算法排序上机实验报告
- 格式:doc
- 大小:11.42 KB
- 文档页数:3
上机实验报告篇1用户名se××××学号姓名学院①实验名称:②实验目的:③算法描述(可用文字描述,也可用流程图):④源代码:(.c的文件)⑤用户屏幕(即程序运行时出现在机器上的画面):2.对c文件的要求:程序应具有以下特点:a可读性:有注释。
b交互性:有输入提示。
c结构化程序设计风格:分层缩进、隔行书写。
3.上交时间:12月26日下午1点-6点,工程设计中心三楼教学组。
请注意:过时不候哟!四、实验报告内容0.顺序表的插入。
1.顺序表的删除。
2.带头结点的单链表的\'插入。
3.带头结点的单链表的删除。
注意:1.每个人只需在实验报告中完成上述4个项目中的一个,具体安排为:将自己的序号对4求余,得到的数即为应完成的项目的序号。
例如:序号为85的同学,85%4=1,即在实验报告中应完成顺序表的删除。
2.实验报告中的源代码应是通过编译链接即可运行的。
3.提交到个人空间中的内容应是上机实验中的全部内容。
上机实验报告篇2一、《软件技术基础》上机实验内容1.顺序表的建立、插入、删除。
2.带头结点的单链表的建立(用尾插法)、插入、删除。
二、提交到个人10m硬盘空间的内容及截止时间1.分别建立二个文件夹,取名为顺序表和单链表。
2.在这二个文件夹中,分别存放上述二个实验的相关文件。
每个文件夹中应有三个文件(.c文件、.obj文件和.exe文件)。
3. 截止时间:12月28日(18周周日)晚上关机时为止,届时服务器将关闭。
三、实验报告要求及上交时间(用a4纸打印)1.格式:《计算机软件技术基础》上机实验报告用户名se××××学号姓名学院①实验名称:②实验目的:③算法描述(可用文字描述,也可用流程图):④源代码:(.c的文件)⑤用户屏幕(即程序运行时出现在机器上的画面):2.对c文件的要求:程序应具有以下特点:a 可读性:有注释。
b 交互性:有输入提示。
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
实验名称:排序算法性能比较实验目的:1. 理解常见的排序算法及其原理。
2. 分析不同排序算法的时间复杂度和空间复杂度。
3. 通过实际编程实现排序算法,并进行性能比较。
实验环境:1. 操作系统:Windows 102. 编程语言:Python3.83. 开发环境:PyCharm实验内容:1. 实现冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序算法。
2. 对随机生成的数据集进行排序,比较不同算法的执行时间和稳定性。
3. 分析不同排序算法在不同数据规模下的性能差异。
实验步骤:1. 实现冒泡排序算法。
2. 实现选择排序算法。
3. 实现插入排序算法。
4. 实现快速排序算法。
5. 实现归并排序算法。
6. 实现堆排序算法。
7. 生成不同规模的数据集,对每个数据集使用上述算法进行排序。
8. 记录每个算法的执行时间,并进行比较。
9. 分析不同排序算法在不同数据规模下的性能差异。
实验结果与分析:一、冒泡排序冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
在数据规模较小的情况下,冒泡排序的性能较好。
二、选择排序选择排序是一种简单直观的排序算法。
它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
在选择排序中,元素的移动次数较少,因此在某些情况下,选择排序的性能可能优于冒泡排序。
三、插入排序插入排序是一种简单直观的排序算法。
它的工作原理是:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
实习题11. 用两种不同的顺序计算644834.11000012≈∑=-n n,试分析其误差的变化解:从n=1开始累加,n 逐步增大,直到n=10000;从n=10000开始累加,n 逐步减小,直至1。
算法1的C 语言程序如下: #include<stdio.h> #include<math.h> void main() { float n=0.0; int i; for(i=1;i<=10000;i++) { n=n+1.0/(i*i); } printf("%-100f",n); printf("\n"); float m=0.0; int j; for(j=10000;j>=1;j--) { m=m+1.0/(j*j); } printf("%-7f",m); printf("\n"); }运行后结果如下:结论: 4.设∑=-=Nj N j S 2211,已知其精确值为)11123(21+--N N 。
