当前位置:文档之家› 复合材料复习资料

复合材料复习资料

《复合材料学》作业

1.常见的材料强化途径都有哪些?请分别进行简要的论述

固溶强化、细晶强化、析出强化、弥散强化、形变强化、相变强化。

【固溶强化】溶入固溶体中的溶质原子产生晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。

【细晶强化】通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化,符合霍尔-佩奇公式

σs=σ0+kd-1/2

第二相粒子强化包括析出强化和弥散强化。

析出强化(时效强化):指金属在过饱和固溶体中溶质原子偏聚区和(或)由其脱溶出微粒弥散分布于基体中而导致硬化的一种热处理工艺。

弥散强化的实质是利用弥散细微粒阻碍位错的运动,从而提高材料的力学性能。

【形变强化】金属材料冷变形时强度和硬度升高.而塑性和韧性降低的现象。

【相变强化】它不是一种独立的强化机制,实际上是固溶强化、弥散强化、形变强化和细晶强化的综合效应。

2.碳钢的常用热处理工艺有哪些?主要操作方法及目的?

有退火、正火、回火、淬火。

【退火】将钢件加热到一定的温度,并保温一定时间,然后,以相对缓慢的速度冷却(随炉或埋沙)到室温,得到接近平衡状态的显微组织的热处理。

【目的】a)均匀化学成分及组织,细化晶粒

b)调整硬度,消除内应力和加工硬化,改善成形和切削加工性能

c)为淬火做好组织准备

【正火】将钢加热到奥氏体区完全奥氏体化,然后出炉进行空冷,以得到珠光体类(索氏体)组织的热处理。【目的】a)改善低碳钢和低碳合金钢的可加工性能

b)作为最终热处理,提高工件力学性能

c)作为中碳和低合金结构钢重要零件的预备热热处理

d)消除热加工缺陷

【回火】将淬火钢件重新加热到Ac1以下的温度,保温,然后冷却的一种热处理形式。

【目的】a)降低或消除内应力,防止工件开裂变形

b)减少或消除残余奥氏体,稳定工件尺寸

c)调整内部组织和性能,满足工件使用要求

【淬火】加钢加热到奥氏体转变区进行奥氏体化(亚共析钢加热到Ac3以上,过共析钢加热到Ac1以上),保温一定时间,然后以大于淬火临界冷却速度进行冷却,使奥氏体发生非平衡转变,得到马氏体或贝氏体等非平衡组织的热处理工艺。【目的】使材料获得高的强度、硬度和耐磨性能。

3.不锈钢是如何提高其耐腐蚀性的?根据不同组织的形式,不锈钢可分为哪些类型?简述其主要组织特

征和性能特点。

【提高耐蚀性】

a.固溶处理:将钢加热至1050 ℃~1150 ℃使碳化物充分溶解,然后水冷(淬火),获得单相奥氏体组织以减少原电池形成的可能性,提高耐蚀性。

b.稳定化处理(用于含钛或铌的不锈钢):固溶处理后,加热到850 ℃~880 ℃,使钢中铬的碳化物完全溶解,钛、铌的碳化物不完全溶解。然后缓慢冷却,让碳化钛、碳化铌充分析出。碳不再同铬形成碳化物,有效地消除晶界贫铬,避免晶间腐蚀产生。

c.消除应力退火:将钢加热到300 ℃~350 ℃消除冷加工应力;加热到850 ℃以上,消除焊接残余应力。

d.使金属钝化,即在表面形成致密的、稳定的保护膜,将介质与金属材料隔离。

不锈钢可以分为四类:马氏体不锈钢、铁素体型不锈钢、奥氏体型不锈钢、奥氏体和铁素体双相不锈钢。

(1) 【马氏体型不锈钢】铬的质量分数大于12%,在氧化性介质中耐蚀。在非氧化性介质中不能达到良好的钝化,耐蚀性低。通过热处理可以调整其力学性能的不锈钢,即一类可硬化的不锈钢。

(2) 【铁素体型不锈钢】铬质量分数为13%~30%,碳质量分数低于0.15%,为单相铁素体组织。耐蚀性比Cr13型钢更好。退火或正火状态下使用。强度较低、塑性很好,可用形变强化提高强度。

(3) 【奥氏体型不锈钢】碳含量很低,耐蚀性很好。钢中常加入Ti或Nb,以防止晶间腐蚀。强度、硬度低,无磁性, 塑性、韧性和耐蚀性均较Cr13型不锈钢更

好。形变强化提高强度,形变强化能力比铁素体型不锈钢要强。采用固溶处理进一步提高耐蚀性。

(4) 【奥氏体和铁素体双相不锈钢】在奥氏体型不锈钢的基础上,提高铬含量或加入其它铁素体形成元素。其晶间腐蚀和应力腐蚀破坏倾向较小,强度、韧性和焊接性能较好。节约Ni,得到广泛应用。

4.变形铝合金与铸造铝合金的主要区别?简述铝合金的强化热处理方法及其机理。

【变形铝合金】成分低于最大固溶度D的合金,加热时

能形成单相固溶体组织,塑性较好,适于变形加工,称

为变形铝合金。

【铸造铝合金】成分高于最大固溶度D 的合金,由于冷

却时有共晶反应发生,流动性较好,适于铸造生产,称

为铸造铝合金。

强化热处理方法和机理:

1)【方法】首先加热至单相区,经充分固溶处理后快速冷却形成单相过饱和固溶体,然后再采用时效工

艺处理,使得固溶的合金元素逐渐从基体相中以第二相形式析出,并通过控制析出相的结构和分布形式从而使得铝合金得以强化。

2)【基本机理】在时效过程中从基体中析出弥散分布的第二相,因造成基体材料晶格的畸变,增大位错

运动的阻力从而使材料得以强化。

5.简述钛的合金化元素对其组织的影响以及相应钛合金的热处理特点。

1)合金元素溶入α -Ti 中形成α固溶体, α稳定化元素使同素异构转变温度升高。室温强度低于β钛合金和(α+β)钛合金,但高温(500 ℃~600 ℃)强度比它们的高,组织稳定,抗氧化性和抗蠕变性好,焊接性能也很好。不能淬火强化,主要依靠时效强化。

2)溶入β -Ti 中形成β固溶体。β稳定化元素使同素异构转变温度下降。β钛合金有较高的强度、优良冲压性能,可通过淬火和时效进行强化。在时效状态下,合金的组织为β相和弥散分布的细小α相粒子。3)(α+β)钛合金。钛中加入β稳定化元素、大多数还加入α稳定化元素,得到(α+β)钛合金。塑性很好,容易锻造和冲压,并可通过淬火和时效进行强化。热处理后强度可提高50%~100%。

6.镍基高温合金的主要特性?镍基高温合金的主要热处理措施及其目的?

