(点P 与点C 不重合).抛物线上是否存在点Q ,使得以PQ 为直径的圆与⊙O 1相切?若存在,求出点Q 的横坐标;若不存在,请说明理由 4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别为(-4,0)和(2,0),BC =23.设直线AC (第2(图1) (图

2019中考二次函数压轴题专题分类训练

中考二次函数压轴题专题分类训练 题型一:面积问题 【例1】(2009湖南益阳)如图2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由. 【变式练习】 1.(2009广东省深圳市)如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标; (2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由. (4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由. 图2

2.(2010绵阳)如图,抛物线y = ax 2 + bx + 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G . (1)求抛物线的函数解析式,并写出顶点D 的坐标; (2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长; (3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时, △EFK 的面积最大?并求出最大面积. 3.(2012铜仁)如图,已知:直线3+-=x y 交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点. (1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线3+-=x y 上有一点P,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由. 题型二:构造直角三角形 【例2】(2010山东聊城)如图,已知抛物线y =ax 2 +bx +c (a ≠0)的对称轴为x =1,且抛物线经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B . (1)求这条抛物线所对应的函数关系式; (2)在抛物线的对称轴x =1上求一点M ,使点M 到点A 的距离与到点C 的距离之和最小,C E D G A x y O B F

(完整版)二次函数的最值问题

典型中考题(有关二次函数的最值) 屠园实验周前猛 一、选择题 1.已知二次函数y=a(x-1)2+b有最小值–1,则a与b之间的大小关( ) A. ab D不能确定 答案:C 2.当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,则实数m的值为() A、- 7 4 B、3或-3 C、2或-3D2或-3或- 7 4 答案:C ∵当-2≤x≤l时,二次函数 y=-(x-m)2+m2+1有最大值4,∴二次函数在-2≤x≤l上可能的取值是x=-2或x=1或x=m. 当x=-2时,由y=-(x-m)2+m2+1解得m= - 7 4 , 2 765 y x 416 ?? =-++ ? ?? 此时,它 在-2≤x≤l的最大值是65 16 ,与题意不符. 当x=1时,由y=-(x-m)2+m2+1解得m=2 ,此时y=-(x-2)2+5 ,它在-2≤x≤l的最大值是4,与题意相符. 当x= m时,由4=-(x-m)2+m2+1解得m=3m=3y=-(x+3)2+4.它在-2≤x≤l的最大值是4,与题意相符;当3,y=-(x-3)2+4它在-2≤x≤l在x=1处取得,最大值小于4,与题意不符. 综上所述,实数m的值为2或-3. 故选C. 3.已知0≤x≤1 2 ,那么函数y=-2x2+8x-6的最大值是() A -10.5 B.2 C . -2.5 D. -6 答案:C

解:∵y=-2x2+8x-6=-2(x-2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而 增大.又∵0≤x≤1 2 ,∴当x= 1 2 时,y取最大值,y最大=-2( 1 2 -2)2+2=-2.5.故选:C. 4、已知关于x的函数. 下列结论: ①存在函数,其图像经过(1,0)点; ②函数图像与坐标轴总有三个不同的交点; ③当时,不是y随x的增大而增大就是y随x的增大而减小; ④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数。 真确的个数是() A,1个B、2个 C 3个D、4个 答案:B 分析:①将(1,0)点代入函数,解出k的值即可作出判断; ②首先考虑,函数为一次函数的情况,从而可判断为假; ③根据二次函数的增减性,即可作出判断; ④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求 出顶点的纵坐标表达式,即可作出判断. 解:①真,将(1,0)代入可得:2k-(4k+1)-k+1=0, 解得:k=0.运用方程思想; ②假,反例:k=0时,只有两个交点.运用举反例的方法; ③假,如k=1, b5 -= 2a4 ,当x>1时,先减后增;运用举反例的方法; ④真,当k=0时,函数无最大、最小值; k≠0时,y最= 22 4ac-b24k+1 =- 4a8k , ∴当k>0时,有最小值,最小值为负; 当k<0时,有最大值,最大值为正.运用分类讨论思想. 二、填空题: 1、如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB 上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是