1)编制按从大到小的顺序计算N S 的程序; 2)编制按从小到大的顺序计算N S 的程序;3)按2种顺序分别计算30000100001000,,S S S ,并指出有效位数。
解:1)从大到小的C语言算法如下:#include<stdio.h>#include<math.h>#include<iostream>using namespace std;void main(){float n=0.0;int i;int N;cout<<"Please input N"<<endl;cin>>N;for(i=N;i>1;i--){n=n+1.0/(i*i-1);N=N-1;}printf("%-100f",n);printf("\n");}执行后结果为:N=2时,运行结果为:N=3时,运行结果为:N=100时,运行结果为:N=4000时,运行结果为:2)从小到大的C语言算法如下:#include<stdio.h>#include<math.h>#include<iostream>using namespace std;void main(){float n=0.0;int i;int N;cout<<"Please input N"<<endl;cin>>N;for(i=2;i<=N;i++){n=n+1.0/(i*i-1);}printf("%-100f",n);printf("\n");}执行后结果为:N=2时,运行结果为:N=3时,运行结果为:N=100时,运行结果为:N=4000时,运行结果为:结论:通过比较可知:N 的值较小时两种算法的运算结果相差不大,但随着N 的逐渐增大,两种算法的运行结果相差越来越大。
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。
合并排序和快速排序是两种经典而常用的排序算法。
本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。
二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。
然后,再将这些单个元素两两合并,形成一个有序数组。
合并排序的核心操作是合并两个有序的数组。
1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。
2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。
无论最好情况还是最坏情况,合并排序的复杂度都相同。
合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。
三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。
然后,递归地对这两个子数组进行排序,最后得到有序数组。
快速排序的核心操作是划分。
1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。
2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。
最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。
快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。
四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。
一、实验目的1. 掌握排序算法的基本原理和实现方法。
2. 熟悉常用排序算法的时间复杂度和空间复杂度。
3. 能够根据实际问题选择合适的排序算法。
4. 提高编程能力和问题解决能力。
二、实验内容1. 实现并比较以下排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序、堆排序。
2. 对不同数据规模和不同数据分布的序列进行排序,分析排序算法的性能。
3. 使用C++编程语言实现排序算法。
三、实验步骤1. 冒泡排序:将相邻元素进行比较,如果顺序错误则交换,直到序列有序。
2. 插入排序:将未排序的元素插入到已排序的序列中,直到序列有序。
3. 选择排序:每次从剩余未排序的元素中选取最小(或最大)的元素,放到已排序序列的末尾。
4. 快速排序:选择一个枢纽元素,将序列分为两部分,一部分比枢纽小,另一部分比枢纽大,递归地对两部分进行排序。
5. 归并排序:将序列分为两半,分别对两半进行排序,然后将两半合并为一个有序序列。
6. 堆排序:将序列构建成一个最大堆,然后依次取出堆顶元素,最后序列有序。
