当前位置:文档之家› Balanced Aspect Ratio Trees and Their Use for Drawing Very Large Graphs

Balanced Aspect Ratio Trees and Their Use for Drawing Very Large Graphs

Balanced Aspect Ratio Trees and Their Use for Drawing Very Large Graphs
Balanced Aspect Ratio Trees and Their Use for Drawing Very Large Graphs

Balanced Aspect Ratio Trees and Their Use

for Drawing Large Graphs

Christian A.Duncan

Max-Planck-Institut f¨u r Informatik

Saarbr¨u cken,Germany

http://www.mpi-sb.mpg.de/~duncan

christian.duncan@mpi-sb.mpg.de

Michael T.Goodrich Stephen G.Kobourov

Center for Geometric Computing

The Johns Hopkins University

Baltimore,MD21218

https://www.doczj.com/doc/6d7463699.html,/labs/cgc/

goodrich@https://www.doczj.com/doc/6d7463699.html, kobourov@https://www.doczj.com/doc/6d7463699.html,

Abstract

We describe a new approach for cluster-based drawing of large graphs,

which obtains clusters by using binary space partition(BSP)trees.We

also introduce a novel BSP-type decomposition,called the balanced aspect

ratio(BAR)tree,which guarantees that the cells produced are convex and

have bounded aspect ratios.In addition,the tree depth is O(log n),and

its construction takes O(n log n)time,where n is the number of points.

We show that the BAR tree can be used to recursively divide a graph

embedded in the plane into subgraphs of roughly equal size,such that

the drawing of each subgraph has a balanced aspect ratio.As a result,we

obtain a representation of a graph as a collection of O(log n)layers,where

each succeeding layer represents the graph in an increasing level of detail.

The overall running time of the algorithm is O(n log n+m+D0(G)),where

n and m are the number of vertices and edges of the graph G,and D0(G)

is the time it takes to obtain an initial embedding of G in the plane.In

particular,if the graph is planar each layer is a graph drawn with straight

lines and without crossings on the n×n grid and the running time reduces

to O(n log n).

Communicated by G.Liotta and S.H.Whitesides:submitted November1998;revised November1999.

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)20

1Introduction

In the past decade hundreds of graph drawing algorithms have been developed (e.g.,see[7,8]),and research in methods for visually representing graphical information is now a thriving area with several di?erent emphases.One general emphasis in graph drawing research is directed at algorithms that display an entire graph,with each vertex and edge explicitly depicted.Such drawings have the advantage of showing the global structure of the graph.A disadvantage, however,is that they can be cluttered for drawings of large graphs,where details are typically hard to discern.For example,such drawings are inappropriate for display on a computer screen any time the number of vertices is more than the number of pixels on the screen.For this reason,there is a growing emphasis in graph drawing research on algorithms that do not draw an entire graph, but instead partially draw a graph,either by showing high-level structures and allowing users to“zoom in”on areas of interest,or by showing substructures of the graph and allowing users to“scroll”from one area of the graph to another. Such approaches are well suited for displaying large graphs,such as signi?cant portions of the world wide web graph,where every web page is a vertex and every hyper-link is an edge.

A common technique used for scrolling viewpoints is the?sh-eye view[16, 18,27],which shows an area of interest quite large and detailed(such as nodes representing a user’s web pages)and shows other areas successively smaller and in less detail(such as nodes representing a user’s department and organization web pages).Fish-eye views allow a user to understand the structure of a graph near a speci?c set of nodes,but they often do not display global structures.

An alternate technique displays the global structure present in a graph by clustering smaller subgraphs and drawing these subgraphs as single nodes or ?lled-in regions.By grouping vertices together into clusters,we can recursively divide a given graph into layers of increasing detail.These layers can then be viewed in a top-down fashion or even in?sh-eye view by following a single path in a cluster-based recursion tree.If clusters of a graph are given as input along with the graph itself,then several authors give various algorithms for displaying these clusters in two or three dimensions[10,11,13,14,24,31].If,as will often be the case,clusters of a graph are not given a priori,then various heuristics can be applied for?nding clusters using properties such as connectivity,cluster size, geometric proximity,or statistical variation[1,17,23,25].Once a clustering has been determined,we can generate the layers in a hierarchical drawing of the graph,with the layer depth(i.e.,number of layers)being determined by the depth of the recursive clustering hierarchy.This approach allows the graph to be represented by a sequence of drawings of increasing detail.As illustrated by Eades and Feng[10],this hierarchical approach to drawing large graphs can be very e?ective.Thus,our interest in this paper is to further the study of methods for producing good graph clusterings that can be used for graph drawing purposes.

We feel that a good clustering algorithm and its associated drawing method should come as close as possible to achieving the following goals:

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)21

1.Balanced clustering:in each level of the hierarchy the size of the clusters

should be about the same.

2.Small cluster depth:there should be a small number of layers in the re-

cursive decomposition.

3.Convex cluster drawings:the drawing of each cluster should?t in a simple

convex region,which we call the cluster region for that subgraph.

4.Balanced aspect ratio:cluster regions should not be too“skinny”.

5.E?ciency:computing the clustering and its associated drawing should

not take too long.

In this paper we study how well we can achieve these goals for large graph drawings using clustering.Previous algorithms optimize one or more of the above criteria at the expense of some of the rest.Our goal is to simultaneously satisfy all of them.Our approach relies on creating the clusters using binary space partition(BSP)trees,de?ned by recursively cutting regions with straight lines.

1.1BSP Tree Based Clustered Graph Drawing

The main idea behind the use of a BSP tree in I R2to de?ne clusters is very simple.Given a graph G=(V,E),where n=|V|and m=|E|,we can use any existing method to embed it in the plane,provided that method places vertices at distinct points in the plane(e.g.,see[7,20,32]).For example,if G is planar we can use any existing method for embedding G in the plane such that vertices are at grid points,and edges of the graph are straight lines that do not cross[6,12,28,30,33].Once the graph drawing is de?ned,we build a binary space partition tree on the vertices of this drawing.Each node v in this tree corresponds to a convex region R of the plane,and associated with v is a line that separates R into two regions,each of which are associated with a child of v.Thus,any such BSP tree de?ned on the points corresponding to vertices of G naturally de?nes a hierarchical clustering of the nodes of G. Such a clustering could then be used,for example,with an algorithm like that of Eades and Feng[10],who present a technique for drawing a3-dimensional representation of a clustered graph.

The main problem with using BSP trees to de?ne clusters for a graph drawing algorithm is that previous methods for constructing BSP trees do not give rise to clustered drawings that achieve the design goals listed above.For example, the standard k-d tree and its variants(e.g.,see[15,26]),which use axis-parallel lines to recursively divide the number of points in a region in half,maintain every criteria but the balanced aspect ratio.Likewise,quad-trees and fair-split trees(e.g.,see[4,26]),which always split by a line parallel to a coordinate axis to recursively divide the area of a region more or less in half,maintain balanced aspect ratio but can have a depth that isΘ(n).

In graph drawing,aesthetics are very important,and while“fat”regions appear rounder,a series of skinny regions can be distracting.But depth is also

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)22 important,for a deep hierarchy of clusterings would be computationally expen-sive to traverse and would not provide very balanced clusters.The balanced box-decomposition tree of Arya et al.[3,2]has O(log n)depth and has regions with good aspect ratio,but it sacri?ces convexity by introducing holes into the middle of regions,which makes this data structure less attractive for use in clustering for graph drawing applications.Indeed,to our knowledge,there is no previous BSP-type hierarchical decomposition tree that achieves all of the above design goals.

1.2The Balanced Aspect Ratio(BAR)Tree

In this paper we present a new type of binary space partition tree that is bet-ter suited for the application of de?ning clusters in a large graph.Our data structure,which we call the balanced aspect ratio(BAR)tree,is a BSP-type decomposition tree that has O(log n)depth and creates convex regions with bounded aspect ratio(also called“fat”regions).In this paper we present the BAR tree in I R2.The generalized BAR tree in I R d is presented in[9].The construction of the BAR tree is very similar to that of a k-d tree,except for two important di?erences:

1.In addition to axis-aligned cuts,the BAR tree allows for one more cut

direction:a45?-angled cut.

2.Rather than insisting that the number of points in a region be cut in half

at every level,the BAR tree guarantees that the number of points is cut roughly in half every two levels,which is something that does not seem possible to do with either a k-d tree or a quadtree(or even a hybrid of the two)while guaranteeing regions with bounded aspect ratios.

In short,the BAR tree is an O(log n)-depth BSP-type data structure that creates fat,convex regions.Thus,the BAR tree is“balanced”in two ways:on the one hand,clusters on the same level have roughly the same number of points,and, on the other hand,each cluster region has a bounded aspect ratio.

We show that a BAR tree achieves this combined set of goals by proving the existence of a cut,which we call a two-cut.A two-cut might not reduce the point size by any amount but maintains balanced aspect ratio and ensures the existence of a subsequent cut,which we call a one-cut,that both maintains good aspect ratio and reduces the point size by at least two-thirds.In Section 3,we formally de?ne one-and two-cuts and describe how to construct a BAR tree.

1.3Our Results for Cluster-Based Graph Drawing

In Section4,we show how to use the BAR tree in a cluster-based graph drawing algorithm.The Large Graph Drawing(LGD)algorithm runs in O(n log n+m+ D0(G))time,where n and m are the number of vertices and edges in the graph G and D0(G)is the time to embed G in the plane.If the graph is planar,

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)23

Figure1:A clustered graph C=(G,T).The underlying graph G is at the lowest level on the right.The clustering of G on the right is obtained from the BSP cuts on the left. Each cluster is represented by a single node.Edges between layers on the right are edges of the tree T.

the algorithm introduces no edge crossings and the running time reduces to O(n log n).

The algorithm creates a hierarchical cluster representation of a graph,with balanced clusters at each layer and with cluster depth O(log n).Each cluster region has a balanced aspect ratio,guaranteed by the BAR tree data structure. In the actual display of the clustered graph we represent the clusters either by their convex hulls,or by a larger region de?ned by the BSP tree,or simply by a single node,see Figure1.