《二次函数热点压轴题》

第一部分:以“增减性”为主导的综合问题 【典型例题1】 在平面直角坐标系xOy 中.已知抛物线22y ax bx a =++-的对称轴是直线x =1. (1)用含a 的式子表示b ,并求抛物线的顶点坐标; (2)已知点()0,4A -,()2,3B -,若抛物线与线段AB 没有公共点,结合函数图象, 求a 的取值范围; (3)若抛物线与x 轴的一个交点为C (3,0),且当m ≤x ≤n 时,y 的取值范围是 m ≤y ≤6,结合函数图象,直接写出满足条件的m ,n 的值 . 二次函数热点压轴题

【变式与拓展】 1.在平面直角坐标系xOy 中,已知抛物线222++-=a ax x y 2的顶点C ,过点B (0,t )作与y 轴垂直的直线l ,分别交抛物线于E ,F 两点,设点E (x 1,y 1),点F (x 2,y 2)(x 1<x 2). (1)求抛物线顶点C 的坐标; (2)当点C 到直线l 的距离为2时,求线段EF 的长; (3)若存在实数m ,使得x 1≥m -1且x 2≤m +5成立,直接写出t 的取值范围.

2.在平面直角坐标系xOy中,抛物线223 y x bx =-+-的对称轴为直线x=2. (1)求b的值; (2)在y轴上有一动点P(0,m),过点P作垂直y轴的直线交抛物线于点A(x1,y1),B(x2,y2), 其中 12 x x<. ①当 213 x x-=时,结合函数图象,求出m的值; ②把直线PB下方的函数图象,沿直线PB向上翻折,图象的其余部分保持不变,得到一个新的图象W,新图象W在0≤x≤5时,44 y -≤≤,求m的取值范围.

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

精选中考二次函数压轴题(含答案)

精选中考二次函数压轴题(含答案)

精选中考二次函数压轴题(含答案) 1.如图,二次函数c x y +-=2 2 1的图象经过点D ?? ? ??- 29,3,与x 轴交 于A 、B 两点. ⑴求c 的值; ⑵如图①,设点C 为该二次函数的图象在x 轴上方的一点,直线AC 将四边形ABCD 的面积二等分,试证明线段BD 被直线AC 平分,并求此时直线AC 的函数解析式; ⑶设点P 、Q 为该二次函数的图象在x 轴上方的两个动点,试猜想:是否存在这样的点P 、Q ,使△AQP ≌△ABP ?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用) 2.(2010福建福州)如图,在△ABC 中,∠C =45°,BC =10,高AD =8,矩形EFPQ 的一边QP 在BC 边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H . (1)求证:AH AD =EF BC ; (2)设EF =x ,当x 为何值时,矩形EFPQ 的面积最大?

4.(2010江苏无锡)如图,矩形ABCD 的顶点A 、B 的坐标分别 为(-4,0)和(2,0),BC =AC 与直线x =4交于点E . (1)求以直线x =4为对称轴,且过C 与原点O 的抛物线的 函数关系式,并说明此抛物线一定过点E ; (2)设(1)中的抛物线与x 轴的另一个交点为N ,M 是该 抛物线上位于C 、N 之间的一动点,求△CMN 面积的最大值. 5.(2010湖南邵阳)如图,抛物线y =2 13 4 x x -++与x 轴交于点A 、 B ,与y 轴相交于点 C ,顶点为点 D ,对称轴l 与直线BC 相交于点E ,与x 轴交于点F 。 (1)求直线BC 的解析式; (2)设点P 为该抛物线上的一个动点,以点P 为圆心,r 为 半径作⊙P 。 ①当点P 运动到点D 时,若⊙P 与直线 BC 相交 ,求r 的取值 范围; ②若r ,是否存在点P 使⊙P 与直线BC 相切,若存在,请

人教版中考数学压轴题型24道:二次函数专题含答案解析

人教版中考数学压轴题24道:二次函数专题 1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M. (1)求抛物线的解析式; (2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值; (3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值. 2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式; (2)如图1,P为抛物线上在第二象限内的一点,若△PAC面积为3,求点P的坐标; (3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由. 3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B. (1)求抛物线解析式及B点坐标; (2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积; (3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位