【主要特性】

a)可溶解较多合金元素,具有合金能力,为改善性能提供可能

b)面心立方,温度增加不发生同素异形转变,组织稳定性好

c)可形成共格有序的金属间化合物,强化合金,得到很高的高温强度

d)化学稳定性高,抗氧化、抗燃气腐蚀

【热处理措施】固溶处理、中间热处理、时效处理。

【固溶处理】目的:

a)将强化相和碳化物尽量溶入基体,得到单相组织,为时效沉淀析出均匀细小强化相做准备。

b)获得均匀的合适晶粒尺寸。

【中间热处理】目的:

a)使晶界析出一定量的各种碳化物相和硼化物相。

b)使晶界及晶内析出较大颗粒γ’(Nb3Al/Ti)相。

【时效处理】目的:在基体中析出强化相,以达到合金最大的强化效果。

7.陶瓷的主要制备工艺过程?影响陶瓷烧成的主要因素?

【工艺过程】

1)陶瓷原料的加工

将原料先煅烧,然后粉碎,最后将所粉碎的粉料经和水混合和捏练,就可以得到所需要的坯泥。

2)陶瓷坯体成型

尽可能在模型中均匀地填充原料粉末,具体工艺有:注浆成型法、可塑成型法、加压成型法、等静压成型法。

3)陶瓷的烧制

将由粉体做成的坯体,加热至其熔点附近,利用热的作用使之致密化。

【烧成影响因素】原始粉料的晶粒大小,烧结助剂的作用,烧结温度和保温时间,烧结气氛和成型压力。

8.简述氧化锆陶瓷的相变增韧机理及其应用。

【增韧机理】通过四方转变成单斜马氏体相变,ZrO2的这种由四方相向单斜相的相变过程同时伴随约5%的体积膨胀。如果将ZrO2的这种相变点稳定到室温,使其在承载时由应力诱发产生四方相向单斜相相变,由于相变产生的体积效应而吸收大量的断裂能,从而产生相变增韧。

【应用】a.部分稳定氧化锆(PSZ):加入不同量的稳定剂可获得相组成不同的氧化锆陶瓷,若使部分t-ZrO2亚稳至室温,就获得部分稳定氧化锆。b.四方氧化锆(TZP):若使t-ZrO2全部亚稳至室温,就获得仅含四方氧化锆的多晶体。c.全部稳定氧化锆(FSZ):若使c-ZrO2全部亚稳至室温,获得c-ZrO2单相材料,即全稳定氧化锆。d.以氧化锆为分散相的增韧陶瓷:从目前实验结果来看,以ZrO2增韧Al2O3的效果最好,应用也最广泛。(应用上目前主要是PSZ为主,TZP和FSZ性能要大大低于PSZ)

氧化锆增韧的陶瓷可代替金属制造模具、拉丝模、泵叶轮,还可制造汽车零件。

9.简述硅酸盐水泥的生产工艺过程、熟料矿物组成及其水化和凝结硬化过程。

【工艺过程】“两磨一烧”

具体有,进行生料的配置与磨细(石灰质原料、粘土原料、校正原料),

将生料煅烧使之部分熔融形成熟料,

将熟料与适当石膏共同磨细成为硅酸盐水泥。

【熟料矿物组成】

【水化与凝结硬化过程】

水泥+水→具有流动性、可塑性浆体——水化→失去可塑性——凝结

随后水泥浆体开始产生强度→坚硬的水泥石——硬化

水泥加水后水化反应首先在水泥颗粒表面剧烈进行,生成水化物溶于水中,水泥颗粒又继续暴露出新的表面与水作用,发生“楔劈”作用,最后生成具有流动性、可塑性浆体。水化作用继续进行,胶粒数量不断增加,游离水分不断减少,使胶体逐渐失去可塑性,出现凝结,但这是不具有强度,称为初凝。

随后胶凝体随水分减少而逐渐紧密,胶凝体和结晶体穿插在一起,新的水花产物又不断填充胶凝体和结晶

体之间的空隙,使结构更加紧密,水泥浆体开始产生强度,称为终凝。最终变成坚硬的水泥石完成硬化。(掺入石膏以延缓凝结)

10.简述线型非晶态聚合物的物理状态及其主要特征,并画出其典型的温度—形变曲线。

【物理状态】玻璃态、高弹态、粘流态

【玻璃态】在区域I,温度低,链段运动被冻

结,只有侧基、链节、链长、键角等的局部

运动,因此聚合物在外力作用下的形变小,

具有Hooke弹性行为:形变在瞬间完成,当

外力除去后,形变又立即恢复,表现为质硬

而脆,这种力学状态与无机玻璃相似,称为

玻璃态。

【高弹态】随着温度的升高,链段运动逐渐“解冻”,形变逐渐增大;当温度升高到某一程度时,链段运动得以充分发展,形变发生突变,进入区域II;这时即使在较小的外力作用下,也能迅速产生很大形变;当外力除去后,形变又可逐渐恢复。这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态。

【粘流态】当温度升到足够高时,在外力作用下,由于链段运动剧烈,导致整个分子链质量中心发生相对位移,聚合物完全变为粘性流体,其形变不可逆,这种力学状态称为粘流态。

线型非晶态聚合物的【主要特征】具有柔顺性,强度、塑性和弹性都很好。分子间易互相滑动,可溶解,可熔融,热塑性树脂多属于这一类,可反复多次加热模塑。

11.决定高分子化合物(聚合物)机械性能的主要因素?如何提高聚合物的机械性能?

决定高分子材料机械性能的【主要因素】:大分子链的(共价键)主价力、分子间作用力和大分子的柔顺性及结晶度。分子链主价力、分子间力、结晶度,它们越大,高分子聚合物的机械性能越好;

机械性能随聚合度的增加而增加,当聚合度达到一定程度时,此种关系不明显。

提高聚合物的机械性能【措施】

(1)添加极性侧基,提高分子间力

(2)在施加外力的情况下进行结晶,有利于提高结晶度与取向度

(3)在不影响工艺性能的情况下尽可能的提高分子量

12.简述不饱和聚酯树脂的主要组成及其固化特点。

【主要组成】

不饱和聚酯树脂是混合物,通常是由树脂(不饱和聚酯)、交联剂、引发剂和促进剂等组成的。

树脂(不饱和聚酯):线型结构,主链上具有重复酯键和不饱和键的聚合物。

交联剂:烯类单体,既是溶剂,又是交联剂。能溶解不饱和聚酯树脂,使其双键间发生共聚合反应,得到体型产物,以改善固化后树脂的性能。

引发剂:一般为有机过氧化物,在一定的温度下分解形成游

离基,从而引发不饱和聚酯树脂的固化。

促进剂:把引发剂的分解温度降到室温以下。

不饱和聚酯树脂的【固化特点】:不饱和聚酯树脂的固化是放

热反应,可分为三个阶段:

(a)胶凝阶段:从加入促进剂到不饱和聚酯(树脂)变成凝

胶状态的时间,是固化过程最重要的阶段。

(b)硬化阶段:从树脂开始胶凝到具有一定硬度,能把制品

从模具上取下为止的时间。

(c)完全固化阶段:通常在室温下进行,可能需要几天至几星期。

13.相比于不饱和聚酯和酚醛树脂,环氧树脂的主要性能特点及优势?