2Using a BSP Tree for Cluster Drawing

Let G=(V,E)be the graph that we want to draw,where|V|=n and|E|= m.Note that graph G is given combinatorially,i.e.,de?ned by the order of the neighbors around each vertex.An embedding of G also assigns distinct coordinates in I R2for every vertex v∈V(G).The edges of the graph are drawn as straight lines.For the rest of this paper,we assume that the vertices of G have integer coordinates,that is,the graph is embedded on the integer grid.

The goal of our LGD algorithm is to produce a representation of the graph G given a BSP tree T,see Figure1.Similar to[10]we de?ne the clustered graph C=(G,T)to be the graph G,and the BSP tree T,such that the vertices of G coincide with the leaves of T.An internal node of T represents a cluster,which

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)24

Figure2:A2-dimensional representation of a clustered graph C=(G,T).The under-lying graph G and the clustering are the same as in Figure1.a simple closed curve. consists of all the vertices in its subtree.All the nodes of T at a given depth i represent the clusters of that level.

A view at level i,G i=(V i,E i),consists of the nodes of depth i in T and a set of representative edges,for0≤i≤depth(T).An edge(u,v)belongs to E i if there is an edge between a and b in G,where a is in the subtree of u and b is in the subtree of v.In addition,each node u∈T has an associated region,corresponding to the partition given by T.In Figure1we show an example of a3-dimensional representation of a graph G and in Figure2we show a2-dimensional representation of the same graph.

We create the graphs G i in a bottom-up fashion,starting with G k and going all the way up to G0,where k=depth(T).De?ne the combinatorial graph H=(V(H),E(H)),where initially V(H)={u∈T:depth(u)=k}and E(H)=E(G).Notice that H is well de?ned since the leaves of T are exactly the vertices of G.

At each new level i we perform a shrinking of H.Suppose u,v∈V(H),and parent(u)=parent(v).We replace the pair by their parent and remove the edge(u,v)if it exists.We also remove any multiple edges that this operation may have created and maintain for each surviving edge a pointer to the original edge in G.Thus a shrinking of the graph H consists of all such operations, necessary to transform H into a representation of G at one higher level in the tree T.

At each level G i is a subgraph of G with certain edges removed.Since we are producing a representation of G in3-dimensions,every vertex must have three coordinates.The?rst two coordinates correspond to the location of the vertex on the integer grid.The third coordinate of a vertex v∈V i is equal to i,that is,all the vertices in G i are embedded in the plane given by z=i.To obtain G i from G i+1,for i=0,...,k?1,we use the combinatorial graph H from level i+1.Initially E i=E i+1.We then perform a shrinking of H and while removing an edge from H we remove its associated edge from E i.

Thus the algorithm on Figure3runs in O(n·depth(T)+m)https://www.doczj.com/doc/6d7463699.html,ing any of the previous known types of BSP trees,we can maintain most but never all of the desired properties.For example,if T is a k-d tree the cluster regions do not have balanced aspect ratios.We next describe how to construct a BSP tree which satis?es all of our goal criteria.

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)25

create graph(T,G)

H←G

k←depth(T)

for i=k downto0

obtain G i from H

shrink H

return C

Figure3:Given graph G embedded in the plane and BSP tree T create clustered graph C.Here H is a combinatorial graph initially the same as G.The operations of obtaining G i from H and shrinking of H are de?ned in Section2.

3The BAR tree

Let us now discuss in detail the de?nition of our particular BSP-type decom-position tree,the BAR tree,and its construction.We begin with some general de?nitions.

De?nition1The following terms relate to various potential cuts:

?A canonical cut direction is any of the following three vectors:

v x=(1,0), v y=(0,1), v z=(1,?1).

?A canonical cut is any line whose normal is a canonical cut direction.For example,the line x?y=3has normal v z.

?A canonical region is any convex polygon such that each side is a segment of a canonical cut.

Since there are three cut directions1,a canonical region can have at most six sides.For convenience,we de?ne six labels representing the six sides of the polygon.Notice that some of these sides may have zero length.For a canonical region R,we let x l and x r represent the corresponding left and right sides of R with normal v x.Similarly,we de?ne y l,y r,z l,and z r,see Figure4.

De?nition2For a canonical region R,let diam i(R)be the L m metric distance between the two sides of R with normal v i.For a side l in R,we de?ne|l|to be the length of the line segment l measured in the L m metric.

For simplicity in our arguments and notation,we use the L∞metric although any of the standard L m metrics is acceptable.In the L∞metric the distance between two lines normal to v z and the length of a line segment normal to v z are

Duncan,Goodrich,and Kobourov,BAR Trees ,JGAA ,4(3)19–46(2000)26

1

1

4523z r x l

z l x r y l

y r Figure 4:A labelling of the various sides of a canonical region R .

de?ned di?erently than in the L 2metric.In particular,for a canonical region R with sides z l and z r ,the length |z l |(or |z r |)is the vertical distance between the two endpoints.The distance between the lines associated with z l and z r is one half the vertical distance between the two lines.

De?nition 3The aspect ratio of a canonical region R is

ar (R )=max(diam i (R ))/min(diam j (R )),?i,j ∈{x,y,z }.

Given an aspect ratio parameter α,a region R is α-balanced if ar (R )≤α.This de?nition is valid only for canonical regions.Since all of the regions that appear in this section are canonical regions,whenever we refer to any region we mean a canonical region.When the term αis understood,we refer to α-balanced regions as simply balanced regions and refer to non-α-balanced regions as unbalanced regions.Throughout the paper,we also call balanced and unbalanced regions,respectively,fat and skinny regions.

To understand the various notions of a canonical region,let us look at one speci?c canonical region R in Figure 4.Here we see the various sides of R ,x l ,x r ,y l ,y r ,z l ,z r .In particular,although not actually a true side of R ,we still represent the side z r .It is tangent to R and has zero length.From the ?gure,we see the various lengths of each side:

|x l |=2,|y l |=5,|z l |=1,|x r |=3,|y r |=4,|z r |=0.

Since we are using the L ∞metric,the length of z l is 1rather than √

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)27

3.1Constructing the BAR tree

We now introduce the BAR tree data structure.Suppose we are given a point set S in the plane,|S|=n,and an initially square region R containing S.We construct a BAR tree T on S recursively dividing R into cells such that the following properties are guaranteed:

?Every cell in the tree is convex.

?Every cell in the tree has balanced aspect ratio.

?Every leaf cell contains at most a constant number of points of S.?The tree has O(n)nodes.

?The depth of the tree is O(log n).

The structure is straightforward and reminiscent of the original k-d tree. Recall that in a k-d tree,every node u in the tree represents a cell region u.region and an axis-parallel cut u.cut partitioning that region into two sub-regions,u.left and u.right.The leaves of the tree are cells with a constant number of points.In general,each cut divides the region into two roughly equal halves,and thus the tree has O(log n)depth and uses O(n)space.However,if the vast majority of the points is concentrated close to any particular corner of the region,no constant number of axis-parallel cuts can e?ectively reduce the size of the point set and maintain good aspect ratio.This is a serious concern for many applications and for ours in particular.As a result,an extensive amount of research has been dedicated to improving and analyzing the performance of k-d trees and its derivatives,often concentrating on trying to maintain some form of balanced aspect ratio[5,19,29].

We now show how to construct a BAR tree T from a point set S using an aspect ratio parameterαand a balance parameterβ.We prove that anyα-balanced region can be divided by a sequence of one or two cuts into at most three subregions.We also guarantee that each subregion isα-balanced and the number of points in each of the three subregions is less thanβtimes the number of points in the original region.We begin by de?ning the notions of a one-cut and a two-cut.

De?nition4Let R be anα-balanced canonical region containing n points.Let βbe a given balance parameter.A one-cut is any canonical cut dividing R into two subregions R1and R2such that:

1.R1and R2are bothα-balanced canonical regions.

2.R1and R2contain at mostβn points.

If there exists a one-cut for R,we say R is one-cuttable.

De?nition5Let R be anα-balanced canonical region containing n points.Let βbe a given balance parameter.A two-cut is any canonical cut dividing R into two subregions R1and R2such that:

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)28 create tree(R,α,β)

create node u

u.region←R

if number of points in R≤c,

return u

if an(α,β)-balanced one-cut s,exists in R

u.cut←s

(R1,R2)←s(R)

else let s be an(α,β)-balanced two-cut in R

u.cut←s

(R1,R2)←s(R)

u.left←create tree(R1,α,β)

u.right←create tree(R2,α,β)

return u

Figure5:Creating the BAR tree.The recursion stops when a cell has a constant number of points,c≥1.

1.R1and R2are bothα-balanced canonical regions.

2.R2contains at mostβn points.

3.R1is one-cuttable.

If there exists a two-cut for R,we say R is two-cuttable.

For anα-balanced region R which is two-cuttable,let s represent the two-cut dividing R into two regions R1and R2,and let s′represent the one-cut dividing R1.In other words,the sequence of two cuts,s and s′,results in three α-balanced regions each containing at mostβn points.To make it clear thatαandβare parameters,we often refer to one-cuts(resp.two-cuts)of a region R as(α,β)-balanced one-cuts(resp.two-cuts).

Figure5shows the pseudo-code for the construction of a BAR tree.Here we use the notation(R1,R2)←s(R)as a shorthand for cutting the region R with a cut s resulting in subregions R1and R2.We prove in the next section that everyα-balanced region is either one-cuttable or two-cuttable for su?ciently large constant values ofαandβ.Since the algorithm only uses one-cuts and two-cuts,the regions produced are allα-balanced regions.The algorithm stops the recursion when a leaf cell has a constant number of points from S.Because at least every other cut used is a one-cut,the depth of the tree is O(log1/βn) and the size is O(n).Therefore,the algorithm correctly creates a tree which satis?es the properties for a BAR tree.