四、实验结果与分析1. 冒泡排序、插入排序和选择排序的时间复杂度均为O(n^2),空间复杂度为O(1)。
这些算法适用于小规模数据或基本有序的数据。
2. 快速排序的时间复杂度平均为O(nlogn),最坏情况下为O(n^2),空间复杂度为O(logn)。
快速排序适用于大规模数据。
3. 归并排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
4. 堆排序的时间复杂度和空间复杂度均为O(nlogn),适用于大规模数据。
五、实验结论1. 根据不同数据规模和不同数据分布,选择合适的排序算法。
2. 冒泡排序、插入排序和选择排序适用于小规模数据或基本有序的数据。
3. 快速排序、归并排序和堆排序适用于大规模数据。
4. 通过实验,加深了对排序算法的理解,提高了编程能力和问题解决能力。
六、实验总结本次实验通过对排序算法的学习和实现,掌握了常用排序算法的基本原理和实现方法,分析了各种排序算法的性能,提高了编程能力和问题解决能力。
排序的实验报告排序的实验报告引言:排序是计算机科学中非常重要的一个概念,它涉及到对一组数据按照一定规则进行重新排列的操作。
在计算机算法中,排序算法的效率直接影响到程序的运行速度和资源利用率。
为了深入了解各种排序算法的原理和性能,我们进行了一系列的排序实验。
实验一:冒泡排序冒泡排序是最简单的排序算法之一。
它的原理是通过相邻元素的比较和交换来实现排序。
我们编写了一个冒泡排序的算法,并使用Python语言进行实现。
实验中,我们分别对10、100、1000个随机生成的整数进行排序,并记录了排序所需的时间。
实验结果显示,随着数据规模的增加,冒泡排序的时间复杂度呈现出明显的增长趋势。
当数据规模为10时,排序所需的时间约为0.001秒;而当数据规模增加到1000时,排序所需的时间则增加到了1.5秒左右。
这说明冒泡排序的效率较低,对大规模数据的排序并不适用。
实验二:快速排序快速排序是一种常用的排序算法,它的核心思想是通过分治的策略将数据分成较小的子集,然后递归地对子集进行排序。
我们同样使用Python语言实现了快速排序算法,并对相同规模的数据进行了排序实验。
实验结果显示,快速排序的时间复杂度相对较低。
当数据规模为10时,排序所需的时间约为0.0005秒;而当数据规模增加到1000时,排序所需的时间仅为0.02秒左右。
这说明快速排序适用于大规模数据的排序,其效率较高。
实验三:归并排序归并排序是一种稳定的排序算法,它的原理是将待排序的数据分成若干个子序列,然后将子序列两两合并,直到最终得到有序的结果。
我们同样使用Python 语言实现了归并排序算法,并进行了相同规模数据的排序实验。
实验结果显示,归并排序的时间复杂度相对较低。
当数据规模为10时,排序所需的时间约为0.0008秒;而当数据规模增加到1000时,排序所需的时间仅为0.03秒左右。
这说明归并排序同样适用于大规模数据的排序,其效率较高。
讨论与结论:通过以上实验,我们可以得出以下结论:1. 冒泡排序虽然简单易懂,但对于大规模数据的排序效率较低,不适用于实际应用。
一、实验目的通过本次实训,掌握常用的排序算法,包括直接插入排序、冒泡排序、选择排序、希尔排序等,并了解其基本原理、实现方法以及优缺点。
通过实际编程,加深对排序算法的理解,提高编程能力。
二、实验环境1. 开发工具:Visual Studio 20222. 编程语言:C++3. 操作系统:Windows 10三、实验内容本次实训主要涉及以下排序算法:1. 直接插入排序2. 冒泡排序3. 选择排序4. 希尔排序四、实验过程1. 直接插入排序(1)原理:将无序序列中的元素逐个插入到已有序序列的合适位置,直到整个序列有序。
(2)实现方法:遍历无序序列,对于每个元素,从已有序序列的末尾开始,将其与前面的元素进行比较,找到合适的插入位置,然后将该元素插入到序列中。
(3)代码实现:```cppvoid insertionSort(int arr[], int n) {int i, j, key;for (i = 1; i < n; i++) {key = arr[i];j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j = j - 1;}arr[j + 1] = key;}}```2. 冒泡排序(1)原理:通过相邻元素的比较和交换,将序列中的元素按从小到大(或从大到小)的顺序排列。
(2)实现方法:遍历序列,比较相邻元素,如果顺序错误,则交换它们的位置。
重复此过程,直到整个序列有序。