(1)不饱和聚酯:工艺性能好、粘度低,可在室温下固化,固化过程没有低分子副产物,适用于手糊成型,力学性能不如环氧树脂,耐热性较差,固化过程会有有毒气体释放;

(2)酚醛树脂:耐热性好,电性能好,耐腐蚀,价格低廉,但必须高温高压成型,机械强度差,吸附性差;(3)环氧树脂的主要性能特点:与增强材料的粘结力强,机械强度高,介电性能良好,耐化学腐蚀性好。

14.玻璃纤维为何具有高强度?试讨论影响玻璃纤维强度的因素。

玻璃的理论强度很高,但是由于微裂纹的存在,产生应力集中,发生破坏,从而降低了玻璃的强度。(微裂纹假说)

玻璃纤维具有【高强度的原因】

1玻璃纤维经高温成型时减少了玻璃溶液的不均一性,使得裂纹产生的机会减少;

2玻璃纤维的横截面较小,微裂纹存在的几率也较小,导致玻璃纤维强度较高。

影响玻璃纤维强度的【因素】:

1、化学组成:不同的玻璃纤维(不同系统),强度有很大差别。一般来说,含碱量越高(K2O、PbO),玻璃纤维的强度越低。

2、玻璃纤维的直径和长度:随着玻璃纤维的直径和长度的减小,微裂纹的数量和尺寸相应地减小,从而提高了玻璃纤维的强度。

3、存放时间:玻璃纤维存放一定时间后,由于空气中的水分对玻璃纤维的侵蚀,导致强度下降。

4、施加负荷时间:玻璃纤维的拉伸强度随着施加负荷时间的增加而降低,当环境湿度较高时更加明显。

5、玻璃纤维成型方法和成型条件也有很大影响。

15.简述聚丙烯腈基碳纤维的制造工艺。

1、稳定化处理(预氧化):200~300℃,氧化性气氛,在原丝受张力的情况下进行使链状聚丙烯腈分子发生交联、环化、氧化、脱氢等化学反应,形成耐热的梯形结构,以承受更高的碳化温度、提高碳化收率、改善力学性能。

2、碳化处理:在高纯惰性气氛和一定张力下,将预氧丝加热至1000~1500℃发生热分解,以除去非碳原子(N、H、O等),形成乱层石墨结构,生成碳含量约95wt%的碳纤维。

3、碳纤维的石墨化处理:在高纯氩气保护下,快速升温至2000-3000℃,碳纤维中残留的非碳原子进一步脱除,乱层石墨结构转化为类似石墨的结晶状态。对纤维继续施加牵伸力,使石墨晶体的六角层平面平行于纤维轴取向,进而提高模量。

16.简述硼纤维的主要制备工艺?

硼纤维是一种将硼元素通过高温化学气相法沉积在钨丝或石英纤维表面制成的高性能增强纤维。

【主要制备工艺】

化学气相沉积法(CVD)。在一根受热的纤芯上(e.g.钨丝),用氢气还原三氯化硼,生成无定形的硼,并沉积在芯材的表面,形成直径大约100μm的硼纤维。

17.简述SiC纤维主要性能特点和应用。

【性能特点】

1. 力学性能优异:碳化硅纤维由均匀分散的微晶构成,凝聚力很大,应力能沿着致密的粒子界面分散。

2. 耐热氧化性能好:可以在高温下(1000℃)长时间使用。1300℃以上力学性能降低。

3. 化学稳定性好:耐酸耐碱性能好。

4. 与金属有良好的浸润性:除非高温,基本不与金属反应。因此可与多种金属复合。

5. 耐辐照性能和吸波性能好:可吸收雷达波,可能作为高强度、耐高温、耐辐射的多功能隐身材料。【应用】

1. 耐热材料:力学性能优异,又耐高温、耐腐蚀、耐辐射,因此是理想耐热材料。

2. 树脂基复合材料:碳化硅纤维和环氧树脂复合,复合材料性能优良,可用于喷气发动机的涡轮叶片、飞机门窗、直升飞机螺旋桨等。也有人用来制造滑雪板、高尔夫球棒等体育用品。

3. 陶瓷基复合材料:可大大提高陶瓷的耐冲击强度。碳化硅纤维增强复合材料在高温下也有极高的弯






聚乳酸纳米复合材料的制备及性能

聚乳酸纳米复合材料的制备及性能 本文讨论了聚乳酸(PLA)的改性方法一复合改性。主要论述了三种复合类型:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 标签:聚乳酸;复合材料;生物降解 聚乳酸(PLA)是生物降解塑料中最优异的产品之一,它生物相容性好,无毒无刺激。但其固有缺陷如脆性大、耐热性差、成本高等限制了它的广泛应用。因此聚乳酸改性成为研究焦点。纳米复合改性因操作简单,效果立竿见影而成为聚乳酸改性领域的主要研究方向。 1 聚乳酸纳米复合材料 目前制备的聚乳酸纳米复合材料主要有3类:聚乳酸/刚性纳米粒子复合材料、聚乳酸/层状硅酸盐纳米复合材料、聚乳酸/碳纳米管复合材料。 1.1 聚乳酸/刚性纳米粒子复合材料 用来增强聚乳酸的刚性纳米粒子主要包括SiO2、CaCO3、TiO2等。Li等研究了纳米SiO2对PLA复合材料性能的影响。结果表明改性后PLA复合材料具有高的储能模量和降解速率。周凯等通过熔融共混制备了PLA/CaCO3复合材料,发现CaCO3使PLA的断裂从脆性转变为韧性,复合材料的耐热性和结晶性都得到提高。莊韦等通过原位聚合法制备PLA/TiO2纳米复合材料,结果表明复合材料的玻璃化转变温度和热分解温度提高;拉伸强度、弹性模量、断裂伸长率增大。环氧基笼型倍半硅氧烷(POSS)也可以改性聚乳酸。于静等制备了PLA/POSS 复合材料,发现POSS可以提高PLA的结晶速率、力学性能和降解速率。 1.2 聚乳酸/层状硅酸盐纳米复合材料 层状硅酸盐具有片层结构,片层之间可以容纳聚合物分子。 沈斌等制备了PLA/MMT纳米复合材料,结果表明复合材料力学性能得到改善,结晶度提高。马鹏程等用有机改性蒙脱土(OMMT)制备PLA复合材料,结果表明形成插层还是剥离结构取决于OMMT含量。3%OMMT可以提高PLA 的力学性能和热性能;OMMT增加了PLA熔体强度,在挤出发泡时充当成核剂,降低发泡剂气体向熔体外部的扩散。滑石粉(Talc)也是常见的片层填料。吴越等制备PLA/Talc复合材料,结果表明Talc粒子提高了复合材料的拉伸强度、冲击强度,热稳定性。 1.3 聚乳酸/碳纳米管复合材料