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)29

i l be the line containing i l and let P be the region between i r and i l towards i r until either P is empty or just before P becomes unbalanced.We call this?nal region R i,r=P maximized in the direction from i l.Similarly,we call

i l as de?ned above,if R i,r is not empty and we continue sweeping in the same direction,the region between

Duncan,Goodrich,and Kobourov,BAR Trees ,JGAA ,4(3)19–46(2000)

30

x r

z,r

R x,r x,l x l y r

y l Figure 7:The labels on the sides of a general canonical region and the maximizing cuts from the respective directions.

Corollary 1For an α-balanced region R ,if the region R i,r is maximized in the direction from i l ,then min {diam x (R i,r ),diam y (R i,r ),diam z (R i,r )}=diam i (R i,r ).Corollary 2For an α-balanced region R and direction v i ,if R i,l ∩R i,r =?,

then any cut i m with a normal v i and lying between i r produces two

α-balanced subregions R 1and R 2.

Lemma 2Suppose we are given a region R with n points,a balance parameter β≥1/2and two parallel lines c l and c r .Without loss of generality,let us orient these lines so that c l lies to the left of c r .Then one of the following must be true:

?The number of points from R to the left of c l (i.e.,away from c r )is more than βn ;

?The number of points from R to the right of c r (i.e.,away from c l )is more than βn ;

?There exists a line c ′parallel and between c l and c r dividing R into two subregions R 1and R 2such that the number of points in either subregion is less than βn .

Proof:Assume the ?rst two conditions do not hold.Thus,we only need to prove that the last condition must hold.Let n 1be the number of points to the left of c l and let n 2be the number of points to the left of c r .We know then that n 1>βn ≥n/2.Similarly,we know that (n ?n 2)>βn ≥n/2.It follows

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)31 then that n2n/2 to n2

Corollary3For anα-balanced region R with n points,a direction v i,and β≥1/2,either R is one-cuttable or R i contains more thanβn points.

Proof:If the two subregions R i,l and R i,r intersect each other,then by de?ni-tion R i=R and thus contains n points.If R is one-cuttable,then the statement is trivially true.Otherwise,we have two cuts i l associated with R i,l and R i,r respectively.From Lemma2,either R i,l or R i,r contains more thanβn points or there exists a line c′parallel and between i l dividing R into two subregions R1and R2such that the number of points in either subregion is less thanβn.However,this implies that R is one-cuttable.2 The above corollary is quite useful in proving that certain regions are one-cuttable.For instance,let R be anα-balanced region such that,for some canonical direction v i,both R i,l and R i,r are empty.Since neither of these two subregions can contain any points,R must be one-cuttable.In fact,this notion can be extended to include multiple canonical directions.

Lemma3Let R be anα-balanced region R with n points andβ≥2/3.If R x∩R y∩R z=?,then R is one-cuttable.

Proof:This is a standard extension from set theory.For a set of points S,it is impossible to have three subsets of S each contain more than2/3of S without their intersection containing at least one point.2 If we can prove that there exist regions such that no possible assignment for the R i’s allows for a non-empty intersection,then the region R is always one-cuttable.Do there exist regions which are guaranteed to be one-cuttable? We describe two such regions which we will use to argue that everyα-balanced region is inevitably two-cuttable.

De?nition8For a given aspect ratio parameterαwe de?ne two special canon-ical regions with aspect ratioαas follows:

?Canonical isosceles trapezoidal(CIT)regions are trapezoids which have z l and z r as the two opposing parallel base sides,see Figure8a.?Canonical right-angle trapezoidal(CRT)regions are trapezoids which have their two opposing parallel base sides normal to either v x or v y,see Fig-ure8b.

Lemma4Forα>4andβ≥2/3,canonical isosceles trapezoidal(CIT)regions are one-cuttable.

Duncan,Goodrich,and Kobourov,BAR Trees ,JGAA ,4(3)19–46(2000)

32

x

x r

d r

(a)d (b)Figure 8:Examples of (a)CIT and (b)CRT regions.

Proof:Without loss of generality,we can analyze the region R in Figure 8a,since the other possible CIT regions are symmetrical.Let d i =diam i (R )for i ∈{x,y,z }.De?ne δ=|z r |=d x ?|x r |.Since the trapezoid’s two parallel sides are z l and z r ,we know that d x =d y and |x r |=|y l |.Recall that in the L ∞metric,d z =(|x l |+|y l |)/2=|y l |/2.Similarly,we get d z =|x r |/2.Since the region has aspect ratio α,we have ar (R )=α=d x /d z .It follows that

d x =

αd z =

α|x r |/2=

α(d x ?δ)/2=αδ/(α?2)(1)

Let us examine the possible intersections of R x ∩R y ∩R z .Since R x,l is empty,we know that R x =R x,r .Since by de?nition,R x,r is maximized from x l ,we know that diam x (R x )≤d y /α=d x /α.From Equation 1and from α>4,it follows that diam x (R x )<δ/2.Similarly,we know that R y =R y,l and diam y (R y )<δ/2.This implies that R x ∩R y =?.From Lemma 3,R must be one-cuttable.2Lemma 5For α>4and β≥1/2,canonical right-angle trapezoidal (CRT)regions are one-cuttable.

Proof:Without loss of generality,we can again analyze the region R in Fig-ure 8b,since the other possible CRT regions are symmetrical.Let d i =diam i (R )for i ∈{x,y,z }.We know that max i ∈{x,y,z }(d i )=d x and min i ∈{x,y,z }(d i )=d y from the de?nition of the region.Therefore,we know that ar (R )=α=d x /d y .Observing that |y r |=d x ?d y ,we obtain:

d y =d x ?|y r |

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)33

Figure9:A region R which is not one-cuttable if the points are densely concentrated in the highlighted corner.Notice that no canonical cut can divide this region without creating a region that is too skinny.

=αd y?|y r|

=|y r|/(α?1)(2) Let us examine the possible intersections of R x∩R y∩R z.Since R x,l is empty, we know that R x=R x,r.Since by de?nition,R x,r is maximized from x l,we know that diam x(R x)≤d y/α.From Equation2and fromα>4,it follows that diam x(R x)<|y r|/12.Similarly,we can see that R z=R z,l and diam z(R z)< |y r|/6.This implies that R x∩R z=?.From Lemma3it follows that R must be one-cuttable.2 It is easy to construct examples where a region R is not one-cuttable for a given a point set,see Figure9.However,the following theorem shows that by making a two-cut followed by a one-cut we can in fact divide anα-balanced region into at most threeα-balanced subregions each containing less than a constant fraction of the points in R.

Theorem1(Two-Cut Existence Theorem)Anyα-balanced region R is either one-cuttable or two-cuttable forα≥6andβ≥2/3.

Proof:We can assume that R is not one-cuttable,and thus only prove that it must be two-cuttable.Again let d i=diam i(R)for i∈{x,y,z}.Without loss of generality,assume d y≥d x.Consider the two parallel sides,z l and z r.We call a cut,z i,i∈l,r,small if

|z i|≤min(d x,d y)α?2α,

and large otherwise.We now break the analysis into three cases based on the size of these two sides.Each case follows roughly the same argument.If a region is not one-cuttable,the three subregions R x,R y,and R z must all intersect each other sinceβ≥2/3.If one of these regions is one-cuttable,in particular either a CIT or CRT region,then R is two-cuttable.Therefore,we prove in each case that if all three subregions are not CIT or CRT regions,they cannot simultaneously intersect.

Duncan,Goodrich,and Kobourov,BAR Trees ,JGAA ,4(3)19–46(2000)

34y y r

x l

x r

(2a)(2b)(1)x l y r Figure 10:Case 1:both z l ,z r are small .Case 2a:both sides are large and |y l |≤|x l |,which guarantees that R y,l and R y,r are both CRT regions.Case 2b:both sides are large and |y l |>|x l |.

Case 1.(z l and z r are both small):

Let both z l and z r be small,see Figure 10.1.From Equation (1)and because z l is small,we know that diam x (R z,l )=α|z l |/(α?2)≤d x .The same holds for the region diam x (R z,r ).Thus these two CIT regions are disjoint.Since there was no one-cut,particularly in the z -direction,one of the two regions has more than βn points.By Lemma 4,both CIT regions are one-cuttable.Therefore,R has a two-cut,namely the one creating the CIT region with maximum points,R z .

Case 2.(z l and z r are both large):

Let both z l and z r be large.Without loss of generality,let the larger of the two cuts be z l .Notice that,

d x (α?2)/α<|z r |≤|z l |≤d x .

Because |z l |≥|z r |and d x ≤d y ,we know that |y r |≤|x r |.Therefore,R y,r is a CRT region,and is one-cuttable.

If |y l |≤|x l |,then R y,l is also a CRT region,see Figure 10.2a.From Lemma 5,R y is always one-cuttable.Therefore,R is two-cuttable,the two-cut being either

y r .

Otherwise,we have the situation in Figure 10.2b:

|x l |<|y l |=d x ?|z r |≤d x ?d x (α?2)/α

=d x (1?(α?2)/α)

=2d x /α.(3)

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)35 We now have bounds on|x l|,|y l|,and|y r|.Let us now bound|x r|.Using Equation3,we see that

d y≤d x+|x l|

≤d x+2d x/α

≤d x(1+2/α).

|x r|=d y?|z r|

≤d x(1+2/α)?d x(1?2/α)

=4d x/α(4) Using arguments similar to those used in proving Equation2,we know that

diam x(R x,r)≤|x r|/(α?1)

≤4d x/α(α?1),and

diam y(R y,l)≤|y l|/(α?1)

≤2d x/α(α?1).

Consider the intersection of x l and the cut z′which passes through this point,see Figure10.2b.If z′lies inside R,we can bound the size of the intersection of this cut with R by

|z′|=(diam x(R x,r)+diam y(R y,l))

≤6d x/α(α?1)

≤d x/5

<|z r|.

However,this implies that z′does not intersect R.Consequently,R x,r∩R y,l=?, and either R x=R x,l or R y=R y,r.Since either of these subregions is one-cuttable,R is two-cuttable.