置时,PC+PA 的值最小,请求出这个最小值,并说明理由. 4.已知函数y =(n 为常数) (1)当n =5, ①点P (4,b )在此函数图象上,求b 的值; ②求此函数的最大值.(2)已知线段AB 的两个端点坐标分别为A (2,2)、B (4,2),当此函数的图象与线段 AB 只有一个交点时,直接写出n 的取值范围. (3)当此函数图象上有4个点到x 轴的距离等于 4,求n 的取值范围. 5.在平面直角坐标系 xOy 中(如图),已知抛物线 y =x 2 ﹣2x ,其顶点为A . (1)写出这条抛物线的开口方向、顶点A 的坐标,并说明它的变化情况; (2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点” . ①试求抛物线y =x 2 ﹣2x 的“不动点”的坐标; ②平移抛物线y =x 2﹣2x ,使所得新抛物线的顶点 B 是该抛物线的“不动点”,其对称轴 与x 轴交于点C ,且四边形OABC 是梯形,求新抛物线的表达式.

初中二次函数压轴题及答案

27.如图,抛物线y=1 2 x2+mx+n与直线y=- 1 2 x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A (0,3),C(3,0). (Ⅰ)求抛物线的解析式和tan∠BAC的值; (Ⅱ)在(Ⅰ)条件下: (1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度 运动到E点,再沿线段EA A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?

(1)抛物线的解析式为y=12x 2-52x+3.13;(2)(11,36)、(133,149)、(173,449 );点E 的坐标为(2,1). 试题分析: (Ⅰ)只需把A 、C 两点的坐标代入y= 12 x 2 +mx+n ,就可得到抛物线的解析式,然后求出直线AB 与抛物线的交点B 的坐标,过点B 作BH ⊥x 轴于H ,如图1.易得∠BCH=∠ACO=45°, 而得到∠ACB=90°,然后根据三角函数的定义就可求出tan ∠BAC 的值; (Ⅱ)(1)过点P 作PG ⊥y 轴于G ,则∠PGA=90°.设点P 的横坐标为x ,由P 在y 轴右侧可得x >0,则PG=x ,易得∠APQ=∠ACB=90°.若点G 在点A 的下方,①当∠PAQ=∠CAB 时,△PAQ ∽△CAB .此时可证得△PGA ∽△BCA ,根据相似三角形的性质可得AG=3PG=3x .则有P (x ,3-3x ),然后把P (x ,3-3x )代入抛物线的解析式,就可求出点P 的坐标②当∠PAQ=∠CBA 时,△PAQ ∽△CBA ,同理,可求出点P 的坐标;若点G 在点A 的上方,同理,可求出点P 的坐标;(2)过点E 作EN ⊥y 轴于N ,如图3.易得 ,则点M 在整个运动中所用 的时间可表示为 1DE =DE+EN .作点D 关于AC 的对称点D′,连接D′E ,则有D′E=DE ,D′C=DC ,∠D′CA=∠DCA=45°,从而可得∠D′CD=90°,DE+EN=D′E+EN .根据两点之间线段最短可得:当D′、E 、N 三点共线时,DE+EN=D′E+EN 最小.此时可证到四边形OCD′N 是矩形,从而有ND′=OC=3,ON=D′C=DC .然后求出点D 的坐标,从而得到OD 、ON 、NE 的值,即可得到点E 的坐标. 试题解析:(Ⅰ)把A (0,3),C (3,0)代入y= 12 x 2 +mx+n ,得 31 902n mx n =????++=??,解得:523m n ? =- ???=? .∴抛物线的解析式为y=12x 2-52x+3. 联立2132153 22 y x y x x ? =-+????=-+??,解得:03x y =??=?或41x y =??=?,∴点B 的坐标为(4,1). 过点B 作BH ⊥x 轴于H ,如图1. ∵C (3,0),B (4,1),∴BH=1,OC=3,OH=4,CH=4-3=1,∴BH=CH=1. ∵∠BHC=90°,∴∠BCH=45°, ACO=45°, ∴∠ACB=180°-45°-45°=90°,∴tan ∠ BAC= 1 3 BC AC ==; (Ⅱ)(1)存在点P ,使得以A ,P ,Q 为顶点的三角形与△ACB 相似. 过点P 作PG ⊥y 轴于G ,则∠PGA=90°.