复合材料的界面改性

界面及界面改性方法 界面结合强度低,则增强纤维与基体很容易分离,在材料的断面可观察到脱粘、纤维拔出、纤维应力松弛等现象,起不到增强作用;但界面结合强度太高,则增强纤维与基体之间应力无法松弛,形成脆性断裂。 在研究和设计界面时,不应只追求界面粘结而应考虑到最优化和最佳综合性能。 1、聚合物基复合材料界面 界面结合有机械粘接与润湿吸附、化学键结合等。 大多数界面为物理粘结,结合强度较低,结合力主要来自如色散力、偶极力、氢键等物理粘结力。 偶联剂与纤维的结合(化学反应或氢键)也不稳定,可能被环境(水、化学介质等)破坏。一般在较低温度下使用,其界面可保持相对稳定。增强剂本身一般不与基体材料反应。 聚合物基复合材料界面改性原则: 1)在聚合物基复合材料的设计中,首先应考虑如何改善增强材料与基体间的浸润性。一般可采取延长浸渍时间,增大体系压力、降低熔体粘度以及改变增强体织物结构等措施。2)适度的界面结合强度 3)减少复合材料中产生的残余应力 4)调节界面内应力和减缓应力集中 聚合物基体复合材料改性方法 1、颗粒增强体在热塑性聚合物基体加入两性相溶剂(增容剂),则能使液晶微纤与基体间形成结合良好的界面 2、纤维增强体复合材料界面改善 a)纤维表面偶联剂 b)涂覆界面层 c)增强体表面改性 2、金属基复合材料界面 金属基体在高温下容易与增强体发生不同程度的界面反应,金属基体多为合金材料,在冷却凝固热处理过程中还会发生元素偏聚、扩散、固溶、相变等。 金属基复合材料界面结合方式有化学结合、物理结合、扩散结合、机械结合。总的来讲,金属基体复合材料界面以化学结合为主,有时也会出现几种界面结合方式共存。 金属基体复合材料的界面有3种类型:第一类界面平整、组分纯净,无中间相。第二类界面不平直,由原始组分构成的凸凹的溶解扩散型界面。第三类界面中含有尺寸在亚微米级的界面反应物。多数金属基复合材料在制备过程中发生不同程度的界面反应。 金属基复合材料的界面控制研究方法: 1)对增强材料进行表面涂层处理在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应的阻挡层作用。 2)选择金属元素改变基体的合金成分,造成某一元素在界面上富集形成阻挡层来控制界面反应。尽量避免选择易参与界面反应生成脆硬界面相、造成强界面结合的合金元素 3)优化制备工艺和参数金属基体复合材料界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应的有效途径。 3、陶瓷基复合材料的界面 陶瓷基体复合材料指基体为陶瓷材料的复合材料。增强体包括金属和陶瓷材料。界面结合方式与金属基体复合材料基本相同,有化学结合、物理结合、机械结合和扩散结合,其中以化学结合为主,有时几种结合方式同时存在。 陶瓷基体复合材料界面控制方法

聚合物纳米复合材料

聚合物纳米复合材料的研究进展 摘要 关键字 Abstract 1.引言 纳米材料是指材料的显微组织中至少有一相的一维尺寸在1-100nm以内的材料。由于平均粒径小,表面原子多,比表面积大,表面能高,因而呈现出独特的小尺寸效应、表面效应、量子隧道等特性,具有许多材料所没有的性能。介于其超凡特性,纳米材料越来越得到广泛的关注。不少学者认为纳米材料将是21世纪最有前途的材料之一,尤其是聚合物纳米材料。本文就聚合物纳米复合材料的分类、制备、改性、应用及问题和未来展望展开叙述。 2.聚合物纳米复合材料定义与分类 2.1定义 聚合物纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,纳米单元可以是金属、无机物和高分子等。 2.2分类 根据组分不同,可分为: a)聚合物/聚合物纳米复合材料:由两种或两种以上的聚合物混在一起而其中有一纳米尺寸的聚合物分散于其它聚合物单体所构成的 复合材料。如第三代环氧树脂粘接剂,它是将预聚合的球状交联 橡胶粒子分散于环氧树脂中固化而成的。 b)聚合物/层状纳米无机物复合材料:是将层状的无机物以纳米尺度分散于聚合物中而形成的。通常采用插层法制备。目前用的最多 的是蒙脱土,蒙脱土是以片状晶体而构成的。 c)聚合物/无机纳米复合粒子复合材料:是将纳米级无机粒子填充到聚合物当中去的。由于小尺寸效应使材料具有光、电、声、磁等 功能,赋予材料良好的综合性能。 3.聚合物纳米复合材料制备 3.1插层复合法 插层复合法是目前制备聚合物纳米复合材料的主要方法。根据复合过程,插层复合法可分为两类,1)插层聚合法:原理是将聚合物单体分散,插层进入层状硅酸盐片层中,然后再原位聚合,利用聚合时放出的大量的热量克服硅酸盐片层间的库仑力,使其剥离,从而使硅酸盐片层与聚合物基体以纳米尺度相复合;2)熔体插层法:原理是将插层无机物与高聚物插入层状无机的层间,该方法优

纳米材料导论期末复习重点

名词解释: 1、纳米:纳米是长度单位,10-9米,10埃。 2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm )或由他们作为基本单元构成的材料。 3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm )。 4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。 5、布朗运动:悬浮微粒不停地做无规则运动的现象。 6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。 7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。 8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。 9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。 10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。 11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状 。 12、HAII-Petch 公式: σ--强度; H --硬度;d --晶粒尺寸;K --常数 13、纳米复合材料:指分散相尺度至少有一维小于100nm 的复合材料。 14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。 15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。 大题: 1、纳米粒子的基本特性? (1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。 (2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性) (3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。 (4)宏观量子隧道效应:宏观物理量具有的隧道效应。 2、纳米陶瓷具有较好韧性的原因? (1)纳米陶瓷材料有纳米相,具有纳米材料相关的性能,而纳米材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移,从而表现出优良的韧性,因而纳米陶瓷也具有较好的韧性; (2)纳米级弥散相阻止晶粒长大,起到细晶强化作用,使强度、硬度、韧性都得到提高; (3)纳米级粒子的穿晶断裂,并由硬粒子对裂纹尖端的反射作用而产生韧化。 3、制备纳米粒子的物理方法? d K +0y σσ=d K H H +0y =