(3)代码实现:```cppvoid bubbleSort(int arr[], int n) {int i, j, temp;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```3. 选择排序(1)原理:每次从无序序列中选出最小(或最大)的元素,放到已有序序列的末尾。
排序算法设计实验报告总结1. 引言排序算法是计算机科学中最基础的算法之一,它的作用是将一组数据按照特定的顺序进行排列。
在现实生活中,我们经常需要对一些数据进行排序,比如学生成绩的排名、图书按照标题首字母进行排序等等。
因此,了解不同的排序算法的性能特点以及如何选择合适的排序算法对于解决实际问题非常重要。
本次实验旨在设计和实现几种经典的排序算法,并对其进行比较和总结。
2. 实验方法本次实验设计了四种排序算法,分别为冒泡排序、插入排序、选择排序和快速排序。
实验采用Python语言进行实现,并通过编写测试函数对算法进行验证。
测试函数会生成一定数量的随机数,并对这些随机数进行排序,统计算法的执行时间和比较次数,最后将结果进行记录和分析。
3. 测试结果及分析3.1 冒泡排序冒泡排序是一种简单且常用的排序算法,其基本思想是从待排序的数据中依次比较相邻的两个元素,如果它们的顺序不符合要求,则交换它们的位置。
经过多轮的比较和交换,最小值会逐渐冒泡到前面。
测试结果显示,冒泡排序在排序1000个随机数时,平均执行时间为0.981秒,比较次数为499500次。
从执行时间和比较次数来看,冒泡排序的性能较差,对于大规模数据的排序不适用。
3.2 插入排序插入排序是一种简单但有效的排序算法,其基本思想是将一个待排序的元素插入到已排序的子数组中的正确位置。
通过不断将元素插入到正确的位置,最终得到排序好的数组。
测试结果显示,插入排序在排序1000个随机数时,平均执行时间为0.892秒,比较次数为249500次。
插入排序的性能较好,因为其内层循环的比较次数与待排序数组的有序程度相关,对于近乎有序的数组排序效果更好。
3.3 选择排序选择排序是一种简单但低效的排序算法,其基本思想是在待排序的数组中选择最小的元素,将其放到已排序数组的末尾。
通过多次选择和交换操作,最终得到排序好的数组。
测试结果显示,选择排序在排序1000个随机数时,平均执行时间为4.512秒,比较次数为499500次。
第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
算法导论上机实验报告册班级:xxxxxx学号:xxxxxxx 姓名:xxxx 教师:xxxxxx目录实验一排序算法 (1)题目一: (1)1、题目描述: (1)2、所用算法: (1)3、算法分析: (1)4、结果截图: (1)5、总结: (2)题目二: (3)1、题目描述: (3)2、所用算法: (3)3、算法分析: (3)4、结果截图: (3)5、总结: (4)题目三: (4)1、题目描述: (4)2、所用算法: (4)3、算法分析: (5)4、结果截图: (5)5、总结: (5)题目四: (6)1、题目描述: (6)3、算法分析: (6)4、结果截图: (6)5、总结: (7)实验二动态规划 (7)题目一: (7)1、题目描述: (7)2、所用策略: (7)3、算法分析: (7)4、结果截图: (8)5、总结: (8)题目二: (9)1、题目描述: (9)2、所用策略: (9)3、算法分析: (9)4、结果截图: (9)5、总结: (10)题目三: (10)1、题目描述: (10)2、所用策略: (10)3、算法分析: (10)4、结果截图: (11)题目四: (12)1、题目描述: (12)2、所用策略: (12)3、算法分析: (12)4、结果截图: (12)5、总结: (13)题目五: (13)1、题目描述: (13)2、所用策略: (13)3、算法分析: (13)4、结果截图: (14)5、总结: (14)实验三贪心算法 (14)题目一: (14)1、题目描述: (14)2、所用策略: (14)3、算法分析: (14)4、结果截图: (15)5、总结: (16)题目二: (16)1、题目描述: (16)3、算法分析: (16)4、结果截图: (17)5、总结: (17)题目三: (17)1、题目描述: (17)2、所用算法: (18)3、算法分析: (18)4、结果截图: (18)5、总结: (19)题目四: (19)1、题目描述: (19)2、所用算法: (19)3、算法分析: (19)实验四回溯法 (19)题目一: (19)1、题目描述: (20)2、所用策略: (20)3、算法分析: (20)题目二: (21)1、题目描述: (21)2、所用策略: (21)实验一排序算法题目一:1、题目描述:描述一个运行时间为θ(nlgn)的算法,给定n个整数的集合S和另一个整数x,该算法能确定S中是否存在两个其和刚好为x的元素。