Case3.(only one of the two cuts is large):

Without loss of generality,let the larger of the two cuts be z l.In other words, |z l|>d x(α?2)/α.Here we need to consider two subcases.

?3i.(long rectangle)If d y≥d xα+1

+d x/α

α?2

Duncan,Goodrich,and Kobourov,BAR Trees ,JGAA ,4(3)19–46(2000)

36

(b)

d r

d (a)Figur

e 11:Case 3i,for a long rectangle.(a)Two one-cuttable subregions,R y,r and R z,r .(b)Opposing not necessarily one-cuttable subregions,R y,l and R z,l ,but they cannot intersect.

=d x (

αα)≤d y α?2α?2

+1

α+1(α+1?

2α?2.

Since z l is large,we

know that R y,r is a CRT region.Since the rectangle is squat,we know that R x,l is also a CRT region,see Figure 12a.Since z r is small,either R z,l is a CIT region or R z,l =R .The latter case arises if maximizing from z r and z l produces regions which intersect each other.Notice,because of the dimensions of the region,this is not possible in either the v x or v y direction.Since d y ≥d x ,R y,l cannot intersect ∩R y,r .Notice also that,for α>5,diam x (R x,l )≤

d y /α

α+1

Duncan,Goodrich,and Kobourov,BAR Trees ,JGAA ,4(3)19–46(2000)

37

(b)(a)R z,r

d y

d x

d y R y,r R x,r

d x Figur

e 12:Case 3ii,for a short rectangle.(a)Two one-cuttable subregions,R x,l and R y,r .(b)Opposing not necessarily one-cuttable subregions,R x,r and R y,l .I

f they intersect,R z =R z,r is a one-cuttable region.

The same is true for R x,r .So,R x,l cannot intersect R x,r .

We only need to consider the case when R x =R x,r and R y =R y,l .Since both regions contain more than βn points,they must intersect,see Figure 12b.It follows then that |z r |≤2d x /α.We also know that |z l |≤d x .Recalling that α≥6,we can bound diam z (R ),diam z (R z,r ),and diam z (R z,l )by

diam z (R )≥

d x /2?|z r |/2≥d x /2?d x /α

≥d x /2?d x /6

=

d x α≤d x

α?2≤2d x

24

Duncan,Goodrich,and Kobourov,BAR Trees,JGAA,4(3)19–46(2000)38

=

d x

6+

d x

4 <

d x

风险与收益分析

第二章风险与收益分析 本章知识点简介 本章主要介绍了风险与收益的概念以及度量、风险收益之间的关系以及相关的理论。 本章的主要内客包括: 一是资产收益率的含义、类型和计算。资产的收益率是期末资产增值量与期初资产价值的比值,该收益率包括两部分内容: (1)利(股)息的收益率。(2)资本利得的收益率。本章介绍的收益率类型主要有:实际收益率,通常用期末资产的增值量与期初资产的价值之比来衡量;名义收益率,通常用资产合约上标明的收益率来表示;预期收益率,通常用未来各种可能情况下预计的收益率的加权平均数来表述;必要收益率,表示投资者对资产合理要求的最低收益率,其大小是无风险收益率与风险收益率之和;无风险收益率,指无风险资产的收益率,它的大小由纯粹利率和通货膨胀补贴两部分组成,通常可用短期国库券的利率近似表示;风险收益率,是指资产持有者因承担该资产的风险而要求的超过无风险利率的额外收益,它等于必要收益率与无风险收益率之差。它的大小取决于以下两个因素:风险的大小;投资者对风险的偏好。 二是单项资产预期收益率以及风险的衡量指标:预期收益率、收益率的标准差、 标准离差率、β系数。E(R)表示预期收益率,可用公式来计算,Pi 是第i种可能情况发生的概率。Ri是在第i种可能情况下资产的收益率;收益率的标准差是其方差的开方,用来表示资产收益率的各种可能值与其期望值之间的偏离程度,方差的计算公式为:;标准离差率是资产收益率的标准差与期望值之比,其计算公式为:v=σ/E(R);资产的β系数是资产收益率与市场平均收益率之间变动关系的一个量化指标,它表示单项资产收益率的变动受市场平均收益率变动的影响程度。 三是资产组合收益率和资产组合系统风险系数的计算。资产组合收益率是资产组合中各项资产收益率的加权平均,其中权数是各项资产在组合中所占的价值比例;资产组合的系统风险系数是组合中各项资产系统风险系数的加权平均,其中权数是各项资产在组合中所占的价值比例。 四是系统风险和非系统风险的含义。系统风险是指影响所有资产的、不能通过资产组合而消除的风险,这部分风险是由那些影响整个市场的风险因素所引起的,如宏观经济形势的变动、国家经济政策的变化、税制改革、企业会计准则的改革、世界能源状况、政治因素等等。非系统风险是可以通过有效的资产组合而消除掉的风险,是指由于某种特定原因对某特定资产收益率造成影响的可能性,它是特定企业或特定行业所特有的,与政治、经济和其他影响所有资产的市场因素无关。

密室逃脱计划书

密室逃脱计划书 一、项目介绍 真人密室逃脱,打破了电脑游戏的局限和束缚,原汁原味的展现了密室的精髓,让玩家能过通过自己的双眼和双手,经过逻辑思考和观察力,不断的发现线索和提示,最重要的是团队的合作,能够顺利的逃脱。整个过程充满了未知性和不确定性,在紧张的场景氛围中,真正的融入到故事背景中去,这是电脑游戏所无法提供的乐趣。 真人密室也是在2011年才在国内正式起步,相较于国外已经成熟的体系,还未完全被大众所接受。2011年9月20日,第一家主营真人密室逃脱的俱乐部,在杭州正式成立。据可靠统计,全国目前已经有超过500家以上真人密室逃脱俱乐部,其中以北上广三地发展最为迅速。福州地区2013年3月左右,开始出现第一家真人密室逃脱俱乐部。我们的密室逃脱俱乐部名为八度空间,于2013年5月开始经营,属于福州地区比较早的密室商家。 二、市场分析 1.市场前景分析: 我们都是生活在平静生活中的普通人,每天重复着相同的事情,毫无生机。即便有着看电影、唱K、泡吧等种种休闲活动,但是对于追求新鲜的年轻人来说,闲暇时间还是显得越来越乏味。而要脱离这种提不起劲的困境,逐渐兴起的真人主题密室逃脱无疑会是一个最好的选择。密室逃脱实体游戏项目,既好玩刺激,又可以让每个体验者在游戏中充分调用智慧和体力,享受酐畅淋漓的畅快感觉。 据调查,福州2010年人口711万,现在福州的密室逃脱有6家(有实力),一年的订单数为22100个,票价35左右。和福州的土地面积差不多大小的洛阳和北京,与之比较,洛阳和北京的密室逃脱比福州早一年开始,2010年洛阳人口680万,现在洛阳一年的订单数为27200个,但是只有一家的密室逃脱(有实力),为寡头市场。2012年北京人口2069万,现在北京一年的订单数为49000个,票价70元,11家密室逃脱。福州与洛阳比较:店铺越多,接收客源面积越大,订单数越多。所以福州的未来市场的需求量为增幅状态。福州与北京比较:价钱越贵,订单数越少。所以福州的未来市场的需求量为增幅状态。 注:以上数据来源于美团网和中国知网,店铺收入不单单来源于网络的团购,还有其他收入,所以这只是代表部分的收入,所以当做消极悲观者的眼光来看待市场的需求量也是为增幅状态。 作为一个新兴行业,它的市场是还没有饱和的,你的质量比别家的好,有吸引力,客源量就会增加。结论:2014年起,至少一年,市场的需求量为增幅状态。 2.与传统娱乐项目对比的优势 ①体验刺激 或许过山车的尖叫只是生理上的一种释放,但是主题密室逃脱却能够从心理上让体验者感受刺激。各种精心布置的主题场景,暗含玄机的种种物品,还有与场景相配的音乐,这些都能够让体验者产生一种身临其境的感觉,从而可以更快地融入密室逃脱当中。当然,情节悬疑也是好玩的密室逃脱中一个重要影响因素。只有环环相扣的故事情节以及层层迭进的线索,才能够带动体验者更充分地享受推理和逃脱的过程。 ②高科技力挺 密室逃脱要做得好仅仅依靠故事情节和环境布置就太单薄了,高科技产品的使用也是使密室逃脱更加真实的一个诀窍。运用高科技物理机械和电子幻灯制造悬疑的场景气氛,炫酷的室内特技效果让场景显得更加逼真,而红外线、夜视仪等道具的使用也充分调动了体验者的紧张感和积极性。这些高科技的使用让密室逃脱不仅仅只是一个游戏项目,还成为一场科技产品展示的体验与经历。 ③价值无限 如果只将其当作是一个娱乐项目未免有点太低看真人密室逃脱了,因为在整个的逃脱过程当中,除了让体验者感受刺激和悬疑以外,还考验了每个体验者的智力、耐性以及良好的团队协作力。只有将团队中每个人找到的线索结合起来,才能够找到正确的出路。当然,这中间也需要有人指挥,有人配合,一旦团