纳米复合材料

纳米复合材料的制备及其应用 分析化学饶海英20114209033 摘要:聚合物基复合材料目前已经成为复合材料发展的一个重要方向,它涉及了材料物理、材料化学、有机材料、高分子化学与物理等众多学科的知识。本文主要针对纳米复合材料的制备方法、性能及应用等方面的研究进展情况进行了综述。 复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国航、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分。80年代初Roy等提出的纳米复合材料[1-3],为复合材料研究应用开辟了崭新的领域。纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。由于纳米微粒独特的效应,使其物理和化学性能方面呈现出不同的性能。将纳米材料与复合材料结合起来,所构成的纳米复合材料兼有纳米材料和复合材料的优点,因而引起科学家的广泛关注和深入的研究[4-5,44,45]。纳米复合材料的基体不同,所构成的复合材料类型也不同,如:金属基纳米材料[9-11,43]。陶瓷基纳米材料[12]、聚合物基纳米材料。 近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。 1纳米聚合物基复合材料 1.1 纳米聚合物基复合材料的合成进展 在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。较早发展起来的几种聚合物纳米复合材料的制备方法[13-14]有共混法、溶胶-凝胶法(sol-ge1)、插层复合技术(interaction),可分为插层和剥离(exfoliate)两种技术、原位(in-situ)法、母料法、模定向合成法(template directed)包括化学方法和电化学方法。 声化学合成(sonochemical synthesis)是制备具有独特性能的新材料的有效方法。

纳米复合材料

SHANGHAI UNIVERSITY 课程论文 COURSE PAPER 简述纳米复合材料 学院:材料科学与工程学院 专业: 电子科学与技术 学号: 1 2 1 2 1 7 6 5 姓名: 陆 申 阳 课程: 材料科学导论C 日期: 2014年5月10日

简述纳米复合材料 12121765 陆申阳 摘要:纳米复合材料日新月异的发展为我们的生活带来了诸多方法便。本文简要的介绍了纳米复合材料的名称来源、种类、结构组成、功能特点及其在现代生活中的应用情况。纳米复合材料作为新兴材料,在材料中占有较大的比例,在各方面的应用也十分广泛。 1引言 由于复合材料的力学性能比较突出,综合性能优良,使得复合材料广泛应用于航空航天、国防、交通、体育、工业设备等领域。其中纳米复合材料是最具有吸引力的部分,世界发达国家的新材料发展战略都把纳米复合材料放在重要位置。纳米复合材料作为一类新材料,它拥有自己引人注目的一系列特点。而现代生活与纳米复合材料的练习也越来越紧密。 2总论 2.1复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。在复合材料中,通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。 复合材料各组分之间“取长补短”、“协同作用”,极大地弥补了单一材料的缺点,产生单一材料不具备的新性能。复合材料具有较强的可设计性。可以根据对产品形状的需求,将复合材料设计成不同的形状,避免多次加工,减少工序;也可以根据需要的产品性能对其性能进行设计,通过改变基体的性能、含量,增强材料的性能、含量、分布情况,以及他们之间的界面结合情况,来实现对复合材料性能的设计。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

PLATiO2纳米复合材料的制备与性能研究

目录 引言 (1) 第二章文献综述 (2) 2.1 聚乳酸的性质 (2) 2.2 聚乳酸材料的应用 (4) 2.3 聚乳酸的改性 (6) 2.4 聚乳酸的改性研究现状 (8) 2.5 聚乳酸合成方法 (9) 2.6 纳米复合材料的制备 (12) 2.7 PLA聚合物的发展前景与展望 (15) 第三章实验部分 (17) 3.1 引言 (17) 3.2 实验部分 (17) 第四章结果与讨论 (21) 4.1 反应条件对杂化材料的影响 (21) 4.2 PLA/TiO2纳米复合材料的结构与性能表征 (22) 结论 (34) 参考文献 (35)

引言 随着不可再生资源的日益减少,人们越来越关注环保与可持续发展的问题,全世界都在通过努力开发新型高分子材料来避免或减少对环境的损害。PLA 由于以下几点而被人们所关注:其原料是具有可再生性的乳酸,生产过程中污染小,可以自然的完全降解,只生成二氧化碳和水,对环境没有污染,克服了高分子材料的最大缺点,所以被人们称为绿色塑料。除此之外,聚乳酸还具有优良的生物相容性,可吸收性等,可以被广泛应用在医药卫生、包装材料等领域。 PLA虽然具有较好的机械强度和热成型性,但由于还存在一些不足,所以难以应用于实际:①纯PLA软化点为65℃,耐热温度太低,制品易发生变形或粘连,严重限制产品的应用范围。②市售聚乳酸产品脆性较大。③与通用塑料相比,售价较高,难以被市场接受。这些缺点促使人们对PLA材料的改性进行更深入研究。而纳米二氧化钛复合材料既能在发挥纳米二氧化钛自身的小尺寸效应、表面效应以及粒子的协同效应的同时,又同时能发挥高分子材料本身的优点,使复合材料具有良好的机械性能、光学性能、电磁性能等,得到了人们的重视。制备PLA/纳米二氧化钛复合材料是寄望于能结合二者各自的优点,得到更加实用的复合材料。目前的PLA 复合材料大部分是将填料与聚乳酸在一定条件下复合而成。此方法由于填料与聚乳酸间的结合力差,导致填料分散不均匀易团聚,还可能降低聚乳酸的分子量。且制备工艺比较繁琐,周期较长。 有鉴于此,本文通过制备PLA/TiO2纳米复合材料,希望能提高PLA的力学性能,机械性能等,降低其成本,使其拥有更大的应用空间。