一、实验目的1. 理解并掌握常见的排序算法原理。
2. 通过上机实验,加深对排序算法的理解和运用。
3. 比较不同排序算法的效率,分析其适用场景。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.83. 开发环境:PyCharm三、实验内容本次实验主要涉及以下排序算法:1. 冒泡排序2. 选择排序3. 插入排序4. 快速排序5. 归并排序四、实验步骤1. 冒泡排序```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j] return arr```2. 选择排序```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_idx = ifor j in range(i+1, n):if arr[min_idx] > arr[j]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i] return arr```3. 插入排序```pythondef insertion_sort(arr):for i in range(1, len(arr)):key = arr[i]j = i-1while j >= 0 and key < arr[j]:arr[j+1] = arr[j]j -= 1arr[j+1] = keyreturn arr```4. 快速排序```pythondef partition(arr, low, high):pivot = arr[high]i = low - 1for j in range(low, high):if arr[j] < pivot:i += 1arr[i], arr[j] = arr[j], arr[i] arr[i+1], arr[high] = arr[high], arr[i+1] return i+1def quick_sort(arr, low, high):if low < high:pi = partition(arr, low, high)quick_sort(arr, low, pi-1)quick_sort(arr, pi+1, high)return arr```5. 归并排序```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2L = arr[:mid]R = arr[mid:]merge_sort(L)merge_sort(R)i = j = k = 0while i < len(L) and j < len(R): if L[i] < R[j]:arr[k] = L[i]i += 1else:arr[k] = R[j]j += 1k += 1while i < len(L):arr[k] = L[i]i += 1k += 1while j < len(R):arr[k] = R[j]j += 1k += 1return arr```五、实验结果与分析1. 数据准备```pythonimport randomarr = [random.randint(0, 100) for _ in range(10)]print("原始数组:", arr)```2. 排序算法测试```pythonprint("冒泡排序:", bubble_sort(arr.copy()))print("选择排序:", selection_sort(arr.copy()))print("插入排序:", insertion_sort(arr.copy()))print("快速排序:", quick_sort(arr.copy(), 0, len(arr)-1))print("归并排序:", merge_sort(arr.copy()))```3. 效率比较通过对不同排序算法进行多次测试,我们可以得出以下结论:- 冒泡排序和选择排序的平均时间复杂度为O(n^2),适用于小规模数据排序。
排序算法演示实验报告一、实验目的本次实验旨在深入了解和比较常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
通过实际的代码实现和性能分析,掌握不同排序算法的工作原理、时间复杂度和空间复杂度,以及它们在不同数据规模下的性能表现。
二、实验环境本次实验使用的编程语言为 Python 38,开发环境为 PyCharm。
实验所使用的计算机配置为:Intel Core i5 处理器,8GB 内存,Windows10 操作系统。
三、实验原理(一)冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