二次函数最值问题(含答案)

二次函数最值问题 一.选择题(共8小题) 1.如果多项式P=a2+4a+2014,则P的最小值是() A.2010 B.2011 C.2012 D.2013 2.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值等于()A.10 B.4 C.5 D.6 3.若二次函数y=ax2+bx+c的图象开口向下、顶点坐标为(2,﹣3),则此函数有() A.最小值2 B.最小值﹣3 C.最大值2 D.最大值﹣3 4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在 5.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是() A.3.125 B.4 C.2 D.0 6.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为() A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3 7.二次函数y=﹣(x﹣1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为() A.B.2 C.D. 8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC 上方的抛物线上的一个动点,连结DC,DB,则△BCD的面积的最大值是()

A.7 B.7.5 C.8 D.9 二.填空题(共2小题) 9.已知二次函数y=2(x+1)2+1,﹣2≤x≤1,则函数y的最小值是,最大值是. 10.如图,在直角坐标系中,点A(0,a2﹣a)和点B(0,﹣3a﹣5)在y轴上, =6.当线段OM最长时,点M的坐标为. 点M在x轴负半轴上,S △ABM 三.解答题(共3小题) 11.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1), ①当点F的坐标为(1,1)时,如图,求点P的坐标; ②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.

2019年中考二次函数压轴题整理

中考数学冲刺复习资料:二次函数压轴题 面积类 1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C 点,已知B点坐标为(4,0). (1)求抛物线的解析式; (2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标; (3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标. 平行四边形类 3.如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,﹣3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.

(1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由. 4.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O. (1)一抛物线经过点A′、B′、B,求该抛物线的解析式; (2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由. (3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B 的两条性质. 5.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上. (1)求抛物线顶点A的坐标; (2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;

初三二次函数压轴题解题模板

专题一:利用两点距离公式解决等腰三角形以及直角三角形存在性问题 公式:111()P x y ,,212()P x y , 则12PP = (1)讨论等腰三角形解题四步曲 Step1 设出来; Step2Step3:代入点坐标到两点距离公式表示线段,形成方程,求出所求点; Step4:检验所求的点是否和已经点重合,如果是,舍去,否则保留。 (2)讨论直角三角形解题四步曲 法一: Step1:将三个点的坐标列出来,未知点按照“横坐标可以随便设,纵坐标不能随便给”的原则 设出来; Step2:每个点各做一次直角顶点,分三次讨论,形成三组勾股的等量关系; Step3:代入点坐标到两点距离公式表示线段,形成方程,求出所求点; Step4:检验所求的点是否和已经点重合,如果是,舍去,否则保留。 法二:利用 也可以解题 若 则 专题二:和最小VS 差最大问题 (1)和最小,要异侧,两点连交直线为所求点,否则先作对称; (2)差最大,要同侧,两点连交并延长交直线为所求点,否则先作对称; 初三《二次函数》主要压轴题解题模板归类 11(P x

典型例题:如图,抛物线21 2 3 y ax x =-+与x轴交于点A和点B,与y轴交于点C, 已知点B的坐标为(3,0)。设N是抛物线对称轴上的一个动点,d=|AN-CN|。 探究:是否存在一点N,使d的值最大?若存在,请直接写出点N的坐标和d的最大值; 若不存在,请简单说明理由。 专题三:斜三角形面积问题 S △ABC=,即三角形面积等于水平宽与铅垂高乘积的一半 Step1:过点A作x轴的垂线交BC与D(如图) Step2:设点A坐标;(横坐标可以随便设,纵坐标不能随便给);表示D点坐标(关键求BC解析式,从而得到其纵坐标),确定铅垂高长度=坐标大-坐标小 Step3:套入公式,得到面积的表达式or结果; 建议配套复习题目: 典型例题:(2012学年越秀区期末考24题)如图,平面直角坐标系xOy中,已知抛物线经过A (4,0)、B(0,4)、C(2 -,0三点. (1)求抛物线的解析式; (2)若点M为抛物线上的一动点,且位于第一象限内, 设AMB △的面积为S,试求S的最大值; 专题四:平行四边形存在性 Step1:表示四个点(未知点大胆设,尽量减少未知数) Step2:分三次讨论(图形字母没有顺序规定时):一组对角顶点vs另外一组对角顶点 Step3:列等式(2条) (1)一组对角顶点横坐标之和=另一组对角顶点横坐标之和 (2)一组对角顶点纵坐标之和=另一组对角顶点纵坐标之和