第03章风险的和收益思考地的题目

第3章 风险和收益思考题 【名词解释】风险 期望报酬率 无风险利率 系统风险 风险报酬 标准离差率 【简答题】 1.简述风险产生的原因。 2.什么是贝塔系数(β)?简述它的经济含义。 3.简述证券投资收益与风险间的关系。 4.由资本资产定价模型可知,证券的期望收益要取决于哪三个因素? 【论述题】 1.试述证券投资组合的风险类别,并说明相关系数ρ和β系数在投资组合各类风险的衡量中所起的作用。 2.试从财务管理的角度论述风险与收益的关系。 3. 证明资本市场线方程:)()(f m m p f R R R p E -+=σσ。 4. 证明资本资产定价模型:)(f m i f i R R R R -+=β。 【计算题】 1.某大型石化公司A 准备运用手中的多余现金进入生物医药行业,目前A 公司的负债价值为5亿元,负债权益比为1/10。A 公司为上市公司,其股票β值为0.8。A 公司的债务为无风险债务,收益率为8%,A 公司股票今年的期望收益率为16%,正好与资本资产定价模型法(CAPM)预测的一样。A 公司有两项资产,一项为多余现金15亿,β值为0,另一项为化学资产。 B 公司为一家具有代表性的生物医药上市公司,该公司债务为10亿元。负债—权益比为0.5,权益β值为1.2,债务β值为0.3。 A 公司计划将全部多余现金15亿元投入该生物医药项目,并预计50%的可能性每年收益1.5亿元,50%的可能性每年收益3亿元(假定收益永续性存在)。 设定公司所得税率为30%。 请计算与回答: (1)A 公司规模扩张性项目(所投资的项目与企业现有的业务相类似)的期望收益率。 (2)A 公司化学资产的期望收益率。 (3)拟投资的生物医药项目的预期收益率。 (4)B 公司资产的β值以及期望收益率。 (5)A 公司是否应该接受该生物医药项目,并解释理由。 2.无风险利率为4%,市场组合的期望收益率为12%,根据资本资产定价模型: (1)画出期望收益率与β值之间的关系图。 (2)市场组合的风险报酬率是多少? (3)如果某证券的β值为1.5,该证券的期望收益率该为多少? (4)如果某项投资的β值为0.8,期望收益率为9.8%,这一投资项目是否有正的净现值? (5)如果市场对某证券要求的期望收益率为11.2%,这一证券的β值是多少? 3.根据下列数据计算项目A 、B 、C 的期望收益和标准差,并讨论以项目C 的收益的标

小游戏----密室逃脱

活动名称:大班数学探索活动----密室逃脱 设计思路: 偶然的机会听孩子们分享自己玩游戏的经验,发现他们对比较有挑战性的游戏如密室逃脱闯关等非常感兴趣,于是,我就想:能不能用游戏这样一个载体,将数学这一学科的某些知识呈现在里面?于是,我就按照自己的理解,把生活中常见的物品分成几个层次:将游戏材料有的散点状放置,有的向不同方向有序排列,有的重叠排列等,投放到科学探索区内,观察幼儿的游戏情况。在幼儿操作材料过程中,我发现他们数数时的方法、速度、能力等都有异同,因此,我梳理了幼儿的一些数数经验,结合大班幼儿的年龄特点,生成了本次活动。 活动目标:1、在幼儿观察、比较、推理中,尝试通过操作材料,探索可以将物品数正确的方法。 2、仔细倾听同伴的想法,乐意分享观察方式。 活动准备:幼儿操作卡(每人2张)、PPT4张、笔、夹子、照片。 活动过程: 1、呈现密室,激发幼儿兴趣:了解幼儿数数的能力。 出示PPT1,谈话引出课题 1、讲解密室逃脱游戏规则。 师:今天,老师带你们玩密室逃脱,你知道这个游戏怎么玩吗?师讲解游戏规则:密室逃脱就是我们进入房间,通过数房间里各种物品的数量来推算出房门的密码,从而打开房门,逃出密室。 2、报数游戏:让幼儿数数接龙。 师:清点人数完毕,请你们摆一个最漂亮、最帅气的姿势跟老师们打个招呼,不然,待会出不来可能没有人来救你。 3、谈话:你能数到几? 师:刚才集体报数完全正确,现在,我问问小朋友,你最多能数到几?我说一个数字,你接着往下数,往下数()个数。(教师一方面关注幼儿数数是否正确,另一方面关注幼儿从十位数数到百位数数的能力,同时,观察其他幼儿,聆听每个幼儿的数数情况。)师:小朋友们都能数到很大的数,真了不起!但你们数数的正确性怎么样呢?老师会在游戏中检查你们的本领。 2、进入密室:探索正确数数的方法。 第一环节:来到密室一:出示PPT2 师:我们已经进入密室,现在,赶紧来找找怎打开房门的密码。(引导幼儿找到门上的密码锁,通过寻找密码打开锁从而逃出密室。)密码锁提示我们找哪些物品? 1、幼儿完成相应操作卡,正确数出PPT上相框、靠枕、猫及红花的数量。 师:密码锁提示我们:要仔细找找密室里有几幅相框?靠枕有几个?猫有几只?红花有几朵?把你观察到的结果记录在对应的空格里,不会写数字的用圆点代替。(教师重点关注猫和红花的记录情况) 2、幼儿交流自己的观察结果。教师及时提升幼儿表达的数数要领: A、一起告诉我,相框有几幅?靠枕有几个?师总结:东西比较少,数起来很方便; B、数猫可就不简单了,请您告诉我,你数到有几只猫?你在哪里找到了第×只猫?师总结:要把东西数清楚是需要讲究方法,要从上到下、从左到右、从前到后,只要按照一定的顺序就能数清楚。(教师要重点关注幼儿的表达,如方位是否正确,语句是否完整,还要关注幼儿数猫的方法) C、这里的花特别多,你是怎么数的?你是怎么数的?黄花能不能数进去?引导幼儿说出2个2个一起数的规律。师总结:数东西的时候,不但要讲究顺序,而且要仔细看清楚题目,

第3章 风险与收益(习题及解析)

第3章风险与收益 一、本章习题 (一)单项选择题 1.已知某证券的β系数为2,则该证券()。 A. 无风险 B. 有非常低的风险 C. 与金融市场所有证券的平均风险一致 D. 是金融市场所有证券平均风险的两倍2.投资者由于冒风险进行投资而获得的超过无风险收益率的额外收益,称为投资的()。A.实际收益率 B.期望报酬率 C.风险报酬率 D.必要报酬率 3.企业某新产品开发成功的概率为80%,成功后的投资报酬率为40%,开发失败的概率为20%,失败后的投资报酬率为-100%,则该产品开发方案的预期投资报酬率为()。 A.18% B.20% C.12% D.40% 4.投资者甘冒风险进行投资的诱因是()。 A.可获得投资收益 B.可获得时间价值回报 C.可获得风险报酬率 D.可一定程度抵御风险 5.某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知甲方案净现值的期望值为1000万元,标准离差为300万元;乙方案净现值的期望值为1200万元,标准离差为330万元。下列结论中正确的是()。 A.甲方案优于乙方案 B.甲方案的风险大于乙方案 C.甲方案的风险小于乙方案 D.无法评价甲乙方案的风险大小 6.已知甲方案投资收益率的期望值为15%,乙方案投资收益率的期望值为12%,两个方案都存在投资风险。比较甲乙两方案风险大小应采用的指标是()。 A.方差 B.净现值 C.标准离差 D.标准离差率 7.x方案的标准离差是1.5,y方案的标准离差是1.4,如x、y两方案的期望值相同,则两方案的风险关系为()。 A. x>y B. x<y C.无法确定 D.x=y 8.合约注明的收益率为()。 A.实际收益率 B.名义收益率 C.期望收益率 D.必要收益率9.()以相对数衡量资产的全部风险的大小。 A.标准离差率 B.方差 C.标准差 D.协方差 10.若某股票的一年前的价格为10元,一年中的税后股息为0.25,现在的市价为12元。在不考虑交易费用的情况下,一年内该股票的收益率为()。 A.20% B.22.5% C.25% D.无法确定 11.非系统风险与下列()因素有关。 A.政治 B.经济 C.税制改革 D.销售决策 12.市场组合的风险是()。 A.财务风险 B.经营风险 C.非系统风险 D.系统风险13.若A股票的β系数为2,B股票的β系数为1,则两股票所承担系统风险的大小为()。A.A大于B B.B大于A C.无法确定 D.两者承担的财务风险相等14.A股票的β系数为0.5,B股票的β系数为1,若某企业持有A、B两种股票构成的证券组合,在组合中的价值比例分别为70%、30%。该公司证券组合的β系数是()。 A.0.65 B.0.75 C.1 D.无法确定 15.若两资产收益率的协方差为负,则其收益率变动方向()。

风险与收益答案

本讲作业(教材)第十二章思考与练习9、10 第十三章思考与练习14、19、20、25、26、27 第十二章 9、〔基础〕〔计算报酬率和变动性〕你已经观察到Crash-n-Burn 电脑公司的股票在过去5年的报酬率分别为:9%、-12%、16%、38%和11%。 a.在这5年期间,Crash-n-Burn 公司股票的平均报酬率是多少? b.这段期间里,Crash-n-Burn 公司股票报酬率的方差是多少?标准差是多少? 解:a 、平均报酬率:5 1 9%-12%+16%+38%+11% =12.4% 5 5 i i r R === ∑b 、方差: 2 21 222221()()11[(9%12.4%)(12%12.4%)(16%12.4%)(38%12.4%)(11%12.4%)]510.03193 n i i Var R r R T σ===??=×?+? ?+?+?+ ??=∑标准差:()0.1787 SD R σ===10、〔基础〕〔计算实际报酬率和风险溢酬〕对于第9题,假设这段时期的平均通货膨胀率是3.5%,国库券的平均报酬率是4.2%。 a.Crash-n-Burn 公司股票的平均实际报酬率是多少? b.Crash-n-Burn 公司股票的平均名义风险溢酬是多少? 解:a 、根据费雪公式(1 + R) = (1 + r)(1 + h)可得,其平均实际报酬率为 1 + R 112.4% r= 118.6%1 + h 1 3.5% +?=?≈+b 、因为平均报酬率=平均无风险收益率+平均名义风险溢酬 所以,12.4% 4.2%8.2% =?=平均风险溢酬第十三章

密室逃脱相关 (2)