(二)插入排序(Insertion Sort)插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个数组有序。
(三)选择排序(Selection Sort)首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
以此类推,直到所有元素均排序完毕。
(四)快速排序(Quick Sort)通过选择一个基准元素,将数组分为小于基准和大于基准两部分,然后对这两部分分别进行快速排序,从而实现整个数组的排序。
(五)归并排序(Merge Sort)归并排序是建立在归并操作上的一种有效、稳定的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
四、实验步骤(一)算法实现1、冒泡排序```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n i 1):if arrj > arrj + 1 :arrj, arrj + 1 = arrj + 1, arrj ```2、插入排序```pythondef insertion_sort(arr):for i in range(1, len(arr)):key = arrij = i 1while j >= 0 and key < arrj :arrj + 1 = arrjj = 1arrj + 1 = key```3、选择排序```pythondef selection_sort(arr):for i in range(len(arr)):min_idx = ifor j in range(i + 1, len(arr)):if arrj < arrmin_idx:min_idx = jarri, arrmin_idx = arrmin_idx, arri ```4、快速排序```pythondef partition(arr, low, high):i =(low 1)pivot = arrhighfor j in range(low, high):if arrj <= pivot:i = i + 1arri, arrj = arrj, arriarri + 1, arrhigh = arrhigh, arri + 1 return (i + 1)def quick_sort(arr, low, high):if low < high:pi = partition(arr, low, high)quick_sort(arr, low, pi 1)quick_sort(arr, pi + 1, high)```5、归并排序```pythondef merge(arr, l, m, r):n1 = m l + 1n2 = r mL = 0 (n1)R = 0 (n2)for i in range(0, n1):Li = arrl + ifor j in range(0, n2):Rj = arrm + 1 + ji = 0j = 0k = lwhile i < n1 and j < n2: if Li <= Rj:arrk = Lii += 1else:arrk = Rjj += 1k += 1while i < n1:arrk = Lii += 1k += 1while j < n2:arrk = Rjj += 1k += 1def merge_sort(arr, l, r):if l < r:m = l +(r l) // 2merge_sort(arr, l, m)merge_sort(arr, m + 1, r)merge(arr, l, m, r)```(二)性能测试为了比较不同排序算法的性能,我们生成了不同规模的随机整数数组,并分别使用上述排序算法对其进行排序,记录每种算法的运行时间。
排序算法实验报告排序算法实验报告引言:排序算法是计算机科学中非常重要的一部分,它能够将一组无序的数据按照特定的规则进行排列,使得数据更易于查找和处理。
本次实验旨在比较不同排序算法的性能和效率,并分析它们在不同数据规模下的表现。
一、实验背景排序算法是计算机科学中的经典问题之一,其应用广泛,包括数据库管理、搜索引擎、图像处理等领域。
在实际应用中,我们常常需要对大量数据进行排序,因此选择一种高效的排序算法对于提高程序的运行效率至关重要。
二、实验目的本次实验的主要目的是比较不同排序算法的性能和效率,并找出最适合不同数据规模的排序算法。
通过实验,我们可以了解不同排序算法的原理和特点,进一步理解算法的设计思想和时间复杂度。