全国中考二次函数压轴题集锦(附详细答案)

1.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4, 抛物线y=x2+bx+c经过A,B两点. (1)求抛物线的解析式; (2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于 点F,当线段EF的长度最大时,求点E、F的坐标; (3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由. 2.如图,关于x的二次函数y=x2+b x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点 C(0,3),抛物线的对称轴与x轴交于点D. (1)求二次函数的表达式; (2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积. 3.如图,已知二次函数y=ax2+b x+c(a≠0)的图象经过A(﹣1,0)、B(4,0)、C(0,2) 三点. (1)求该二次函数的解析式; (2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标; (3)点P是该二次函数图象上位于第一象限上的一动点,连接PA分别交BC、y轴于点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1﹣S2的最大值. 4.如图1,已知二次函数y=ax2+b x+c(a、b、c为常数,a≠0)的图象过点O(0,0)和点A (4,0),函数图象最低点M的纵坐标为﹣,直线l的解析式为y=x.

中考数学分类汇编二次函数压轴题14道

中考数学分类汇编二次函数压轴题 1.(2016?成都第28题) 如图,在平面直角坐标系xOy 中,抛物线y =a (x +1)2﹣3与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点 C (0,﹣),顶点为 D ,对称轴与x 轴交于点H ,过点H 的直线l 交抛物线于P ,Q 两点,点Q 在y 轴的右侧. (1)求a 的值及点A ,B 的坐标; (2)当直线l 将四边形ABCD 分为面积比为3:7的两部分时,求直线l 的函数表达式; (3)当点P 位于第二象限时,设PQ 的中点为M ,点N 在抛物线上,则以DP 为对角线的四边形DMPN 能否为菱形?若能,求出点N 的坐标;若不能,请说明理由. 2.(2016?扬州第28题)如图1,二次函数2 y ax bx =+的图像过点A (-1,3),顶点B 的横坐标为1. (1)求这个二次函数的表达式; (2)点P 在该二次函数的图像上,点Q 在x 轴上,若以A 、B 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标; (3)如图3,一次函数y kx =(k >0)的图像与该二次函数的图像交于O 、C 两点,点T 为该二次函数图像上位于直线OC 下方的动点,过点T 作直线TM ⊥OC ,垂足为点M ,且M 在线段OC 上(不与O 、C 重合),过点T 作直线TN ∥y 轴 交OC 于点N 。若在点T 运动的过程中,2 ON OM 为常数,试确定k 的值。 x y 图3 N M O C T x y 图2(备用图) B A O x y 1 3-1图1 B A O

二、与轴对称和等腰三角形性质有关的综合题 3.(2016?益阳第21题)如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. 4.(2016?哈尔滨第27题)如图,二次函数y =ax 2 +bx (a ≠0)的图象经过点A (1,4),对称轴是直线x =- 3 2 ,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式; (2)设点F 是BD 的中点,点P 是线段DO 上的动点,将△BPF 沿边PF 翻折,得到△B ′PF ,使△B ′PF 与△DPF 重叠部 分的面积是△BDP 的面积的 1 4 ,若点B ′在OD 上方,求线段PD 的长度; (3)在(2)的条件下,过B ′作B ′H ⊥PF 于H ,点Q 在OD 下方的抛物线上,连接AQ 与B ′H 交于点M ,点G 在线段 AM 上,使∠HPN +∠DAQ =135°,延长PG 交AD 于N .若AN + B ′M = 5 2 ,求点Q 的坐标. x y A D C B O x y A D C B O x y A D C B O

中考二次函数压轴题及答案

二次函数压轴题精讲 1.二次函数综合题 (1)二次函数图象与其他函数图象相结合问题 解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项. (2)二次函数与方程、几何知识的综合应用 将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件. (3)二次函数在实际生活中的应用题 从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.