Q1:别人做密室逃脱 从大二时,开始接触密室逃脱游戏,到今年寒假一天能玩上三、四次,“既然大家都喜欢,干嘛不自己也开一个呢?”黄皓月介绍,决定开一个“密室逃脱”店,很偶然,也很仓促。5个爱玩密室的女孩当即一拍即合,其中有两个女生已经工作,三个在校生中,黄皓月也即将本科毕业,她还“跨界”选修了金融专业的双学位。 三月份,考察江汉路所有密室逃脱店、玩遍40多个主题,敲定店址; 四月份,店面装修,自己设计主题、自己安装机关、自己制作装置……; “五一”,新店开张,首日客流量过百,不大的客厅里,挤满了前来“尝鲜”的同龄人。 开业的前一天,女孩们都在店里通宵加班,“创业比考研费精力多了,四月份的时候,天天熬夜。”黄皓月告诉记者,开店,比想象中的复杂、琐碎。对于“学霸”的称号,她觉得那是上高中以前的事了,从高二起,一直到现在,她更愿意把自己定义为“学霸班上的玩货”。 中考前,黄皓月因成绩优秀,提前保送到当地最好的学校——新洲一中“火箭班”。然而高一的第一次月考,成绩仅排在班上十几名,随后几次月考,更是滑落到二十几名。“我已经很努力了,学习成绩就是上不去。”家长的不理解,老师的不重视,让曾经的“神童公主”的骄傲光环瞬间破碎,从台上最闪亮的“明星”,跌落成台下普通观众,巨大的落差,让她一度“放松”自己,按照自己的意愿学习、生活,成为学霸班上的“另类”。 “其实二十几名已经很好了,至少可以考上武大华科,但那个时候没有人告诉我,我以为自己真的很差。”说到这里的时候,黄皓月的眼中有一丝伤感和落寞,虽然之后成绩时常徘徊在班上倒数几名,但高考总分依然超过一本分数线,考入湖北大学生物科学专业。

小游戏----密室逃脱

活动名称: 大班数学探索活动----密室逃脱 设计思路: 偶然的机会听孩子们分享自己玩游戏的经验,发现他们对比较有挑战性的游戏如密室逃脱闯关等非常感兴趣,于是,我就想: 能不能用游戏这样一个载体,将数学这一学科的某些知识呈现在里面?于是,我就按照自己的理解,把生活中常见的物品分成几个层次: 将游戏材料有的散点状放置,有的向不同方向有序排列,有的重叠排列等,投放到科学探索区内,观察幼儿的游戏情况。在幼儿操作材料过程中,我发现他们数数时的方法、速度、能力等都有异同,因此,我梳理了幼儿的一些数数经验,结合大班幼儿的年龄特点,生成了本次活动。 活动目标: 1、在幼儿观察、比较、推理中,尝试通过操作材料,探索可以将物品数正确的方法。 2、仔细倾听同伴的想法,乐意分享观察方式。 活动准备: 幼儿操作卡(每人2张)、PPT4张、笔、夹子、照片。 活动过程: 1、呈现密室,激发幼儿兴趣: 了解幼儿数数的能力。 出示PPT1,谈话引出课题 1、讲解密室逃脱游戏规则。 师:

今天,老师带你们玩密室逃脱,你知道这个游戏怎么玩吗?师讲解游戏规则: 密室逃脱就是我们进入房间,通过数房间里各种物品的数量来推算出房门的密码,从而打开房门,逃出密室。 2、报数游戏: 让幼儿数数接龙。 师: 清点人数完毕,请你们摆一个最漂亮、最帅气的姿势跟老师们打个招呼,不然,待会出不来可能没有人来救你。 3、谈话: 你能数到几? 师: 刚才集体报数完全正确,现在,我问问小朋友,你最多能数到几?我说一个数字,你接着往下数,往下数()个数。(教师一方面关注幼儿数数是否正确,另一方面关注幼儿从十位数数到百位数数的能力,同时,观察其他幼儿,聆听每个幼儿的数数情况。)师: 小朋友们都能数到很大的数,真了不起!但你们数数的正确性怎么样呢?老师会在游戏中检查你们的本领。 2、进入密室: 探索正确数数的方法。 第一环节: 来到密室一: 出示PPT2

《密室逃脱》碧绿色房间闯关攻略详解

《密室逃脱》碧绿色房间闯关攻略详解 继博士的家之后,小编接下来要为大家介绍密室逃脱碧绿色房间闯关攻略。密室逃脱,又 叫TAKAGISM ,是一款密室闯关游戏,游戏需要玩游戏者在游戏中寻找线索,一步一步地走出 密室。《密室逃脱》游戏的玩法很简单,只需用鼠标即可。整个游戏过程都是在一间房子里进行的,游戏的主人公不知道为什么被困在这里(每集都交待了不同的原因,但这些原因都是相当的 离奇)T akagism的逃离房间系列是非常经典的解迷小游戏,自从作者推出第一个版本Crimson Room后便深受世界各地网友的喜爱,并因此掀起了一股“逃离房间热”。本文将详细介绍密室逃脱碧绿色房间如何闯关。 1、开灯,左转(点画面的左下角,右转同理)在鞋橱的鞋下边发现“若”字图片;鞋橱底发现镜框。 2、左转,在土黄色的垫子底下发现“般”字图片。 3、左转,在壁橱的最上一格中左右边分别发现“多”字图片和一束香。二格的红笔记本有锁打 不开,在最下面的小橱里发现黄影集里两张照片。 4、点地上的红毯子,发现骷髅!点击靠近,在左手手腕处发现钥匙,右手发现药瓶,点小腿处的红绳物体可以把毯子叠起,并发现脚上有密码锁(暂时不开),点物品栏中的红毯,再点下边的“查看物体”(即"About Item"),可放大,点大图的红毯子得到十字架状物体。 百度攻略&口袋巴士提供 1

5、左转,在斜对着蓝门处,(就是那个有窟窿的蓝门,不是一开始的那个门)。点头顶的 灯罩,在灯罩上发现“罗”字图片(小红块,仔细点),在墙上发现“ 蜜”字图片(小白块)。 6、左转,在小冰箱里发现“ 波”字图片和一罐啤酒(啤酒先不要拿,因为骷髅要冰冻的)。在旁边的红桶里发现张纸,打开是些黑头发。记住:点装黑头发的纸,然后点击查看物体,放大纸,多点几下纸,然后就可以在红桶底下得到打火机。 7、用钥匙开红笔记本打开,在日记中可以找到女孩的生日,那就是开骷髅脚上的密码。(通常会是在日记的第四页,里面有一句话“The day after tomorrow is her birthday”,这一天的简单写法 就是密码。你先看你所翻到的那页日记上是几月几号,再在那个日期后加两天,就是小女孩子的 生日,那一天的简写就是密码。(如9月10日,简写就是0910,这就是密码),记下密码。继续翻日记,翻到最后得到一张CD。 8、放大装有头发的纸,点打火机,再点纸,可以烧出东西来,放大药瓶,里面有两粒药,一 张写有箴言的纸。放大绿十字,按照箴言的顺序位置和烧出来得数字相对应(形位相同),把字( 6张图片)填在十字架状物体上(位置随机的),放对会变成个四方体,放下暂不用。 9、在壁橱的第3格,有香炉和磬(旁边红的是槌),把装有CD的CD盒放在香炉后面,把香放香炉左,罐啤放香左(要冰镇的啊,冰一两分钟就可以拿出来了,先把啤酒从冰箱拿出来,点显 百度攻略&口袋巴士提供 2

风险与收益考试试题

第二章风险与收益 一、单选题 1.已知某证券的β系数为2,则该证券()。 A. 无风险 B. 有非常低的风险 C. 与金融市场所有证券的平均风险一致 D. 是金融市场所有证券平均风险的两倍 2.投资者由于冒风险进行投资而获得的超过无风险收益率的额外收益,称为投资的()。A.实际收益率 B.期望报酬率 C.风险报酬率 D.必要报酬率 3.企业某新产品开发成功的概率为80%,成功后的投资报酬率为40%,开发失败的概率为20%,失败后的投资报酬率为-100%,则该产品开发方案的预期投资报酬率为()。A.18% B.20% C.12% D.40% 4.投资者甘冒风险进行投资的诱因是()。 A.可获得投资收益 B.可获得时间价值回报 C.可获得风险报酬率 D.可一定程度抵御风险 5.某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知甲方案净现值的期望值为1000万元,标准离差为300万元;乙方案净现值的期望值为1200万元,标准离差为330万元。下列结论中正确的是()。 A.甲方案优于乙方案 B.甲方案的风险大于乙方案 C.甲方案的风险小于乙方案 D.无法评价甲乙方案的风险大小 6.已知甲方案投资收益率的期望值为15%,乙方案投资收益率的期望值为12%,两个方案都存在投资风险。比较甲乙两方案风险大小应采用的指标是()。 A.方差

B.净现值 C.标准离差 D.标准离差率 7.对于多方案择优,决策者的行动准则应是()。 A. 选择高收益项目 B. 选择高风险高收益项目 C. 选择低风险低收益项目 D. 权衡期望收益与风险,而且还要视决策者对风险的态度而定 8.x方案的标准离差是1.5,y方案的标准离差是1.4,如x、y两方案的期望值相同,则两方案的风险关系为()。 A. x>y B. x<y C.无法确定 D.x=y 9.合约注明的收益率为()。 A.实际收益率 B.名义收益率 C.期望收益率 D.必要收益率 10.()以相对数衡量资产的全部风险的大小。 A.标准离差率 B.方差 C.标准差 D.协方差 11.下列哪项不属于风险控制对策()。 A.减少风险 B.转移风险 C.接受风险 D.扩大风险 12.不列不属于减少风险的对策()。 A.准确的预测 B.对决策方案进行多方案优选和替代 C.向保险公司投保 D.分散投资 13.若某一股票一年前的价格为4元,当年获得股息为0.1元,现在的市价为5元。则该股票的股利收益率为()。 A.2.5% B.25% C.10% D.20% 14.非系统风险与下列()因素有关。 A.政治 B.经济 C.税制改革

第3章--风险与收益(习题及解析)