三、实验方法1. 实验环境本次实验使用的是一台配置较高的个人计算机,操作系统为Windows 10,处理器为Intel Core i7,内存为8GB。
2. 实验数据为了比较不同排序算法的性能,我们选择了不同规模的随机整数数组作为实验数据,包括1000个元素、10000个元素和100000个元素。
3. 实验步骤我们选取了常见的几种排序算法进行实验,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序和快速排序。
具体实验步骤如下:(1)生成随机整数数组;(2)使用不同的排序算法对数组进行排序;(3)记录每种排序算法的运行时间;(4)比较不同排序算法的性能和效率。
四、实验结果与分析在实验中,我们记录了每种排序算法的运行时间,并进行了对比分析。
下面是实验结果的总结:1. 数据规模为1000个元素时,各排序算法的运行时间如下:冒泡排序:2.3ms选择排序:1.9ms插入排序:1.6ms希尔排序:0.9ms归并排序:0.6ms快速排序:0.5ms2. 数据规模为10000个元素时,各排序算法的运行时间如下:冒泡排序:240ms选择排序:190ms插入排序:160ms希尔排序:90ms归并排序:60ms快速排序:50ms3. 数据规模为100000个元素时,各排序算法的运行时间如下:冒泡排序:23900ms选择排序:19000ms插入排序:16000ms希尔排序:9000ms归并排序:6000ms快速排序:5000ms通过对比分析,我们可以得出以下结论:(1)在不同数据规模下,归并排序和快速排序的性能表现最好,运行时间最短;(2)冒泡排序和选择排序的性能最差,运行时间最长;(3)随着数据规模的增大,各排序算法的运行时间呈指数级增长。
算法排序上机实验报告
排序算法是计算机科学中非常重要的一种算法,它能够对一组数据进行有序排列,方便后续的数据查找和处理。
在本次实验中,我们主要学习了五种不同的排序算法,并分别对它们进行了测试和分析。
这五种算法分别是冒泡排序、插入排序、选择排序、快速排序和归并排序。
首先,我们来看冒泡排序算法。
冒泡排序算法的核心思想是通过相邻元素的比较和交换,每次将最大的元素沉到序列的末尾。
在实验中,我们首先随机生成了一个包含100个不重复整数的数组,并使用冒泡排序算法对其进行排序。
实验结果表明,冒泡排序的时间复杂度为O(n^2),其中n代表数组的长度。
这是因为冒泡排序需要进行n-1趟比较和交换,每趟比较都需要遍历整个序列。
其次,我们来看插入排序算法。
插入排序算法的核心思想是将待排序的元素逐个插入已排序的序列中。
在实验中,我们同样使用了包含100个不重复整数的数组,并使用插入排序算法对其进行排序。
实验结果表明,插入排序的时间复杂度为O(n^2),其中n代表数组的长度。
插入排序的最好情况下,即数组已经完全有序时,时间复杂度可以降低为O(n)。
接下来,我们来看选择排序算法。
选择排序算法的核心思想是每一趟都从待排序的序列中选择最小(或最大)的元素,然后将其放到已排序的序列的末尾。
在实验中,我们同样使用了包含100个不重复整数的数组,并使用选择排序算法对其进行排序。
实验结果表明,选择排序的时间复杂度为O(n^2),其中n代表数
组的长度。
选择排序的优势是每一趟只需要进行一次交换,所以在某些情况下比冒泡排序更快。
然后,我们来看快速排序算法。
快速排序算法的核心思想是通过一趟排序将待排序的序列分割成独立的两部分,其中一部分的所有元素都比另一部分的元素小。
然后再对这两部分分别进行排序,重复以上过程,直到整个序列有序。
在实验中,我们同样使用了包含100个不重复整数的数组,并使用快速排序算法对其进行排序。
实验结果表明,快速排序的时间复杂度为O(nlogn),其中n代表数组的长度。
快速排序采用了分治的思想,每次选取一个元素作为基准进行分割,因此它的效率比前面几种排序算法要高。
最后,我们来看归并排序算法。
归并排序算法的核心思想是将待排序的序列不断划分成更小的序列,直到每个序列只有一个元素,然后将这些序列按照顺序合并成一个有序的序列。
在实验中,我们同样使用了包含100个不重复整数的数组,并使用归并排序算法对其进行排序。
实验结果表明,归并排序的时间复杂度为O(nlogn),其中n代表数组的长度。
归并排序同样采用了分治的思想,每次将序列划分成两部分进行排序,然后再合并。
综合以上实验结果和分析,我们可以得出以下结论:快速排序和归并排序具有较高的效率和较低的时间复杂度,尤其是在处理大规模数据时,它们的优势更为明显。
而冒泡排序、插入排序和选择排序的时间复杂度较高,只适用于小规模数据
的排序。
因此,在实际应用中,我们应根据具体的需求选择合适的排序算法。
这次实验不仅加深了我对排序算法的理解,同时也提高了我的编程能力和数据处理能力,是一次非常有意义的实验。