PLA纳米复合材料在食品包装的应用研究进展

2019年第29卷第2期塑料包装19 1.引言 石油基塑料制品(如PE、PP、PVC、PET 等)因质轻、保护性强、印刷上色性好、价格低廉、性能可调等优点而被广泛应用于包装领域[1]。然而,这些塑料制品使用遗弃后降解速率十分缓慢,且难以回收,会对环境造成严重的污染。因此,在当今这个提倡节能、环保、低碳、可持续发展和高度重视食品安全的时代,石油基塑料作为食品包装材料已然显示出极大的负面性。 随着人们对环境问题的日益重视,生物基可降解高分子材料应运而生,成为最有可能替代石油基塑料的新一代包装材料。 根据来源和合成方法来划分,生物基高分子可分为天然高分子(如纤维素、甲壳素、明胶、蛋白质等[2])、合成高分子(如聚乳酸(PLA)、聚乙醇酸(PGA)、聚琥珀酸丁二醇酯(PBS)、聚乙烯醇(PVA))以及微生物发酵高分子(如聚羟基脂肪酸酯(PHAs)[3]。它们的共同特点是在适当的氧气、温度和湿度环境下可通过微生物代谢作用分 PLA纳米复合材料在食品包装的应用研究进展 杨伟军齐国闯马丕明东为富* (江南大学化学与材料工程学院) 摘要:本文综述了PLA纳米复合材料在食品包装领域的研究进展,具体包括PLA/纳米木质纤维复合材料、PLA/纳米黏土复合材料、PLA/金属或金属氧化物纳米复合材料以及PLA共混聚合物纳 米复合材料。并从制备方法、力学性能、热稳定性、降解性能、紫外光/气体阻隔性能、抗菌性 能、迁移性能等方面分析了各类纳米复合材料的优势,最后对PLA/纳米复合材料在食品包装的 应用前景进行了展望。 关键词:聚乳酸纳米复合材料性能食品包装 Research Progress ofPLABasedNanocompositesforFoodPackaging Yang Weijun Qi Guochuang Ma Piming Dong Weifu* (School of Chemistry and Materials Engineering,Jiangnan University)Abstrac t:This paper reviews the research progress of PLA nanocomposites for the application of food packaging,including PLA/lignocellulosic nanocomposites,PLA/nano-clay composites, PLA/metal or metal oxide nanocomposites,PLA blend polymer based nanocomposites.Then,the performance advantages of various nano-composite materials were analyzed from the aspects of preparation methods and mechanical properties,thermal stability,degradation properties,UV/gas barrier properties,antibacterial properties and migration properties.Finally,the PLA/nanocompositesfor the application in food packaging area were predicted. Keyw ord s:PLA Nanocomposites;Performance Food packaging

高分子纳米复合材料的制备

高分子纳米复合材料的制备 摘要: 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1, 2]。 关键词:高分子纳米复合材料,纳米单元,制备 由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。 高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1 nm~100 nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2 复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。 纳米单元与高分子直接共混 此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。 物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液

纳米复合材料的相关概念

纳米复合材料的部分基本概念 摘要:纳米材料被誉为21世纪的新材料,其概念在上世纪中叶被科学界提出后得到广泛重视和深入发展。本论文主要阐述了纳米复合材料概念的各种表达方法,例证了几种纳米复合材料,并对其纳米效应做出了具体说明。 关键词:纳米纳米复合材料纳米效应 一、纳米复合材料的定义及例证 20世纪80年代,Roy和Komarneni提出纳米复合材料(nanoeomposites)的定义,与单一组分的纳米结晶材料和纳米相材料不同,它是指材料两相(或多相)微观结构中至少有一相的一维尺度达到纳米级尺寸(1~100nm)的材料[1]。 也有学者做如下定义,当颗粒或尺寸至少在一维尺寸上小于100nm,且必须具有截然不同于块状材料的电学、光学、热学、化学或力学性能的一类复合材料体系[2-4]。 目前已经成功制备的纳米复合材料已有很多,以下是其中几个例子以及其特备方法和特点。 (1)聚丙烯/蒙脱土纳米复合材料 聚丙烯/蒙脱土纳米复合材料是采用溶液插层、原位聚合、熔融插层法进行制备的。 这种材料的由于高分子能进入层状无机纳米材料的片层之间,其分子链段的运动受到了限制而显著提高复合材料的耐热性及材料的尺寸稳定性,而且层状无机纳米材料可以在二维方向得到良好的增强作用。因此聚丙烯/蒙脱土纳米复合材料相对纯聚丙烯来说其强度和韧性都得到了很大的提高,综合性能优异。 (2)ZnO/Ag纳米复合材料 ZnO/Ag纳米复合材料的制备方法有共沉淀法,溶胶-凝胶法,化学沉积法,均匀沉淀法,喷射热分解法,固相法。 纳米ZnO与普通ZnO微粒相比,具有许多特殊性质:非迁移性、压电性、荧光性、具有光吸收和散射紫外光的能力等。ZnO具有光触媒功能,Ag的加入减少了空穴-电子对的复合,大大提高了其催化性能[5],无二次污染,而且光降解成本低,反应条件温和。

聚合物纳米复合材料发展现状

聚合物纳米复合材料发展现状 一、聚合物纳米复合材料的发展现状 1.1 聚合物纳米复合材料的市场应用状况 聚合物纳米复合材料还处于发展阶段,但根据预测,纳米复合材料将会迅速发展,成为近10年来对塑料工业影响最大的技术。聚合物通过熔融复合或者原位聚合技术利用2%~5%的纳米填料进行增强改性,即可大幅度改善其热学-力学性能、气体阻隔性能和阻燃性能,而且可以获得比常规填料增强的聚合物材料高得多的耐热性能、尺寸稳定性能和导电性能。 聚合物纳米复合材料已经在汽车和包装领域获得应用[1]。通用汽车公司最新推出的“悍马(hummer)12”越野车的车身使用了重达3 kg的纳米复合材料作为饰件、中心桥、嵌板和盒路保护。尽管目前经济效益不佳,发展速度低于预期。但是根据在美国旧金山召开的nanocomposites 2004、在美国芝加哥召开的spe antec 2004和在比利时布鲁塞尔召开的nanocomposites 2004三大纳米复合材料技术会议总结的信息,全球对聚合物纳米复合材料的研究和开拓市场的热情极为高涨,这将推动聚合物纳米复合材料的快速发展。 1.2 聚合物/纳米粘土复合材料 市场预测和研究公司[2] business communications的调查报告统计2003年全球聚合物纳米复合材料市场为2450万磅,价值9080万美元,并且预测到2008年将以年均18%的速度增长,增至21110万美元。即使聚合物纳米复合材料市场发展遇到一些障碍,但business communications预测其部分应用将以20%/年的速度增长。 研究与开发和商业化生产中主要的纳米填料是层状硅酸盐纳米粘土和纳米云母,其次是碳纳米管和片状石墨。其他一些纳米填料也在积极研究之中,例如合成粘土、多面体低聚半氧硅烷(poss)和天然纳米填料(亚麻纤维和大麻纤维)。 研究最广泛的、首先商业化应用的纳米填料是纳米粘土和碳纳米管。为了获得较好的分散状态和最终产品的综合性能,纳米填料都必须经过表面改性剂进行化学改性。纳米粘土和碳纳米管均能改善聚合物材料的结构性能、热学性能、气体阻隔性能和阻燃性能。碳纳米管还能增强导电性能。 迄今为止,纳米粘土由于其价格低廉(2.23~5.25美元/磅)而获得最为广泛的应用,一般用于通用树脂(如聚丙烯、热塑性弹性体、聚酯、聚乙烯、聚苯乙烯和尼龙)改性。目前,纳米粘土主要是纳米蒙脱土。纳米蒙脱土是一种层状硅铝酸盐,单片直径为1微米,比表面积为1000 :1。生产纳米蒙脱土的两大厂商为:nanocor公司,建有nanomer生产线;southern clay products公司,建有cloisite生产线。这两家公司都与树脂供应商、表面活性剂生产商以及树脂加工商、汽车制造商和包装材料生产商建立了联盟。相关企业进行的研究都申请了专利,并获得了商业成功。 gerneral motors公司已经在应用聚合物纳米复合材料方面领先一步。gerneral motors公司首次采用纳米复合材料是用于生产2002年款的“通用游猎(gmc safari)”和“雪佛兰星旅(chevrolet astro)”的辅助台阶,使用纳米复合材料制备的辅助台阶比目前汽车使用的塑料材料轻20%,而且更耐用,也更有利。2004年1月,该公司推出的“雪佛兰英帕拉(chevrolet impala)”的车身使用纳米复合材料制备,质量减轻了7%。该车型使用的纳米热塑性弹性体材料是由gerneral motors公司与basell north america和southern clay products合作生产的。目前,gerneral motors公司每年使用660 000磅的纳米复合材料,这是世界上使用聚烯烃基纳米复合材料最大的应用。 1.3 聚合物/碳纳米管复合材料 纳米粘土可以增强聚合物,碳纳米管则赋予聚合物以导电和导热性能。碳纳米管的商业