第 3 章风险与收益 一、本章习题 (一)单项选择题 1.已知某证券的β 系数为2,则该证券()。 A. 无风险 B. 有非常低的风险 C. 与金融市场所有证券的平均风险一致 D. 是金融市场所有证券平均风险的两倍2.投资者由于冒风险进行投资而获得的超过无风险收益率的额外收益,称为投资的()。 A.实际收益率 B .期望报酬率 C .风险报酬率 D .必要报酬率 3.企业某新产品开发成功的概率为80%,成功后的投资报酬率为40%,开发失败的概率为 20%,失败后的投资报酬率为-100 %,则该产品开发方案的预期投资报酬率为()。 A.18% B.20% C.12%D.40% 4.投资者甘冒风险进行投资的诱因是()。 A.可获得投资收益 B .可获得时间价值回报C.可获得风险报酬率 D .可一定程度抵御风险 5. 某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知 甲方案净现值的期望值为1000 万元,标准离差为300 万元;乙方案净现值的期望值为1200 万元,标准离差为330 万元。下列结论中正确的是()。 A. 甲方案优于乙方案 B.甲方案的风险大于乙方案 C. 甲方案的风险小于乙方案 D.无法评价甲乙方案的风险大小 6. 已知甲方案投资收益率的期望值为15%,乙方案投资收益率的期望值为12%,两个方案都存在投资风险。比较甲乙两方案风险大小应采用的指标是()。 A. 方差 B. 净现值 C. 标准离差 D. 标准离差率 7. x 方案的标准离差是 1.5 ,y 方案的标准离差是 1.4 ,如x、y 两方案的期望值相同,则两 方案的风险关系为()。 A. x > y B. x< y C.无法确定D.x=y 8.合约注明的收益率为()。 A .实际收益率B.名义收益率C.期望收益率D.必要收益 率 9.()以相对数衡量资产的全部风险的大小。 A.标准离差率B.方差C.标准差D.协方差 10.若某股票的一年前的价格为10 元,一年中的税后股息为0.25 ,现在的市价为12 元。 在不考虑交易费用的情况下,一年内该股票的收益率为()。 A.20%B.22.5 %C.25%D.无法确定11.非系统风险与下列()因素有关。 A.政治B.经济C.税制改革D.销售决策12.市场组合的风险是()。 A.财务风险B.经营风险 C .非系统风险 D .系统风险 13.若 A 股票的β系数为2,B股票的β系数 为1,则两股票所承担系统风险的大小为() A.A 大于 B B .B大于 A C .无法确定D.两者承担的财务风险相等14.A股票的β系数为0.5 ,B股票的β系数为1,若某企业持有A、B两种股票构成的证券组合,在组合中的价值比例分别为70%、30%。该公司证券组合的β系数是()。 A.0.65 B .0.75 C . 1 D .无法确定 15.若两资产收益率的协方差为负,则其收益率变动方向()。

真人密室逃脱指南

现在,非常流行真人密室逃脱的游戏,让你进入密室里面,想尽一切办法逃出来。很多人不明白这个怎么玩,小编今日以自己的经验为你介绍。 方法/步骤 1首先,你在网上查一下在你所在的地方,有什么真人的密室。最好去的人比较多,年龄是不受限制的,但是尽量不要带16岁以下的,带去了没用,而且又花费了一张票钱。 2真人密室有很多主题。比如,诅咒;医院;梦游等等。还有很多电影的,比如,生化危机;电锯惊魂;盗墓,都是很火热的主题。所谓,主题,就是说密室里面的道具、背景、风格是哪种。 3选好主题之后。价格方面,其实所以密室都是差不多的价格,除非它的规模很大。价格基本在40到65一人,团购价,如果是选择在网上团购,那么要先打电话预约时间。注意:如果你明天要去,最好是提前半天打电话。这种真人游戏需要预约。 4打电话联系,会定下你们的时间,要求是提前15分钟到她们店里。如果你不选择网上团购,那么就到现场再付费,但是也是需要预约的。因为,真人密室非常受人追捧。而且,每场游戏时间都是一个小时。 5一定要提前去。去了之后,店内都有桌游可以随便玩,有饮料供应。所以也不必担心无聊。去之前最好少带随身物品,女士包包,都要少带。进去之前,工作人员会让你交出手机(有干扰),放在保险箱里。大可放心。 6进去之后,会有纸张写密室的故事背景。进去之后,一定要注意看周围的东西。一般来说,密室里面大多都是机械化的东西,像空调就不用找了,有纸张会提示你们什么东西不用去找。然后你们就要去找东西,也就是线索。手能够得到的地方都去摸一摸。 7但是这个也不是完全凭找东西就可以通关的。要靠线索去联想怎么回事。而且,如果没有用到的东西一定要把它带在身上,很多没用到的下一关就有可能用。工作人员会发给你传呼器,是给你提示用的,你们想不出来,就可以问问他。 选择加盟魔魔岛密室逃脱的5大理由 理由1:逼真代入感,如侦探小说一般,抽丝剥茧,环环相扣的逻辑,挑战你的IQ与思维。理由2:中型线索类密室最为考验玩家的逻辑推理能力,你不仅要具有当代福尔摩斯般敏锐的观察力和想象力,还要能勇敢的探索和决断。团队配合,将会是您胜出的关键! 理由3:体验过PC密室逃脱类游戏的玩家在体会找东西和解密快感的同时,还能体会到真实场景角色扮演的快乐。 理由4:各种梦幻场景,给玩家创造一个个惊喜。让玩家体会设计者的用心。 理由5:大型主题剧情机关解谜场景相结合,完美结合所有环节,更精致,更专业。

密室逃脱相关完整版

密室逃脱相关

Q1:别人做密室逃脱 从大二时,开始接触密室逃脱游戏,到今年寒假一天能玩上三、四次,“既然大家都喜欢,干嘛不自己也开一个呢?”黄皓月介绍,决定开一个“密室逃脱”店,很偶然,也很仓促。5个爱玩密室的女孩当即一拍即合,其中有两个女生已经工作,三个在校生中,黄皓月也即将本科毕业,她还“跨界”选修了金融专业的双学位。 三月份,考察江汉路所有密室逃脱店、玩遍40多个主题,敲定店址; 四月份,店面装修,自己设计主题、自己安装机关、自己制作装置……; “五一”,新店开张,首日客流量过百,不大的客厅里,挤满了前来“尝鲜”的同龄人。 开业的前一天,女孩们都在店里通宵加班,“创业比考研费精力多了,四月份的时候,天天熬夜。”黄皓月告诉记者,开店,比想象中的复杂、琐碎。对于“学霸”的称号,她觉得那是上高中以前的事了,从高二起,一直到现在,她更愿意把自己定义为“学霸班上的玩货”。 中考前,黄皓月因成绩优秀,提前保送到当地最好的学校——新洲一中“火箭班”。然而高一的第一次月考,成绩仅排在班上十几名,随后几次月考,更是滑落到二十几名。“我已经很努力了,学习成绩就是上不去。”家长的不理解,老师的不重视,让曾经的“神童公主”的骄傲光环瞬间破碎,从台上最闪亮的“明星”,跌落成台下普通观众,巨大的落差,让她一度“放松”自己,按照自己的意愿学习、生活,成为学霸班上的“另类”。 “其实二十几名已经很好了,至少可以考上武大华科,但那个时候没有人告诉我,我以为自己真的很差。”说到这里的时候,黄皓月的眼中有一丝伤感和落寞,虽然之后成绩时常徘徊在班上倒数几名,但高考总分依然超过一本分数线,考入湖北大学生物科学专业。 高中时期的那一段心路历程,对她触动很大,并且让“学霸班上的玩货”这一身份,一直保持到现在。今年,她们班上41名同学中,有三十几个考研,“没有同学相信我会考上,别人在学习的时候,我在玩。”她笑着说,作为前学生会副主席,如果她呆在寝室里安静的看书超过一周,所有人都会奇怪她没有不出去“活动”。 5月9日,小店开张后迎来的第一个双休日,女孩子们正在努力积累经验,希望在暑假旺季到来前,将自己打造成一个“全能女孩”。“我最大的优点,就是没有拖延症。”黄皓月觉得,“把今天做好”才是最重要的,至于最终结果是输是赢,只要自己努力过就好。她笑称,对未来没有明确的计划,如果读博的话,或许会考虑出国吧。 Q2采访5专家,2业主 业主1: 我是12年4月,5月的时候接触的密室逃脱,当时在武汉的EP逃逸层第一次接触到真人密室逃脱,当时整个武汉就两家,第一次体验了他们家的密室之后,我自己动了心思。6月我在创建了X-space真人密室逃脱。7月装修完开业,总共资金消耗6W不到,所有的谜题设计都是自己想的。那个时候也没什么房型啊,格局啊,什么的,一点纸片信息,一些文字内容,一点点的氛围,就用上房东家的家具,我们开业了。每天发发传单,做做问答,一个月的,收回了全部的成本还有不少的收益。当时也动了心思,想看看其他地方的密室逃脱是怎么做的,下一步,应该怎么发展。 永远要记住一点,你的视线永远要看着前方,比你能看到的位置更远的位置,然后收回来看脚下离目标有多远,选好节点,去执行。 我们的创业路径上很强调一个词,节点。后面也会不停的提到。