例1. 已知:如图,在平面直角坐标系中,直线与x轴、y轴的交点分 别为A、B,将∠对折,使点O的对应点H落在直线上,折痕交x轴于点C.(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式; (2)若抛物线的顶点为D,在直线上是否存在点P,使得四边形为平行四边形?若存在,求出点P的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线的交点为T,Q为线段上一点,直接写出﹣的取值范围.

2.如图,直线2与抛物线26(a≠0)相交于A(,)和B(4,m),点P是线 段上异于A、B的动点,过点P作⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△为直角三角形时点P的坐标.

中考二次函数压轴题解题技巧

中考二次函数压轴题———解题技巧 二次函数在全国中考数学中常常作为压轴题,同时在省级,国家级数学竞赛中也有二次函数大题,我们的学生大 部分都难以在有限时间内完全解答出来,最主要的原因是对解题思路以及方向上没有做到大体的定位。经多番研究比 较,发现 26 题基本设有三小问,第一问基础为主( 3 到 4 分),多为求解析式、坐标轴上坐标、系数、顶点,第二问为 中等档次( 4 分),多以求线段长度类、面积类、三角形形状判断、四边形形状、全等、相似,第三问区分度较大,拉 开距离的小问( 4 到 5 分),多以动点类结合,构成四边形、三角形,此问涉及面广,有多种情况。压轴题出题方向多 与几何图形紧密结合,出题范围广,但万变不离其宗,抓住其中关键性质,利用好代数式,80%的分值可以拿到手,现将压轴题的各种解法思路罗列出来,望各位同学有针对性的去查漏补缺,做到1得2拿3取半。 几个自定义概念: ①三角形基本模型:有一边在X 轴或 Y上,或有一边平行于X 轴或 Y轴的三角形称为三角形基本模型。 ②动点(或不确定点)坐标“一母示” :借助于动点或不确定点所在函数图象的解析式,用一个字母把该点坐标 表示出来,简称“设横表纵”。如:动点 P 在 y=2x+1 上,就可设P( t, 2t+1 ) .若动点P在y=3x22x 1 ,则可设为P(,22t 10t t3t)当然若动点M 在 X 轴上,则设为( t, 0) .若动点 M 在Y轴上,设为, ③ 动三角形:至少有一边的长度是不确定的,是运动变化的。或至少有一个顶点是运动,变化的三角形称为动 三角形。 ④动线段:其长度是运动,变化,不确定的线段称为动线段。 ⑤定三角形:三边的长度固定,或三个顶点固定的三角形称为定三角形。 ⑥定直线:其函数关系式是确定的,不含参数的直线称为定直线。如:y 3x 6 。 ⑦X 标, Y 标:为了记忆和阐述某些问题的方便,我们把横坐标称为x 标,纵坐标称为y 标。 ⑧直接动点:相关平面图形(如三角形,四边形,梯形等)上的动点称为直接动点,与之共线的问题中的点叫 间接动点。动点坐标“表示”是针对直接动点坐标而言的。 1.求证“两线段相等”的问题: 借助于函数解析式,先把动点坐标用一个字母表示出来; 然后看两线段的长度是什么距离(即是“点点”距离,还是“点轴距离” ,还是“点线距离” ,再运用两点之间的距离公式或点到 x 轴( y 轴)的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等。 2、“平行于y 轴的动线段长度的最大值”的问题: 由于平行于y 轴的线段上各个点的横坐标相等(常设为t),借助于两个端点所在的函数图象解析式,把两个端点 的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式y上 -y下或y1y2,把动线段的长度就表示成为一个自变量为t ,且开口向下的二次函数解析式,利用二次函数的 性质,即可求得动线段长度的最大值及端点坐标。 3、求一个已知点关于一条已知直线的对称点的坐标问题: 先用点斜式(或称K 点法)求出过已知点,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最 后用中点坐标公式即可。x1 x 2 , y 1y2 22 4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题(考得比较少): (方法 1)先求出定直线的斜率( k),由此可设出与定直线平行且与抛物线相切的直线的解析式(注意该直线与定直线的斜率相等,因为平行直线斜率(k)相等),再由该直线与抛物线的解析式组成方程组,用代入法把字

相关主题
文本预览
相关文档 最新文档