纳米复合材料复习资料

第一章 1、定义 宏观领域:指人的肉眼可见的物体为最小物体开始为下限,上至无限大的宇宙天体。 微观领域:指以原子、分子为最大起点,下限是无限。 介观领域:介于宏观领域与微观领域之间的领域。 纳米(n anometer)是一个长度单位,简写为nm。 纳米技术:是研究在千万分之一米(10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术。 纳米材料:把组成相或晶粒结构的尺寸控制在1-100纳米范围的具有特殊功能的材料称为纳米材料。 纳米复合材料:与单一组分的纳米结晶材料和纳米相材料不同,它是指材料两相(或多相)微观结构中至少有一相的一维尺度达到纳米级尺寸(1~100nm)的材料。 2、纳米复合材料命名 是根据复合材料的命名原则来命名纳米复合材料,用“复合材料”作后缀,用纳米材料和基体材料的名称来命名,将增强纳米材料的名称写在基体材料的名称前面。如纳米氧化锌在纳米量级上复合环氧树脂形成一种新的复合材料,就称为“纳米氧化锌环氧树脂复合材料”。另一种以“纳米复合材料”作为后缀,用纳米材料的无机名称与有机基体的聚合物名称来命名,将无机物与有机物用“/”隔开后缀纳米复合材料。如氧化锌以纳米微粒分散在连续相聚氯乙烯基体中,形成纳米无机物与有机物于一体的新型复合材料,就称为“氧化锌/聚氯乙烯纳米复合材料”。3、纳米复合材料性能 基本性能1)可综合发挥各种组分的协同效能。2)性能可设计性,可针对纳米复合材料的性能需求进行材料的设计和制造。3)可按需要加工材料的形状。特殊性能①同步增韧增强效应。②新品功能高分子材料。③强度大、模量高。④阻隔性能。 第二章 定义: 量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象和纳米半导体微粒存在不连续的最高被占据分子轨道和最低未被占据的分子轨道能级,能隙变宽现象均称为量子尺寸效应。小尺寸效应:由于颗粒尺寸变小所引起的宏观物理性质的变化。 表面效应:表面效应是指纳米微粒的表面原子数与总原子数之比随着纳米微粒尺寸的减小而大幅度增加,粒子表面结合能随之增加,从而引起纳米微粒性质变化的现象。 宏观量子隧道效应:微观粒子具有贯穿势垒的能力称为隧道效应。一些宏观物理量,如微颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效应,称为宏观的量子隧道效应。 超顺磁性:在小尺寸下,当磁晶的各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律的变化,结果导致超顺磁性的出现。 巨磁电阻效应:在[Fe/Cr]周期性多层膜中,观察到当施加外磁场时,其电阻下降,变化率高达50%。 蓝移:纳米微粒的吸收带普遍存在“蓝移”现象,即吸收带移向短波方向。 纳米微粒:纳米微粒是指颗粒尺寸一般在1—100 nm之间的粒状物质,它的尺度大于原子簇,小于通常的微粉。 量子效应与小尺寸效应的区别:量子尺寸效应是因能级间距不连续、离散引起的,与温度有关,要求是低温。性能的变化对温度有一突变。小尺寸效应不要求低温,性能随温度的变化没有突变。两者都能引起材料性能的极大变化。纳米效应引起的物质性能的变化: 1.热学性能:熔点下降,比热容提高。 2. 光学性能:宽频带强吸收,蓝移现象(“蓝移”的原因:量子尺寸效应,由于颗粒尺寸下降,能隙变宽,导致光吸收带移向短波方向。),纳米微粒的发光,纳米微粒分散体系的光学性

复合材料的界面

复合材料习题 第四章 一、判断题:判断以下各论点的正误。 1、基体与增强体的界面在高温使用过程中不发生变化。(?) 2、比强度和比模量是材料的强度和模量与其密度之比。(√) 3、浸润性是基体与增强体间粘结的必要条件,但非充分条件。(√) 4、基体与增强体间界面的模量比增强体和基体高,则复合材料的弹性模量也越高。(?) 5、界面间粘结过强的复合材料易发生脆性断裂。(√) 6、脱粘是指纤维与基体完全发生分离的现象。(?) 7、混合法则可用于任何复合材料的性能估算。(?) 8、纤维长度lγsv时,易发生浸润。 C、接触角θ=0?时,不发生浸润。 D、是液体在固体上的铺展。 3、增强材料与基体的作用是(A、D) A、增强材料是承受载荷的主要组元。 B、基体是承受载荷的主要组元。 C、增强材料和基体都是承受载荷的主要组元。 D、基体起粘结作用并起传递应力和增韧作用。 4、混合定律(A) A、表示复合材料性能随组元材料体积含量呈线性变化。 B、表示复合材料性能随组元材料体积含量呈曲性变化。 C、表达了复合材料的性能与基体和增强体性能与含量的变化。 D、考虑了增强体的分布和取向。 5、剪切效应是指(A) A、短纤维与基体界面剪应力的变化。 B、在纤维中部界面剪应力最大。