风险与收益

第六章 风险与收益 第一节 单项资产收益率与风险 一、预期收益率与要求收益率 注意区分:预期收益率和要求收益率 必要收益率(Required Rate of Return):投资者进行投资要求的最低收益率 必要收益率=无风险收益+风险溢酬 预期收益率(Expected Rates of Return):投资者在下一个时期所能获得的收益预期 在一个完善的资本市场中,二者相等 在时间点上都是面向未来,都具有不确定性,但要求收益率是投资者主观上根据对投资项目 的风险评价确定的,预期收益率是由市场交易条件决定的,即在当前市场价格水平下投资者 可获得的收益。 二、风险的概念与类型 风险是指资产未来实际收益相对预期收益变动的可能性和变动幅度 注:风险既可以是收益也可以是损失 (一)系统风险和非系统风险 系统风险:又称市场风险、不可分散风险;由于政治、经济及社会环境等企业外部某些 因素的不确定性而产生的风险。 特点:由综合的因素导致的,这些因素是个别公司或投资者无法通过多样化投资予以 分散的。 非系统风险:又称公司特有风险、可分散风险; 由于经营失误、消费者偏好改变、劳资 纠纷、工人罢工、新产品试制失败等因素影响了个别公司所产生的个别公司的风险。 特点:它只发生在个别公司中,由单个的特殊因素所引起的。由于这些因素的发生是 随机的,因此可以通过多样化投资来分散。 (二)经营风险和财务风险 经营风险:经营行为(生产经营和投资活动)给公司收益带来的不确定性 经营风险源于两个方面: ① 公司外部条件的变动 ② 公司内部条件的变动 经营风险衡量:息税前利润的变动程度(标准差、经营杠杆等指标) 财务风险:举债经营给公司收益带来的不确定性; 财务风险来源:利率、汇率变化的不确定性以及公司负债比重的大小 财务风险衡量:净资产收益率(ROE )或每股收益(EPS )的变动(标准差、财务杠 杆等) 三、实际收益率与风险衡量 实际收益率(历史收益率)是投资者在一定期间实现的收益率 计算方法:设:投资者在第t -1期末购买股票,在第t 期末出售该股票。 (一)持有期收益率: 1. 算术平均收益率( ) 11111)(------+=-+=t t t t t t t t t t P P P P Div P P P Div r AM r n r r n i i AM /1 ∑ ==

风险和收益的匹配

哈尔滨远东理工学院2016——2017学年第一学期(补考)分院:经济管理学院 课程:财务管理 专业班级:14级会计3班 学号:14070309 学生姓名:刘博 任课教师:于丹 分数: 2017年月日

风险和收益的匹配 一、折现率的确定原则 (一)折现率必须高于无风险报酬率 无风险报酬率通常以政府发行的国库券利率、银行储蓄、贷款利率作为参考。折现率高于无风险利报酬率的部分即风险报酬率。在市场经济中,每项投资都伴随着一定风险,投资者进行投资都希望能获得更多的收益。无风险报酬率实质上是决定投资者是否进行投资的最低标准,因此折现率必须高于无风险报酬率。 (二)折现率应体现投资回报率 在正常的资本市场条件下,每项投资的回报不应低于该投资的机会成本。无形资产评估中的折现率反映的是资产的期望收益率。收益率与投资风险成正比,风险越大,期望收益越高;风险越小,期望收益也少。因此,在评估无形资产价值时,折现率应充分体现投资回报率。 (三)折现率要考虑通货膨胀因素 由通货膨胀造成的贬值应该在折现率中体现出来。如果在预计资产的未来现金流量时考虑了通货膨胀,那么在估计折现率时也应该考虑通货膨胀率,反之则不予考虑。 (四)折现率与所选收益额的计算口径相匹配 在评估实务中,收益额可以因评估目的不同而采用不同的计算口径,如采用净利润、净现金流量等。在预计资产的未来现金流量时已经对资产特定风险的影响做了调整的,估计折现率时不需要考虑这些特定风险;如果用于估计折现率的基础是税后的,应当将其调整为税前的折现率。针对不同的收益额进行评估时,只有将收益额与折现率之间计算口径相匹配,才能保证评估结果的合理性。 (五)折现率要能够体现资产的收益风险 一定的收益与一定的风险相伴随,在市场经济条件下,企业要想取得高收益就必须承担高风险。因此,折现率在选择时要能体现资产的收益风险。 二、折现率确定的主要方法 (一)加权平均资本成本法 企业的资产多种多样,各类资产具有不同的成本,这种方法是通过企业全部资产的加权平均投资回报率来计算无形资产的投资回报率,即用企业的加权平均资本成本作为折现率的替代。这是因为企业的加权平均资本成本是企业进行各种

关于风险与收益关系的思考

龙源期刊网 https://www.doczj.com/doc/6d7463699.html, 关于风险与收益关系的思考 作者:严琰 来源:《企业文化·下旬刊》2014年第08期 摘要:风险与收益是金融投资的两个核心,任何机构和个人进行投资前,都必须计算一 定时期内的收益率,并估计其投资的风险。因此风险与收益是金融投资分析的两个重要指标。本文在对风险与收益内涵理解的基础上,分析比较了投资中风险与收益的关系,并有针对性的提出了防范金融风险的一些建议。 关键词:风险;收益;关系 收益和风险是所有金融资产的两个基本属性,也是投资者选择金融资产的重要参考指标。风险与收益成正比,风险越大,收益越大!这句话,是投资界对风险与收益关系最流行的经典总结!然而,有时候,我们会听到另外一些说法,即风险很低的时候,收益很大,或者相反!那么,我们应该如何看待两者的关系呢? 一、风险与收益的含义 (一)风险 所谓风险,是指可能发生的危险。对于投资行为来说,存在的危险就是亏本或是虽然没亏本但收益太低。而这里所说的收益太低,通常是指某次投资行为的收益率低于社会正常的、平均的收益率。 (二)收益 收益,在通常的定义里,是指资产获得的衍生收入,指的是已经获得的收入。[1]不过, 在风险与收益关系定义中,这个收益,显然是指一项资产获得收入的可能性、潜力。 二、风险与收益的关系 “风险与收益成正比”,往往指的是某种投资品种的风险与收益存在的潜在比例。例如,股票投资,从总体角度看,其风险收益比例要高于债券投资。但是,这句话,仅仅指的是投资品种的基本特征,而不是指在某一个具体条件下、具体时间段内。严格地说,在具体条件、时间内,风险与收益并不是成正比的也就是说,在某些时候,收益机率远远大于风险机率,在某些时候,风险机率远远大于收益机率。 接下来,我们以股票价格运行过程中风险与收益的关系为例,具体分析一下两者的关系。

第3章--风险与收益(习题及解析)

第3章--风险与收益(习题及解析)

第3章风险与收益 一、本章习题 (一)单项选择题 1.已知某证券的β系数为2,则该证券()。 A. 无风险 B. 有非常低的风险 C. 与金融市场所有证券的平均风险一致 D. 是金融市场所有证券平均风险的两倍 2.投资者由于冒风险进行投资而获得的超过无风险收益率的额外收益,称为投资的()。 A.实际收益率B.期望报酬率 C.风险报酬率 D.必要报酬率 3.企业某新产品开发成功的概率为80%,成功后的投资报酬率为40%,开发失败的概率为20%,失败后的投资报酬率为-100%,则该产品开发方案的预期投资报酬率为()。 A.18% B.20% C.12% D.40% 4.投资者甘冒风险进行投资的诱因是()。

A.可获得投资收益 B.可获得时间价值回报 C.可获得风险报酬率 D.可一定程度抵御风险 5.某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知甲方案净现值的期望值为1000万元,标准离差为300万元;乙方案净现值的期望值为1200万元,标准离差为330万元。下列结论中正确的是()。 A.甲方案优于乙方案 B.甲方案的风险大于乙方案 C.甲方案的风险小于乙方案 D.无法评价甲乙方案的风险大小 6.已知甲方案投资收益率的期望值为15%,乙方案投资收益率的期望值为12%,两个方案都存在投资风险。比较甲乙两方案风险大小应采用的指标是()。

A.方差 B.净现值 C.标准离差 D.标准离差率 7.x方案的标准离差是1.5,y方案的标准离差是1.4,如x、y两方案的期望值相同,则两方案的风险关系为()。 A. x>y B. x<y C.无法确定 D.x=y 8.合约注明的收益率为()。 A.实际收益率B.名义收益率C.期望收益率 D.必要收益率9.()以相对数衡量资产的全部风险的大小。 A.标准离差率B.方差C.标准差 D.协方差 10.若某股票的一年前的价格为10元,一年中的税后股息为0.25,现在的市价为12元。在不考虑交易费用的情况下,一年内该股票的收益率为()。 A.20%B.22.5%C.25% D.无法确定 11.非系统风险与下列()因素有关。 A.政治B.经济

财务管理 第3章 风险与收益(含答案解析)

第三章风险与收益分析 一、单选题 1.已知某证券的β系数为2,则该证券()。 A. 无风险 B. 有非常低的风险 C. 与金融市场所有证券的平均风险一致 D. 是金融市场所有证券平均风险的两倍 2.投资者由于冒风险进行投资而获得的超过无风险收益率的额外收益,称为投资的()。A.实际收益率 B.期望报酬率 C.风险报酬率 D.必要报酬率 3.企业某新产品开发成功的概率为80%,成功后的投资报酬率为40%,开发失败的概率为20%,失败后的投资报酬率为-100%,则该产品开发方案的预期投资报酬率为()。A.18% B.20% C.12% D.40% 4.投资者甘冒风险进行投资的诱因是()。 A.可获得投资收益 B.可获得时间价值回报 C.可获得风险报酬率 D.可一定程度抵御风险 5.某企业拟进行一项存在一定风险的完整工业项目投资,有甲、乙两个方案可供选择:已知甲方案净现值的期望值为1000万元,标准离差为300万元;乙方案净现值的期望值为1200万元,标准离差为330万元。下列结论中正确的是()。 A.甲方案优于乙方案 B.甲方案的风险大于乙方案 C.甲方案的风险小于乙方案 D.无法评价甲乙方案的风险大小 6.已知甲方案投资收益率的期望值为15%,乙方案投资收益率的期望值为12%,两个方案都存在投资风险。比较甲乙两方案风险大小应采用的指标是()。 A.方差 B.净现值 C.标准离差 D.标准离差率 7.对于多方案择优,决策者的行动准则应是()。 A. 选择高收益项目 B. 选择高风险高收益项目 C. 选择低风险低收益项目 D. 权衡期望收益与风险,而且还要视决策者对风险的态度而定 8.x方案的标准离差是1.5,y方案的标准离差是1.4,如x、y两方案的期望值相同,则两

相关主题
文本预览
相关文档 最新文档