纳米复合材料

高分子纳米复合材料 第一章功能高分子材料的概述 1.1 功能高分子材料的定义及简介 天然的、合成的和复合的高分子材料已经遍及人们的衣、食、住、行乃至信息、能源、航空航天以及国防等各个领域,其重要性是不言而喻的。那么到底什么是高分子呢?看看我们的周围世界,人们穿的是棉、毛、涤纶等制成的衣服,吃的是富含淀粉和蛋白质的米、面、肉、蛋等食物,家里用的是由各种聚乙烯、聚氯乙烯等塑料制成的器皿,出门坐的是装有橡胶轮胎的汽车,所有这些不都是高分子在生活中生动的体现吗! 高分子是由分子量很大的长链分子所组成,而每个分子链都是由共价键联合的成百上千的一种或多种小分子构造而成。 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。 功能高分子材料是上世纪60年代发展起来的新兴领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的新材料。近年来,功能高分子材料的年增长率一般都在10%以上,其中高分子分离膜和生物医用高分子的增长率高达50%。 1.2功能高分子材料的发展历史 最早的功能高分子可追述到1935年离子交换树脂的发明。20世纪50年代,美国人开发了感光高分子用于印刷工业,后来又发展到电子工业和微电子工业。1957年发现了聚乙烯基咔唑的光电导性,打破了多年来认为高分子材料只能是绝缘体的观念。1966年little提出了超导高分子模型,预计了高分子材料超导和高温超导的可能性,随后在1975年发现了聚氮化硫的超导性。1993年,俄罗斯科学家报道了在经过长期氧化的聚丙烯体系中发现了室温超导体,这是迄今为止唯一报道的超导性有机高分子。20世纪80年代,高分子传感器、人工脏器、高分子分离膜等技术得到快速发展。1991年发现了尼龙11的铁电性,1994年塑料柔性太阳能电池在美国阿尔贡实验室研制成功,1997年发现聚乙炔经过掺杂具有金属导电性,导致了聚苯胺、聚吡咯等一系列导电高分子的问世。这一切多反映了功能高分子日新月异的发展其中从20世纪50年代发展起来的光敏高分子化学,在光聚合、光交联、光降解、荧光以及光导机理的研究方面都取得了重大突破,特别在过去20多年中有了飞快发展,并在工业上得到广泛应用。比如光敏涂料、光致抗蚀剂、光稳定剂、光可降解材料、光刻胶、感光性树脂、以及光致发光和光致变色高分子材料都已经工业化。近年来高分子非线性光学材料也取得了突破性的进展。 1.3功能高分子材料发展的背景 (1)经济发展的需要

高分子石墨烯纳米复合材料的前沿与趋势

石墨烯聚合物纳米复合材料的前沿与趋势 聚合物与其他塑料结合形成混纺纤维,与滑石粉及云母混合形成填充系统,和与其他非均质加固物进行模型挤压生产复合材料和杂化材料。这种简单的“混合搭配”方法使得塑料工程师们能够利用聚合物团生产一系列能够控制极端条件的有用的材料。在这种方法中最后加入的事石墨烯------人们早就了解到它的存在但是知道2004年才被制备与鉴定出的碳单原子层。英国曼彻斯特大学的Andre K.Geim和Konstantin S.Novoselov因为分离出碳单原子层而被授予诺贝尔物理学奖。他们的成就导致了聚合物纳米材料的蓝图发生了变化。人们已经长期熟知碳基材料,像金刚石,六方碳和石墨烯。但是聚合物纳米材料研究团体重新燃起的热情主要由于石墨烯可与塑料结合的特性以及它来自于廉价的先驱体。石墨烯的性价比优势在纳米复合材料、镀膜加工、传感器和存储装置的应用上正挑战着碳纳米管。接着,这些只能被想象出来的应用将会出现。事实上,Andre Geim说过“石墨烯对于它的名字来说就是一种拥有最佳性能的非凡的物质。”这能够在目前大量发表的文献中可以看出。石墨烯为什么能够这样引起人们的兴趣呢?本篇综述尝试去处理在石墨烯纳米复合材料新兴潮流中所产生的这类问题。这个工作的范围被石墨烯聚合物纳米复合材料(GPNC)研究员提出期望的发展潜力进行了拓展。 神奇的石墨烯 石墨烯被频繁引用的性能是它的电子传输能力。这意味着一个电子可以在其中不被散射或无障碍地通行。石墨烯的电子迁移率可达到20000cm2/Vs,比硅晶体管高一个数量级。一片最近的综述表明,以改良样品制备的石墨烯,电子迁移率甚至可以超过25000cm2/Vs。石墨烯是否缺少禁带以及大量合成纯石墨烯是否可行只有将来的研究可以解释。目前,非凡的电子传导性能使得石墨烯居于各类物质之首。所以,利用石墨烯代替硅作为基质的可能性将指日可待。虽然石墨烯的电子传导能力要比铜高得多,但是其密度只有铜的1/5。文献中大量记载了石墨烯的电子传导性能极其影响方面的细节。 由于它固有的特性人们开始对它在纳米复合材料的应用产生了兴趣。据预测,一个单层无缺陷的石墨烯薄膜的抗拉强度要比其他任何物质都要大。事实上,James Hone’s小组已经用原子力显微镜研究了独立的单层石墨烯薄膜的断裂强度。他们测得的平均断裂力为1700nN。他们还发现石墨烯这种物质可以抵挡超高的应力(约25%)。这些测量值使得这个团队计算出无缺陷石墨烯薄片的内在强度为45Nm-1。这儿的内在强度被规定为无缺陷的纯物质在断裂之前所能承受的最大应力。石墨烯如此卓越的是由于它相当于1.0Tpa的杨氏模量。在其他的特性中Paul McEuen和同事们只有一个原子厚度的石墨烯薄膜即可隔绝气体,包括氦气。即石墨烯在实际应用中可作为密闭的微室。石墨烯所表现出的热传导性能要比铜高出很多倍。这就意味着石墨烯能够很容易地进行散热。最近对大块石墨烯薄膜的研究表明其热传导系数是600W/(m.K)。石墨烯另外的一个特性是其具有高的比表面积,计算值为2630m2g-1,而碳纳米管仅为1315m2g-1,这使得石墨烯在储能装置应用上成为一个候选材料。Rod Ruoff’s小组通过改性的石墨烯演示了其具有的超高电容性能。对石墨烯的新奇属性的详细描述随处可见石墨烯与碳纳米管相比有一个截然相反的属性是其不含杂质(不含金属),这对构建可靠的传感器和储能装置来说是一个重要的优势。,更进一步,由于它形状与结构,石墨烯或许有更低的毒性,这也成为目前研究的主题。 独立的纳米材料的这些性质使得物理学家,化学家,和材料学家,不论作为理论学家还是实验学家,都为石墨烯的潜力而感到振奋。然而,最重要的问题是去区分炒作还是现实。

相关主题
文本预览
相关文档 最新文档